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Abstract

With risk-averse arbitrageurs and an effective lower bound on nominal rates,

nonlinear interactions among short-rate expectations, bond supply, and term

premia emerge in equilibrium. These interactions, which are absent from affine

models, help explain the observed behavior of the yield curve near the ELB,

including evidence about unconventional monetary policy. The impact of both

short-rate expectations and bond supply are attenuated at the ELB. However, in

simulations of the post-crisis experience in the U.S., shocks to investors’ duration-

risk exposures have much smaller effects than shocks to the anticipated path

of short rates. The latter shocks matter, in part, because of the reduction in

interest-rate volatility associated with a longer expected stay at the ELB—a

novel channel of unconventional policy.
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1 Introduction

Over the last decade, fixed-income markets have witnessed a combination of two ex-

traordinary circumstances: massive changes in the quantity and structure of safe debt—

including large-scale purchases of such debt by central banks—and the decline of short-

term interest rates to their effective lower bound (ELB). This paper studies how these

two phenomena interact in an equilibrium model of arbitrage-free bond pricing.

To see empirically that the ELB may be important for the relationship between

interest rates and debt supply, the top panel of Table 1 reports regressions of long-

term yields on the weighted-average maturity of outstanding Treasury debt (WAM)

and the one-year Treasury yield. The data are monthly, from 1971 through 2015.

Using interactive dummies, I allow the coefficients on both variables to change after

the ELB was reached in December 2008, but otherwise the regressions are identical

to those of Greenwood and Vayanos (2014) (whose sample ended in 2007). Indeed,

column 2 replicates the main result of that paper: long-term yields were significantly

positively related to the duration risk held by investors in the pre-ELB period. A

one-year increase in WAM pushed the 10-year yield up by 22 basis points in this

sample, and, consistent with longer-term bonds having greater duration exposure, the

coefficients were higher for longer maturities.

As column 3 shows, those coefficients all fall substantially and lose statistical sig-

nificance during the ELB period. Despite the relatively few observations at the ELB,

the t statistics reported in column 4 show that the declines in the coefficient values

are significant.1 The relationships between short- and long-term yields also change

at the ELB, as shown in columns 5 through 7. Prior to 2008, the coefficients on the

one-year yield were less than 1 and were monotonically decreasing in the maturity of

the dependent variable. At the ELB, the coefficients rise above 2, with the 10- and

15-year yields now being more sensitive than the 5-year yield is. Again, t tests show

that the differences across the two periods are statistically significant.2 The remaining

panels of the table show that the shifts in both sets of coefficients are robust to using

the maturity-weighted debt-to-GDP ratio in place of WAM and the two-year yield in

place of the one-year.

These results suggest important changes in the behavior of the yield curve and its

1The standard errors are calculated using the Newey and West (1987) procedure, with 36 lags,
again following Greenwood and Vayanos (2014).

2Gilchrist et al. (2015) document similar changes in the relationship between shorter- and longer-
term yields at the ELB.
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relationship to Treasury supply at the ELB. But what theoretical reasons do we have

to expect such changes? I argue that at least three nonlinear mechanisms may be at

work:

1. An increase in the quantity of longer-term bonds that investors hold raises the

duration risk of their portfolios by an amount that depends directly on interest-

rate volatility. Interest-rate volatility is lower when the short-rate distribution is

truncated. Thus, if term premia are increasing in the amount of duration risk

held by investors, the effects of bond supply will be damped at the ELB.

2. Interest-rate volatility moves together with short-rate expectations at the ELB

because an increase in the length of time that the ELB is expected to bind

reduces near-term uncertainty about short rates.3 If term premia depend on this

uncertainty, changes in rate expectations will induce changes in term premia at

the ELB.

3. At the ELB, near-term rate expectations are constrained and are unlikely to

move much in response to shocks. Consequently, changes in expectations will

have relatively larger effects on medium- and long-term yields.

To formalize and quantify these possibilities, I incorporate the ELB into a structural

model of bond pricing in the style of Vayanos and Vila (2009). In this type of model,

the marginal investors are arbitrageurs with limited risk-bearing capacity. When they

are given more long-term bonds to hold, the duration risk of their portfolios rises and

they demand higher risk premia—a phenomenon sometimes known as the “duration

channel” of bond supply. Many recent empirical studies on the effects of duration

shocks have explicitly pointed to this framework for motivation and interpretation,4

and other papers have extended and applied it in various ways.5 Although those models

have been useful for understanding the relationships between bond supply and bond

yields, they have almost exclusively been developed under the assumption that the

short-term interest rate follows a linear process. The three arguments just mentioned,

together with the evidence in Table 1, suggest that the nonlinearity associated with

3Hattori et al. (2016) show that accommodative monetary-policy announcements during the ELB
period caused declines in implied interest-rate volatility across the term structure.

4E.g., Gagnon et al. (2011), Joyce et al. (2011), Swanson (2011), Krishnamurthy and Vissing-
Jorgensen (2011), D’Amico and King (2013).

5E.g., Hamilton and Wu (2012), Greenwood and Vayanos (2014), King (2015), Altavilla et al.
(2015), Greenwood et al. (2015b), Haddad and Sraer (2015), Hayashi (2016), Malkhozov et al. (2016).
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the ELB may induce first-order changes in the yield curve’s behavior. The situation in

which the ELB binds is particularly important to consider because central banks have

typically sought to exploit the duration channel through long-term bond purchases

only after they have cut their traditional policy rates close to zero.

To model the ELB, I generalize the standard affine process for the short-term in-

terest rate in Vayanos and Vila (2009) and its followers to a “shadow rate” process,

following the use of that device in the recent empirical term-structure literature, such

as Kim and Singleton (2012), Krippner (2012), and Wu and Xia (2016).6 When the

shadow rate is below the ELB, shocks to its value correspond to changes in investor

beliefs about the length of time the ELB is expected to bind. Thus, they may capture

both explicit forward guidance about the short-term interest rate and the “signaling

channel” of asset purchases, through which expansions of the central bank’s balance

sheet might be viewed as a commitment to keep rates near zero for a longer time.7

I show analytically that allowing for the ELB in this way endogenously gives rise

to the three nonlinear phenomena discussed above. Furthermore, when parameterized

to match the unconditional moments of Treasury yields since 1971, the model delivers

a number of quantitatively accurate results: it replicates the basic features of the

yield curve when the short rate is close to zero; it produces conditional elasticities

similar to those reported in Table 1; and, when subjected to shocks that approximate

the Federal Reserve’s unconventional monetary policy over the ELB period, it implies

both a cumulative yield-curve impact similar to what event studies suggest and a hump

shape in the forward curve that matches the pattern observed in those studies. All of

these empirical successes depend crucially on the nonlinear mechanisms that emerge

endogenously in the model. Consequently, comparable affine models, which ignore the

ELB, cannot generally match these features of the data.

Having thus validated the model, I use it to address two quantitative questions.

First, I ask through which channel unconventional monetary-policy shocks had their

largest effects. The answer is that, given the magnitude of the observed shocks, changes

6Bauer and Rudebusch (2014) argue that the shadow-rate specification does a good job of captur-
ing yield-curve dynamics near the ELB, greatly outperforming traditional affine models. Notably,
however, this literature has so far been dominated by atheoretical term structure models. This paper
is among the first to incorporate a shadow-rate process into a structural model of the yield curve.

7Woodford (2012), Bauer and Rudebusch (2014), and Bhattarai et al. (2015) argue for the impor-
tance of the signaling channel. As noted by Swanson (2017), because many announcements of asset
purchases were accompanied by changes in the FOMC’s communications about future short rates, it
is impossible to distinguish empirically between the the effects of the signaling channel and those of
forward guidance.
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in the expected path of the short rate were responsible for at least half of the cumulative

downward shift in the yield curve during the ELB period. In addition, at longer

maturities, about one-third of the total decline in yields is explained by the term-

premium effects associated with reduced short-rate uncertainty at the ELB—a channel

of unconventional policy that has been overlooked by previous literature. The bond-

supply shocks account for less than 25% of the total decline in the ten-year yield, and

at shorter maturities their contribution is even smaller. In other words, the model

suggests that the duration channel of asset purchases was considerably less important

than implicit or explicit forward guidance about the path of short-term rates.

Second, I ask the model whether the relative effectiveness of the two shocks changes

in different environments. I find that bond-supply shocks are most powerful, relative

to shadow-rate shocks, when the shadow rate is deeply negative and the amount of

duration held by the market is high. In this situation, the efficacy of both types of

shocks is attenuated because of the damping effects associated with the ELB, but the

attenuation is greater for the shadow-rate shocks. A negative shadow rate and a high

quantity of market duration are precisely the conditions under which most Federal

Reserve asset purchases were conducted. Thus, even though those purchases appear to

have had only modest effects through the duration channel, their use could have been

consistent with the Fed optimizing across its policy tools in the ELB environment.

This paper is related to several others in the recent literature. As noted above,

a number of studies have used variants of the Vayanos-Vila (2009) framework to an-

alyze the effects of fluctuations in bond supply in a linear environment. Hamilton

and Wu (2012) briefly considered a version in which, once the short rate reached the

ELB, investors believed that it would stay there with an exogenously given probability.

However, because that probability was assumed to be constant, their model did not

contain a mechanism for signaling or forward guidance. In addition, away from the

ELB it priced bonds as if the ELB did not exist. Thus, their model lacked the key

nonlinearities and interactions that drive most of my results.

Greenwood et al. (2015b) note the hump-shaped pattern in forward rates in response

to unconventional policy announcements and argue that expectations of future changes

in bond supply likely account for that pattern. While my model does not rule out their

type of mechanism, it implies the effects of bond-supply shocks are relatively modest

and that the empirical hump in the forward curve can alternatively be explained by

the non-monotonic effects of changes in short-rate expectations that arise at the ELB.
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A final set of related papers are the empirical studies that have attempted to de-

compose the effects of unconventional policy into various channels. Krishnamurthy

and Vissing-Jorgensen (2011, 2013) argue, based on event studies, that the evidence

for the duration channel is weak, consistent with what my model implies. Swanson

(2017) conducts event studies on unconventional policy to isolate a component reflect-

ing short-rate expectations and a residual component that he essentially interprets as

reflecting the duration channel. Although he concludes that the latter is important

for long-term yields, his approach requires that factor loadings for interest rates in the

ELB period were similar to those in the pre-ELB period. My model effectively allows

for endogenous changes in loadings at the ELB and suggests that those changes could

be quite substantial.8

2 Theoretical Framework

2.1 Investor behavior and equilibrium bond prices

I begin with the same portfolio-choice problem that forms the basis of the models

in Vayanos and Vila (2009) and the several theoretical papers that have followed it.

Investors have access to a continuum of zero-coupon bonds with maturities 0 to T .

At each point in time t, they choose to hold a market-value quantity xt (τ) of each

maturity τ . Let P
(τ)
t represent the time-t price of a bond with remaining maturity τ .

In addition, investors have access to a risk-free security that pays the instantaneous

rate rt. Investors’ time-t wealth Wt is the sum of the market-value of the bond portfolio

and the risk-free asset, and it thus evolves according to

dWt =

∫ T

0

xt (τ)
dP

(τ)
t

P
(τ)
t

dτ +

(
Wt −

∫ T

0

xt (τ) dτ

)
rtdt (1)

Investors have mean-variance preferences, and thus, taking Wt as given, they choose

quantities xt (τ) to solve the problem

max
xt(τ)∀τ

Et [dWt]−
a

2
vart [dWt] (2)

8D’Amico and King (2013) and Cahill et al. (2013) present event-study evidence that asset pur-
chases may also operate through a scarcity or “local supply” channel, whereby imperfect substitutabil-
ity causes yields to fall by more for maturities where more purchases occurred. My model is silent
about this type of phenomenon.
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subject to (1), where a is absolute risk aversion and Et and vart represent expectation

and variance conditional on the time-t state.

The first-order conditions for this problem can be written as

Et

[
dP

(τ)
t

P
(τ)
t

]
= rtdt+ a

∫ T

0

xt(s)covt

[
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

]
ds (3)

for all τ . Note that, under risk-neutrality (a = 0), all bonds have the same expected

return, equal to the risk-free rate. Otherwise, the risk premium demanded for each

bond is proportional to the covariance of that bond’s price with the return on the

whole portfolio of bonds.

