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Abstract

This paper generalizes Rubinstein and Wolinsky’s model of middlemen (inter-

mediation) by incorporating production and search costs, plus more general

matching and bargaining. This allows us to study many new issues, including

entry, efficiency and dynamics. In the benchmark model, equilibrium exists

uniquely, and involves production and intermediation for some parameters

but not others. Sometimes intermediation is essential: the market operates

iff middlemen are active. If bargaining powers are set correctly equilibrium is

efficient; if not there can be too much or too little economic activity. This is

novel, compared to the original Rubinstein-Wolinsky model, where equilibrium

is always efficient.
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1 Introduction

This paper continues the development of theories of middlemen, or interme-

diaries, going back to Rubinstein and Wolinsky (1987) — hereafter RW. As

they said at the time, “Despite the important role played by intermediation

in most markets, it is largely ignored by the standard theoretical literature.

This is because a study of intermediation requires a basic model that describes

explicitly the trade frictions that give rise to the function of intermediation.

But this is missing from the standard market models, where the actual process

of trading is left unmodeled.” Since then, many people have helped to rectify

the situation, contributing to the discussion with various models, but often

using search-and-bargaining theory.1 What makes the models more than a

relabeling of, say, textbook search models of labor, goods, or marriage is that

they involve three-sided markets — in addition to firms and workers, buyers and

sellers, or men and women, they have third parties potentially intermediating

between the other two.2

We extend RW on several dimensions, not merely for the sake of gener-

ality, but because this allows us to address new substantive issues, including

efficiency. Our extensions consist of the following: RW have an endowment

economy, while we have production; they do not have search costs, while we do;

they assume a special matching process with equal numbers of buyers and sell-

ers, while we use a more general population and matching process; they only

1We do not review the literature, since that was recently done in Wright and Wong

(2014). Surveys by Williamson and Wright (2010) and Nosal and Rocheteau (2011) provide

more discussion of work on financial intermediation, in particular, with an emphasis on

search. We mention below other papers when they are directly related.
2For labor-market models, see Mortensen and Pissarides (1994) or Pissarides (2000); for

goods-market models, see Osborne and Rubinstein (1990), Shi (1995) or Trejos and Wright

(1995); for marriage-market models see Burdett and Coles (1997,1999) or Shimer and Smith

(2000).
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consider the case where buyers and sellers exit the market after they trade,

while we allow them to potentially stay in; and they only consider symmet-

ric bargaining, while we allow general bargaining powers, which is especially

important for understanding efficiency. Moreover, by taking advantage of ad-

vances in search theory over the past 25 years, we provide a more parsimonious

presentation of the generalized model, and of RW as a special case.

In terms of results, we first characterize the set of steady-state equilibria for

a benchmark model, verifying existence and generic uniqueness.3 Although in

principle there are many candidate equilibria, there are basically three distinct

outcomes: (i) degenerate equilibria where the market does not open (produc-

ers are inactive, middlemen are irrelevant); (ii) equilibria with direct trade

between producers and consumers but no intermediation (producers are ac-

tive, middlemen are not); and (iii) equilibria with direct and intermediated

trade (both are active). For some parameters, only a fraction of producers en-

ter the market, as in macro-labor models along the lines of Pissarides (2000).

In RW, all producers are always on the market. Whether middlemen, as well

as producers, are active depends on parameters, including production and

search costs, bargaining power, the matching process, and the probabilities

that agents exit the market after trade. In RW, middlemen are active iff they

meet consumers faster than producers meet consumers.

We then solve for efficient outcomes. Equilibria are not efficient in gen-

eral, due to holdup problems, since some costs are sunk when trades occur.

Suppose, e.g., all the bargaining power goes to the agent that passes the good

on to the next agent — i.e., the producer when he trades with a consumer or

3While uniquenss obtains in our benchmark model, the extension that has producers and

consumers exiting the market after trade with some probability can have multiple equilibria

for certain parameters, although not for those in the original RW specification.
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a middleman, and the middleman when he trades with a consumer. Then

there is generally too much entry by producers for reasons discussed below.

For arbitrary bargaining powers, there may be too much or too little entry

by producers, and there can be too little but not too much intermediation.4

However, we show that if bargaining powers are set appropriately, related to

Mortensen (1982) and Hosios (1990), equilibrium is efficient. These results

are novel compared to the RW model, with no production or search costs and

symmetric bargaining, where equilibrium is always efficient.

The rest of the paper involves laying out the details and proving the claims.

Section 2 presents the baseline model. Section 3 describes equilibria. Section

4 contains a discussion of extensions and alternative formulations. Section 5

compares efficient and equilibrium outcomes. Section 6 generalizes the model

by allowing producers and consumers to exit the market probabilistically. Sec-

tion 7 concludes.

2 The Model

There are three types of agents, labeled  , and  for producers, middlemen

and consumers, who live forever in continuous time. The measure of type  is

 with  + +  = 1. There is an indivisible good  that only  values,

4Unlike the caveat about uniquness in fn. 3, the result that there can be too little but not

too much intermediation survives in the extension where agents probabilistically exit the

market after trade. Still, the result is somewhat model dependent. Li (1998) can get too

much or too little intermediation depending on bargaining powers. Her model is different in

that agents choose to be either middlemen or producers, so too few of the latter necessarily

means too many of the former. Shevchenko (2004) can also get too much or too little

intermediation. His model is different in that he allows middlemen to hold multiple units

in inventory to study efficiency on the intensive as well as the extensive margin. See also

Johri and Leach (2002). One more example is given by Masters (2007,2008). He generally

gets too much intermediation, because middlemen in his setup perform no socially useful

function — they simply buy low and sell high to consume without producing.
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enjoying utility  from consuming one unit. Good  is storable, but only one

unit at a time. It is produced by  , who has an entry cost  to participate in

the market and another cost  to generate a unit of  for a trading partner.

One interpretation is that  is a cost of raw materials and  is a cost to finalize

the output. We assume +   , as otherwise the market shuts down. If 

pays , we say that he is in the market, looking to trade, in which case he also

has a search or storage cost . While cannot produce , and has no desire

to consume it, he may acquire it from  with the intent of retrading it to ,

in which case  is in the market, with a search or storage cost . Notice

there are no costs for agents looking to acquire , only for those holding .

Also, there are no production or improvement costs for  , although one can

add these, as may be appropriate in applications such as flipping real estate.

