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Abstract

We review the literature on robust Bayesian analysis as a tool for global sensitivity analysis and

for statistical decision-making under ambiguity. We discuss the methods proposed in the litera-

ture, including the different ways of constructing the set of priors that are the key input of the

robust Bayesian analysis. We consider both a general set-up for Bayesian statistical decisions

and inference and the special case of set-identified structural models. We provide new results

that can be used to derive and compute the set of posterior moments for sensitivity analysis

and to compute the optimal statistical decision under multiple priors. The paper ends with

a self-contained discussion of three different approaches to robust Bayesian inference for set-

identified structural vector autoregressions, including details about numerical implementation

and an empirical illustration.
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1 Introduction

Bayesian analysis has many attractive features, such as finite-sample decision-theoretic optimality

and computational tractability. The crucial assumption to enjoy these benefits is that the researcher

can specify the inputs of the analysis: the likelihood, a prior distribution for the parameters,

and a loss function if the analysis involves statistical decisions. In practice, however, researchers

commonly face uncertainty about the choice of these inputs. Robust Bayesian analysis addresses

this uncertainty by quantifying the sensitivity of the results of Bayesian inference to changes in these

inputs. In this paper we present a selective review of the literature on robust Bayesian analysis.1

How sensitivity should be measured in a robust Bayesian analysis depends on how the input

is perturbed. A local approach quantifies marginal changes in posterior quantities with respect to

local perturbation in the input; for example, see Gustafson (2000), Müller (2012), and the refer-

ences therein. In contrast, a global approach introduces a set of inputs and summarizes posterior

sensitivity by reporting the corresponding set of posterior quantities.

The main focus of this paper is on sensitivity to the prior input and on global, rather than

local, robust Bayesian analysis. There are several reasons for pursuing a global approach. First,

the set of prior distributions to be specified as an input of the robust analysis can be viewed

as a representation of ambiguous beliefs (Knightian uncertainty), which has been well studied in

economic decision theory and experimental economics since the pioneering works of Ellsberg (1961)

and Schmeidler (1989). Some statisticians have also argued that a set of priors is easier to elicit

than a single prior (Good (1965)). Second, sets of posterior means or probabilities are easier

to interpret than local sensitivity parameters such as the derivative of the posterior mean with

respect to the prior mean. Third, although it is often argued that the set of posteriors is more

difficult to compute than local sensitivity parameters, that is not the case for the structural vector

autoregression (SVAR) models considered in detail in this paper.

We first consider a general environment for inference and statistical decision-making under

multiple priors and discuss different ways of constructing the set of priors. We then specialize the

discussion to set-identified structural models, where the posterior sensitivity is due to a component

of the prior (the conditional prior for the structural parameter given the reduced-form parameter)

that is never updated by the data. We illustrate the “full-ambiguity” approach of Giacomini and

Kitagawa (2021) (henceforth, GK) to constructing a set of priors in general set-identified structural

models. In addition, we provide new theoretical results that can be used to derive and compute the

set of posterior moments for sensitivity analysis and that are also useful for computing the optimal

statistical decision in the presence of multiple priors. These results are new to the literature and

generalize some results in GK.

The paper ends with a detailed and self-contained discussion of robust Bayesian inference for

1See Berger (1994) and Ŕıos Insua and Ruggeri (2000) for previous surveys on the topic.
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set-identified SVARs. Set-identification arises in SVARs when there are sign restrictions on impulse

responses or under-identifying zero restrictions, or in SVARs identified using external instruments

(“proxy SVARs”) when there are multiple instruments for multiple shocks (see Giacomini, Kitagawa

and Read (in press)). We review three robust Bayesian approaches for set-identified SVARs. The

common feature of the approaches is that they replace the unrevisable component of the prior

with multiple priors. We cast the approaches within a common framework, discuss their numerical

implementation and illustrate their use in an empirical example. Our goal is to elucidate how and

when these different approaches may be useful in eliminating or quantifying the influence of the

unrevisable component of the prior on posterior inference. Ultimately, we argue that the robust

Bayesian outputs generated by these methods should be reported alongside the standard Bayesian

outputs that are typically reported in studies that use set-identified SVARs.

