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Abstract

How costly will rising temperature due to climate change be for the U.S. economy? Recent
research has used the well-identified response of output to weather to estimate this cost. But
agents may adapt to the new climate. We propose a methodology to infer adaptation technology
from the heterogeneous responses of output to weather observed currently across the U.S. Our
model estimates how much each region has adapted already, and can predict how much each
will adapt further after climate change. The size and distribution of losses from climate change
vary substantially once adaptation is taken into account.

1 Introduction

Climate change will lead to rising temperature with myriad effects on humans. In this paper we
focus on the effect on economic output, or income. How costly will rising temperature be for the
U.S. economy? This question is critical to evaluate the appropriateness of policies designed to
limit climate change.

The costs of climate change are represented in climate models (for instance, integrated assessment
models (IAM)) through a “damage function”. Early work relied on technological relationships,
estimating the costs from an engineering perspective. This approach has the drawback that it is
difficult to assemble detailed technological knowledge for all sectors of modern economies. As
a result, critics of climate models (e.g., Pindyck [2013]) have emphasized the uncertainty in the
damage function. A recent promising approach to estimate damages uses statistical methods to
infer the effect of temperature from quasi-random weather variation.1 This literature builds on the

∗We thank participants in presentations at Arizona State University, the Chicago Fed, and SED 2018, and in particular
Gadi Barlevy, Jeff Campbell, Tatyana Deryugina, Olivier Deschenes, Stephie Fried, Dana Kiku, and Sam Schulhofer-
Wohl for their comments or suggestions on earlier versions of this work. The views expressed here are those of the
authors and do not necessarily represent those of the Federal Reserve Bank of Chicago or the Federal Reserve System.
†Federal Reserve Bank of Chicago; 230 S. LaSalle Street, Chicago IL 60604. Email: francois.gourio@chi.frb.org
‡Columbia University, Law School. 435 W 116th St, New York, NY 10027. Email: Charles.Fries@columbia.edu
1For instance, see Hsiang et al. [2017] or Schlenker and Roberts [2009]. These estimates have been widely reported

in national media (see for instance Plumer and Popovich [2017])
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recent “new climate-economy literature" (Dell et al. [2014]), which finds that higher temperature
leads to lower income, even in wealthy economies such as the United States.2

The estimates in this literature, however, only capture the response to temporarily higher
temperature, i.e. “weather”. But the response to a permanent increase in temperature - such as
that induced by climate change - might be quite different: agents would likely adapt to the higher
temperature by changing their behavior. There is little agreement, however, on the magnitude of
this adaptation response.

In this paper, we show how one can use the well-identified reduced-form estimates of the
recent “new climate-economy” literature to infer the adaptation technology. We then illustrate the
implications for predicting income losses from climate change. We find that taking adaptation
into account significantly changes the magnitude, distribution, and location of losses.

How are we able to infer adaptation costs? Our starting point is the simple observation that
the sensitivity of income to temperature is widely different within the United States today. Most
authors focus on estimating “the” sensitivity of income to temperature, yet across U.S. counties
this sensitivity varies by a factor of at least 10.

What determines a county’s sensitivity? Unsurprisingly, we show that climate - measured, for
instance, simply as the county’s long-run average temperature - explains most of this heterogeneity.
Places that are ordinarily warm, such as the South, are nearly unaffected by high temperature
realizations, while colder regions in the North exhibit larger sensitivities. This is the precise
pattern one would expect from adaptation. Households and firms operating in the South are
aware of their environment, and consequently, have made decisions to reduce the effect of high
temperature. The North faces different conditions, and thus made different choices, despite having
access to the same adaptation technology. Presumably, the cost of adapting to hot temperature
cannot be justified given the cooler Northern climate.

Our key insight is that the reduced form estimates allow us to infer the benefit to adaptation
in the North: the benefit is the product of the incidence of high temperature (e.g., the number of
hot days per year), times the reduction in the cost of high temperature, i.e. the difference between
the sensitivity of income to temperature in the North and the South. This is how much annual
loss the North could save by adopting the South technology; hence, the cost of adaptation must
be at least as large. While this seems to provide only a bound, note that we observe many regions,
rather than just two; if each region chooses its level of adaptation optimally given its climate, we
can recover the actual marginal cost of adaptation.