There is another good  that is perfectly divisible but nonstorable. Any

agent can produce  at unit utility cost. All agents derive utility  () from

consuming , in general, although here we assume  () =  (how this matters

is discussed in Wright and Wong 2014). Therefore, in this exercise, as in

RW, one can say there is transferrable utility. Where we generalize their

model is that they have  =  =  =  = 0. Adding production and

search costs seems obviously relevant for many substantive applications. It is

also interesting to have these costs, so that there are nontrivial decisions by

producers and middlemen to participate in the market, because this allows us

to analyze when there is too little or too much activity in equilibrium. Also,

while the only role for intermediation in RW is that  might be able to meet

 faster than  can meet , in this model differences in search costs and other

parameters also matter.

The timing is important. For  , costs  and  are sunk when he meets
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a potential trading partner, while  is paid only when  delivers the goods.

For  , if he acquires  from  , he generally must transfer some  to  , and

that as well as  are sunk when  meets . Sunk costs are interesting in

search-and-bargaining models, generally, because they lead to holdup problems

that can cause market failures. These problems are often described as the

result of imperfect contracting or commitment, and that is accurate here, too.

However, compared to models where such imperfections are imposed in an ad

hoc fashion, in search theory it is obviously natural to say that it is hard to

contract with someone, or commit something to someone, before you meet

them. Therefore these are natural models in which to study the efficiency of

entry or participation.5

Agents meet according to a bilateral random-matching process, where  is

the Poisson arrival rate at which type  meets . This implies three identities:

 = ,  =  and  = 

The first says the measure of type  meeting type  is the same as the

measure of type  meeting type  , and similarly for the others. The vector

 = (  ) has 6 elements, but the above identities imply  =

, which means that one can choose only 5 independently. In the

background one can imagine a population n = (  ) determining the

arrival rates, but we follow RW and take  to be exogenous, since there exists

an n consistent with any  such that  = . However,

5RW also have a holdup problem, since whatever  gives to  is sunk when  meets

. This does not affect efficiency in RW, but can affect the distrbution of payoffs. They

discuss a “consignment” arrangement, whereby  makes a transfer to  only after trading

with , so it is not sunk when bargaining with . Of course, this may or not be feasible,

depending on the physical environment — e.g., it will not work if and  cannot reconvene

after trading, or if  cannot commit to transfers.
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we depart from RW by not focusing exclusively on markets where  = ,

 =  and  = , the first of which implies  =  (i.e., the rather

special case of equal measures of producers and consumers).

As in RW, middlemen are recycled after each trade: any type  agent

that chooses to enter the market at  = 0 stays in the market forever. For 

and , RW assume that they exit after one trade, to be cloned by replicas of

themselves to maintain a stationary environment. While it does not matter

much whether  and  are cloned or recycled in the simple baseline RWmodel,

it turns out that in our generalized version the latter is much more tractable.

To nest both cases, where they are cloned and where they are recycled, we

assume that after each trade type  =  agents continue in the market with

probability  and exit with probability 1 − . However, for now, as a more

tractable benchmark, we assume  =  = 1, and revisit the general case in

Section 6.

Denote the surplus in an  match by Σ. In any  match, there can

be trade if Σ ≥ 0, and must be trade if Σ  0 (see Lemma 2 below). In

 matches, when they trade,  gives  to  for some amount of , say .

Similarly, in matches, if has  gives he it to  for . In  matches,

 cannot give  to  if  already has , since it is only storable one unit at

a time. If  does not have ,  may or may not give it to him; if he does

then  gives  in return. Our convention for notation is that in Σ the

subscripts indicate that  goes from  to , and in  they indicate that  goes

from  to . For future reference let y = (  ). Bargaining determines

the terms of trade:  splits the surplus, where  is the share (bargaining

power) of , and  = 1− . This outcome follows from generalized of Nash

(1950) bargaining, Kalai (1977) bargaining, and various other solutions when

8



 () = , although they can give different outcomes when  00 ()  0.6

We now analyze behavior. For  it is trivial, since he pays no cost to

participate and trades whenever he can (see Lemma 3). The choices for  are

, the probability he enters the market, and , the probability he searches

conditional on holding ; the choices for  are  , the probability he tries

to enter the market by trading for , and , the probability he searches

conditional on having .7 Let p = (   ) and, since the environment is

stationary, assume agents make once-and-for-all decisions at  = 0. Thus, 

enters with probability , and if he does then after trading he pays the cost 

to remain in the market, while if he does not then he is out forever. Similarly,

 decides at  = 0 with probability  to trade for , and if he does he stays

forever, while if he does not then he is out forever. In other words, agents

randomize once at  = 0, and not in each meeting.

As defined below, an equilibrium determines p, and hence determines when

the market is open (some producers are active), and whether there is interme-

diation (some middlemen are active). We begin with a few preliminary results.

The first says that and  would only pay to acquire  if they strictly prefer

6Again see Wright and Wong (2014). That paper also shows that there are belief-based

(bubble) equilibria in a related model with  00  0, something that cannot happen with

 00 = 0 (see Section 4). Another point in that paper is that one ought to resist the temp-
tation to call  the price and say  buys  from , since it makes at least as much sense

to call 1 the price and say  sells  to . The argument is that we can only really

say who is the buyer and seller in monetary exchange, and one should not call  money,

even though people often do in related models — i.e., they use the word money as a sloppy

synonym for transferable utility. On reflection, we think that it makes at least as much if

not more sense to call  a commodity money: it is a storable asset that  and  use as a

medium of exchange to acquire . Under this interpretation, one can say that Rubinstein

and Wolinsky (1987) provide a model of commodity money as a by-product of their analysis

of middlemen, the same way that Kiyotaki and Wright (1989) provide a model of middlemen

as a by-product of commodity money.
7One might anticipate that there are no equilibria where   0 and  = 0, or   0 and

 = 0. That is true, but it is still important to have  and  in the strategy profile,

since an agent who is not willing to pay to get  may or may not try to trade it if, off the

equilibrium path, he happened to have it.
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to search. This should be obvious for  , since it is costly to enter the market,

and hence he will not do so unless he plans to search. Similarly,  would

never acquire  unless he plans to search for a trading partner, unless he can

get  for free, but  will not give it away for free. This constitutes a proof

of Lemma 1. The second result says that trade is mutually agreeable in an

 match whenever the total surplus is positive. The third result says that

 always trades with anyone who has .

Lemma 1 If   0 then  = 1. If   0 and   0 then  = 1.

Lemma 2 If   0 then  (strictly) wants to trade with  iff  (strictly)

wants to trade with  iff Σ is (strictly) positive.

Lemma 3 If   0 then  always trades with  , and  always trades with

 when  has .