The first approach to robust Bayesian inference for set-identified SVARs is GK, which replaces

the unrevisable component of the prior with the set of all priors that are consistent with the

imposed identifying restrictions. This generates a set of posteriors, which can be summarised

by a set of posterior means and a robust credible region, which is the shortest interval that is

assigned at least a given posterior probability under all posteriors within the set. One can also

report the lower or upper posterior probability of some event (e.g, that the output response to a

monetary policy shock is negative at some horizon), which is the smallest or largest probability

of the event over all posteriors in the set. GK show that, under certain conditions, the set of

posterior means is a consistent estimator of the identified set and the robust confidence region

attains valid frequentist coverage of the true identified set asymptotically. In contrast, under

standard Bayesian inference, the posterior mean asymptotically lies at a point within the identified

set that is determined entirely by the prior, and standard credible intervals lie strictly within the

identified set asymptotically (Moon and Schorfheide 2012). The approach of GK therefore reconciles

the asymptotic disagreement between frequentist and Bayesian inference in set-identified models.

The second approach is the “model-averaging” approach of Giacomini, Kitagawa and Volpicella

(in press; henceforth, GKV). The approach extends Bayesian model averaging to a mix of single-

prior and multiple-prior models. Given prior probabilities chosen by the user, the multiple-posterior

models are averaged (posterior-by-posterior) with the single-posterior models, where the weights

on each model are the posterior model probabilities. This averaging generates a set of posteriors,

which can be summarised as in GK. For instance, when we have one point-identified model (which

yields a single prior) and one set-identified model, the post-averaging set of posterior means shrinks

the bounds of the set of posterior means in the set-identified model towards the posterior mean in

the point-identified model. GKV explain the conditions under which prior model probabilities are

revised, in which case the data may be informative about which identifying restrictions are more

plausible.

The third approach is the “KL-neighborhood” approach proposed by Giacomini, Kitagawa
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and Uhlig (2019; henceforth, GKU). GKU consider a set of priors in a Kullback-Leibler (KL)

neghborhood of a ‘benchmark’ prior. The motivation for this proposal is that one may not want

to entertain priors that are, in some sense, far from the benchmark prior, because the benchmark

prior may be partially credible. Similarly to GK, this generates a set of posteriors, which can be

summarised by a set of posterior means and/or quantiles. GKU also derive a point estimator solving

a Bayesian statistical decision problem that allows for ambiguity over the set of priors within the

KL-neighborhood around the benchmark prior (the ‘posterior Gamma minimax problem’).

The robustness issue reviewed in this article focuses exclusively on misspecification of and sen-

sitivity to the prior distribution in the Bayesian setting. There is a vast literature on robust

statistics from the frequentist perspective; for example, see Huber and Ronchetti (2009), Rieder

(1994), and references therein for classical approaches to robust statistical methods. The frequen-

tist approach to robustness typically concerns misspecification of the likelihood (contamination of

the data-generating process), identifying assumptions, moment conditions, or the distribution of

unobservables. The main focuses of this literature are to quantify sensitivity of estimation and

inference to such mispecification and develop estimators that are robust against it. For recent

advances in econometrics, see Kitamura et al. (2013), Andrews et al. (2017, 2020), Bonhomme and

Weidner (2018), Christensen and Connault (2019) and Armstrong and Kolesár (2021).

The remainder of the paper is structured as follows. Section 2 presents a general overview of

robust Bayesian analysis. Section 3 specializes the discussion to set-identified structural models.

Section 4 presents new theoretical results regarding the set of posterior moments. Section 5 discusses

three approaches to robust Bayesian analysis in set-identified SVARs. Section 6 contains details

about the numerical implementation of the three approaches, emphasizing the choices that prac-

titioners face during implementation. Section 7 applies the three approaches to the empirical ap-

plication considered by Arias, Caldara and Rubio-Ramı́rez (2019). Sections 5–7 are self-contained.

Section 8 concludes.