We implement this idea using a simple economic model of adaptation which incorporates (i)
random temperature variation, (ii) economic output is sensitive to temperature, and (iii) an ex-
ante costly adaptation choice. Using indirect inference, we estimate the key parameters of the
model - in particular, those that govern the adaptation technology - to fit the U.S. cross-section of
sensitivities to temperature.

We then use our model to predict income losses from climate change. We find it useful to

2See for instance Dell et al. [2012], Deryugina and Hsiang [2014], Burke et al. [2015], and Colacito et al. [2019].
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compare the predictions of the model under two different assumptions about adaptation. First,
we predict losses assuming that adaptation does not change, i.e. remains at the level chosen
today given the current climate. Second, we predict losses assuming that adaptation is adjusted
(optimized) given the new climate. We call these the fixed and endogenous adaptation cases
respectively.

We obtain four main conclusions. First, and unsurprisingly, endogenous adaptation results in
lower economic losses than if adaptation is fixed. For instance, in a severe climate change scenario
(the Representative Concentration Pathway (RCP) 6.0 scenario, corresponding to a temperature
increase of 5.1◦C by year 2100), the median county loses about 2.9% of consumption (i.e., income
net of adaptation costs) in the fixed adaptation scenario, but only about 1.8% in the endogenous
adaptation scenario.

Second, we find that the dispersion in losses across U.S. counties is much smaller once adaptation
is taken into account: the standard deviation of losses is 1.5% with fixed adaptation and 0.65% with
endogenous adaptation. This is because adaptation allows the counties that have the most to lose
from climate change to limit their losses.

Third, adaptation is more important when climate changes more: the difference between the
median loss in the fixed and endogenous adaptation is only 0.14% in a mild climate change
scenario (RCP 2.6), but rises to 3.45% in the most severe scenario (RCP 8.5).

Fourth, and perhaps most strikingly, the location of losses in the U.S. depends significantly on
adaptation. Some authors assume that the same sensitivity holds across the entire United States,
and that this sensitivity will remain fixed in the future. This implies that the South will suffer
dramatic losses (for instance, see Hsiang et al. [2017]). In contrast, our fixed adaptation model,
which leads to heterogeneous sensitivities across the U.S., suggests that the Midwest may be more
affected than the South. This is because the South already has a low sensitivity today. This result
also holds with endogenous adaptation.

This paper is, in part, a methodological contribution. While simple, the argument that heterogeneity
in observed sensitivities can be used to estimate a structural model of adaptation, has not, to our
knowledge, been exploited in the literature. The model is deliberately kept simple, but it can be
extended to incorporate many additional realistic features of climate and the economy.

We do not take a stand on the exact mechanisms through which temperature reduces output;
as we discuss below in more detail, a variety of mechanisms have been studied in the literature.
We take a holistic (or macroeconomic) perspective and focus on the response of total income,
without trying to decompose between the different margins at work, something we leave for
future research.

We also do not attempt to directly measure adaptation investments in the data. First, our
method does not require us to measure these investments, since we argue they can be inferred
from observed behavior. Second, these investments likely take many forms, making them difficult
to comprehensively measure: installing air conditioning (including in warehouses or factories);
growing crops that are heat-resistant; building plants and infrastructure that can withstand extreme
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temperatures; and so on.
Finally, we emphasize three limitations of our study. First, we focus on the effect of temperature

on income, and abstract from many phenomena linked to climate change and which imply additional
economic costs, such as extreme weather events, sea level rise, changing precipitation patterns,
etc. These phenomena could in principle be incorporated in our analysis, with the appropriate
data and modeling. Second, our approach allows to recover the currently available adaptation
technology; but this technology may change in the future. Third, our method requires some
extrapolation outside the range of data observed today; we discuss this in section 4.3.

The rest of the paper is organized as follows. The remainder of the introduction discusses the
related literature. Section 2 documents the heterogeneity in sensitivities across U.S. regions and
how it is best explained by climate. Section 3 presents and estimates our simple structural model
of adaptation. Section 4 calculates the effect of climate change based on our structural model.
Section 5 concludes.

Literature review The growing literature on the economics of climate change, pioneered by
Nordhaus (Nordhaus [1994], Nordhaus and Boyer [2000]), focuses primarily on the economy’s
effect on the climate and how policy should address the central pollution externality by taxing
carbon or encouraging R&D; see among recent examples, Acemoglu et al. [2016] and Golosov
et al. [2014]. In contrast, our paper focuses solely on the propagation from climate to economy.
Heal [2017] and Auffhammer [2018] are two recent surveys.