Given that  wants to trade with  whenever  wants to trade with

 , we can delegate the decision to  And  always trades with . Hence,

once  is in the market he trades with anyone that is willing and able. To

determine who is willing and able, let  be the fraction of  holding . Then

in any  match the probability of trade is  − , since a fraction  of type

 decided at  = 0 to accept , but a fraction  already have it. The law of

motion for  is

̇ = ( − ) − 

In the first term, there are  −  type  that accept  but do not currently

have , they contact  at rate , and the probability is  that  is on

the market and looking to trade, assuming random matching in the sense that

 can meet  even if the latter is not actively on the market.
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One way to motivate this is to imagine  calling random  agents on the

phone at rate . He may call one that is not in the market or not searching,

whence the call goes unanswered. With probability  he reaches a  who is

active. Note this is not inconsistent with assuming agents with  pay a cost

 or  while those looking to acquire it do not — it simply means phone calls

are free while storage is costly.8 In any case, for the second term in ̇, there

are  type  agents with , and they trade whenever they contact . The

SS (steady state) condition ̇ = 0 implies

 =


 + 

 (1)

Let  be ’s payoff or value function. Let  be  ’s value function, given

that he has decided to enter the market and search (otherwise his payoff is

0). Let 0 be  ’s value function when he does not have , given that he has

decided to enter the market and trade when he can (otherwise his payoff is

0). Let 1 be  ’s value function when he has , given that he has decided to

search (otherwise his payoff is 0). To develop some intuition, consider first the

flow payoff for ,

 = Σ + Σ

The first term says  meets  at rate , and the probability is  that 

is on the market with goods to trade, in which case  gets a share  of the

surplus total Σ. The second term is similar.

As in Lagos and Rocheteau (2009), we simplify notation by letting  =

8Unlike many search and matching models, our specifcation does not admit congestion

effects. At the suggestion of a refee we note that this simplifcation can be justifed by

saying that it allows some new interpretations and additional decisions. So, while slightly

nonstandard, the setup is logically consistent, interesting and especially tractable.
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 combine arrival rates and bargaining powers to get

 = Σ + ( − )Σ −  (2)

0 = Σ (3)

1 = Σ −  (4)

 = Σ + Σ (5)

the standard DP (dynamic programming) equations. The surpluses are9

Σ = − +max { −  0}−max { 0} (6)

Σ = max {1 0}−max {0 0}− +max { −  0}−max { 0} (7)

Σ = +max{0 0}−max {1 0}  (8)

For future reference, let V = (  0 1) and Σ = (ΣΣΣ).

An equilibrium p = (   ) must satisfy what we call the BR (best

response) conditions. For  , these are:

 =

⎧⎪⎨⎪⎩
1 if   

[0 1] if  = 

0 if   

and  =

⎧⎪⎨⎪⎩
1 if   0

[0 1] if  = 0

0 if   0

(9)

For  , they are:

 =

⎧⎪⎨⎪⎩
1 if Σ  0

[0 1] if Σ = 0

0 if Σ  0

and  =

⎧⎪⎨⎪⎩
1 if 1  0

[0 1] if 1 = 0

0 if 1  0

(10)

9Heuristically, the max operators embody the notion of subgame perfection. Consider

Σ. If  and  trade, the instantaneous surplus is − , then  decides whether to pay 

to remain in the market, so his continuation value is max{ −  0}; if they do not trade, 
decides whether to continue search, so his outside option is max{ 0}. In equilibrium, once
 decides to enter he is in the market forever, but this way of writing the surplus indicates

this is a best response in every subgame. For  the continuation value and outside options

are both , so they cancel, which is one reason the analysis is easier when we recycle .
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Definition 1 A (steady-state) equilibrium is a list hVpi such that:  sat-
isfies the SS condition (1); V satisfies the DP equations (2)-(5); and p satisfies

the BR conditions (9)-(10).

Given an equilibrium the terms of trade are easily recovered. Assuming

  0, ’s surplus when trading directly with  is  −  =  (− − ),

and so

 = +  (+ )  (11)

This is a weighted average of ’s gain and  ’s cost, including  even though

it is sunk, because  has to pay it again to continue in the market. Similarly,

assuming   0 and   0, the transfers in wholesale and retail trade are

 = ∆+  (+ ) and  = + ∆ (12)

where ∆ ≡ 1 − 0 is  ’s gain from getting (cost to giving) , which is

easily computed from (3)-(4). Finally, the wholesale-retail markup, or spread,

 ≡  − , is given by
10

 = + ( − )∆−  (+ )  (13)

3 Equilibrium

We now characterize equilibria. There are in principle many candidate equilib-

rium profiles, but one can rule out those with   0 and   1, plus those with

  0 and   1, since it cannot be a BR to pay for  and not search. There

10Although the terms of trade are interesting, we do not dwell on them since we are more

concerned with existence and efficiency. However, if one solves for , it clearly does not

vanish as  → 0, contrary to RW. In RW,  profits exclusively from the impatience of

others when   , and as  → 0 that advantage vanishes. Here  may have other

advantages, including costs and bargaining power.
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are also candidates with  = 0, which are relegated to Appendix A, so we can

concentrate on nondegenerate cases here. The next result further reduces the

set of candidates by establishing that  never randomizes, and while  may

randomize, he does so only when  is in the market with probability 1.

Lemma 4 For generic parameters, in any equilibrium: (i)  ∈ (0 1) implies
 = 0; and (ii)  ∈ (0 1) implies  = 1.

Proof : For (i), suppose by way of contradiction   0 and  ∈ (0 1). Then
Σ = 0, or 1 − 0 = + . The value functions for  are then given by

0 =  [1 − 0 − (+ )]− 

1 =  [− (1 − 0)] 

Solving for∆ = 1−0 = +, Σ = 0 implies  = ( + ) (+ )−,
which is nongeneric. For (ii), suppose   0 and   1. By (i),  = 0; then

 = Σ−  =  (− − )− . For  ∈ (0 1) we need  = , which

is nongeneric. ¥

Our quest for nondegenerate equilibria is thus reduced to four candidates.

There are three where  enters with probability 1: p = (1 1 0 0), where 

does not trade for  and would not search if he had it; p = (1 1 0 1), where

does not trade for  but would search if he had it; and p = (1 1 1 1), where

 trades for  and searches when he gets it. There is also one candidate

where  enters with probability  ∈ (0 1) and  = 1. To understand the logic
of  ∈ (0 1), note that for  to be indifferent to entry we need  = . As

 varies, the probability that  can take  off  ’s hands when they meet,

1 − , adjusts endogenously to make  = . We now consider each of these

candidates in turn.
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1. Equilibrium p = (1 1 0 0): In this equilibrium,  enters with proba-

bility 1, while  neither accepts  nor searches if (off the equilibrium path)

he happens to have . This implies

 =  (− − )− 

0 =  (1 − 0 − − )

1 = (− 1 + 0)− 

 =  (− − ) 

where one should interpret 0 and 1 as the payoffs to  if he were active,

even though he is not active in equilibrium. For  ,  = 1 is a BR iff  ≥ ,

which reduces after routine algebra to

 ≤ ̃ ≡  (− − )−  (14)

Given  = 1,  = 1 is automatic (Lemma 1). For  , consider a deviation

where he searches when he has . The deviation payoff is

 
1 = 

¡
−  

1

¢− 

For  = 0 to be a BR we need  
1 ≤ 0, or  ≥ . Given  = 0,

 = 0 is automatic. Hence p = (1 1 0 0) is an equilibrium iff 0 ≤  ≤ ̃ and

 ≥ .