2 Robust Bayesian analysis

2.1 Bayesian statistical decisions and inference

We start from the classical framework of statistical decision theory as in Wald (1950). Let Y ∈
Y ⊂ RT be a sample whose probability distribution is assumed to belong to a parametric family of

distributions PY|θ, θ ∈ Θ ⊂ Rdθ . We denote the Borel σ-algebra of θ by B(Θ). Let δ(·) : Y → A,

δ ∈ D, be a nonrandomized statistical decision rule that maps a sample Y ∈ Y to an action a ∈ A,

where D is a set of (possibly constrained) decision rules and A is the set of actions that the decision

maker (DM) can take. Let L(θ, a) : Θ × A → R be the loss that the DM incurs when the true

parameter value is θ and the action taken is a. The risk of the decision rule δ, denoted by R(θ, δ),
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measures the average loss under repeated sampling of the sample Y ∼ PY|θ,

R(θ, δ) ≡ EY|θ(L(θ, δ(Y))) =

∫
Y
L(θ, δ(y))dPY|θ(y). (2.1)

Since a decision rule that dominates the others uniformly over θ is usually not available, the ranking

of decision rules depends on how the DM handles uncertainty about the unknown parameter θ.

If the DM could express the uncertainty about θ in the form of a probability distribution πθ of

the measurable space (Θ,B(Θ)), they would choose δ that performs best in terms of Bayes risk

r(πθ, δ) ≡
∫

Θ
R(θ, δ)dπθ(θ). (2.2)

This corresponds to the Bayesian decision principle, which is easy to derive and implement, and is

favored by statisticians and decision theorists on the basis of the likelihood principle, conditionality

viewpoint, and guaranteed admissibility (see, for example, the discussions in Chapters 1 and 4

of Berger (1985)). Under weak regularity conditions (e.g., Brown and Purves (1973)), the Bayes

decision δbayes minimizing (2.2) can be obtained by minimizing the posterior expected loss ρ(πθ, a)

at each realization of the sample supported by the marginal likelihood, m(·) =
∫

Θ PY|θ(·)dπθ. That

is, δBayes(y) minimizes in a

ρ(πθ, a) ≡
∫

Θ
L(θ, a)dπθ|Y(θ), (2.3)

where πθ|Y(·|y) is the posterior (distribution) of θ given the realization of the sample Y = y. If the

goal of the analysis is to summarize uncertainty about the unknown parameter θ upon observing

the data, it suffices to report the posterior πθ|Y or its summary statistics, which is feasible in many

contexts thanks to advances in Monte Carlo sampling methods.

The Bayesian approach to statistical decision-making and inference is conceptually straight-

forward and easy to implement numerically as long as the DM specifies a triplet of loss function,

likelihood and prior for θ. Specifying these inputs, however, can be a challenge in practice. The DM

may not be sure about how to choose the loss function and/or the class of parametric distributions

for the likelihood. Arguably, the dominant concern in Bayesian practice is how to organize the DM’s

belief for θ (or the lack thereof) in terms of a prior. To cope with these concerns, robust Bayesian

analysis allows for multiplicity in each of these inputs and assesses the set of posterior expected

losses or Bayes risks spanned by the set of inputs. If the DM is interested in an optimal decision

subject to the set of posterior losses or Bayes risks, the robust Bayesian literature has considered

minimizing the upper bound of the posterior expected losses or Bayes risks. See Dey and Micheas

(2000), Shyamalkumar (2000), and references therein for robust Bayesian analysis with multiple

losses and likelihoods. The focus of this paper is on robust Bayesian analysis with multiple priors.
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2.2 Robust Bayesian analysis with multiple priors

Let Πθ be a set of priors for θ. In the subjective robust Bayesian sense, Πθ represents ambiguity

such that the DM considers any prior in Πθ plausible and cannot judge which one is more credible

than the others.