We build directly on the recent “new climate-economy literature”, surveyed in Dell et al.
[2014], which uses panel data to identify the economic impact of “weather shocks”. Dell et al.
[2012], Burke et al. [2015], and Kahn et al. [2019] use cross-country data to show that gross domestic
product (G.D.P.) is negatively affected by higher than average temperature realizations, and that
these effects are nonlinear and affect even wealthy countries. Deryugina and Hsiang [2014],
Deryugina and Hsiang [2017], Colacito et al. [2019], Boldin and Wright [2015], Bloesch and Gourio
[2015], Foote [2015], and Wilson [2017b] provide more evidence that weather affects the U.S.
economy, often using detailed regional level data.3 A number of studies try to understand the
different channels at work, including hours worked (Graff Zivin and Neidell [2014]), productivity
(Heal and Park [2013]), farming (Deschenes and Greenstone [2007] or Schlenker and Roberts
[2009]), or retail (Tran [2019]).

Finally, our paper is related to a growing literature on the effects of adaptation. One example
is Barreca et al. [2016] who show that mortality became less sensitive to hot days over the last
century because of diffusion of air conditioning.4

3The effect of weather or climate on output can also be observed in asset markets, as shown in Bansal et al. [2016a],
Bansal et al. [2016b], Wilson [2017a], or Kruttli et al. [2019].

4See also Fried [2019] and Costinot et al. [2016].
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2 The cross-section of temperature sensitivities

The goal of this section is to characterize empirically the heterogeneity in sensitivity of economic
activity to temperature at the county level in the United States. We build on the large recent
climate-economy literature, and specifically on the study by Deryugina and Hsiang [2014]. We
first review briefly the data used and the measurement of average effect of temperature, before
turning to the heterogeneity.5

2.1 Data

We combine annual income data with daily weather data at the county level. The income statistics
are compiled by the Bureau of Economic Analysis (B.E.A.) and provide a measure of a county’s
total personal income per capita. We construct our weather statistics using the U.S. historical
climate network (US-HCN) database. US-HCN collects daily measures of average temperature
for thousands of weather stations in the United States. We aggregate these measures at the county
level by taking a simple average of all weather stations located within a county. Overall we
obtain an unbalanced sample of 2,901 counties over the period 1969-2015, for a total of 65,537
observations.

2.2 Average Sensitivity of Income to Temperature

Following Deryugina and Hsiang [2014], we use the following specification to capture the possibly
nonlinear effects of temperature on income. First, calculate a histogram of daily temperature
for each county and each year. Denote Bink,i,t the number of days in year t in county i where
temperature falls in bin k = 1...K, where the bins are 3◦C wide bands. Specifically, bin 1 range is
-15◦C or less, bin 2 is -15◦C/-12◦C, ... , bin 15 is 24◦C/27◦C, bin 16 is 27◦C/30◦C, and bin 17 is
30◦C and above. The baseline specification is

∆ log Yi,t = αi + δt +
K

∑
k=1

βkBink,i,t + ε i,t, (1)

where ∆ log Yi,t is the growth rate of income per capita in county i in year t, αi is a county fixed
effect, and δt a year fixed effect. The central bin (12◦C-15◦C) is omitted, providing a reference by
which temperature deviations are evaluated.

This specification is appealing because the distribution of days across bins of temperature
varies from year to year due to quasi-random weather fluctuations. With the inclusion of county
fixed effects we are effectively comparing the growth rate of income in a county in two years that
differ in their realized distribution of daily temperature.

The key result is that the coefficients βk are negative for the top bins, corresponding to the
hottest days. An additional day in the bin 27◦C-30◦C or in the bin 30◦C+ reduces annual income

5Our online appendix contains additional results and robustness analysis.
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by about 0.04% relative to the omitted reference bin (12◦C-15◦C). In the appendix, we report the
full set of results, which reproduce closely those of Deryugina and Hsiang [2014]. If income is
generated linearly across the year, one day corresponds to 1/365=0.27% of annual income; to
generate a 0.04% decrease in annual income, a hot day must then reduce daily income by a quite
large 15% (or 0.04/0.27).6