2. Equilibrium p = (1 1 0 1): For  , the BR condition is again  ≤ ̃.

For  , it is easy to check  = 0 is a BR iff Σ ≤ 0, or

 ≥ ̃ ≡  (− − )− (+ ) (15)
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Also,  = 1 is a BR iff  ≤ . Hence p = (1 1 0 1) is an equilibrium iff

 ≤ ̃ and  ≥  ≥ ̃.

Before moving to other cases, consider Figure 1, where the two equilibria

discussed above exist in ( ) space in the regions to the northwest labeled

(1 1 0 0) and (1 1 0 1). Naturally,  is active while  is not when  is

small and  is big. If  if very big,  would not search for  even if he

had ; if  is only moderately big  would search for  if he had , but it

is not worth making the transfer to acquire it. To describe what happens for

lower , it is convenient to consider the lines 0() and 1() in Figure 1.

Both are special cases of  =  (), for any  ∈ [0 1], given by

 () ≡ ̃ + (̃ − )
 +  + 

 [ −  ()]
 (16)

where ̃ is defined in (15) and  =  () is now written as a function of .

As  goes from 0 to 1,  () rotates around (ee) from 0 () to 1 ().

insert fig 1 about here

3. Equilibrium p = (1 1 1 1): For  = 1 we need Σ ≥ 0. This reduces
to  ≤ ̃, the reverse of (15). For  = 1 we need  ≥ , which reduces

to  ≤ 1(). Hence this equilibrium exists iff  ≤ min {̃ 1()}, as
shown in Figure 1.

4. Equilibrium  = ( 1 1 1) with  ∈ (0 1): One can check  ’s

BR condition holds iff  ≤ e, so it remains only to check  =  ∈ (0 1).
Substituting  from (1) into  and solving the quadratic equation  =  for

, we get

 =
− [ ( + ) + ] +

√


2

 (17)
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where  = [ ( + ) + ]
2 − 4. Algebra im-

plies  ∈ (0 1) in the region between 1 () and 0 () in Figure 1.

5. Degenerate equilibria: Appendix A shows that equilibria with  = 0

exist in the shaded region of Figure 1. However, there are different equilibria

with  = 0, e.g., where  is either 0 or 1. Appendix A shows that where are

in the shaded region determines which degenerate equilibrium exists.

In terms of economics, it is no surprise that for  or  to be active we

cannot have  or  too high; the preceding analysis worked out the exact

cutoffs. For some parameters,  enters with probability  ∈ (0 1), with
 adjusting endogenously to make  = . This is related to discussions

of “search externalities” throughout the literature, although in this model,

by design, entry does not affect meeting rates, it rather affects  and hence

the probability of trade when  meets  . We also emphasize this: Suppose

  ̃, as is the case when  has a poor storage technology, a low chance of

finding , or low bargaining power when he does find . Then intermediation

is essential in the sense the market operates iff middlemen are active.11

These results are novel relative to RW, where costs are 0, so  is always

active, and is active iff  exceeds . While intermediation can improve

welfare in RW, the impact here is more dramatic — sometimes the market

opens iff intermediation smooths the way. We summarize as follows:

Proposition 1 Given  = 1 (everyone recycles), for all values of the other

parameters, equilibrium exists and is generically unique, as shown in ( )

space by Figure 1. For some parameters intermediation is essential.

11In monetary theory, money is said to be essential if the set of outcomes that can be sup-

ported as equilibria is bigger or better with money than without it (e.g., Wallace 2001,2010).

For money this is nontrivial because, obviously, it is not essential in standard Arrow-Debreu

models. The same is true of intermediation.
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4 Alternative Assumptions

Here we mention some extensions, including a different way to describe the

results.12 To begin, note that in addition to preferences ( ), arrival rates

() and bargaining powers (), the model parameters are given by the

vector of costs  = (   ). In general, we need all elements of  to

characterize the equilibrium set, but sometimes different equilibria generate

the same outcome — e.g., for any ( ), both ( ) = (0 0) and ( ) =

(0 1) entail no intermediation. If one cares only about outcomes, we claim

all that matters is the expected net gain for  from trying to trade with 

directly, denoted , and the expected net gain for  from trying to trade

with , denoted , where

 ≡ ̃ −  = − − ( + )  −  (18)

 ≡ ̃ −  = − ( + ) (+ )−  (19)

Appendix B translates the results in Section 3 from ( ) space into

( ) space, as illustrated in Figure 2, which is isomorphic to Figure 1,

but is still useful due to the interpretation. First notice that  and 

are bounded above by ̃ and ̃. Now, since  is the net benefit to  of

searching for  without using  ,   0 implies  = 1 regardless of  ’s

decision. Similarly,  is the net benefit to  of searching for , so  = 1

if   0 and  = 0 if   0. Hence, outcomes are obvious in three of the

four quadrants in Figure 2: (i)   0 and   0 imply  = 1 and  = 1;

12This is not critical for what follows, and one can move directy to the discussion of

efficiency with little loss of continuity, but one message here is that  =  = 0 is in a

sense without loss of generality. We also show how to extend the analysis to describe what

happens out of steady state.
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(ii)   0 and   0 imply  = 1 and  = 0; (iii)   0 and   0 imply

 = 0 and  is irrelevant. In the fourth (northwest) quadrant, as we make 

a bigger negative number for fixed   0,  goes from 1 to  ∈ (0 1) to 0.13

insert fig 2 about here

An implication is that there is little loss of generality in setting  =  = 0

if we care only about outcomes. By analogy, in labor models firms can have

a fixed or flow cost to entering the market, but we do not need both, since

all that matters is the total expected discounted cost. To see how this works

here, consider two economies with ̄ = (̄ ̄1 ̄ ̄) and ̂ = (̂ ̂ ̂ ̂).