To summarize the posterior uncertainty for θ, we update the set of priors Πθ based on the

likelihood PY|θ. One approach is prior-by-prior updating, which is often referred to as the full

Bayesian updating rule.2 It applies Bayes’ rule to each prior in Πθ to obtain the set of posteriors

Πθ|Y ,

Πθ|Y ≡

{
πθ|Y(·) =

∫
{θ∈·} PY|θ(y)dπθ(θ)∫

Θ PY|θ(y)dπθ(θ)
: πθ ∈ Πθ

}
. (2.4)

Given the set of posteriors, the analysis proceeds by reporting various posterior quantities. For

instance, the lower and upper posterior probabilities for the hypothesis {θ ∈ A} are the lower and

upper bounds of πθ|Y(A) on Πθ|Y; for an arbitrary measurable subset A ∈ B(Θ), we have

lower posterior probability for θ: πθ|Y∗(A) ≡ inf
πθ|Y∈Πθ|Y

πθ|Y(A), (2.5)

upper posterior probability for θ: π∗θ|Y(A) ≡ sup
πθ|Y∈Πθ|Y

πθ|Y(A) = 1− πθ|Y∗(A).

For example, πθ|Y∗ (A) can be interpreted as saying that “the posterior credibility for the hypothesis

{θ ∈ A} is at least equal to πθ|Y∗ (A), no matter which prior in Πθ one assumes.”

The corresponding probabilities for a parameter transformation η = h(θ) ∈ H are obtained as

lower posterior probability for η = h(θ): πη|Y∗(D) ≡ inf
πθ|Y∈Πθ|Y

πθ|Y(h(θ) ∈ D),

upper posterior probability for η = h(θ): π∗η|Y(D) ≡ sup
πθ|Y∈Πθ|Y

πθ|Y(h(θ) ∈ D) = 1− πη|Y∗(D),

for any Borel set D ⊂ H. If η = h(θ) is a scalar parameter of interest, quantities often reported in

Bayesian global sensitivity analysis are the bounds for the posterior mean of η,[
inf

πθ|Y∈Πθ|Y

∫
Θ
h(θ)dπθ|Y(θ), sup

πθ|Y∈Πθ|Y

∫
Θ
h(θ)dπθ|Y(θ)

]
. (2.6)

In addition, the robust Bayesian counterpart of the highest posterior density region for η can be

defined by a set Cα ⊂ H such that the posterior lower probability is greater than or equal to α,

πη|Y∗(Cα) ≥ α. (2.7)

2The literature has considered different ways to update the set of priors. For example, the maximum likelihood

updating rule (Gilboa and Schmeidler (1993)) uses the observed sample to select a prior by maximizing the marginal

likelihood and then applies Bayes’ rule. This way of updating is known as Type-II maximum likelihood (Good (1965))

or, equivalently, as the empirical Bayes method (e.g., Robbins (1956), Berger and Berliner (1986)).
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Such Cα is interpreted as “a set on which the posterior credibility of η is at least α, no matter

which posterior is chosen within the set”. GK call Cα a robust credible region with credibility α.

The prior set Πθ can also generate the sets of Bayes risks and posterior expected losses; for any

π̃θ ∈ Πθ and decision function δ ∈ D, it holds

inf
πθ∈Πθ

r(πθ, δ) ≤ r(π̃θ, δ) ≤ sup
πθ∈Πθ

r(πθ, δ), (2.8)

and for any action a ∈ A and sample realization y ∈ Y, it holds

inf
πθ∈Πθ

ρ(πθ, a) ≤ ρ(π̃θ, a) ≤ sup
πθ∈Πθ

ρ(πθ, a). (2.9)

The set of posterior expected losses coincides with the set (2.6) with h(·) set to L(θ, a).

Interpreting the set of priors as the DM’s ambiguous belief, an unconditional optimality criterion

attractive to the ambiguity-averse DM is the unconditional Gamma minimax criterion. It defines

an optimal decision δ∗ by minimizing the worst-case Bayes risk,

δ∗ ≡ arg inf
δ∈D

sup
πθ∈Πθ

r(πθ, δ). (2.10)

A similar but distinct optimality criterion is the conditional Gamma minimax criterion, which

defines an optimal action by minimizing the worst-case posterior expected loss conditional on y,

a∗y ≡ arg inf
a∈A

sup
πθ∈Πθ

ρ(πθ, a). (2.11)

The unconditional Gamma minimax decision δ∗ and the conditional Gamma minimax action a∗y
do not generally agree. An advantage of the former is its guaranteed admissibility, since, under

the regularity conditions leading to the minimax theorem, the Gamma minimax decision is Bayes

optimal under a least-favorable prior. On the other hand, obtaining δ∗ is challenging analytically

and numerically, unless we limit the analysis to simple models with a particular set of priors. See

Chamberlain (2000) for an application to portfolio choice and Vidakovic (2000) for a review. The

conditional Gamma minimax action is easier to analyze and implement as the minimax problem

only involves action a. However, a potential downside is that this criterion is not guaranteed to

give an admissible decision. DasGupta and Studden (1989) consider conditional Gamma minimax

estimators for the normal means model. See also Betrò and Ruggeri (1992) for other examples.