There are a variety of channels through which temperature affects economic activity, some
positive, others negative. As discussed in the introduction, previous research has highlighted
that both productivity and hours worked are affected negatively by high temperatures. Even in
the United States, many workers are not fully insulated from temperature during work, during
their commute, or at home, affecting their hours and productivity. For instance, while offices
are often air-conditioned, factories or warehouses may not be. Moreover, some sectors rely on
outside activity, such as construction, farming, or some leisure activities, and temperature directly
affects the productivity of these activities. There could also be local general equilibrium effects, for
instance lower income of construction workers leads to lower spending restaurants. We do not try
to disentangle these mechanisms in this paper - we focus on the macroeconomic, comprehensive
effect as summarized by the estimate. 7

2.3 Heterogeneity in Sensitivity of Income to Temperature

We now turn to our empirical contribution. Motivated by the results discussed in the previous
section, we use interaction models of the form:

∆ log Yi,t = αi + δt +
K

∑
k=1

(
L

∑
l=0

βklxil

)
Bink,i,t + ε i,t, (2)

where xil are L county characteristics that might affect the sensitivity to temperature. (We focus
on characteristics that are constant over time for simplicity.) We will use different versions of
equation (2) corresponding to different characteristics xil to make three points: (1) climate (the
long-term average temperature) has a large effect on the sensitivity, (2) even when we control
for other county characteristics, and (3) other characteristics have much smaller effects on the
sensitivity than climate does.

We measure the sensitivity as the marginal effect of a hot day (defined here as 27◦C+) on annual
income as implied from equation (2):

MEHDi =
L

∑
l=0

βKlxil . (3)

6Note, however, that income is not always generated linearly over the year; for instance a day too hot might kill
crops, reducing significantly the entire annual income, and certainly more than 100% of a day.

7Two data limitations are worth mentioning. First, income is measured in nominal terms, for lack of local price
indices. National inflation is captured by the time effect, but temperature may affect local inflation. The inflation-
adjusted income response is higher (lower) than our estimate if inflation rises (falls) with temperature.Second, firm
profits are captured by this income measure only to the extent that they are distributed locally, generating a downward
bias.
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Figure 1 depicts this marginal effect as a function of couty’s characteristics, for nine alternative
models which differ in the set of variables included in xil . The first row depicts the results of
models that use only the long-run average county temperature, which we denote Ti: panel A
shows a linear model, so xil = {1, Ti}, panel B a quadratic model, xil = {1, Ti, Ti

2}, and panel C a
cubic model xil = {1, Ti, Ti

2, Ti
3}.8 Consistently across the three models, the sensitivity is negative

and large in absolute values for colder places (low long-run average temperature) and shrinks
towards zero as average temperature increases.9 There is substantial statistical uncertainty about
the marginal effects for cold places (because cold places have few hot days). But the differences in
the magnitudes are very large even focusing on counties with average temperature in the center of
the distribution, say between 11◦C and 18◦C, demonstrating our point (1). Panels B and C suggest
significant nonlinearities, and the quadratic term is statistically significant at the 5% level - so from
now on we use the quadratic model as benchmark.

One potential concern is that the long-run average temperature of a county might be correlated
with other characteristics that affect the sensitivity to temperature, such as income, population,
or the importance of farming for the local economy. The second row of figure 1 considers this
possibility and adds as interaction variables, on top of the quadratic in long-run average temperature:
in panel (D), the long-run average of income per capita (normalized by national income per
capita), in panel (E), the long-run average of the farming share of income in the county; and
in panel (F), both of these variables, plus the long-run average of log population (normalized
by national population). The estimated marginal effects remain largely unchanged: the lower
sensitivities in warmer places are not driven by these potential confounders. This demonstrates
our point (2).

Finally, one may ask, quantitatively, what is the importance of these other, non-climate variables
for the sensitivity, compared to average temperature? The third row shows three models that do
not include average temperature, but only either population (in panel G), income (panel H), or the
farming share (panel I), and including the square of each measure to allow for nonlinearities. In all
cases, the effect, while meaningful, is substantially smaller than the effect of average temperature.
This demonstrates our point (3).

Overall, we conclude that there is a wide heterogeneity in sensitivity to temperature across
U.S. counties, and this heterogeneity is mostly explained by average temperature.10

8In the interest of keeping the graphs easy to read with a single scale, Panel C does not include standard errors.
9For each figure, the x-axis ranges from the 5th percentile to the 95th percentile of the interaction variable, in that

case long-run average temperature.
10Table 5 in appendix reports the coefficients and standard errors corresponding to each of these models, and shows

that average temperature “drives out” the other variables. The appendix provides additional empirical results, in
particular to show that similar results obtain if we use (i) alternative measures of climate, such as the frequency of hot
days, (ii) other thresholds than 27◦C for the warmest days, and (iii) alternative statistical models.