The model is closed by assuming that the government exogenously supplies a time-

varying quantity of bonds zt(τ) at each maturity. A solution to the model is a set

of state-contingent bond prices that clear the market. Specifically, market clearing

requires

zt (τ) = xt (τ) (4)

at each maturity τ and at each point in time t. Prices adjust to make (3) and (4) hold

jointly in all states of the world. Since investors optimize without constraints on their

portfolio weights, the equilibrium is arbitrage free.

Denote log bond prices as p
(τ)
t = logP

(τ)
t . By Itô’s Lemma,

Et

[
dp

(τ)
t

]
= Et

[
dP

(τ)
t

P
(τ)
t

]
− 1

2
vart

[
dp

(τ)
t

]
(5)

and

covt

[
dp

(τ)
t , dp

(s)
t

]
= covt

[
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

]
(6)

for any two bond maturities τ and s. Expected log returns in equilibrium are thus

Et

[
dp

(τ)
t

]
= rtdt+ a

T∫
0

zt(s)covt

[
dp

(τ)
t , dp

(s)
t

]
ds− 1

2
vart

[
dp

(τ)
t

]
(7)

Because all bonds payoff a face value of 1 with certainty at maturity—that is, they

satisfy the boundary condition p
(0)
t = 0 at all t—bonds with positive maturities are

given by the sum of expected future returns:
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p
(τ)
t = −

∫ T

0

Et

[
dp

(τ−s)
t+s

ds

]
ds (8)

The following standard relationships then determine bond yields y
(τ)
t and τ -period

instantaneous forward rates f
(τ)
t :

y
(τ)
t ≡ −p

(τ)
t /τ (9)

f
(τ)
t ≡ −∂p

(τ)
t

∂τ
(10)

The exogenous variables in this model are the short rate rt and the maturity-specific

bond supplies zt(τ). Throughout the paper, I assume that rt is determined by a shadow-

rate process, described in the following subsection. I consider a number of possibilities

for zt(τ). In Section 3, to illustrate the properties of the model most transparently, I

simply assume that zt(τ) is constant across maturities and over time. In Sections 4

and 5, where the focus is on quantitative estimates, I consider more-realistic stochastic

processes for bond supply.

2.2 The short rate

I assume that the short rate rt is determined by

rt = max[r̂t, b] (11)

where the shadow rate r̂t follows the Ornstein-Uhlenbeck process

dr̂t = κ(µ− r̂t)dt+ σdBt (12)

for mean, persistence, and variance parameters µ, κ, and σ, with Bt being a Brownian

motion. I assume that 0 < κ < 1. This is the same process used in the empirical

shadow-rate literature mentioned in the introduction. As noted there, that litera-

ture generally shows that the shadow-rate specification performs well in describing the

reduced-form dynamics of the yield curve at the ELB. Obviously, a special case that

produces an affine specification for the short rate is b = −∞. This will be a useful

case for comparison, because it is the specification used in the previous theoretical
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literature on the duration channel.9

Given (12), the conditional distribution of future shadow rates s periods ahead

is normal, with mean Et [r̂t+h] and variance vart [r̂t+h] given by the standard affine

prediction equations. In a model with no lower bound, where r̂t = rt in all states of

the world, those equations also describe the conditional distribution of future short

rates. Once the ELB is imposed, however, the short rate at any period in the future is

distributed truncated normal if r̂t+s > b and is simply equal to b otherwise. Therefore,

the mean of rt+s, conditional on information at time t, is given by

Et[rt+s] =
(

1− Φ
(s)
t

)
b+ Φ

(s)
t Et [r̂t+s|r̂t+s > b] (13)

where Φ
(s)
t is the probability that r̂t+s exceeds b in period t+ s—that is,

Φ
(s)
t = Φ

(
Et [r̂t+s]− b√

vart [r̂t+s]

)
(14)

where Φ(.) denotes the standard-normal CDF. It follows that Et [rt+h] >Et [r̂t+h]; thus,

expectations of rt+s are always higher in the presence of a finite b than they would

be in the affine case. Similarly, since the variance of rt is zero whenever r̂t < b, the

unconditional variance of vart[rt+s] is always lower in a model with an ELB.10

Since r̂t+s is distributed normally at all horizons s, the moments of rt+s can be

calculated analytically. The solid lines in Figure 1 depict the conditional moments of

9Although the ELB is imposed a priori here, it is trivial to extend the model to endogenize it by
allowing investors to hold an elastic supply of cash (paying zero nominal return) in addition to the
risk-free asset. Alternative short-rate processes that impose the ELB also exist. For example, in
Monfort et al. (forthcoming), once the ELB is reached, the short rate stays there with some time-
varying probability. At least qualitatively, such differences in specification are unimportant. The
crucial features are that short-rate volatility is low at the ELB and that the ELB is “sticky,” in the
sense that the short rate tends to stay there for some time once it reaches it. Any model that generates
these properties (which are amply evident in the data) will produce results along the lines of those
presented below.

10By the law of total variance, the variance of the shadow rate can be decomposed as

vart[r̂t+s] = Φ
(s)
t vart [r̂t+s|r̂t+s > b] + (1− Φ

(s)
t )vart [r̂t+s|r̂t+s ≤ b]

+ Φ
(s)
t (Et [r̂t+s|r̂t+s > b]− Et[rt+s])

2 + (1− Φ
(s)
t )(Et [r̂t+s|r̂t+s ≤ b]− Et[rt+s])

2

which, from (13), simplifies to

vart[r̂t+s] = Φ
(s)
t vart [r̂t+s|r̂t+s > b] + (1− Φ

(s)
t )vart [r̂t+s|r̂t+s ≤ b]

+ Φ
(s)
t (1− Φ

(s)
t )(Et [r̂t+s|r̂t+s > b]− Et [r̂t+s|r̂t+s ≤ b])2

9



the forward short rate using µ = 4.9%, κ = 0.019, σ = 0.77%, and b = 0.17%, which

are values that are consistent with the data.11 The moments are plotted for horizons of

2, 5, 10, and 15 years across different values of the current shadow rate r̂t, shown on the

horizontal axes. Vertical lines indicate the location of the ELB. For comparison, the

dashed lines show the corresponding conditional moments in the affine case, b = −∞,

keeping all other parameters the same.

Panel A shows how expected future short rates in the shadow-rate model asymp-

tote to b as r̂t → −∞. Note that the derivatives of Et[rt+s] with respect to r̂t decrease

and eventually go to zero as the shadow rate falls below the ELB. Thus, shocks to

r̂t will have generally weaker effects on the expectations component of yields when

r̂t < b. Moreover, these shocks may have larger effects on the expectations component

of medium or long-term yields than on shorter-term yields. This contrasts to an envi-

ronment far above the ELB, where the effects of shocks to r̂t are always largest at the

short end of the curve.

Similarly, in Panel B, as r̂t falls below b, the conditional variance of the future

short rate drops notably. The reason for this is intuitive—when the shadow rate is far

below the ELB, the actual short rate will almost certainly be equal to the ELB for a

long time and therefore will display little variation. All else equal, the lower short-rate

volatility near the ELB will mean that the volatilities of all yields are lower near the

ELB. Thus the covariance terms that represent the multipliers on zt in equation (7)

will generally be smaller. Heuristically, this implies that both the levels of risk premia

and their sensitivity with respect to bond holdings will be smaller at the ELB than

they are away from the ELB (or in an affine model). The following section explores

these assertions more rigorously.

3 Consequences of the ELB for bond pricing

In this section I demonstrate how the presence of the ELB affects the equilibrium deter-

mination of bond prices. To isolate the key mechanisms, I consider a simplified version

An analogous calculation shows

vart[rt+s] = Φ
(s)
t vart [r̂t+s|r̂t+s > b]

+ Φ
(s)
t (1− Φ

(s)
t )(Et [r̂t+s|r̂t+s > b]− b)2

Direct comparison of these last two equations reveals that vart[r̂t+s] is greater than vart[rt+s].
11The details of the parameterization are discussed in Section 4.2.
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of the model in which bond supply is flat across maturities and constant over time.

That is, zt(τ) = ζ, for some constant ζ > 0. Of course, for quantitative purposes, it will

ultimately be necessary to relax this assumption, and the subsequent sections of the

paper will consider stochastic-supply versions of the model in specific numerical simu-

lations. For the purposes of illustrating the general properties of the model, however,

holding bond supply fixed greatly reduces analytical complexity without meaningfully

altering the conclusions.

3.1 Bond returns

In general, bond prices are a nonlinear function of the shadow rate. Define the time and

maturity-specific coefficients A
(τ)
t ≡ ∂p

(τ)
t /∂r̂t. Since r̂t is the only source of variation

in the model, the covariance between the returns on two bonds of arbitrary maturities

τ and s can be written as

covt

[
dP

(τ)
t

P
(τ)
t

,
dP

(s)
t

P
(s)
t

]
= A

(τ)
t A

(s)
t σ2 (15)

With x(τ) = ζ for all τ in equilibrium, equation (3) gives the expected excess return

(i.e., risk premium) on a τ -maturity bond:

Et

[
dP

(τ)
t

P
(τ)
t

]
− rtdt = aζσ2A

(τ)
t

∫ T

0

A
(s)
t ds (16)

Solving the model is tantamount to solving for the coefficients A
(τ)
t . In the special

case where the ELB never binds (b = −∞), one can show that the solution is

A
(τ)
t |(b=−∞) =

∫ τ

0

e−κsds =
1− e−κτ

κ
(17)

Indeed, this is precisely the affine model studied by Vayanos and Vila (2009) with con-

stant bond supply. Note that A
(τ)
t |(b=−∞) is non-negative and increasing in τ , implying

that risk premia are strictly positive and larger for longer-maturity bonds. Because

A
(τ)
t |(b=−∞) is constant for any τ , at any given maturity the model produces a return

volatility and a risk premium that do not vary with r̂t. Finally, since (17) does not in-

volve ζ, the effect of a hypothetical change in bond supply on the maturity-τ expected

return is given by

11



∂Et[dP
(τ)
t /P

(τ)
t ]

∂ζ
= aσ2A

(τ)
t

∫ T

0

A
(s)
t ds (18)

Thus, expected returns at any given maturity have a (positive) sensitivity to the level

of bond supply that is independent of the value of the shadow rate.

Once we allow the ELB to bind occasionally, the model no longer admits an ana-

lytical solution. However, Appendix A shows that, to a first-order approximation, A
(τ)
t

in this more general case is given by

A
(τ)
t ≈

∫ τ

0

e−κsΦ
(s)
t ds (19)

where, as in the previous section, Φ
(s)
t = Prt [r̂t+s > b].12 In words, A

(τ)
t represents the

accumulated stream of probabilities that the short rate will be unconstrained by the

ELB in each of the next τ periods, discounted at rate κ. The more likely r̂t is to spend

time below b between periods t and t + τ , the lower A
(τ)
t will be. The Vayanos-Vila

model in (17) is a limiting case that holds when the ELB never binds so that Φ
(s)
t = 1

for all t and s.

The key result is that, outside of the affine case, A
(τ)
t is strictly increasing in r̂t.

Specifically,

∂A
(τ)
t

∂r̂t
≈
∫ τ

0

e−2κsϕ
(s)
t ds > 0 (20)

where ϕ
(s)
t is the PDF associated with Φ

(s)
t . Since this derivative is positive for all bonds

when b > −∞, the covariance between any two bonds’ returns, given in equation (15),

is also increasing in r̂t. In particular, bond-return volatilities (and covariances) become

damped as the short rate approaches the ELB from above. Effectively, the reduced

variance of rt that was evident in Figure 1 gets passed through to the variances of

longer-term bonds.