2.3 Examples of sets of priors

We review different constructions of the prior set Πθ that have been considered in the literature.

Example 1 In one the earliest applications of Bayesian global sensitivity analysis, Chamberlain

and Leamer (1976) and Leamer (1978, 1982) consider the regression model

y
T×1

= X
T×k

β
k×1

+ ε
T×1

, ε ∼ NT (0, σ2IT ),
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and specify a set of conjugate priors where the variance of the conjugate Gaussian prior for β varies

over a certain set. These works derive a closed-form representation for the set of posterior means

of β and study its analytical properties.

Example 2 (ε-contaminated set) A well-studied set of priors is the ε-contaminated set of priors

(e.g., Huber (1973), Berger (1984, 1985), Berger and Berliner (1986), Sivaganesan and Berger

(1989)). Its canonical representation is

Πθ = {πθ = (1− ε)π0
θ + εqθ : qθ ∈ Qθ}, (2.12)

where the inputs to be specified by the user are π0
θ, the base prior representing a benchmark prior

with limited confidence, ε ∈ [0, 1], the amount of contamination that gauges the uncertainty on the

base prior, and Qθ, the set of contamination distributions which span the plausible priors. Huber

(1973) considers a set of arbitrary distributions for Qθ and derives a closed-form expression for the

lower and upper posterior probabilities. Berger and Berliner (1986) consider the empirical Bayes

posterior (Type-II maximum likelihood) with various sets of contamination distributions including

unimodal and symmetric ones, and Sivaganesan and Berger (1989) derive the set of posteriors with

contaminations that preserve unimodality of πθ.

Example 3 (Priors with fixed marginal) In the presence of multiple parameters θ = (θ1, . . . , θdθ),

dθ ≥ 2, it is often feasible to elicit the marginal distribution of the prior for each component, while

eliciting their dependence is difficult. Lavine et al. (1991) consider an ε-contaminated set of priors

with Qθ consisting of the set of priors sharing fixed marginals for each component in θ, while their

dependence is unconstrained. They propose linearization techniques to solve the optimization in

(2.6). Moreno and Cano (1995) fix the prior marginals of only a subset of the parameters in θ.

Example 4 (Priors known up to coarsened domain) Kudō (1967) and Manski (1981) study

the set of posterior distributions and Gamma minimax statistical decisions when the analyst can

elicit a prior distribution only up to a class of coarsened subsets of θ, i.e., a σ-algebra smaller

than the Borel σ-algebra of θ, B(Φ). Formally, consider a transformation φ = g(θ), where g is a

many-to-one function g : Θ → Φ that coarsens the parameter space of θ, and φ indexes the sets

in the partition of θ. Given a unique prior πφ on (Φ,B(Φ)), the set of priors for θ consists of the

distributions of θ that imply that the distribution of φ = g(θ) is the given πφ,

Πθ = {πθ : πθ(g−1(B)) = πφ(B), ∀B ∈ B(Φ)}. (2.13)

This set of priors can be interpreted as a special case of the general construction in Wasserman

(1990). Wasserman (1990) considers a set of priors whose lower and upper probabilities are given

by the containment and capacity functional of a random set Γ : Φ ⇒ Θ, i.e., given πφ, a probability

measure on (Φ,B(Φ)),

Πθ = {πθ : πθ∗(A) ≤ πθ(A) ≤ π∗θ(A), ∀A ∈ B(Θ)} , (2.14)
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where πθ∗(A) = πφ(Γ(φ) ⊂ A) and π∗θ(A) = πφ(Γ(φ) ∩A 6= ∅). In view of random set theory, this

set of priors can be interpreted as the set of selectionable distributions from the random set Γ(φ),

φ ∼ πφ. See Artstein (1983), Molchanov (2005), and Molchanov and Molinari (2018). This set

of priors coincides with (2.13) in the special case where Γ(φ) is set to g−1(φ). Wasserman (1990)

derives analytically the lower and upper posterior probabilities when Πθ is given in the form (2.14).