7



−
40

−
30

−
20

−
10

0

5.1 8.1 11.1 14.1 17.1 20.1
°C

A

−
40

−
30

−
20

−
10

0

5.1 8.1 11.1 14.1 17.1 20.1
°C

B

−
40

−
30

−
20

−
10

0

5.1 8.1 11.1 14.1 17.1 20.1
°C

C
−

40
−

30
−

20
−

10
0

5.1 8.1 11.1 14.1 17.1 20.1
°C

D

−
40

−
30

−
20

−
10

0

5.1 8.1 11.1 14.1 17.1 20.1
°C

E

−
40

−
30

−
20

−
10

0

5.1 8.1 11.1 14.1 17.1 20.1
°C

F

−
40

−
30

−
20

−
10

0

−3.0 −2.1 −1.2 −0.3 0.6 1.5
log pop. (rel. to avg.)

G

−
40

−
30

−
20

−
10

0

0.7 0.8 1.0 1.1 1.2 1.4
income (rel. to avg.)

H

−
40

−
30

−
20

−
10

0

0.0 0.0 0.1 0.1 0.1 0.1
farming share

I

Figure 1: Marginal effect of a day above 27◦C on annual income, as a function of the county’s
average temperature (panels A-F) or some other characteristic (panels G-I).

Note: The figure depicts the estimated marginal effect (in basis points) of an additional day in the 27◦C plus
bin, for different models of equation (2), together with plus and minus two standard error bands (double-
clustered by county and by NOAA region-year). Panels A-F plot the marginal effect as a function of average
temperature, while panels G-I plot it as a function of some other county characteristics. Panel A: interaction
is linear in average temperature; panel B: quadratic in average temperature; Panel C: cubic in average
temperature; Panel D: quadratic in average temperature, plus average income (relative to national); Panel E:
quadratic in average temperature, plus average farming share; Panel F: quadratic in average temperature,
plus average population (in log, relative to national), average income (relative to national), and average
farming share; Panel G: quadratic in average population (in log, relative to national) ; Panel H: quadratic in
average income (relative to national); Panel I: quadratic in average farming share.

3 A Simple Model of Adaptation

This section presents and estimates a simple model of adaptation. In the model, high temperatures
reduce output, but agents can decide to invest in adaptation, which reduces the sensitivity of
output to temperature. In the first subsection, we present the model, and in the second subsection,
we estimate the model using indirect inference.
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3.1 Setup

The economy is made up of a finite number of independent closed economies (counties): there
is neither trade nor population migration. Each county’s production output is affected by the
local temperature, but the effect of temperature depends on the level of adaptation. Specifically,
each county makes a once-and-for-all decision at time 0 of how much to spend on adaptation.
Thereafter, output is generated according to:

Yit = f (Tit, ki), (4)

where Yit is output in county i at time t, Tit is temperature, and ki is spending on adaptation.
We measure ki in percentage of output, and in annuity terms, so ki is the per period share of
output paid in perpetuity. The function f bundles the production and adaption technology, and
will capture the empirical regularity documented in Section 2, that hot days reduce income. As
we will see, the slope of this relation varies across counties because they decide on different
adaptation ki.11 Temperature Tit is assumed to be iid over time and drawn from a constant county-
specific cumulative distribution function Fi.12 This temperature distribution is the only exogenous
difference across counties in our model.

We abstract from saving or borrowing, hence consumption of county i equals output, net of
adaptation costs:

Cit = Yit(1− ki). (7)

We assume standard expected utility preferences:

(1− β)E
∞

∑
t=0

βtu(Cit), (8)

Given our i.i.d. assumption, this can be rewritten as:

V(ki; Fi) = E u((1− ki) f (Tit, ki)), (9)

11The function f can be microfounded, for instance using a stochastic growth model where productivity and labor
disutility vary with temperature. To spell out a simple example, assume a production function

Yit = Ait Nα
it, (5)

where Ait is total factor productivity and Nit is labor supplied, and Ait depend on temperature Tit and adaptation ki.
The per-period utility function is

u(Cit, Nit) =
C1−σ

it
1− σ

− ξit
N1+ψ

it
1 + ψ

, (6)

where the utility cost of working ξit depends on Tit and ki. This model can be solved in closed form solution: output
is a function of Ait and ξit, and hence ultimately of temperature Tit. This model hence leads to the equation (4) in the
text. We do not attempt to estimate this more detailed economic model, because of data limitations (e.g. on labor input
and productivity), but this would be an interesting extension.