The outcome depends only on

̄ = − ( + )
¡
̄+ ̄

¢− ̄

̄ = − ̄− ( + ) ̄ − ̄

in the ̄ economy, and similarly in the ̂ economy. If we set ̂ = ̂ = 0, then

set ̂ = ( + )
¡
̄+ ̄

¢
+ ̄ and ̂ = ̄+( + ) ̄+ ̄, the outcomes

in the ̂ and ̄ economies are the same. Hence, we can always set  =  = 0

and not change outcomes, as long as we adjust the ’s.14

Next, consider dynamics. Setting  =  = 0 to reduce notation, the DP

equation for type  without imposing steady state is

̇ =  − − ( − )(1 − 0) +  (20)

and similarly for the others. These plus the law of motion for  define a dy-

13It is easy to check  =  occurs between the ray 0 defined by = − ( + ) 
and the ray 1 defined by  = − ( +  + ) ( + ) .
14At least, this is true if we care only about outcomes in terms of  and  ; the above

argument does not say that the two economies will have the same terms of trade y.
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namical system. Given an initial condition 0, an equilibrium is a nonnegative

solution to this system that is bounded (more accurately, that does not grow

faster than ). In fact, the system is quite simple. First, because type 

makes no decisions, ignore them. Second, for type  , at any point in time

they choose  = 1 if    and  = 0 if   , independent of

anything else that is going on.

insert fig 3 about here

Thus, the relevant decisions are made by  , although of course these de-

pend on what  is doing. If  is inactive, assuming free disposal,  jumps

to  = 0 and stays there. Then ̇ is linear with slope   0, and the only

bounded solution is  =  
 ∀, where  

 = (− ) . Hence, when is

inactive:    =⇒  
  0,  = 0 ∀; and    =⇒  

  0,  = 1

∀. The outcome is somewhat more interesting when  is active. Since it is

obvious the unique steady state is a saddle point, once  is fixed, there can be

transitional dynamics as  →  but no belief-based (bubble) equilibria. So

all we have to do is describe how  and  evolve over time. We break the

analysis into cases, depending on parameters and initial conditions.

Suppose first parameters are such that in steady state  = 1. Figure 3

depicts three subcases differing in 0. The top panel is subcase a, defined by

0  (1), which means 0   
 (1)  0 where we now write  () and

 
 () for the steady state given . Then type  enter at  = 0, and stay

in, while  → (1) and  →  
 (1) as shown. Subcase b has the opposite

initial condition, 0  (1), which means 0   
 (1). Then two situations

can occur. The middle panel is subcase b1 where 0  0, so  enter at  = 0,

while  → (1) and  →  
 (1). The bottom panel is subcase b2, where
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0  0, which means  do not enter at  = 0. Since we are supposing 
 = 1,

in this situation ∃1 ∈ (0∞) such that  = 0 ∀  1 and  = 1 ∀  1.

At first, with  = 0, inventories fall rapidly, making  rise until 1, at which

point  finds it profitable to enter, and then → (1) and  →  
 (1). The

other cases can be analyzed similarly.

Finally, consider an extension, suggested by a referee, to incorporate “oc-

cupational choice.” Given a fixed measure , the baseline model takes  and

 as also fixed, but because  and  can choose to be inactive, the ratio of

active producers to middlemen is endogenous. But another approach is to let

everyone in the 1−  set of nonconsumers choose to be either a producer or

a middlemen, or be neither and sit out. When we worked out this alternative

way to endogenize the  ratio, the results were similar: there were still three

possible outcomes —  inactive;  active but inactive; or both active — and

the analog to Figure 1 looks roughly the same. One interesting difference is

this: given   0, the baseline model always has intermediation when 0  0,

which must be true for small  because  ’s only other option is to sit out;

the alternative setup may have  = 0 even when  = 0, because for   0

we now not only need 0  0, we need 0  . Since this and some other

technical features are rather different, we do not include details.

5 Efficiency

We now consider the planner’s problem, in discrete time, which we find easier

and more intuitive, although of course the SS is the same as in continuous

time. The state vector is ( ), where  is the stock of  ’s in the market

with  at the end of a period, and  as always is the stock of  ’s holding .
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The control vector is ( ), where  is the stock of  ’s in the market with

 at start of the next period, and  denotes the fraction of the 1 −  type

 ’s that are currently without  that we instruct to try to trade for  next

period. Obviously, ( ) and ( ) are related to the equilibrium variables,

as described below. The planner’s problem is15

̃ ( ) = − ( − ) +  [ (− )−  (1− )− ] (21)

+  (− ) + ̃ (0 0) 

The first term on the RHS is the current cost to activating ( − )

type  agents that are currently not in the market. The second term is the

net benefit from having  type  ’s active next period, which includes the

following instantaneous payoffs: the net gain −  to  trading with , which
happens with probability ; the cost − from  producing for  , which

occurs with probability  (1− ); and the search cost −. Similarly, the
third term is net benefit from having  type  ’s with . The final term is

the continuation value, given the laws of motion

0 =  [1−  −  (1− )] (22)

0 =  (1− ) +  (1− ) (23)

Letting  ( ) = ̃ ( ), and using  = , rewrite (21) as

 ( ) = − ( − )  +  [ (− )−  (1− )− ] (24)

+  () (− ) +  (0 0) 

15Importantly, we are not imposing steady state and then maximizing welfare; we are

solving the dynamic planner’s problem and then imposing steady state. The other problem

only gives the correct answer in limit as  → 0.
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Let  denote the RHS of (24). Since   ∈ [0 1], their optimal values depend
on




w ( +  + )(̃


 − ) + (1− )(̃


 − ) (25)




w ̃ −  (26)

where  w  means that  and  take the same sign, and we define

̃ ≡ − ( + )(+ ) (27)

̃ ≡ (− )− ( + ) (28)

Note that ̃ and ̃ are closely related to ̃ and ̃ Section 3: for all values

of the other parameters, ̃ = ̃ iff  = 1, and ̃ = ̃ iff  = 1.

Given these results, we arrive at the final simplified versions of (25)-(26),

and hence the final answer to the planner’s problem,

 =

⎧⎪⎨⎪⎩
1

[0 1]

0

if ̃

⎧⎪⎨⎪⎩
 

= 

 

and  =

⎧⎪⎨⎪⎩
1

[0 1]

0

if 

⎧⎪⎨⎪⎩
 0

= 0

 0

(29)

where to conserve space we introduce

 ≡ ̃ −  +
( +  + ) ( + )



(̃ − ) (30)

It is now straightforward to characterize efficient outcomes, as shown in ( )

space by Figure 4, similar to the equilibrium characterization in Figure 1, ex-

cept now with ̃ and  rather than ̃ and .