This state-dependence of the return covariances has implications for risk premia

through equation (16). Risk premia are uniformly higher when the shadow rate is

higher. Even when rt is constrained by the ELB, shocks to the shadow rate—such

as those induced by forward guidance about monetary policy—have effects on risk

12Equation (19) holds exactly if either a = 0 or b = −∞. The absence of a closed-form expression
for bond prices is a general property of Gaussian no-arbitrage shadow-rate models, even when no
structural equilibrium conditions are imposed. See Kim and Singleton (2012), for example.
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premia through this channel. An increase in the length of time the ELB is expected to

bind, for example, is associated with a reduction in A
(τ)
t and therefore leads to lower

expected excess returns on bonds, in addition to a lower expected path of the short

rate. Furthermore, the derivative in (18) is directly proportional to the A
(τ)
t terms and

is therefore also increasing in the shadow rate. Thus, the effects of changes in bond

supply will be lower when rt is at or near the ELB than they are when it is far above

the ELB.13

These results can also be viewed in terms of the price and quantity of risk. In

particular, one can rearrange equation (16) to express expected excess returns as

Et

[
dP

(τ)
t

P
(τ)
t

]
− rt = A

(τ)
t λt (21)

where the market price of risk λt is the same for all bonds in period t and is given by

λt = aζσ2

∫ T

0

A
(s)
t ds (22)

Risk prices depend positively on all of the A
(τ)
t terms, which means that they are

increasing in the shadow rate—that is, risk prices are lower at the ELB.14 In contrast,

in the affine version of the model risk prices are constant. Furthermore, (22) makes it

clear that bond supply affects returns by determining the price of risk. In the affine

model, the sensitivity of the risk price to bond supply ∂λt/∂ζ is constant. In contrast,

with b > −∞, this sensitivity is strictly increasing in r̂t so that risk prices are less

responsive to bond supply at the ELB.

3.2 Bond yields

The discussion to this point has been cast entirely in terms of expected bond returns,

but in the remainder of the paper the primary interest will be in bond yields. Although

they are somewhat more cumbersome to work with, all of the qualitative results just

discussed for expected returns also hold for yields. In particular, by substituting equa-

13Equation (18) still holds as an approximation to the effect of bond supply in the presence of the
ELB, because (19) does not involve ζ.

14Indeed, risk prices are nonlinear in r̂t. This result presents a challenge to empirical shadow-rate
term-structure models, which typically assume that risk prices are affine in the states (e.g., Kim and
Singleton, 2010; Wu and Xia, 2016). The model here instead suggests that risk prices endogenously
decrease in a nonlinear way around the ELB. I thank Don Kim for pointing this out to me.
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tion (16) into (5), (8), and (9), it is straightforward to show the following:

• The sensitivity of yields to bond supply (∂y
(τ)
t /∂ζ) is strictly increasing in the

shadow rate.

• Term premia, y
(τ)
t − Et

∫ τ
0
rt+sds, are strictly increasing in the shadow rate.

• At the ELB, shocks to the shadow rate have their largest impact on intermediate-

maturity yields.

The first two of these propositions follow immediately from the discussion of bond

returns above. The third proposition arises from the following argument. Because the

state variable in the model is stationary, expectations for returns in the far future must

be invariant to today’s shocks. Because yields are averages of expected returns, this

implies ∂y
(τ)
t /∂r̂t → 0 as τ → ∞. But, at the ELB, short-term yields are constrained

at b. Therefore, ∂y
(0)
t /∂r̂t = 0 when r̂t < b. Since yields do not move at the very short

or very long end, they must move the most in the middle of the curve.

Figures 2 and 3 demonstrate these propositions quantitatively, solving the model

numerically. The numerical solution, described in Appendix B, relies on an iterative

projection method and is more precise than the first-order approximation described

above. For the purposes of illustration, I use the same short-rate parameters as in

Figure 1 and set risk aversion to a = 0.15, which is the value used in the two-factor

version of the model discussed in the next section.

Figure 2 shows comparative statics over the supply parameter ζ at two different

levels of the shadow rate. In the left-hand graph, the shadow rate is at r̂t = 5.2%,

the unconditional mean of the short rate in the data. In the right-hand graph, it is

at r̂t = −2.7%, which is the average value obtained by the shadow rate during the

ELB period, according to Krippner’s (2012) estimates. In both graphs, the black line

depicts the yield curve when the model is solved using ζ = 0.42, a value which allows

the model to match the average level of the ten-year yield in the data. The red line

shows the yield curve using ζ = 0.21. Thus, loosely speaking, the comparison shows

what happens to the yield curve when we remove half of the bond supply from the

market, conditional on different values of the shadow rate. Since expected future short

rates are unaffected by the value of ζ, the entirety of the difference between the black

and red lines reflects a difference in term premia.

The reduction in bond supply has a notable effect on yields in both panels. However,

when the short rate is above the ELB, the effect is substantially larger. For example,
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the ten-year yield falls by 95 basis points when r̂t = 5.2% but only by 53 basis points

when r̂t = −2.7% in response to the same decrease in supply. This illustrates the

attenuation of supply effects when the ELB is binding.

Figure 3 shows the effect of a one-standard-deviation negative shock to the shadow

rate, starting from the same two illustrative values of r̂t. The top panel shows the

responses of the spot-rate yield curve, while the bottom panel shows the same infor-

mation in terms of forward rates, where the patterns are somewhat easier to see. In

each graph, the pink region depicts the change, on impact, resulting from the shock

through the expectations component, while the blue region depicts the change in the

term premium. Far above the ELB, the shadow rate shock has a monotonic effect on

yields that arises almost entirely through the expectations component. This is similar

to the outcome in the affine model, where the term premium is unaffected by shocks

to the short rate. (Indeed, it asymptotes to that case as the starting value for r̂t is

moved farther above the ELB.) Below the ELB, the situation is quite different. The

overall effect of the shock is smaller at all maturities; the reaction across forward rates

is hump-shaped rather than monotonic; and the response is due to both a decline in

the expectations component and a decline in the term premium. The reduction in the

term premium in response to the shock accounts for about a third of the overall yield

decline at longer maturities in this example (e.g., 10 of the 28 basis points on the ten-

year yield). Its largest effect on forward rates is at the 8-year maturity, contributing to

the hump shape of the response. Thus, these results illustrate both the term premium

effects of shadow-rate shocks at the ELB and the relatively large reaction of the middle

of the forward curve to such shocks in these circumstances.

4 Quantitative evaluation of the model with stochas-

tic bond supply

I now turn to the quantitative implications of the model when there are shocks to the

supply of bonds available to investors. I first show that, when suitably parameterized,

the model matches a number of key features of the data, particularly at the ELB.

In Section 5, I then use the model to simulate the effects of the Federal Reserve’s

unconventional monetary policies.
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4.1 Bond supply process

To lend further realism to the model, I relax the assumption that bond supply is flat

across maturities and constant over time. Since bond supply is continuous across ma-

turities, the object zt(τ) is an infinite-dimensional vector. Previous literature specifies

it as an affine function of a finite state vector βt:

zt (τ) = ζ (τ) + θ (τ) βt (23)

where ζ (τ) and θ (τ) are maturity-specific intercepts and coefficients. Meanwhile, βt

is assumed to follow the Ornstein-Uhlenbeck process

dβt = −κββtdt+ σβdBβ,t (24)

where κβ and σβ are parameters governing the persistence and variance of βt, and Bβ,t

is a Brownian motion with innovations independent of those in Bt. I take the dimension

of βt to be 1.

I further assume that the intercept in (23) is constant across maturities: ζ (τ) = ζ.

This involves only a small loss of generality, since ζ (τ) is integrated out in equation

(7) and is thus only a level shifter. Similarly, the individual factor loadings θ (τ)

do not matter for yields; only the weighted sum
∫ T

0
θt (s) covt

[
dp

(τ)
t , dp

(s)
t

]
ds does.

This suggests that the exact specification of the function θ (τ) is not of first-order

importance, so long as it can generate realistic behavior for overall portfolio duration.15

For simplicity, I follow Greenwood et al. (2015b) by assuming that this function is linear

in τ :

θ (τ) =

(
1− 2τ

T

)
(25)

This specification implies that the bond distribution behaves with a see-saw motion

across maturities. Positive supply shocks reduce the amount of long-term bonds and

increase the amount of short-term bonds in equal measure, with the fulcrum at τ = T/2.

Two helpful summary measures of bond supply that are frequently used in the

literature have direct counterparts in the model. The first measure is the weighted-

15Malkhozov et al. (2016) make a similar point.
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average maturity (WAM) of the oustanding debt, which is given by

WAMt = v

∫ T
0
τzt (τ) dτ∫ T

0
zt (τ)t dτ

(26)

where v is the length of one period, expressed in years. The second measure is the

amount of “ten-year-equivalent” bonds outstanding. This variable is defined as the

dollar value of ten-year bonds that would produce the same duration-weighted value

that the actual portfolio of outstanding bonds has. (Thus, for example, a portfolio

of 5-year bonds with a value of $100 is worth $50 in terms of ten-year equivalents.)

Mathematically, the amount of ten-year equivalents is defined as

10YEt =
v

10

∫ T

0

τzt (τ) dτ (27)

The integrals in both of these equations can be evaluated analytically, given the as-

sumed process for zt (τ), providing convenient ways of translating real-world changes

in the outstanding bond distribution into the bond-supply shocks of the model.

4.2 Parameters and solution

There are nine parameters in the model, which I set to match empirical moments of

Treasury supply and the yield curve. Specifically, I use the Gurkaynak et al. (2007)

zero-coupon yields available on the Federal Reserve Board’s website and the Treasury

security data available in CRSP.16 I start the sample in August 1971 because at that

time 10-year yields become available. The sample ends in December 2015. The specific

moments that I match are discussed below. The parameters are summarized in the

top line of Table 2.

A period is normalized to one calendar quarter (i.e., v = 1/4), and I take T , the

maximum-maturity bond available to investors, to be 60 quarters. This matches the

longest maturity bond that was continuously available over the period under consider-

ation. It also happens to be close to the typical duration of a 30-year coupon bond,

which is the longest bond issued by the Treasury at any point during this period.

Alternative values for T make little difference, however.

16Center for Research in Security Prices, Booth School of Business, The University of Chicago.
Used with permission. All rights reserved. crsp.uchicago.edu.
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I calibrate the autoregressive coefficient on the supply factor κβ to match the persis-

tence of the weighted-average maturity of outstanding Treasury debt (the same series

used in the regressions in Table 1). In the data, this variable is calculated as the

value-weighted timing of all cash flows on all Treasury instruments held by the public.

In the model, the WAM of the debt held by investors, expressed in years, is given by

equation (26):

WAMt = v

∫ T
0
τ
[
ζ +

(
1− 2τ

T

)
βt
]
dτ∫ T

0
ζ +

(
1− 2τ

T

)
βtdτ

0

= vT (
1

2
− 1

6ζ
βt) (28)

Since WAMt is linear in βt, it has the same persistence. Thus, I match the persistence

of WAM in the data, using the four-quarter autocorrelation (0.92) to abstract from

seasonal patterns in Treasury issuance. This gives κβ = 0.021.17 The parameter σβ

determines the scale of the bond-supply factor. Since βt is unitless, this parameter has

no economic content and indeed is not separately identified. Without loss of generality,

therefore, I set it such that the unconditional variance of βt is normalized to 1.

I determine the remaining parameters by matching the long-run empirical features

of the yield curve. In general, all of the moments of yields are affected by all of

the model parameters, and I therefore search for vectors of parameters that jointly

match the data using simulated method of moments. Specifically, I (1) solve the model

numerically for each candidate parameter vector, (2) simulate 1 million periods of data

using that solution, and (3) compute the model-implied moments that result from those

simulations. I iterate this procedure until the moments all are matched to within three

significant digits. There are six remaining parameters and I match six moments in the

data, so the parameter values are just-identified.

The specific moments I match are the unconditional mean and standard deviation of

the three-month Treasury yield (5.2% and 3.6% respectively), the unconditional mean

and standard deviation of the ten-year yield (6.7% and 2.9%), and the correlation

between the three-month and ten-year Treasury yield (0.91). In addition, I match

the average value of the three-month Treasury yield at the ELB. Specifically, between

December 2008 and December 2015, the three-month yield averaged 0.22%, with a

17Of course, equating investors’ bond holdings in the model with Treasury debt in the data might
be taking the model too literally given that real investors may also have duration exposure through
other instruments. However, other calibrating κβ to other autocorrelations in the 0.8 to 1 range,
holding the rest of the parameters constant, produces similar outcomes to those reported below.
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maximum value of 0.68; I thus require parameters that achieve a mean y
(1)
t of 0.0022

conditional on y
(1)
t < 0.0068.18 The values for κ, µ, σ, a, b, and ζ that produce these

same moments in the simulations, given the values of the other parameters, are those

reported in the top row of Table 2.

For comparison, I consider two alternative models in which b = −∞, i.e., models

with an affine process for the short rate. In the first such model, shown in row 2 of

Table 2, I set all parameters other than b equal to the same values as in the shadow-rate

model in order to isolate the effects of imposing the ELB. In the second affine model,

shown in row 3, I recalibrate the parameters to match the same set of unconditional

yield-curve moments that the shadow-rate model matches. The parameters turn out

to be fairly similar to those in the baseline model, with the primary differences being

that µr̂ is a bit higher and σr̂ is a bit lower due to the truncation effects noted earlier.