12Of course, the iid assumption is not true at the daily frequency, but taking this into account would not affect
our results since the model has no inter-temporal linkages. Similarly, the absence of cross-county linkages makes the
correlation of temperature across counties is immaterial.
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where the expectation is taken over Tit, drawn according to Fi. Higher adaptation reduces consumption
directly due to the adaptation costs, but increases available output by reducing the losses due to
high temperature. The optimal adaptation decision balances these costs and benefits:

k∗i = arg max
ki

V(ki; Fi). (10)

Overall the model takes as inputs the county-specific distribution of temperature Fi and the common
across counties utility and production/adaptation functions u and f , and delivers a county-specific
adaptation choice ki and output stochastic process Yit.

3.2 Functional forms and solution method

This section presents the functional forms used for our baseline results; the appendix shows how
our results change with alternative functional forms. First, we assume utility is log, u(c) =

log(c). Second, motivated by the empirical patterns of section 2, we assume that output falls
with temperature above a threshold T:

log f (Tit, ki) = b0 if Tit < T,

= b0 − b1e−k/θ(Tit − T) if Tit ≥ T.

Here,

• b0 is the baseline productivity, assumed constant over time and across counties (given our
empirical approach, which removes county and time fixed effects, this simplification is without
loss of generality);

• T is the temperature threshold past which productivity starts to fall;

• b1 is the rate at which output falls with each degree above T;

• θ measures the cost of adaptation, i.e. how spending on adaptation k translates into sensitivity
reduction e−k/θ .

3.3 Model estimation

To estimate the model, we fit the heterogeneity in the observed sensitivities to temperature across
the United States.

Specifically, our model has only three parameters T, b1 and θ. Based on the evidence above,
we set the threshold temperature T to 26◦C.13 To estimate the other two parameters b1 and θ, we
use indirect inference (Gourieroux et al. [1993], Smith [1993]). We choose as target moments the

13See figure 1 in appendix.
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sensitivity of income to hot days, i.e. the coefficients γq from the panel regression:

∆ log Yi,t = αi + δt + γqHDi,t + ε i,t, (11)

where HDit is the number of hot days in county i in year t. We estimate this regression separately
for each quintile q of counties, sorted by their average annual number of hot days. This evidence,
which is similar to the interaction model of section 2, is presented in the first row of table 1:
counties in the higher quintiles (more hot days on average) have a lower sensitivity to hot days.

We find numerically the two parameters b1 and θ that minimize the distance14 between the
vector of data moments γ = (γ1, γ2, γ3, γ4, γ5) and the vector of model moments γ̃. The model
moments are obtained, for each potential (b1, θ) by solving the model numerically, simulating it,
and estimating the same regression (11) on simulated data.15

Source Quintile1 Quintile2 Quintile3 Quintile4 Quintile5 Jstat pval
Data -0.117 -0.091 -0.065 -0.042 -0.008 . .
SE 0.075 0.048 0.020 0.009 0.009 . .
Baseline -0.088 -0.096 -0.072 -0.035 -0.017 1.881 0.598

Table 1: The table reports the targeted moments, i.e. the γq from equation 11, with estimated
standard errors, together with the model moments at the estimated structural parameters.

The results of this procedure are presented in table 1. First, the model matches well the pattern
that sensitivities are lower in warmer places. Also, because we have 5 target moments and only
2 parameters, the model is overidentified; the J-statistic is 1.88, and the model is not rejected
(pval=59%). Second, we estimate b1 = 0.161: with no adaptation, an additional degree above
26◦C reduces income by 0.161 log points. This is a large effect, which is required to fit the data.
But note that this coefficient is significantly smaller with adaptation. The cost of adaptation θ is
fairly low at 0.013, hence reducing the sensitivity by 50% costs k = − log(2)θ = 0.9% of output,
and reducing the sensitivity by 90% costs 3.0% of output.

4 Implications for climate change

We now use our structural model to predict the effect of climate change on income. We first
describe our methodology, then our results.

4.1 Methodology

Our calculations require two inputs: a climate forecast by county over the next century; and an
economic model that maps temperature into income.