Proposition 2 The solution to the planners problem has the following prop-

erties in steady state: (i) ̃   and ̃

   implies  =  = 1; (ii) ̃  
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and ̃   implies  = 1 and  = 0; (iii) ̃   and ̃   implies

 = 0, so  is irrelevant; (iv) ̃   and ̃   implies three subcases: if

  0 then  = 0 and  is irrelevant, if   0 then  = 1 and  = 1, and if

 = 0 then  = 1 and  =  ∈ (0 1) is given by

 =
− ( + 2) +

q
2 − 4(̃ − )(̃ − )

2

 (31)

insert fig 4 about here

While equilibrium outcomes and efficient outcomes may not coincide, in

general, the next result demonstrates that there are conditions on bargaining

powers, related to Mortensen (1982) and Hosios (1990), that imply they do

coincide.

Proposition 3 There exists a unique  = ( 

 


) that implies the

equilibrium outcome is efficient for all values of the other parameters, given

by  =  = 1 and

 =
 +  + 

 +  + 2

 (32)

where  is given in (31).

Proof : The efficient outcome ( ) = (1 1) requires that ̃   and

̃  ; the equilibrium outcome ( ) = (1 1) requires that ̃   and

̃  . Now ̃   implies ̃   for all values of the other parameters

iff  = 1, and ̃   implies ̃   for all values of the other parameters

parameters iff  = 1. When  =  = 1, ̃ = ̃ and ̃ = ̃. Then from

(30) efficient outcome ( ) = ( 1) requires

̃ −  = −( +  + 
) ( + )



¡
̃ − 

¢
 (33)
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The equilibrium outcome ( 1), with  =  = 1, requires

̃ −  = −( +  + (1− )
) ( + )



¡
̃ − 

¢
 (34)

Setting (33) to equal (34) and  = , we obtain (32). ¥

Although efficiency obtains when the ’s are set just right, for arbitrary

parameters, the equilibrium outcomes can be inefficient. In particular,

Proposition 4 Depending upon parameters: (i)  can be too high or too low;

(ii)   can be too low but not too high.

Proof. (i) Suppose 0    1 and  =  = 1. It is not hard to check

from (17) that    implies    and    implies   .

Hence,  can be too high or too low.

(ii) Suppose ̃   and ̃  . Then  = 1. If 0    1, then

̃  ̃. For  sufficiently small, ̃  , which implies  = 0. Hence, 


can be too low. Equilibrium requires that  = 1 iff ̃  ; otherwise  = 0.

Efficiency requires that  = 1 iff ̃  ; otherwise  = 0. Since ̃

 ≥ ̃,

we have  ≥  . Hence, we would be able to conclude that the equilibrium 

cannot be too high, if we could verify that  = 0 implies  = 0. We need

the latter condition because otherwise  can be too high when 0    1 and

 = 0. The result we need, that  = 0 implies  = 0, is true as long as

0() lies everywhere above 0() for all   ̃ where 0() ≥ 0, as shown
in Figure 5 (the graph is drawn assuming ̃  ̃ and ̃  ̃ but ̃


 = ̃

and ̃ = ̃ has the same qualitative features).

insert fig 5 about here
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Since 0() and 0() are linear, it suffices to show the  intercept of

0() exceeds the  intercept of 0(). This is equivalent to

(1− )(− − ) ≥ [(− − )− (+ )]


 + 

(35)

−[(− − )− (+ )]


 + 



We can set  =  = 1 here, without sacrifice, since if (35) holds for these

values it holds for all   ∈ [0 1). When  =  = 1, (35) simplifies to

 ≤ 1, which is true. Hence, we have established that  = 0 implies  = 0.
As remarked above, this allows us to conclude that   cannot be too high. ¥

Heuristically, the intuition for the above results is as follows. We can

make  too low by setting   , because this means  is not being

sufficiently compensated for his sunk costs when he meets . We cannot set

   = 1, however, so we cannot make  too high. By a similar logic,

we can make  too low by setting   , but in this case we can make 

too high by setting   , because 

 ∈ (0 1). The reason for   1

is similar to results in other search-and-bargaining models. When  decides

to enter the market, he considers his own costs and benefits, but not those of

others. Thus, he ignores the fact that when there are more  ’s in the market,

 increases, and this makes it harder for all  ’s to trade. The bargaining

power that gives efficiency,   1, is determined so that the socially optimal

measure of producers enter.

6 Random Recycling

In this section we reintroduce , the probability that type  recycles (stays in

the market) after trade, where  = 1 in our baseline specification and  = 0
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in the original RW specification. This is relevant for several reasons. First, the

analysis presented above is not really a generalization of RW because, although

we added general costs, bargaining weights and so on, we also changed  from

0 to 1. Consideration of  = 0, and a fortiori  ∈ [0 1], delivers a strict
generalization of RW. Also, it turns out to be interesting in its own right to

understand what happens for different . In particular, we want to know how

our results on existence, uniqueness and efficiency are affected when we allow

  1, which means agents randomly continue or exit.

To begin, note that  affects agents’ outside options, and therefore affects

the surpluses, as follows:

Σ = − + max{ −  0}−max{ 0}− (1− )max{ 0} (36)

Σ = −+ max{ −  0}−max{ 0}+max {1 0}−max {0 0}
(37)

Σ = − (1− )max{ 0}−max {1 0}+max {0 0} (38)

However, other than using the Σ’s in (36)-(38) instead of the special case

in (6)-(8), the DP, BR and SS equations are unchanged, as is the definition

of equilibrium. In what follows, we characterize equilibrium outcomes with

 ∈ [0 1], where to reduce notation we set  =  = 0, but one can say that

this is without loss in generality given the results in Section 4. Interestingly,

there is now a greater variety of outcomes, including more possibilities for

mixed-strategies, and sometimes multiplicity.

Before going through each case, to develop some intuition, suppose that 

is big enough that we can be sure  = 0. Then there are effectively two types,

 and , which allows us to illustrate some results easily. The DP equations
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are given by

 =  [− (1− ) − (1− )]− 

 =  [− (1− ) − (1− )] 

Now  = 1 is an equilibrium iff  ≥ 0, which reduces to

 ≤ b ≡ 

 + (1− )


Similarly,  = 0 is an equilibrium when  ≥ . Then solve  = 0 for

, and notice  ∈ (0 1) iff b    . Hence, conditional on  = 0,

we immediately get existence, generic uniqueness, and for some parameters an

interior solution for , as we found in Section 3.