I solve the model globally by discretizing the state space and iteratively (a) cal-

culating state-contingent bond prices in equation (8) given conditional expectations,

and (b) calculating conditional expectations given state-contingent prices using the

transition densities implied by equations (12) and (24). Cubic interpolation between

the discretized nodes is used for situations, such as model simulation, in which state

values are required to be continuous. The details of the solution method are described

in Appendix B.

4.3 Model fit

Table 3 summarizes the properties of bond yields produced by the calibrations in the

shadow-rate and affine models and compares these results to the data. The model-

implied moments are calculated by drawing 1,000,000 times from the distributions of

ert and eβt and simulating the resulting paths of the state variables r̂t and βt. To illustrate

the importance of the ELB, I report the results conditional on the one-quarter yield

being both below and above the value 0.68%. Again, the reason for choosing this

threshold is that it was the maximum attained by the three-month Treasury yield in

the data during the time that the Federal Reserve kept its policy rate in the 0 – 25

basis point range.

The shadow-rate model matches the data quite well when the short rate is at its

18Note that the three-month yield used in these calculations is the fitted value of the Gurkaynak et
al. curves, which are based on Treasury coupon-security data. It is not a Treasury bill rate. It thus
avoids any premium associated with very liquid, “money-like” assets.
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lower bound, coming within a few basis points of the means and standard deviations

of all but the longest yields. In contrast, the affine model with the same calibration

predicts a one-quarter yield that averages -1.3% (negative Treasury rates never actu-

ally appear in the data) and an average yield-curve slope that is dramatically steeper

than what was observed. It also predicts slope volatilities that are somewhat farther

from the data than those given by the shadow-rate model. The affine model that is

recalibrated to match the unconditional yield curve moments does slightly better at

the ELB, but it still significantly underperforms the shadow-rate model. It also un-

derestimates the frequency with which the ELB binds by about 40%. The shadow-rate

model achieves its successes near the ELB without sacrificing performance relative to

the affine models in other regions of the state space. As the bottom panel shows, all

three models differ from each other by only a few basis points for all of the reported

statistics when the one-quarter yield is greater than 0.68%.

4.4 Yield sensitivities to state variables

I now consider how bond supply and the shadow rate affect the yield curve in different

regions of the state space. To facilitate this discussion, define the state-dependent

factor loadings a
(τ)
r̂,t ≡ ∂y

(τ)
t /∂r̂t and a

(τ)
β,t ≡ ∂y

(τ)
t /∂βt.

19 The solid lines in Figure 4

depict these loadings in the shadow-rate model across a range of values for r̂t, holding

βt fixed at its mean value of zero. The dashed lines depict the corresponding loadings

in the affine model under the baseline calibration (line 2 of Table 2). Since yields

are affine functions of the states in the affine model, the factor loadings are constant

and the dashed lines are always flat. The factor loadings in the shadow-rate model

asymptote to those of the affine model as r̂t rises farther above the ELB.

For reasons discussed in Section 3, a
(τ)
r̂,t is monotonically increasing in r̂t, as shown

in panel A of Figure 4. Furthermore, for r̂ low enough, a
(τ)
r̂,t < a

(s)
r̂,t when τ < s.

Consequently, longer-term yields respond to shadow-rate shocks by more than shorter-

term yields do. This pattern is the opposite of what we observe when r̂t > b, and it is

the opposite of what the affine model predicts. Meanwhile, as shown in panel B, in the

shadow-rate model, a
(τ)
β,t is monotonically decreasing (i.e., becoming more negative) in

r̂t. (Recall that increases in βt reduce the duration exposure of investors and therefore

have negative effects on term premia.) This result replicates in the stochastic-supply

19Note that a
(τ)
r̂,t = −A(τ)

t /τ in the one-factor model of the previous section. That is, it is the loading
in yield space, rather than return space.
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version of the model the damping effects of the ELB on bond the effects of bond supply

that were demonstrated in Section 3. As discussed there, it occurs because vart [rt] falls

as r̂t moves below the ELB, causing the covariance terms in (7) to become smaller.

Consequently, at the ELB—and particularly when r̂t is deeply negative—bond-supply

shocks have smaller effects on yields than they do in the affine model.

Figure 6 shows the factor loadings plotted across a range of values for βt, holding

r̂t fixed at either the unconditional mean of the short rate (Panel A) or at a value

of −2.7% (Panel B). As before, I choose the latter value for illustration of the ELB

environment because it is the average of the shadow rate estimated by Krippner (2012)

during the ELB period in the U.S..20 From this perspective, the differences between

the shadow-rate and the affine model are evident even when the short rate is at its

unconditional mean, and they are of first-order importance when the shadow rate is

negative. In that region, two particularly noteworthy results stand out. First, a
(τ)
r̂,t is

not only strictly lower that it is when r̂t is positive, it is also decreasing in βt. The

reason is that, when βt is positive, investors have relatively little exposure to long-term

bonds. Consequently, when the shadow rate rises, the resulting increase in short-rate

risk has a relatively small effect on term premia. When βt is negative, in contrast,

investors’ bond exposures are greater, and increases in the shadow rate have a larger

impact on term premia through their effects on short-rate volatility. Second, A
(τ)
β,t

is increasing (becoming less negative) in βt. Intuitively, higher levels of βt reduce

exposure to long-term bonds, making long-term yields less sensitive to the changes in

short-rate risk induced by the shadow-rate. Consequently, positive shocks to βt reduce

the volatility of yields, making further shocks to βt less potent. This result implies,

for example, that the marginal effects of asset purchases decline as the central bank

does more of them. It will also be important for analyzing the relative effectiveness of

alternative policies in different environments in Section 5.

The state-dependent factor loadings explain the empirical patterns that were il-

lustrated in Table 1 in the introduction. Recall that the regressions reported there

showed that Treasury supply had smaller effects during the ELB period than in the

pre-ELB sample. This is exactly the result predicted by panel B of Figure 4. Table 1

also showed that regression coefficients of long-term on short-term yields became larger

20To interpret the meaning of r̂t = −.027, simulations starting from this value produce a modal
time of 6 quarters until the shadow rate moves above the ELB. This is roughly consistent with survey
evidence on market participants’ expectations and other evidence collected during much of the ELB
period (see Femia et al. (2013)).
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at the ELB, in particular rising from less than 1 to greater than 1. That the model

reproduces this result can be seen by examining the factor loadings in the panel 2.A,

and in particular how they cross in the sub-ELB region.

Table 4 makes these patterns clearer by computing the linearized relationships be-

tween long-term yields, shorter-term yields, and WAMt in the model. Given equation

(28), the response of the τ -period yield to a change in WAMt is −6ζa
(τ)
β,t/vT . Panel A

reports these responses at various values of the shadow rate, for τ = 5, 10, and 15 years,

in the first group of columns. To make the comparison to Table 1 clearer, the second

and third groups of columns report the sensitivity to WAMt holding fixed the one-year

yield or the two-year yield.21 The sensitivities are similar in magnitude to the esti-

mates in Table 1. They show a clear decline at the ELB, just as the regression results

do.22 Similarly, panel B shows state-contingent linearized coefficients of the τ -period

yield on the one- and two-year yields, holding the supply factor fixed (a
(τ)
r̂,t /a

(4)
r̂,t and

a
(τ)
r̂,t /a

(8)
r̂,t ). As in Table 1, the coefficients rise from less than 1 to greater than 1 at the

ELB and switch from being most-sensitive to least-sensitive at the five-year maturity.

These results further support the ability of the model to explain the empirical behavior

of the yield curve and its relationship to bond supply in the ELB environment.

5 Assessing unconventional policy

5.1 Simulating policy paths

I now use the model to study the effects of unconventional monetary policy. The

Federal Reserve implemented two main types of such policy: asset purchases (also

known as “quantitative easing”) and forward guidance about the future course of the

short-term interest rate. Jointly, these policies can be mapped into the shadow-rate

and bond-supply shocks of the model. However, as a number of authors have noted,

QE may have worked in part through a “signaling channel,” serving as a commitment

by the Fed to keep the short rate at the ELB for a longer time. (E.g., Woodford (2012);

Bauer and Rudebusch (2014); Bhattarai et al. (2015).) If so, then such policies involve

shocks to both bond supply and the shadow rate. For this reason, I do not attempt to

21These coefficients are given by −6ζ(a
(τ)
β,t − a

(s)
β,t/a

(s)
r̂,t )/vT for s = 4 or 8 quarters.

22Since there is no concept of GDP in the model, it is not possible to mimic the specifications
in Table 1 that use the maturity-weighted debt-to-GDP ratio. However, if the model results are
computed replacing WAMt with the model-implied measure of ten-year-equivalent bonds the same
patterns hold.
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distinguish the effects of forward guidance and QE per se but rather model the joint

effects of changes in the anticipated short rate and bond supply.

The strategy is to feed the model a set of shocks that approximate those associated

with unconventional policy during the ELB period and calculate the yield-curve effects

of those shocks. To conduct this exercise, one must translate the actions taken by

the Federal Reserve into shocks that can be input into the model. Cumulatively, we

know fairly precisely how large these shocks were. rt remained at the ELB for seven

years, and so the shadow-rate shocks in the simulation must keep rt at b for exactly 28

periods. Over the same time, Greenwood et al. (2015a) report that the Fed removed

approximately $2.7 trillion of ten-year-equivalent bonds from the market, including

Treasuries, agency debt, and MBS. This was approximately 21% of the total 10-year

equivalents outstanding in these markets as of December 2015, which from equation

(27) is sufficient to pin down the cumulative size of the shocks to bond supply.23

While it is tempting to interpret the bond-supply shocks associated with QE events

simply as realizations of eβt , Federal Reserve asset purchases likely differed in important

ways from the other types of bond-supply fluctuations that dominate the long span of

data. In particular, in the baseline model above the parameter κβ was calibrated to a

value of 0.021, implying a half-life of 8.5 years, to match the persistence of Treasury debt

since 1971. But Fed asset purchases were almost certainly interpreted as less persistent

than that. Carpenter et al. (2015) inferred from surveys of market participants,

conducted while the QE programs were taking place, that the size of the Fed’s balance

sheet was expected to normalize by August 2020. By that reckoning, the expansion of

the Fed’s balance sheet, which occurred between December 2008 and December 2014,

had a perceived half-life of less than 4.5 years on average, substantially less than that

of bond-supply shocks under the baseline calibration.24

To account for these differences, I extend equation (23) to allow for an additional

23In December 2015, the CRSP Treasury data show ten-year-equivalent Treasury bonds of $9.5
trillion, while SIFMA data show $7.4 trillion of agency-backed MBS and CMOs and $1.3 trillion of
long-term agency debt outstanding (http://www.sifma.org/research/statistics.aspx). Hanson (2014)
shows that the average duration of a 30-year MBS is about 3.5 years, and I assume that the duration
of long-term agency debt is 5 years. Under these approximations, ten-year equivalents outstanding
totaled $12.7 trillion.

24Other evidence on the persistence of QE is mixed, but it does not suggest mean reversion as
low as 0.021. Wright (2012) estimates a half-life of less than a year for the effects of unconventional
monetary-policy shocks on yields in a VAR. Altavilla and Giannone (2016) show that markets expected
most of the effects of unconventional policy to persist for at least a year, but the survey data they use
do not extend beyond that horizon. Similarly, Swanson (2017) finds that the persistence of most QE
shocks was large, but he limits the estimation horizon to 180 business days.
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supply factor Qt representing bond-supply shocks due to changes in the Federal Re-

serve’s balance sheet:

zt (τ) = ζ + θ (τ) (βt +Qt) (29)

where

dQt = −κQQtdt+ σQdBQ,t (30)

for “Fed balance-sheet” shocks dBQ,t. I set κQ = 0.04, giving Qt shocks a half life of

4.25 years, and I continue to specify θ(τ) as in (25). When calculating bond yields

in this model, I set σQ to zero, so that the perceived risk associated with total bond

supply is the same as in the baseline model.25 All other parameters continue to take

the values shown in the top row of Table 2. Since Qt does not add additional risk to

the model, the conditional moments of yields and the factor loadings for r̂t and βt also

remain the same as above. I note that, although the addition of the balance-sheet

factor adds realism to the model, the results presented below are largely unchanged if

asset purchases are simply treated as ordinary shocks to βt.