Example 5 (Priors in an information neighborhood) In the minimax approaches to robust

estimation and robust control, the set of distributions that one wishes to be robust against is formed

by an information neighborhood around a benchmark distribution π0
θ. One can consider a variety

of statistical divergence criteria to define the neighborhood, including the KL divergence and the

Hellinger distance; see, for example, Peterson et al. (2000), Hansen and Sargent (2001) and Ki-

tamura et al. (2013). This approach offers a flexible and analytically tractable way to define the

set of priors for robust Bayesian analysis. Along this line, Ho (2020) introduces the set of priors

through the KL neighborhood centered at a benchmark prior π0
θ,

Πθ =

{
πθ :

∫
Θ

log

(
dπθ
dπ0

θ

)
dπθ(θ) ≤ λ

}
, (2.15)

where λ > 0 is the radius of the KL neighborhood specified by the user. Watson and Holmes (2016)

analyze posterior Gamma minimax actions with a KL neighborhood around the benchmark posterior.

As discussed in Ho (2020), a convenient feature of this approach is that it is easy to additionally

impose moment constraints on the priors and/or posteriors.

3 Robust Bayesian Analysis for Set-identified Models

This section discusses how the general framework of robust Bayesian analysis introduced in the

previous section can be extended to a class of set-identified structural models.

3.1 Set-identified structural models

Non-identification of a structural parameter θ arises when multiple values of θ are observationally

equivalent; that is, there exist θ and θ′ 6= θ such that p(y|θ) = p(y|θ′) for every y ∈ Y (Rothenberg

(1971)). Observational equivalence can be represented by a many-to-one function g : (Θ,A) →
(Φ,B), such that g(θ) = g(θ′) if and only if p(y|θ) = p(y|θ′) for all y ∈ Y (e.g., Barankin (1960)).

This relationship partitions the parameter space Θ into equivalent classes, in each of which the

likelihood of θ is “flat” irrespective of observations, and φ = g(θ) maps each of the equivalent

classes to a point in a parameter space Φ. Following the terminology of structural models in

econometrics (Koopmans and Reiersol (1950)), φ = g(θ) is the reduced-form parameter indexing

the distribution of the data. The likelihood depends on θ only through φ = g(θ); that is, there

exists a B(Φ)-measurable function p̂(y|·) such that p(y|θ) = p̂(y|g(θ)) for every y ∈ Y and θ ∈ Θ.
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The identified set of θ is the inverse image of g(·): ISθ(φ) = {θ ∈ Θ : g(θ) = φ}, where ISθ(φ)

and ISθ(φ′) for φ 6= φ′ are disjoint and {ISθ(φ) : φ ∈ Φ} is a partition of Θ. For the parameter

of interest η = h(θ) with h : Θ → H, H ⊂ Rdη , dη < ∞, we define the identified set as the

projection of ISθ(φ) onto H through h(·), ISη(φ) ≡ {h(θ) : θ ∈ ISθ(φ)} . The parameter η = h(θ)

is point- or set-identified at φ if ISη(φ) is a singleton or not a singleton, respectively. By the

definition of observational equivalence, ISθ(φ) and ISη(φ) are the sharp identification regions at

every distribution of data indexed by φ.

In SVARs with sign restrictions, the model can be observationally restrictive in the sense of

Koopmans and Reiersol (1950). This means the model is falsifiable and ISθ(φ) can be empty for

some φ ∈ Φ on which the reduced-form likelihood is well defined.