However, the logic behind  ∈ (0 1) here is different from the logic with

 = 1. With  = 1, we found that  ∈ (0 1) was only possible when  = 1,

and the equilibrating mechanism was that  adjusted to make  = . Now

we can get  ∈ (0 1) without intermediation, with the terms of trade rather
than the probability of trade equilibrating entry. To see this, solve for:

 =
Υ− (1− ) [ + (1− ) ] 

 [ + (1− )  + (1− )]

where Υ ≡ +(1− ) +(1−)(1−). With   1,  depends

on ; with  = 1, it does not. Figure 6, drawn for   1, shows the

following: Starting from a low value, with  = 1, as  increases  initially

falls while  initially rises, because higher  makes  more keen to trade

and this decreases . At  = b,  hits 0, at which point there emerges a
mixed-strategy equilibrium. In this mixed equilibrium, as  rises further, 

falls and  rises to keep  = 0.
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insert fig 6 about here

For the rest of the candidate equilibria, it turns out there are two scenarios

to be considered, shown in Figures 7 and 8. The two scenarios correspond to

  (1 − ), as in Figure 7, and   (1 − ), as in Figure 8. Let

us begin with the former case (details are in Appendix C). As one can see,

in Figure 7 we still have existence and generic uniqueness, but now there can

be three distinct types of mixed-strategy equilibria, ( 1), ( 0) and (1  ).

The first we encountered in Section 3; the second we discussed just above; and

we now discuss the third.

insert fig 7 about here

insert fig 8 about here

There is a region in Figure 7 where the unique equilibrium entails  =

  ∈ (0 1). This region is bounded above by 0 () and below by 1 () and
3 () (Appendix C). The condition   (1−) makes 1 () lie below

0 () in the relevant range. In particular, for a relatively low , we have

 = 1 when  ≤ 1 (),  ∈ (0 1) when 1 ()    0 (), and  = 0

when 0 ()  . Naturally, when  is higher, middlemen are active with a

lower probability, which turns the terms of trade in their favor to compensate

for higher costs. Figure 8 is similar, except the condition   (1 − )

makes 1 () lie above 0 () over the relevant range. The equilibrium region

for  ∈ (0 1) in this case is bounded below by 0 () and above by 1 ()

and 3 (). The logic is similar, except now the regions overlap, so there are

multiple equilibria. We summarize as follows:

Proposition 5 For any  ∈ [0 1], for all values of the other parameters,
equilibrium exists. If   (1 − ) it is generically unique, as shown by
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Figure 7. If   (1−) there are multiple equilibria for some parameters,
as shown by Figure 8.

Multiplicity cannot arise in the baseline model with  = 1 because then

we cannot satisfy the condition   (1 − ), so we are necessarily in

the scenario depicted in Figure 7. When  → 1, the regions with ( 0) and

(  ) disappear, and when  → 1 the region with ( 0) disappears. Hence,

as  → 1 the model of course collapses to the benchmark case. In the special

case with no search/storage costs, the outcome is especially simple:

Proposition 6 If  =  = 0 then equilibrium exists, is generically unique,

and has  = 1 for all parameters. It also has  = 1 if    (1− ) and

 = 0 if    (1− ).

This is a strict generalization of the original RW result, where  depends

only on  ≷ , rather than  ≷  (1− ), because they had  = 12

and  = 0. It is good to know that a version of their main result holds when

 = 0, even for general ’s, ’s and ’s. Things are more interesting,

however, when   0, because this allows mixed equilibria with  ∈ (0 1) or
 ∈ (0 1), plus multiple equilibria.16

Some results are the same for any  ∈ [0 1], including the efficiency results
in Section 5. This is because the planner’s problem is unaffected by changing

, since our planner regards incumbent traders and their clones as perfect

substitutes. Hence, efficient outcomes are still as shown in Figure 4. We

16As a special case, if  = 0 and  = 1, then is active with probability  = 1 whenever

  0. This is because  = 1 implies  has no opportunity cost of trading his output

to  , as he can always produce again and continue in the market. This of course uses

 =  = 0, which we said above was without loss of generality; that is based on results in

Section 4, where it was proved that one can always set  =  = 0 as long as one resets the

’s, which in general would not lead to  = 0. In other words, fixing  = 0 means we

cannot also set  =  = 0 without loss of generality.
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already know  can be too high or too low, in general, because we verified

this for  = 1. Comparing Figure 4 to Figures 7 and 8, it is still the case that

 can be too low but not too high. Before, with 1 = 1, we could get 
 = 0

and   = 1; now we can also get   ∈ (0 1) and   = 1. In any case,   can

be too low but not too high, while  can be too low or too high.

7 Conclusion

This project has continued the development of intermediation theory by ex-

tending the original Rubinstein-Wolinsky (1987) specification on several di-

mensions. We verified existence and generic uniqueness in a benchmark case

where all agents stay in the market forever. The results are more complicated

when consumers and producers continue in the market probabilistically, but

the framework is still tractable. An interesting feature compared to RW is

that for certain parameters equilibria entail mixed strategies, with some but

not all potential entrants participating in the market. What equilibrates par-

ticipation can be either the terms of trade or the time it takes to trade, which

is an attractive feature of a search-based approach. Having participation costs

made it interesting to study efficiency. We found that there can be too little

or too much production, and there can be too little but not too much inter-

mediation. However, with bargaining powers set appropriately equilibrium is

efficient.17

17A direction for future research might be to consider directed search, with the terms

of trade posted rather than negotiated, which one might conjecture could deliver efficiency

endogenously (based on work on labor and other markets by, e.g., Moen 1997, Mortensen

and Wright 2001, Shimer 2005 or Eeckhout and Kircher 2010). However, it is not clear how

to introduce directed search without compromising some features of a three-sided market,

including the feature that  can randomly meet and trade with either  or  . Watanabe

(2010) provides one avenue of exploration for middlemen with directed search.
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One can use the framework to address many issues in finance, banking, real

estate and other areas where intermediation plays a big role. An example of

results that we did not have the space to discuss concerns the relative terms of

trade in direct, wholesale and retail transactions. Since these obviously depend

on bargaining powers, in general, consider the special case of the baseline

model with  = 12. Then one can show      (retail exceeds

direct exceeds wholesale), at least if  =  are not too big. This is not general,

however, and one can show      if  is small. Another natural

case is  = , which means equilibrium is efficient, and implies  =  

. Hence, the efficient outcome is described by having direct and retail

transfers from the consumer the same, and above the wholesale transfer from

middlemen to producers, reflecting the very real service that intermediation

provides in markets with frictions.