The nonlinearities induced by the ELB mean that both starting values and the

trajectory of the shocks matter. I use starting values based on the configuration of

the yield curve on the eve of unconventional policy. Letting t = 0 denote the period

immediately before unconventional policies were enacted, I set r̂0 = 0.0017, just at

the ELB. I set β0 = −0.42, which produces a ten-year yield-curve slope of 3.0%, the

observed slope as of the FOMC meeting prior reaching the ELB. I initialize Q0 to

zero, since QE did not exist prior to the ELB.26

Since we cannot directly observe the trajectories of the shadow rate and the Fed

balance-sheet factor in the data, I simulate a range of possible trajectories, with each

trajectory being consistent with the observed outcomes of (1) a short rate that stays

at zero for exactly 28 periods and (2) a cumulative net reduction in 10-year-equivalent

25This assumption is justified because QE purchases account for very little of the unconditional
variation in the duration risk of investors’ portfolios. Allowing for a positive σQ does not substantively
change the results below, as long as it is less than the unconditional variance of σβ .

26The ELB was officially reached on December 16, 2008, when the FOMC cut the target federal
funds rate from 1% to a range of 0 to 25 basis points. However, from the Treasury market’s perspective
the effective date may have been slightly earlier. The three-month yield declined 102 basis points
over the intermeeting period leading up to December 16, in anticipation of the cut. In addition,
the first announcement of asset purchases came on November 25. Using a starting value for bond
supply based on the situation as of October 29, 2008, ensures that it does not include these pre-ELB
influences of unconventional policy.
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bonds of 21%.27 The details of these simulations are discussed in Appendix C. Each

simulation i consists of a set of 28 shocks to both the shadow rate and the Fed’s

balance sheet {(er̂i,1, e
Q
i,1), ..., (er̂i,28, e

Q
i,28)}, which accumulate into the state trajectories

{(r̂i,0, Qi,0), ..., (r̂i,28, Qi,28)} via equations (12) and (30). (By construction, er̂i,t =

Br̂,t − Et−1[Br̂,t] and similarly for eQi,t.) The initial values (r̂i,0, Qi,0), which were just

discussed, are the same in all simulations. The shocks to βt are set to zero, so that

variable simply decays back toward its mean over the period, following a path that is

identical across all simulations.

Panel A of Figure 6 shows the resulting distribution of the simulated trajectories for

r̂t. This distribution spans empirical estimates of the shadow-rate path during the ELB

period, including those of Krippner (2012) and Wu and Xia (2016). Panel B shows

the distribution of the Qt, trajectories, converted to cumulative percentage changes in

ten-year-equivalent bonds outstanding for ease of interpretation, using equation (27).

It is more difficult to know what the “right” path of this variable ought to be (see

footnote 27), but the distribution covers a fairly wide range of possibilities.

5.2 Yield curve responses and their decomposition

With the simulated distributions of the state-variable trajectories in hand, I use the

model to extract the yield-curve responses. To report the results, for each period

in each simulation I calculate how the yield curve changes, relative to how it would

have changed if there had been no shock in that period. I then sum these differences

across periods within each simulation. This procedure is analogous to empirical event

studies that attempt to isolate and accumulate the immediate impact of policy shocks

without accounting for their dynamics. (Here, there is an “event” in every period.)

Specifically, letting y(τ) (r̂t, βt, Qt) denote the τ -maturity yield as a function of the state

variables, I calculate

D
(τ)
i =

28∑
t=1

[
y(τ)(r̂i,t, βt, Qi,t)− y(τ)(r̂i,t − eri,t, βt, Qi,t − eQi,t)

]
(31)

27One might use data on the Fed’s holdings as an observed measure of Qt, and such a path is in fact
spanned by the set of trajectories I simulate. I allow for more ambiguity, however, because the term
premium depends on expectations of future asset purchases, not just the amount the Fed currently
holds. In the model here, Et [Qt+h] depends only on Qt, making the distinction between current
balances and expected future balances fuzzy. Greenwood et al. (2015b) explore this distinction in
detail.
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The distribution of D
(τ)
i across simulations is shown in Figure 7.A, with the corre-

sponding calculation for forward rates shown in 7.B.

The median decline in the ten-year yield produced by the simulated unconventional

policy shocks is 207 basis points. This estimate does not differ much across simula-

tions, with the middle 90% of the distribution spanning only the range of -211 to -199

basis points. It is worth noting that these are similar magnitudes to the effects that

have been estimated in event studies of unconventional policy. For example, look-

ing at 23 important policy announcements during the ELB period, and controlling for

macroeconomic news, Altavilla and Giannone (2016) find a net effect on the ten-year

yield of -176 basis points. Comparisons between these kinds of results and the model

cannot be made precise because empirical event studies necessarily capture only a sub-

set of the relevant shocks, but they suggest that the model’s results are quantitatively

realistic.

The model also reproduces another key stylized fact from the event-study literature.

Rogers et al. (2014) and Greenwood et al. (2015b) show that unconventional policy

announcements typically resulted in a hump-shaped reaction across the forward curve,

with forward rates in the 5- to 10-year range moving the most. The model generates

exactly this pattern (see Figure 7.B). As was evident in Figure 5, it does so because of

the non-monotonic effects of shadow-rate shocks induced by the ELB, which operate

through both the expectations and term-premium components of yields.

I decompose the cumulative contemporaneous yield-curve reaction shown in Figure

7 into various channels of unconventional policy. While this calculation captures

the sources of the changes in yields in the periods when shocks occurred, it does

not account for the dynamic effects of those shocks. Therefore, I also calculate a

decomposition of the total model-implied variance in yields during the ELB period.

In both exercises, the breakdown is calculated by computing what the change in yields

would have been if only the shadow-rate or the Fed balance-sheet shocks had occurred

(again, relative to a baseline case in which there are no shocks at all). In the case of

the shadow-rate shocks, the response can be further decomposed into the expectations

and term-premium components. Finally, because of the nonlinearities, the responses

to the individual shocks do not sum exactly to the total response when both types of

shocks occur simultaneously; an “interaction” term captures the residual.

Table 5 shows the results of these decompositions according to the medians across

simulations, with the 5% and 95% quantiles reported in parentheses. Panel A presents
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the decomposition of the cumulative contemporaneous effects, and panel B presents

the total-variance decomposition. Looked at either way, the shadow-rate shocks are

responsible for considerably more of the change in yields than the Fed balance-sheet

shocks are. For example, as shown in column 4 of panel A, the model implies that

the duration effects associated with QE lowered the ten-year yield by a total of just

47 basis points in the periods when they occurred. The shadow-rate shocks explain

over 75% of the contemporaneous declines in yields at this maturity, and at maturities

of less than five years they explain even more of the change (columns 2 and 3). The

expectations component constitutes the bulk of the effects of the shadow-rate shocks,

but the term-premium effects of such shocks are also significant. They account for 70

basis points of the decline in yields at the ten-year maturity.

In panel B, the nonlinear interactions in column 6 loom larger, so that the precise

contributions of each factor to the overall variance of yields are somewhat less clear.

Nonetheless, in the case with Fed balance-sheet shocks alone (column 4), yields beyond

the two-year horizon have less than 3% of the variance that they have when both shocks

are present. In contrast, in the case with shadow-rate shocks alone (columns 2 and

3), the variance of yields is similar to the variance when both shocks are present. At

intermediate and long maturities, the term-premium effects of the shadow-rate shocks

explain about the same fraction of the total variance in yields that the expectations

component explains.

The above exercise has assumed that shadow-rate shocks and Fed balance-sheet

shocks are independent. In practice, it is likely that they were positively correlated

at the ELB—for example, several FOMC announcements during this period contained

information about both the future short rate and QE policies. While it is difficult to

know exactly what the correlation was, I check the sensitivity of the results to the

extreme assumption that the two shocks were perfectly correlated. While this still (by

construction) results in the same length of time at the ELB and the same amount of

cumulative bond purchases as shown in Figure 6, it changes the trajectories and their

correlations, which could affect the results due to nonlinearities. The details of the

simulations are the same as described above and in Appendix C, except that er̂i,t and

eβi,t are drawn from perfectly correlated distributions for each i and t.

The results are shown in Table 6. Comparison with Table 5 demonstrates that the

correlation assumption has very little quantitative effect on the results. In particular,

it remains the case that Fed balance-sheet shocks have much smaller overall effects
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than shadow-rate shocks do and that a significant portion of the effect of shadow-rate

shocks operates through their endogenous effects on term premia.

5.3 Discussion

The above results imply that the duration removal that occurred through Federal Re-

serve asset purchases may have had significantly smaller effects on yields than has some-

times been suggested. For example, summarizing the empirical literature, Williams

(2014) concludes that each $600 billion of asset purchases likely reduced the ten-year

yield by 15 to 25 basis points. The Fed bought nearly $4 trillion of securities in total,

so if the Williams estimates are interpreted as entirely reflecting duration removal they

suggest an effect of the duration channel that is about three times larger than the one

produced by the model.

Yet the empirical literature is far from conclusive that the duration channel is the

only—or even the primary—channel through which QE operates. Evidence in Krishna-

murthy and Vissing-Jorgensen (2011) and Bauer and Rudebusch (2015), for example,

indicates that the signaling channel may have been the most important aspect of asset

purchases. The simulations above are consistent with those results. Furthermore, it

may be that previous empirical work on QE has confused the duration channel with

the link between policy expectations and term premia that emerges in the model of

this paper. For example, some empirical studies assume that declines in term pre-

mia around QE announcements must be due to duration effects (e.g., Gagnon et al.,

2011; ?). The model shows that this is not necessarily true. The signaling channel

of bond purchases (or explicit forward guidance that is issued concurrently with QE

announcements) can also lower the term premium through its effect on interest-rate

volatility.28

These observations show that the effects of shadow-rate and Fed balance-sheet

shocks produced in the model simulations are plausible with respect to the data. Yet

a question still remains about why those effects have the magnitudes that they do. In

particular, one may wonder why $4 trillion of asset purchases “only” buys a 47-basis-

28It is also worth repeating that the bond-supply effects generated by the model are consistent with
evidence that does not stem from QE episodes. As noted in Section 4.4, the effects of bond supply in
the model largely match those estimated in regressions of the Greenwood-Vayanos (2014) type. That
evidence arguably gives a cleaner read on duration effects than the QE event studies do, because it
avoids some of the identification problems of event studies, is not contaminated by a monetary-policy
signaling channel, and is largely free of distortions associated with the ELB.
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point reduction in the ten-year yield. This is a difficult question to answer, because

the quantitative outcomes of the simulations depend on all of the model parameters,

starting values, shock processes, and other simulation choices. However, two features

of the model seem particularly noteworthy.

First, as discussed throughout the paper, duration effects are attenuated by the

ELB. The same amount of asset purchases would have had a larger effect in the simu-

lations if those purchases had taken place in an environment with the short rate closer

to normal levels. Depending on the details, the factor loadings shown in Figure 4

suggest that the duration effects could have been over 50% larger in such a situation.

Second, the yield data themselves place some limits on how large the duration

channel can be within the context of the type of structural model used here. This can

be seen most easily by returning to the one-factor model of Section 3. Equation (16)

shows that excess returns are linear in bond supply. Thus, any change in parameters

that increases the sensitivity of excess returns to bond supply must increase the average

level of excess returns in equal proportion. To triple the effects of QE (for example,

by tripling the value of the parameter a), one would also have to accept a tripling of

the average risk premium. In the model of the paper, the parameters are set to match

the 6.7% average level of the ten-year yield observed in the data. A tripling of the

risk premium would raise this average to 9.7%—a value that would easily be rejected

empirically. (The parameter change would also increase the volatility of yields signifi-

cantly beyond the observed levels.) Thus, while one could generate larger effects of QE

in the model through alternative choices of parameters, nearly any such modification

would put the model at odds with other features of the data.29

5.4 Policy options in alternative environments

Because they take different units, it is not meaningful to ask whether the shadow-rate

shocks or the bond-supply shocks are “more powerful” in general. However, one can

compare their relative effectiveness in different states of the world. One reason that

such a comparison may be interesting is that policymakers, who presumably have some

notion of the implict cost of implementing each type of policy, may favor one over the

other depending on the circumstances.