3.2 Influence of prior choice under set-identification

Let πθ be a prior for θ and πφ be the corresponding prior for φ induced by πθ and g(·):

πφ(B) = πθ(ISθ(B)) for all B ∈ B(Φ). (3.1)

From the definition of the reduced-form parameter, the likelihood for θ is flat on ISθ(φ) for any

y, which implies conditional independence θ ⊥ Y|φ. Hence, as obtained by Poirier (1998), Moon

and Schorfheide (2012), and Baumeister and Hamilton (2015), the posterior of θ, πθ|Y, can be

expressed as

πθ|Y(A) =

∫
Φ
πθ|φ(A)dπφ|Y(φ), A ∈ B(Θ), (3.2)

where πθ|φ is the conditional distribution of θ given φ whose support agrees with or is contained

in ISθ(φ), and πφ|Y is the posterior of φ. This expression shows that the prior of the reduced-

form parameter, πφ, can be updated by the data, whereas the conditional prior of θ given φ is

never updated because the likelihood is flat on ISθ(φ) ⊂ Θ for any realization of the sample.

In this sense, one can interpret πφ as the revisable prior knowledge and the conditional priors,{
πθ|φ (·|φ) : φ ∈ Φ

}
, as the unrevisable prior knowledge.

Marginalizing πθ|Y for η = h(θ) gives

πη|Y (D) =

∫
Φ
πθ|φ(h(θ) ∈ D)dπφ|Y =

∫
Φ
πη|φ(D)dπφ|Y (3.3)

for D ∈ B(H), where πη|φ is the conditional prior for η given φ, which is by construction supported

on ISη(φ). If η is set-identified, its posterior thus has a non-degenerate unrevisable component

πη|φ.

The previous discussion clarifies the following features of Bayesian inference under set-identification:

1. As discussed in Poirier (1998), the lack of identification for η does not mean that the prior

for η is not updated by the data. The prior for η can be updated, but this happens only
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through the update of the prior for the reduced-form parameter φ. Comparing the prior and

posterior for η therefore does not indicate whether or not the parameter is point-identified.

2. Since the posteriors for θ and η involve nonrevisable priors, they are sensitive to the choice

of prior even asymptotically. In particular, the posterior for η is sensitive to perturbations

of the prior that change the shape of πη|φ. This suggests that posterior sensitivity, rather

than the comparison of the shapes of prior and posterior, is informative about the strength

of identification. This feature is similar to the local sensitivity analysis in Müller (2012).

3. The reduced-form parameter φ is identified by construction. If the likelihood for φ converges

to its true value φ0 in large samples, the posterior for η converges to the conditional prior

πη|φ given φ = φ0. Since the support of πη|φ at φ = φ0 is equal to or contained in ISη(φ0),

the asymptotic posterior does not lead to an estimate for η that lies outside of its identified

set. However, the shape of the asymptotic posterior on ISη(φ0) is determined entirely by the

prior.

3.3 Full ambiguity for the unrevisable prior

The discussion in the previous subsection motivates a key feature of the robust Bayesian approaches

for set-identified models that we discuss in this paper: they assume multiple priors for the unre-

visable component of the prior (the prior for the structural parameter θ given the reduced-form

parameter φ), but maintain a single prior for the revisable component (the prior for φ).3

In this section we review the full-ambiguity approach of GK for general models, but one can

consider a variety of approaches to refine the set of priors in GK to reflect partial prior knowledge

about the unrevisable component of the prior. Examples include the ε-contaminated set of priors

(Example 2) and the KL-neighborhood set of priors (Example 5). For SVARs, GKV investigate

the former and GKU investigate a variation of the latter, as we review in Section 5 below.

GK construct a set of priors for θ constrained by a single proper prior πφ for φ = g(θ), supported

on g(Θ),

ΠFA
θ ≡ {πθ : πθ(ISθ(B)) = πφ(B), ∀B ∈ B(Φ)}, (3.4)

where ISθ(B) = ∪φ∈BISθ(φ). Noting that ISθ(·) = g−1(·), this takes the form as the set of priors

in (2.13). An equivalent but perhaps more intuitive way to introduce ambiguity for the unrevisable

prior is in terms of the set of conditional priors:

ΠFA
θ|φ ≡

{
πθ|φ : πθ|φ(ISθ(φ)) = 1, πφ − almost surely

}
. (3.5)