14The distance is calculated using as weighting matrix the inverse of the variance of the data estimates.
15To solve the model for parameter (b1, θ), we first calculate the optimal ki given the county’s distribution Fi and the

parameters. There is no closed form solution for this model; we solve it numerically after discretizing the distribution
Fi.
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4.1.1 Climate forecast

Following Hsiang et al. [2017], we base our climate projections on Rasmussen et al. [2016], which
provides county-specific projections from the current period to 2099 corresponding to four different
possible greenhouse gas emissions scenarios. RCP 2.6 represents high greenhouse gas mitigation,
RCP 4.5 moderate mitigation, RCP 6.0 low mitigation and finally RCP 8.5 is a “business-as-usual”
emission scenario. For each RCP scenario, these projections approximate the future distribution of
temperature by weighting about 120 different climate models (using the Surrogate/Model Mixed
Ensemble method projection). We calculate the effect of a RCP scenario by averaging the changes
implied by each underlying climate model.

4.1.2 Economic model

We will contrast two specifications of our structural model of section 3. In the first case, we assume
that each county’s adaptation level ki remains fixed at the level currently estimated. In the second
case, we assume that adaptation is endogenously re-optimized given the new climate. We call
these the fixed and endogenous adaptation cases respectively.

4.2 Results

Table 2 presents, for each RCP scenario, the estimated losses across U.S. counties under both the
fixed and endogenous adaptation assumptions. We report the effect on income and consumption
(income net of adaptation costs). We draw four main conclusions from this table, and the associated
figures 2 (a histogram of losses) and 3 (a map of losses).

Result 1: Adaptation following climate change reduces median losses This conclusion is of
course qualitatively preordained; counties can do no worse than keeping their current adaptation
level, so by optimizing it they reduce their losses. But the magnitudes of the reductions in losses
is substantial. For instance, in the RCP 6.0 scenario, the median consumption loss under fixed
adaptation is -2.92%, but only -1.80% under endogenous adaptation.16 The differences are even
larger when considering median output (gross of adaptation costs), which actually increases by
0.27% under endogenous adaptation because places that are initially cold decide to adapt and
hence do not lose as much income on hot days as they used to.

Result 2: Adaptation following climate change reduces the dispersion of losses Perhaps as
important from a welfare point of view, the dispersion in losses is also reduced once re-optimization
of adaptation is taken into account. Focusing again on the RCP 6.0 scenario, the standard deviation
of losses is 1.48% with fixed adaptation and only 0.65% with endogenous adaptation.

The economic mechanism is that counties that have the most to lose from climate change will
benefit the most from re-optimizing adaptation; as a result, the left tail of outcomes is strongly
truncated. For instance, the 10th percentile of losses is -4.97% under fixed adaptation and only
-2.60% with endogenous adaptation. This reduction in dispersion is clear in figure 2.

16These losses are permanent, i.e. hold for each year in perpetuity.
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Result 3: Adaptation is more important the larger the change in climate. The difference
between the fixed and endogenous adaptation model is larger, the larger is the change in climate.
This is intuitive: if climate hardly changes, there is little gain to re-optimizing adaptation.17 The
magnitudes, however, are impressive. The difference between median losses under fixed vs.
endogenous adaptation is 0.14% in the RCP 2.6 scenario, and rises to 0.82%, 1.12%, and finally
3.45% in the RCP 8.5 scenario. The difference at the 10th percentile increase even further, from
0.3% to 6.42%.

Result 4: Adaptation (both current and future) affects substantially the location of losses
Figure 3 maps the estimated losses for three models, again for the RCP 6.0 scenario; on top of
the fixed adaptation and endogenous adaptation cases, this figure also incorporates an additional
“uniform sensitivity” case. This case is obtained by setting θ = ∞ (i.e. infinite cost of adaptation)
in our model, rather than using the estimated value.18 This approach amounts to assuming
a constant sensitivity across U.S. regions, which is furthermore invariant to climate change.19

We find it interesting to contrast our results with this approach, which has been used in some
influential papers, such as Hsiang et al. [2017].

First, note that in this “uniform sensitivity” case, the largest losses in the U.S. are born in the
South and Southeast regions. This makes intuitive sense, as these regions see the largest increase
in the number of hot days. By contrast, under the fixed adaptation model, the largest losses are
borne by states in the NOAA Central region, roughly the Midwest. To understand why, note that
the losses reflect two factors: (1) the currently measured sensitivities and (2) the increase in the
number of hot days post-climate change. Because the sensitivities are much lower in the South,
we obtain that losses are smaller there than in the Central region, even though the increase in the
number of hot days is larger in the South. In contrast, the uniform sensitivity model assumes that
the South is highly sensitive to hot days (an implication that is soundly rejected in the data).