29One might worry that the parameters matched to the full-sample moments are not appropriate
for the period when QE was conducted. However, Table 3 and other results presented above show
that the model continues to do a good job of describing the behavior of yields during this time.
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To measure relative efficacy, I compute the size of the bond-supply shock that

would be required to generate the same effect on the τ -period yield that a 25-basis-

point decline in the shadow rate has. Specifically, again letting y(τ) (r̂t, βt, Qt) denote

the τ -maturity yield as a function of the state variables, I solve for ∆β such that

y(τ) (r̂t − .0025, βt, Qt) = y(τ) (r̂t, βt + ∆β,Qt) (32)

using a range of initial values (r̂t, βt). I repeat an analagous exercise to solve for the

relative efficacy of Fed balance-sheet shocks, ∆Q.30 In an affine model, the values

∆β and ∆Q that solve these equations are constant across the state space. In the

shadow-rate model, as was evident in Figures 4 and 5, the elasticities of yields with

respect to shadow-rate and bond-supply shocks differ in different areas of the state

space, and therefore their relative efficacy also differs.

Figure 8 presents contour maps of relative efficacy for 10- and 15-year yields, with

darker colors indicating bigger values—i.e., areas of the space in which bond-supply

shocks have relatively large effects compared to those of shadow-rate shocks. Both βt

and Qt achieve their greatest relative efficacy in the southwest quadrant of the maps,

where both r̂t and βt are deeply negative. As noted earlier, both bond-supply and

shadow-rate shocks are attenuated when the shadow rate is below the ELB. However,

when βt is negative (i.e., more duration in the market), the attenuation of the shadow-

rate shocks is greater than the attenuation of the bond-supply shocks.31 Thus, for

example, a shock to βt of about 0.10 or a shock to Qt of about 0.14 in this region is

sufficient to lower the ten-year yield by the same amount that a 25-basis-point shock to

r̂t would achieve. In contrast, at the unconditional means of the states, the respective

sizes of the βt and Qt shocks required are closer to 0.14 and 0.20, respectively.

Interestingly, this high-relative-efficacy region for the bond-supply shocks is approx-

imately the region of the space in which the Fed asset purchases were conducted in

practice. The greatest removal of duration from the market occurred during the QE

and maturity extension programs that mostly operated between 2011 and 2013. During

that time, empirical shadow-rate term-structure models show r̂t near its nadir, with the

Krippner (2012) estimate, for example, averaging -4.5% over those three years. Mean-

while, the Treasury was lengthening the maturities of its issuance, so that the average

30Note that the solution for ∆β is the same regardless of whether we use the baseline process (23)
or include Qt in the model as in (29). In the latter case, the initial value of Qtis set to zero.

31This result can be seen to some extent in Figure 5, panel B.
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duration outstanding stood near the upper end of its historical range. Moreover, fiscal

expansion increased the total quantity of Treasury debt outstanding, further boosting

the amount of interest-rate risk held by investors.32 Thus, one possible interpretation

of the Fed’s actions during this time is that it saw the cost-benefit calculations around

its policy options changing. During normal times, the Fed has a revealed preference

for not engaging in asset purchases. This preference may have shifted during the ELB

period if the FOMC perceived that the marginal benefits of forward guidance declined

sufficiently relative to those of asset purchases.

6 Conclusion

This paper has augmented a model of risk-averse arbitrage in the bond market to

account for the effective lower bound on nominal interest rates. At and near the ELB,

the effects of bond supply are damped, the expectations and term-premium components

of yields become endogenously correlated, and shocks to short-rate expectations have

their largest effect on intermediate-maturities forward rates. When calibrated to the

long-run features of yields, the model successfully reproduces the conditional moments

of the yield curve, particularly near the ELB, as well as empirical evidence on the

effects of bond supply on yields. When considering shocks that approximate the

experience of unconventional monetary policy in the U.S., the main finding is that the

duration effects of shocks to the Federal Reserve’s balance sheet are relatively weak,

accounting for less than one-quarter of the overall change in the ten-year yield and even

less at shorter maturities. Instead, the majority of the effects of such policies come

through the expectations component of yields. The term premium effects of changes

in anticipated short rates—a channel that does not exist in affine models and has been

ignored by previous literature—also plays a significant role.

In addition to their implications for policy choices during future ELB episodes,

the results are relevant for empirical work in this area. For example, economists have

sometimes studied questions about the yield curve at the ELB (including questions

about unconventional monetary policy) by extrapolating the results of linear models

estimated on pre-ELB data. The analysis here suggests that that approach could be

quite dangerous. There are reasons to expect factor loadings to change both quan-

32Over the 2011 - 2013 period, the maturity-weighted debt-to-GDP ratio averaged 4.4, compared
to a pre-ELB average of 2.4, according to the CRSP data.
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titatively and qualitatively at the ELB, with some transmission channels becoming

diminished and others enhanced. Because bond prices are forward-looking and depend

on both expectations and uncertainty, nonlinearities matter and can operate on the

term structure in subtle ways.
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Appendices

A Approximate solution to the one-factor model

I look for coefficients A
(τ)
t that jointly satisfy (7) and (15) for all maturities τ and all

values of the shadow rate r̂t.

Log bond returns can be decomposed as,

dp
(τ)
t = Et

[
dp

(τ)
t

]
+
∂p

(τ)
t

∂r̂t
σdBt (33)

so,

cov[dp
(τ)
t , dp

(s)
t ] =

∂p
(τ)
t

∂r̂t

∂p
(s)
t

∂r̂t
σ2 (34)

Expanding (7) and (8), time-t log bond prices are

p
(τ)
t = −

∫ τ

0

Et[rt+s]ds− aζ
∫ τ

0

Et

[∫ T

0

covt+s

[
dp

(τ)
t+s, dp

(j)
t+s

]
dj − 1

2
vart+s

[
dp

(τ)
t+s

]]
ds

(35)

Substituting (34),

p
(τ)
t = −

∫ τ

0

Et[rt+s]ds− aζσ2

∫ τ

0

Et

∫ T

0

∂p
(τ)
t+s

∂r̂t

∂p
(j)
t+s

∂r̂t
dj − 1

2

(
∂p

(τ)
t+s

∂r̂t

)2
 ds (36)

Taking the derivative,

∂p
(τ)
t

dr̂t
= −

∫ τ

0

∂Et[rt+s]

∂r̂t
ds

− aζσ2

∫ τ

0

Et

[∫ T

0

(
∂2p

(τ)
t+s

∂r̂2
t

∂p
(j)
t+s

∂r̂t
+
∂p

(τ)
t+s

∂r̂t

∂2p
(j)
t+s

∂r̂2
t

)
dj −

∂p
(τ)
t+s

∂r̂t

∂2p
(τ)
t+s

∂r̂2
t

]
ds

(37)

Approximating A
(τ)
t by setting second derivatives in this expression to zero,
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A
(τ)
t = −∂p

(τ)
t

∂r̂t
≈
∫ τ

0

∂Et[rt+s]

∂r̂t
ds

=

∫ τ

0

e−κsEt

[
∂rt+s
∂r̂t+s

]
ds

(38)

where the last equality follows because r̂t is a standard Ornstein-Uhlenbeck process.

The term in brackets is equal to 1 if r̂t+s is above the ELB and 0 otherwise. Therefore,

its expectation is just the probability that r̂t+s > b, and we have

A
(τ)
t ≈

∫ τ

0

e−κsΦ
(s)
t ds (39)

which is the result given in the text. (One can also show this last step by directly

differentiating (13) with respect to r̂t.)

B Solution Algorithm

Consider a small but finite time interval ∆. For τ > ∆ we have

p
(τ)
t = Et

[
p

(τ−∆)
t+∆

]
−
∫ ∆

0

Et

[
dp

(τ−δ)
t+δ

]
dδ

≈ Et

[
p

(τ−∆)
t+∆

]
− ∆

2

(
Et

[
dp

(τ−∆)
t+∆

]
+ Et

[
dp

(τ)
t

]) (40)

From (7), (23), and (25), the expectations terms on the right-hand side are given by

Et

[
dp

(τ)
t

]
≈ rt+

1

∆

(
a

∫ T

0

[
ζ +

(
1− 2s

T

)
βt

]
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p
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(s−∆)
t+∆

]
ds− 1

2
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[
p

(τ−∆)
t+∆

])
(41)

and similarly for Et

[
dpτ−∆

t+∆

]
, where we have made use of the approximation

covt

[
dp

(τ)
t , dp

(s)
t

]
≈ 1

∆
covt

[
p

(τ−∆)
t+∆ , p

(s−∆)
t+∆

]
(42)

Note that the approximation errors in (40) through (42) vanish as ∆ goes to zero.

Discretize the state and maturity space into Nτ× Nr̂ ×Nβ nodes. Let τn, r̂n, and
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βn denote the values of the maturity and state variables at node n. Set p (0, r̂t, βt) =

−max [r̂t, b] for all βn. Let π (r̂t+∆, βt+∆|r̂t, βt) be the conditional PDF of the states

associated with the laws of motion (12) and (24). Finally, transform log prices from

the time/maturity domain to the state-space domain by writing them as a function

p(.):

p
(τ)
t = p (τ, r̂t, βt) (43)

Our objective is to solve for this function by calculating state-contingent values of all

of the objects on the right-hand side of (40).

The algorithm proceeds as follows:

Step 0. Set i = 0. Begin with an initial guess of the pricing function p0(.). For

example, choose p0(τ, r̂t, βt) = −max [r̂t, b] for all τ , r̂t, βt.

Step 1. At each node n, evaluate the functions

F i
1 (τn, r̂n, βn) ≡

∫ ∫
π (r̂, β|r̂n, βn) pi (τn −∆, r̂, β) dr̂dβ

= Et

[
p

(τn−∆)
t+∆

∣∣ (r̂t, βt) = (r̂n, βn)
]

(44)

F i
2 (τn, r̂n, βn) ≡

∫ ∫
π (r̂, β|r̂n, βn)

[
pi (τn −∆, r̂, β)− F i

1 (τn, r̂n, βn)
]2
dr̂dβ

= vart

[
p

(τn−∆)
t+∆

∣∣∣∣ (r̂t, βt) = (r̂n, βn)

]
(45)

F i
3 (τn, r̂n, βn) ≡

∫ ∫
π (r̂, β|r̂n, βn)F i

2 (τn −∆, r̂, β) dr̂dβ

= Et

[
vart+∆

[
p

(τn−2∆)
t+2∆

] ∣∣∣∣ (r̂t, βt) = (r̂n, βn)

]
(46)

F i
4 (τn, s, r̂n, βn) ≡

[
ζ +

(
1− 2s

T

)
βn
] ∫ ∫

{π (r̂, β|r̂n, βn)
[
pi (τn −∆, r̂, β)− F i

1 (τn, r̂n, βn)
]

×
[
pi (s, r̂, β)− F i

1 (s, r̂n, βn)
]
}dr̂dβ

=

[
ζ +

(
1− 2s

T

)
βt

]
covt

[
p

(τn−∆)
t+∆ , p

(s−∆)
t+∆

∣∣ (r̂t, βt) = (r̂n, βn)
]

(47)
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and

F i
5 (τn, s, r̂n, βn) ≡

∫ ∫
{π (r̂, β|r̂n, βn)

[
ζ +

(
1− 2s

T

)
β

]
F i

2 (τn −∆, s, r̂, β) dr̂dβ (48)

= Et

[[
ζ +

(
1− 2s

T

)
βt+∆

]
covt+∆

[
p

(τn−2∆)
t+2∆ , p

(s−∆)
t+2∆

] ∣∣∣∣ (r̂t, βt) = (r̂n, βn)

]
with all five functions set to zero when τ = 0.

Step 2. Update the pricing function by substituting the functions above for the

moments in (40) and evaluating them at each node. That is, calculate

pi+1 (τn, r̂n, βn) = F i
1 (τn, r̂n, βn)−max [r̂n, b]

−a∆

2

T∑
s=1

[
F i

4 (τn, s, r̂n, βn) + F i
5 (τn, s, r̂n, βn)

]
+

∆

4

[
F i

2(τn, r̂n, βn) + F i
3(τn, r̂n, βn)

]
(49)

Set i = i+ 1.

Repeat steps (1) and (2) to convergence.