Finally, we mention that we have to this point not emphasized that inter-

mediation per se increases production and consumption in these models. Due

to good  being storable only one unit of a time, once  produces , he cannot

produce again until he trades. When  takes  off  ’s hands, therefore, 

produces more often. Although this depends on the technical assumption that

inventories are in {0 1}, one can also say that it rings true: well-functioning
intermediation allows  to tie up fewer resources in marketing and get back

more easily to making stuff, something in which he specializes.
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Appendix A: Results for Section 3

Here we characterize regions of parameter space where degenerate equilibria

exist. Figure 9 shows the results, along with the regions with nondegenerate

equilibria discussed in the text.

insert fig 9 about here

1. Equilibrium p = (0 0 0 0): The BR condition for  = 0 is  ≤ 0
which reduces to  ≤ (+ ). Given  ≤ 0, the BR condition for  = 0
is not binding. The BR condition for  = 0 is 1 ≤ 0, which reduces to

 ≤ . Given 1 ≤ 0, the BR condition for  = 0 is not binding.
2. Equilibrium p = (0 0 0 1): The BR conditions for  = 0 and  = 0

are the same as in p = (0 0 0 0). The BR condition for  = 1 is 1 ≥ 0,
which reduces to  ≥ . Letting

() ≡ − ( + )− [(− )− ]
 + 

 + 


the BR condition for  = 0 is () ≤ .

3. Equilibrium p = (0 0 1 1): The BR condition for  = 0 is  ≤ 0
which reduces to  ≥ (), where

() ≡ − ( + ) + [(− )− ]
 + 



Given  ≤ 0, the BR condition for  = 0 is not binding. The BR condition for
 = 1 is Σ ≤ 0, which can be simplified to  ≤ (). The BR condition

for  = 1 is  ≤ .

4. Equilibrium p = (0 1 0 0): The BR condition for  = 0 is  ≥
(− )− ( + ) . The BR condition for  = 1 is  ≤ (− ). The

BR condition  = 0 is not binding. The BR condition for  = 0 is  ≥ .
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5. Equilibrium p = (0 1 0 1): The BR condition for  = 0 is  ≥
( − ) − ( + ) . The BR condition for  = 1 is  ≤ ( − ).

The BR condition for  = 0 is  ≥ (): The BR condition for  = 1 is

 ≤ .

6. Equilibrium p = (0 1 1 1): The BR condition for  = 0 is  ≥
0(), where 0() is defined above. The BR condition for  = 1 is  ≤
(). The BR condition  = 1 is  ≤ (). The BR condition for  = 1

is  ≤ .

Appendix B: Characterization in Figure 2

1. Outcome ( ) = (1 0): In this case all producers enter, but middle-

men are inactive. As shown above, this happens in two equilibria, one with

 = 0 and another with  = 1, although the outcome is the same because

 = 0 in both cases. From Figure 1, an equilibrium with ( ) = (1 0) exists

iff  ≤ ̃ and  ≥ ̃, which from (18) and (19) are equivalent to  ≥ 0
and  ≤ 0.
2. Outcome ( ) = (1 1): Now all producers and middlemen are active.

This occurs in the equilibrium that exists when  ≤ ̃ and  ≤ 1 (),

conditions that are equivalent to  ≥ 0 and

 ≥ −

( +  + ) ( + )





given that  − (1) =  ( + ).

3. Outcome ( ) = ( 1) with  ∈ (0 1): Now some producers

and all middlemen are active. This happens in the equilibrium that exists iff

1 () ≤  ≤ 0 (), conditions that are equivalent to

 ≤ −

( +  + ) ( + )



and  ≥ −

 + 



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since in this case  − (0) = 0.

4. Outcome  = 0: This occurs in a degenerate equilibrium, which exists

in the complement of set of parameters where the other outcomes occur.

Appendix C: Results for Section 6

We now characterize regions of parameter space where different equilibria

exist for the case of general  ∈ [0 1], where to conserve space we focus on
( ), with  implicit.

1. Equilibrium ( ) = (0 0): The BR condition for  = 0 is  ≤ 0, or
 ≤ . The BR condition for  = 0 is 1 ≤ (1 − ), which reduces to

2() ≤ , where

2 () ≡ [ − (1− )] + (1− )( + )

 + (1− )

2. Equilibrium ( ) = (0 1): The BR condition for  = 0 is 0 () ≤
, where

0() ≡ [



( + ) + ]− 

 + 



The best response condition for  = 1 is 2() ≥ .

3. Equilibrium ( ) = (1 0): The BR condition for  = 1 is  ≥ 0
which reduces to

b ≡ 

 + (1− )
≥ 

The best response condition for  = 0 can be simplified to  ≥ 0(), where

0 () ≡ [ − (1− )] + (1− )[ +  + (1− )]

 + (1− ) + (1− )

4. Equilibrium ( ) = (1 1): The BR condition for  = 1 is 1() ≥
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, where

1() ≡ [ ( +  + ) + (1− )]−1


− {( +  + ) [ + (1− )] + (1− ) ( + )}−1


 = (1 − ) + (1 − )[ + (1 − )( + )], and  =

 ( + ). The BR condition for  = 1 is 1 () ≥ , where

1 () ≡ [ − (1− )] + (1− )[ +  + ( + )(1− )]

 + (1− ) + ( + )(1− )

5. Equilibrium ( ) = ( 1): The BR condition for  ∈ (0 1) is given
by  = 0, which is

[ ( +  + ) + (1− )]

− {( +  + ) [ + (1− )] + (1− ) ( + )}

= (1− ) + (1− )[ + (1− )( + )]

where  =  ( + ). When  → 0,  → 0(), and when

 → 1,  → 1(). Thus,  ∈ (0 1) when 0() ≤  ≤ 1(). Given

 = 0, the BR condition for  = 1 is 1 ≥ 0, which reduces to



 + (1− )( + ())
≥ 

The is complicated because  is a complicated function of parameters. How-

ever, it is clear from numerical analysis that it generates a positive relation

between  and , as shown by 3() in the diagrams.

6. Equilibrium ( ) = ( 0): The BR condition for  ∈ (0 1) is  = 0,
which solves for

 =
(− )

(1− )

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This means  ∈ (0 1) iff b ≤  ≤ . Then the BR condition for  = 0 is

1 ≤ 0, which reduces to  ≤ .

7. Equilibrium ( ) = (1 ): The best response condition for  = (0 1)

is given by 1 = (1− ), which can be simplified and solved for 


 =  

= [ − (1− )]
−1
 + (1− )[ +  + (1− )]

−1


−  [ + (1− ) + (1− )]
−1


where  = (1−)[−(1−)]. Note that the value of   depends on
the relative values of  and (1−); hence, so do the BR conditions. Upon
simplification, we have the following: if   (1 − ) we need 1 () 

  0 () and   3 () for this equilibrium; and if   (1 − )

we need 0 ()    1() and   3 (), where

3 () ≡
{[( + )− 2(1− )] + (1− )[( + ) + ]}

[( + )(+ )− ]


These two cases,   (1 − ) and   (1 − ), correspond to the

scenarios in Figures 7 and 8.
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Figure 6: Equilibium with  = 0 when   1
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