In the endogenous adaptation case, the regional distribution is similar, but the Central region in
particular undertakes significant additional adaptation to reduce its losses. Comparing the maps
confirms the lower and less dispersed losses in the endogenous case discussed in Results 1 and 2
above. Overall, the differences in regional implications are extreme: the correlation between the
predicted losses in the uniform sensitivity model and in the fixed (resp. endogenous) adaptation
model is only 0.09 (resp. -0.09).

4.3 Extrapolation

We discussed in the introduction some caveats to our approach; here we want to focus on extrapolation.
By definition, the county that is currently the hottest in the U.S. will become warmer than any
county in our data after climate change. To infer what will happen to that county requires some
extrapolation. But how much extrapolation is actually required?

17Indeed, since adaptation is initially chosen optimally, the benefit to changing adaptation is second-order.
18We re-estimate the parameter b1 using our indirect inference approach.
19While we derive this approach from our structural model, it can also be obtained in a purely statistical way using

a pooled panel regression such as equation (1).

13



Median Std.Dev. p10 p25 p75 p90
Panel A: RCP 2.6
Fixed adapt. C,Y -0.91 0.52 -1.62 -1.26 -0.63 -0.30
Endogenous adapt. C -0.77 0.39 -1.32 -1.06 -0.55 -0.30
Endogenous adapt. Y 0.33 1.30 -0.58 -0.39 1.88 2.72
Panel B: RCP 4.5
Fixed adapt. C,Y -2.33 1.22 -4.07 -3.27 -1.63 -1.04
Endogenous adapt. C -1.51 0.58 -2.24 -1.93 -1.13 -0.85
Endogenous adapt. Y 0.29 1.38 -0.82 -0.62 1.86 2.71
Panel C: RCP 6.0
Fixed adapt. C,Y -2.92 1.48 -4.97 -4.02 -2.05 -1.37
Endogenous adapt. C -1.80 0.65 -2.60 -2.27 -1.35 -1.04
Endogenous adapt. Y 0.27 1.41 -0.92 -0.70 1.85 2.70
Panel D: RCP 8.5
Fixed adapt. C,Y -6.17 2.72 -10.03 -8.37 -4.25 -3.08
Endogenous adapt. C -2.72 0.79 -3.61 -3.33 -2.06 -1.70
Endogenous adapt. Y 0.24 1.47 -1.10 -0.86 1.83 2.69

Table 2: The table reports cross-county statistics of predicted income and consumption (i.e.,
income net of adaptation) losses, for each climate change scenario (RCP 2.6 through RCP 8.5),
for two model variants: (i) assuming that adaptation is fixed at the currently estimated value; (ii)
assuming that adaptation is endogenously re-optimized after climate change.
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Figure 2: Distribution of predicted income losses across U.S. counties for the RCP 6.0 scenario.
Top panel: endogenous adaptation; bottom panel: fixed adaptation.

Consider first the “extensive margin” of extrapolation: for some counties, the average number
of hot days per year is greater, post-climate change, than is currently observed in any county. This
extrapolation is, strictly speaking, limited: for instance, in the RCP 6.0 scenario, this affects only
0.2% of counties. However, in a broader sense, it is more significant: 8.5% counties have more hot
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days, post climate change, than the hottest 1% of U.S. counties do today. This suggests that our
results are somewhat sensitive to our inference of adaptation from this relatively small sample of
hot U.S. counties. On the “intensive margin”, higher temperature may bring very hot days, yet
our model assumes that the economic loss is log-linear above T. In the appendix, we show that
this functional form holds up rather well, but there is significant statistical uncertainty.

5 Conclusion

Climate change will lead to large economic losses. But the extent of the losses will depend critically
on adaptation. This paper proposes a simple methodology that combines the well-identified
estimates of the recent “climate-economy” literature with a structural model of adaptation to
estimate the adaptation technology. We find that adaptation reduces both the first moment and
the second moment (dispersion) of income losses, particularly when climate change is substantial,
and changes dramatically the location of losses.
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Figure 3: Predicted consumption losses for the RCP 6.0 scenario.

The figure displays the predicted decline in consumption (income net of adaptation costs) for each
U.S. county in the RCP 6.0 scenario, for three different models. Top panel: uniform sensitivity;
middle panel: fixed adaptation; bottom panel: endogenous adaptation.
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