The expectations in Step 1 are computed numerically using the probability function

π (.) and the pricing function pi(.). The integration is performed by quadrature and,

to ensure accuracy, relies on a much finer grid than the price computation in Step 2

does. To obtain bond prices over this refinement of the space, the values of pi(.) are

interpolated between each pair of nodes, at each iteration, using a cubic spline. At

the edges of the discretized space, to avoid explosive behavior, prices are log-linearly

extrapolated for the purposes of computing expectations. (So long as the edges are far

away from the region of the space that is being considered, the conditional expectations

used there have little influence on the results.)

In the baseline model of the paper, I use Nτ = 60, Nr̂ = 101, and Nβ = 25, for

a total of 151, 500 nodes, distributed uniformly in each dimension over the intervals

τ = [1, 60], r̂ = [−0.25, 0.35], and β = [−6.0, 6.0]. Expanding the density of the nodes

or their range beyond this point had no noticeable effect on the results reported in

the paper. The algorithm converges to three significant digits in approximately 400

iterations.
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C Simulation details

This appendix describes the construction of the simulated distributions of the state

variables used in the pseudo event study, as depicted in Figure 6.

Within each simulation i, I draw a discrete quarterly series of shadow-rate shocks

{er̂i,1, ..., er̂i,28}, each of which represents the change in r̂t over the course of each quarter

that was unanticipated as of the beginning of that quarter. I.e., ei,t = r̂t − Et−1[r̂t].

Without further restrictions each shock has mean zero and standard deviation σ̃ given

by

σ̃ =
1− e−κ

κ
σ (50)

However, ex post it clearly had to be the case that the average shadow-rate shock

during the ELB period was negative. To ensure that this condition is satisfied, for

each simulation i, I draw the series of shadow-rate shocks from the distribution N [µi, σ̃],

where µi < 0 is chosen to make the terminal value of the shadow rate r̂i,28 exactly equal

b. I reject any draw in which the simulated value of r̂t ever rises above b.

To determine the size of the Fed balance-sheet shocks {eQi,1, ..., eQi,28}, note that equa-

tion (27) implies that changes in the supply factors translate into percentage changes

in 10-year-equivalent bonds as follows:

%∆10YEt+s =

∫ T
0
τ
[(

1− 2τ
T

)
(βt+s +Qt+s − βt −Qt)

]
dτ∫ T

0
τ
[
ζ +

(
1− 2τ

T

)
(βt +Qt)

]
dτ

(51)

= −∆βt+s + ∆Qt+s

3ζ − βt −Qt

Since the eβt are taken to be zero in this exercise, plugging in the actual percentage

change in 10-year equivalents that resulted from QE allows one to uniquely solve for

∆Qt+s, given initial values. In particular, at the end of the simulation we must have

Q28 = 0.32 in order to achieve a reduction in ten-year equivalents of 21% relative to a

case in which Q28 = 0.33

This calculation provides a value for the cumulative effect of the Fed balance-sheet

shocks on bond supply, but it does not tell us about the individual values of those

shocks. I take a conservative approach by considering the widest possible distribution

33The difference between the path of ten-year equivalents in the simulation and the counterfactual
case in which no QE occurs is − ∆Qt+s

3ζ−βt−Qt
= − Q28

3(0.37)+0.42 . Setting this equal to −0.21 gives Q28 =
0.32.
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for the shocks, while respecting the empirical facts that (1) QE balances never fell

below their starting value of zero, and (2) QE attained its maximum value at the end

of the ELB period. Specifically, for each simulation i, I take draws {ẽi,1, ..., ẽi,28}
from N [0, 1] and compute the balance-sheet shocks {eQi,1, ..., e

Q
i,28} = σi{ẽi,1, ..., ẽi,28},

where σi is the the largest value that is consistent with min[{Qi,1, ..., Qi,28}] > 0 and

max[{Qi,1, ..., Qi,28}] = Qi,28.
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Table 1.  Regressions of long-term yields on Treasury duration and short-term yields  
 

Dep. Var. 

Independent variables Adj. 
R2 WAM of Treas. debt  1y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.140 
(0.095) 

0.002 
(0.101) -2.17 

 0.842*** 
(0.050) 

2.271*** 
(0.785) 1.84 0.951 

10y yield 0.221* 
(0.121) 

0.058 
(0.116) -2.25 

 0.736*** 
(0.060) 

3.028** 
(1.203) 1.92 0.901 

15y yield 0.261* 
(0.133) 

0.110 
(0.126) -2.05 

 0.688*** 
(0.065) 

2.966** 
(1.276) 1.80 0.870 

 

Dep. Var. 

Independent variables Adj. 
R2 WAM of Treas. debt  2y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.102* 
(0.373) 

-0.002 
(0.060) -2.57 

 0.901*** 
(0.032) 

1.910*** 
(0.217) 4.74 0.981 

10y yield 0.187** 
(0.094) 

0.053 
(0.088) -2.25 

 0.794*** 
(0.048) 

2.328*** 
(0.429) 3.61 0.942 

15y yield 0.227** 
(0.109) 

0.113 
(0.108) -1.62 

 0.746*** 
(0.056) 

2.167*** 
(0.537) 2.68 0.915 

 

Dep. Var. 

Independent variables Adj. 
R2 Maturity-weighted debt/GDP  1y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.179* 
(0.010) 

-0.058 
(0.083) -2.65 

 0.850*** 
(0.049) 

2.097*** 
(0.679) 1.89 0.952 

10y yield 0.250* 
(0.129) 

-0.056 
(0.093) -2.81 

 0.743*** 
(0.062) 

2.940*** 
(1.043) 2.15 0.902 

15y yield 0.282** 
(0.140) 

-0.027 
(0.101) -2.74 

 0.696*** 
(0.070) 

2.962*** 
(1.128) 2.06 0.871 

 

Dep. Var. 

Independent variables Adj. 
R2 Maturity-weighted debt/GDP  2y yield 

Pre-ELB ELB Break t-stat  Pre-ELB ELB Break t-stat 

5y yield 0.126* 
(0.067) 

-0.044 
(0.051) -2.86 

 0.906*** 
(0.032) 

1.818*** 
(0.205) 4.77 0.981 

10y yield 0.207** 
(0.104) 

-0.058 
(0.076) -2.80 

 0.800*** 
(0.050) 

2.301*** 
(0.698) 4.32 0.943 

15y yield 0.239** 
(0.118) 

-0.013 
(0.095) -2.43 

 0.751*** 
(0.600) 

2.218*** 
(0.463) 3.34 0.915 

 
Notes:  Each row in each table reports the estimates of a single regression, where the dependent variable is a longer-term 
Treasury yield, as indicated in the first column.  Each regression uses two independent variables: either the weighted-
average maturity of Treasury debt in public hands or the maturity-weighted Treasury-debt-to-GDP ratio and either the 
one- or two-year zero-coupon Treasury yield.  In each regression, the coefficient on each variable is allowed to differ 
between the period when the ELB was not binding (prior to December 2008) and the period when it was binding 
(December 2008 through December 2015), with the break accomplished using interactive dummy variables.  The samples 
begin in August 1971 for the 5- and 10-year maturities and in December 1971 for the 15-year maturity.  Yield data are 
Gurkaynak et al. (2007) zero-coupon yields.  Treasury debt variables are constructed from CRSP data, following 
Greenwood and Vayanos (2014).  All data are monthly.  Newey-West standard errors, using 36 lags, are reported in 
parentheses, and statistical significance at the 10% (*), 5% (**), and 1% (***) levels is indicated by asterisks.  The t statistics, 
reported in italics, test the significance of the break in each of the two coefficients in each regression. 
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Table 2.  Model parameters 

  Bond supply  Short rate  Risk 
aversion 

 T 𝜅" 𝜎" z  µ k s b  a 
[1]  Shadow-rate model 60 0.021 0.20 0.37  4.9% 0.019 0.77% 0.17%  0.15 
[2]  Affine model – base 60 0.021 0.20 0.37  4.9% 0.019 0.77% -∞  0.15 
[3]  Affine model – recalibrated 60 0.021 0.20 0.39  5.2% 0.019 0.70% -∞  0.17 
Notes: The table shows the calibrated values of the parameters in the baseline two-factor shadow-rate model, as well as in two models 
with affine short-rate processes.  In the first affine model, all parameters (except the ELB) are the same as in the shadow-rate model.  
In the second affine model, the parameters are recalibrated to match the same set of unconditional yield-curve moments that the 
shadow-rate model matches.  Details of the calibration strategy are provided in the text. 

 

 

 

 
Table 3.  Conditional moments of yield curve in data vs. two-factor models 

Short rate below 0.68% 
 

% of obs. 3m rate 
Slopes (to 3m) 

2Y 5Y 10Y 15Y 
Conditional means 
Data 16% 0.2% 0.3% 1.3% 2.5% 3.1% 
Shadow-rate model 15% 0.2% 0.4% 1.2% 2.4% 3.5% 
Affine Model – base calibration 15% -1.3% 0.7% 1.8% 3.4% 4.5% 
Affine Model – recalibrated  10% -0.9% 0.7% 1.8% 3.3% 4.5% 
Conditional standard deviations 
Data  0.1% 0.3% 0.6% 0.8% 0.8% 
Shadow-rate model  0.2% 0.3% 0.7% 1.1% 1.4% 
Affine Model – base calibration  1.7% 0.3% 0.7% 1.3% 1.7% 
Affine Model – recalibrated  1.5% 0.3% 0.7% 1.2% 1.5% 

 
Short rate above 0.68% 

 
% of obs. 3m rate 

Slopes (to 3m) 
2Y 5Y 10Y 15Y 

Conditional means 
Data 84% 6.1% 0.5% 0.9% 1.3% 1.5% 
Shadow-rate model 85% 6.0% 0.3% 0.7% 1.3% 1.8% 
Affine Model – base calibration 85% 6.0% 0.3% 0.7% 1.2% 1.7% 
Affine Model – recalibrated 90% 5.9% 0.3% 0.7% 1.3% 1.8% 
Conditional standard deviations 
Data  3.1% 0.9% 1.3% 1.6% 1.7% 
Shadow-rate model  3.2% 0.3% 0.8% 1.5% 1.9% 
Affine Model – base calibration  3.2% 0.3% 0.8% 1.5% 2.0% 
Affine Model – recalibrated  3.0% 0.3% 0.8% 1.4% 1.8% 

 
Notes: The table shows conditional moments of zero-coupon yields simulated from the shadow-rate and affine models, based on the 
model parameters shown in Table 2, together with the corresponding moments from the data.  Model results are based on 1 million 
simulations of the state variables.  Yield data are from the Gurkaynak et al. (2007) dataset and cover the period August 1971 – December 
2015, except for the 15-year yields, which begin in December 1971.  
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Table 4.  Model-implied relationships among long-term yields, shorter-term yields, and 
Treasury supply 

A. Sensitivity of long-term yields to WAM 

Shadow 
rate 

Sensitivity to WAM  Sensitivity to WAM, 
holding 1Y yield fixed  Sensitivity to WAM, holding 

2Y yield fixed 
5Y 10Y 15Y  5Y 10Y 15Y  5Y 10Y 15Y 

8% 0.10 0.17 0.22  0.08 0.16 0.21  0.06 0.14 0.20 
4% 0.10 0.17 0.22  0.08 0.16 0.21  0.06 0.14 0.19 
2% 0.09 0.17 0.21  0.08 0.15 0.20  0.06 0.14 0.19 
1% 0.09 0.16 0.21  0.08 0.15 0.20  0.06 0.13 0.19 
0% 0.08 0.15 0.20  0.06 0.14 0.19  0.05 0.12 0.18 
-1% 0.07 0.14 0.19  0.05 0.12 0.18  0.04 0.11 0.16 
-2% 0.05 0.13 0.18  0.04 0.11 0.16  0.03 0.10 0.15 
-4% 0.03 0.10 0.15  0.02 0.08 0.13  0.02 0.07 0.13 

 
Notes: The first group of columns reports the model-implied sensitivity of 5-, 10-, and 15-year yields to the weighted-average 
maturity of Treasury debt at various values of the shadow rate.  The second and third groups of columns report these sensitivities, 
holding fixed the level of the one-year or the two-year yield.  The calculations, which are given in the text, rely on the derivatives 
of yields with respect to the shadow-rate and the bond-supply factors (𝑎%̂

(() and 𝑎"
(()), evaluated under the baseline parameter 

values (line 1 of Table 2). 
 
 

 

B. Sensitivity of long-term yields to shorter-term yields 
Shadow 
rate 

Sensitivity to 1Y  Sensitivity to 2Y 
5Y 10Y 15Y  5Y 10Y 15Y 

8% 0.9 0.7 0.6  0.9 0.7 0.6 
4% 0.9 0.7 0.6  0.9 0.7 0.6 
2% 0.9 0.7 0.6  0.9 0.8 0.6 
1% 0.9 0.8 0.7  0.9 0.8 0.7 
0% 1.2 1.2 1.0  1.1 1.0 0.9 
-1% 2.3 2.5 2.3  1.4 1.5 1.4 
-2% 5.8 7.1 7.0  2.0 2.5 2.4 
-4% 78.7 135.1 146.6  5.5 9.4 10.2 

 
Notes: The table reports the model-implied sensitivity of 5-, 10-, and 15-year yields to 1- and 
2-year yields, holding the bond-supply factor fixed, at various values of the shadow rate.  The 
coefficients are calculated as the ratio 𝑎%̂

(()/𝑎%̂
(+) or 𝑎%̂

(()/𝑎%̂
(,) where 𝑎%̂

(() is the derivative of 
the yield at maturity t with respect to �̂� under the baseline parameter values (line 1 of Table 
2). 

  

ELB 

ELB 



45 
 

Table 5.  Decompositions of yield responses to unconventional policy shocks (zero 
correlation) 

A.  Contemporaneous responses (bps) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

 [3] 

 Term premium 
component 

 [4] 
2 years -59 

(-82, -39) 
-22 

(-25, -16) 
 -13 

(-14, -12) 
7 

(5, 8) 
-90 

(-116, -63) 

5 years -90 
(-106, -69) 

-51 
(-52, -47) 

 -30 
(-31, -26) 

12 
(9, 14) 

-160 
(-177, -135) 

10 years -102 
(-109, 91) 

-70 
(-76, -62) 

 -47 
(-50, -41) 

12 
(8, 16) 

-207 
(-211, -199) 

15 years -98 
(-100, -92) 

-72 
(-82, -63) 

 -57 
(-60, -49) 

10 
(7, 14) 

-215 
(-219, -210) 

 

B.  Total variance (bps2/100) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

[3] 
 

Term premium 
component 

 [4] 
2 years 19 

(13, 26) 
5 

(2, 9) 
 0.0 

(0.0, 0.2) 
0.2 

(0, 0.3) 
24 

(15, 34) 

5 years 18 
(10, 30) 

13 
(5, 24) 

 0.2 
(0.2, 0.4) 

1.0 
(-0.8, 2.3) 

32 
(17, 54) 

10 years 16 
(8, 29) 

19 
(8, 40) 

 0.7 
(0.5, 0.9) 

2.4 
(-1.8, 5.3) 

39 
(19, 71) 

15 years 14 
(6, 25) 

19 
(8, 41) 

 1.0 
(0.7, 1.3) 

3.1 
(-2.0, 6.8) 

37 
(17, 70) 

 
 
Notes: The table summarizes the results of simulations of unconventional monetary policy in the shadow-rate model.  Panel A 
reports the cumulative response of the spot zero-coupon yield curve in model simulations based on the distribution of state-variable 
trajectories shown in Figure 6, summing the responses to the shocks in each period.  Panel B reports the total variance in yields in 
the simulations, relative to a baseline scenario in which no shocks occur.  In both cases, for each maturity, the median response is 
reported, with the 5% and 95% quantiles in parentheses below.  The total effect on the yield of each maturity is shown in the last 
column.  The bond-supply and shadow-rate shocks are simulated both separately and together to obtain the decomposition reported 
in the other columns.  The “interaction” column represents the effect of nonlinearities that cause the sum of the two individual 
simulations to differ from that of the joint simulation.  For the shadow-rate shocks, the change in the expectations component is 
calculated from equation (13), while the change in the term-premium component is calculated as the difference between the total 
change in yields and the change in the expectations component.  By construction, the individual components sum to the totals in 
each simulation, but the median values in columns [2] through [5] may not sum to the values in column [6] because of the asymmetry 
in the distributions across simulations.  
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Table 6.  Decompositions of yield responses to unconventional policy shocks (perfect 
correlation) 

A.  Contemporaneous responses (bps) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

 [3] 

 Term premium 
component 

 [4] 
2 years -58 

(-80, -36) 
-22 

(-25, -15) 
 -13 

(-13, -12) 
6 

(5, 7) 
-86 

(-111, -57) 

5 years -87 
(-101, -68) 

-49 
(-50, -46) 

 -27 
(-28, -25) 

9 
(7, 11) 

-154 
(-169, -128) 

10 years -96 
(-97, -95) 

-66 
(-68, -64) 

 -41 
(-43, -38) 

9 
(7, 11) 

-196 
(-199, -189) 

15 years -93 
(-95, -91) 

 

-68 
(-75, -63) 

 -48 
(-51, -45) 

7 
(6, 10) 

-201 
(-206, -196) 

 

B.  Total variance (bps2/100) 

Maturity 
[1] 

Shadow-rate shocks 
 Fed balance-

sheet shocks 

Interaction 
[5] 

Total 
[6] 

Expectations 
component 

[2] 

Term premium 
component 

[3] 
 

Term premium 
component 

 [4] 
2 years 18 

(12, 25) 
5 

(2, 9) 
 0.0 

(0.0, 0.1) 
0.5 

(0.1, 0.7) 
24 

(19, 30) 

5 years 17 
(9, 29) 

13 
(5, 23) 

 0.3 
(0.2, 0.4) 

0.8 
(-0.5, 1.9) 

32 
(15, 54) 

10 years 16 
(8, 27) 

19 
(8, 38) 

 0.7 
(0.6, 0.8) 

1.4 
(-2.1, 3.5) 

37 
(18, 68) 

15 years 14 
(6, 24) 

18 
(9, 39) 

 0.9 
(0.8, 1.2) 

1.7 
(-2.7, 4.2) 

35 
(16, 64) 

 
 
Notes: The table summarizes the results of simulations of unconventional monetary policy in the shadow-rate model, under the 
assumption that the realized shocks to the shadow rate and the Fed balance sheet were perfectly correlated.  Panel A reports the 
cumulative response of the spot zero-coupon yield curve in model simulations based on the distribution of state-variable trajectories 
described in the text, summing the responses to the shocks in each period.  Panel B reports the total variance in yields in the 
simulations, relative to a baseline scenario in which no shocks occur.  In both cases, for each maturity, the median response is 
reported, with the 5% and 95% quantiles in parentheses below.  The total effect on the yield of each maturity is shown in the last 
column.  The bond-supply and shadow-rate shocks are simulated both separately and together to obtain the decomposition reported 
in the other columns.  The “interaction” column represents the effect of nonlinearities that cause the sum of the two individual 
simulations to differ from that of the joint simulation.  For the shadow-rate shocks, the change in the expectations component is 
calculated from equation (13), while the change in the term-premium component is calculated as the difference between the total 
change in yields and the change in the expectations component.  By construction, the individual components sum to the totals in 
each simulation, but the median values in columns [2] through [5] may not sum to the values in column [6] because of the asymmetry 
in the distributions across simulations.  
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A. B. 

 
  
Figure 1.  Conditional moments of short rate at various horizons.  The figure shows the conditional mean (panel A) 
and standard deviation (panel B) of the time t+s short rate, conditional on the value of the shadow rate in time t, where s 
= 2, 5, 10, and 15 years.  The solid lines show these moments in the shadow-rate model, using the parameters shown in 
the top line of Table 2.  The dashed lines show the moments in an affine model with the same parameter values but with 
the ELB removed. 

 

 

 Shadow rate at 5.2% Shadow rate at -2.7% 

  
Figure 2.  Comparative statics of bond supply in the one-factor model.  The figure shows the yield curves generated 
by the one-factor model at two different values of the shadow rate �̂�.  and using two different values of the parameter z, 
which represents the total quantity of bonds in the economy.  The baseline value of z = 0.42 (shown in black) is calibrated 
to allow the model to match the average value of the ten-year yield.  The value of z = 0.21 (shown in red) considers a 
hypothetical 50% reduction in bond supply relative to the baseline case.  The left-hand panel compares the two yield 
curves resulting from these parameter values when the shadow rate is at the mean value of the short rate (5.2%), while the 
right-hand panel shows the curves when the shadow rate is at -2.7%, its average during the ELB period according to the 
Krippner (2012) estimates.  The model is solved numerically using the other parameters values described in the text.   
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A. Spot yield curve 

      Shadow rate starts at 5.2% Shadow rate starts at -2.7% 
 

      

 
 

B.  Forward-rate curve 
      Shadow rate starts at 5.2% Shadow rate starts at -2.7% 
 

         
 

 

Figure 3.  Response to shadow-rate shocks in the one-factor model.  The figure shows the model-implied response 
of the yield curve (panel A) and the forward-rate curve (panel B) to one-standard-deviation shock to the shadow rate in 
the period when the shock occurs.  The pink region shows the change in the expectations component of yields, while the 
blue region shows the change in the term premium.  The change in the expectations component is calculated from equation 
(13), while the change in the term-premium component is calculated as the difference between the total change in yields 
and the change in the expectations component.  Responses are evaluated starting both from a shadow rate at the mean 
value of the short rate (5.2%) and a value of -2.7%, its average during the ELB period according to the Krippner (2012) 
estimates.  The model is solved numerical using the parameter values described in the text. 
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Figure 4.  Factor loadings across values of the shadow rate at b = 0.  The figure shows the model-implied factor 
loadings for the t-period yield, conditional on the time-t value of the shadow rate, where t = 2, 5, 10, and 15 years.  The 
solid lines show the loadings in the shadow-rate model, under the parameters shown in line 1 of Table 2.  The dashed lines 
show the loadings in an affine model with the same parameter values but with the ELB removed (line 2 of Table 2).  The 
bond-supply factor bt is held fixed at its mean of zero. 
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A.  �̂�.= 5.2% 

 

B.  �̂�.  = -2.7% 

 

Figure 5.  Factor loadings across values of the supply factor.  The figure shows the model-implied factor loadings for 
the t -period yield, across time-t values of the bond-supply factor, where t = 2, 5, 10, and 15 years.  The solid lines show 
the loadings in the shadow-rate model, under the parameters shown in line 1 of Table 2.  The dashed lines show the 
loadings in an affine model with the same parameter values but with the ELB removed (line 2 of Table 2).  In panel A, the 
shadow rate is held fixed at the mean value of the short rate (5.2%), while in panel B it is held fixed at -2.7%, its average 
value during the ELB period according to the Krippner (2012) estimates. 
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A.  Shadow rate  B.  %Change in 10-year equivalents 

  

Figure 6.  Distributions of state-variable trajectories in model simulations.  The figures show the distributions of 
100,000 simulated paths of the state variables during the ELB period, in terms of the pointwise medians (solid lines) and 
5% and 95% quantiles (dotted lines).  The simulations are constructed to exactly match the observed values of the short-
term interest rate and the percentage of ten-year equivalent bonds held by the Fed as of December 2008 and December 
2015, with the intermediate values simulated from the model as described in Appendix C.  For the purposes of 
presentation, in panel B the balance-sheet state variable (Qt) is converted to a cumulative percentage change in 10-year 
equivalent bonds held by investors, relative to the amount that would have been outstanding in the absence of shocks, 
using equation (27). 

 

 

A.  Spot yield curve B.  Forward-rate curve 

    

Figure 7.  Cumulative yield-curve responses in model simulations.  The figure shows the cumulative response of 
bond yields (panel A) and forward rates (panel B) in model simulations based on the distribution of state-variable 
trajectories shown in Figure 6.  The figures sum the contemporaneous responses to the shocks in each of the 28 simulated 
periods, without accounting for dynamics.  In each panel, the solid line shows the pointwise median and dashed lines show 
5% and 95% quantiles.    
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A. Bond-supply factor (bt) 
 10-year yield 15-year yield 

    
 
 
B.  Fed balance-sheet factor (Qt)  
 10-year yield 15-year yield 

    
 
Figure 8.  Relative efficacy of bond-supply shocks across state values.  The figure shows contour maps of the 
effects of bond-supply shocks on 10- and 15-year yields, relative to the effects of shadow-rate shocks, in the baseline 
two-factor shadow-rate model.  Relative efficacy is calculated, for each yield, as the size of the bond-supply shock that 
would be necessary to equal the effects of a -25-basis-point shock to the shadow rate.  The values of this ratio are 
shown across different regions of the state space, with darker coloring indicating regions where the bond-supply shocks 
are relatively more powerful.  
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