3GK discuss how this is motivated by the asymptotically negligible effect of the prior choice for φ and by a desire

to avoid possible issues of non-convergence of the set of posteriors. In addition, for φ one can apply existing methods

for constructing a non-informative prior such as Jeffreys’ prior or for selecting a data-driven prior.
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ΠFA
θ|φ consists of arbitrary conditional priors as long as they assign probability one to the identified

set of θ, and is linked to ΠFA
θ in (3.4) by ΠFA

θ = {πθ(·) =
∫
πθ|φ(·)dπφ(φ) : πθ|φ ∈ ΠFA

θ|φ}.
Applying Bayes’ rule to each prior in ΠFA

θ gives a set of posteriors for θ. Marginalizing each

posterior and invoking (3.3) and (3.5) generates a set of posteriors for the parameter of interest η,

ΠFA
η|Y ≡

{
πη|Y (·) =

∫
Φ
πθ|φ(h(θ) ∈ ·)dπφ|Y : πθ|φ ∈ Πθ|φ

}
. (3.6)

Under mild regularity conditions (Assumption 1 in GK), GK derive the lower and upper pos-

terior probabilities of ΠFA
η|Y as

πη|Y∗(D) = πφ|Y({φ : ISη(φ) ⊂ D}), π∗η|Y(D) = πφ|Y({φ : ISη(φ) ∩D 6= ∅}), (3.7)

for D ∈ B(H), and show that the set of posterior probabilities {πη|Y(D) : πη|Y ∈ ΠFA
η|Y} coincides

with the connected intervals [πη|Y∗(D), π∗η|Y(D)], which implies that any posterior probability in

this set can be attained by some posterior in ΠFA
η|Y. The expression for πη|Y∗(D) shows that the

lower probability on D is the probability that the (random) identified set ISη(φ) is contained in

D in terms of the posterior probability of φ. The upper probability is the probability that the

identified set hits D. These closed-form expressions of the lower and upper probabilities suggest

how to compute them in practice. For instance, to approximate πη|Y∗(D), one obtains Monte Carlo

draws of φ from its posterior and computes the proportion of the draws that satisfy ISη(φ) ⊂ D.

GK show that the set of posterior means of η coincides with the Aumann expectation of the

convex hull of the identified set, co(ISη(φ)), with respect to πφ|Y . In particular, if η is a scalar

and denoting the convexified identified set for η by [`(φ), u(φ)] = co(ISη(φ)), the set of posterior

means for η is the interval connecting the posterior means of `(φ) and u(φ),{
Eη|Y (η) : πη|Y ∈ ΠFA

η|Y

}
=
[
Eφ|Y (` (φ)) , Eφ|Y (u(φ))

]
. (3.8)

The set of posterior τ -th quantiles of η can be computed by first applying (3.7) with D = (−∞, t],
−∞ < t < ∞ to obtain the set of the posterior cumulative distribution functions of η for each t

and then inverting the upper and lower bounds of this set at τ ∈ (0, 1).

Given the representation of the lower posterior probability (3.7), a robust credible region satis-

fying (2.7) with credibility α ∈ (0, 1) can be expressed as

πη|Y∗(Cα) = πφ|Y(ISη(φ) ⊂ Cα)) ≥ α. (3.9)

GK propose to report the smallest robust credible region (i.e., Cα with the smallest volume):

C∗α ∈ arg min
C∈C

Leb(C), s.t. πφ|Y(ISη(φ) ⊂ C)) ≥ α, (3.10)

where Leb(C) is the volume of C in terms of the Lebesgue measure and C is a family of subsets

in H. The credible regions for the identified set proposed in Moon and Schorfheide (2011), Norets

and Tang (2014) and Kline and Tamer (2016) satisfy (3.9), so they can be interpreted as robust

credible regions, but they are not optimized in terms of volume.
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4 Analytical results for set of posterior moments

In this section we present new and general theoretical results that link the set of posterior moments

in (2.6) and the lower and upper posterior probabilities in (2.5). These results are useful because:

1) they provide a general approach to deriving and computing the set of posterior moments for

sensitivity analysis; and 2) they help solve the posterior Gamma minimax problem.

The lower and upper posterior probabilities viewed as functions of A ∈ B(Θ) are nonnegative

and monotone set functions (0 ≤ πθ|Y∗(A1) ≤ πθ|Y∗(A2) for A1 ⊂ A2), while they are non-additive;

a measure µ defined on B(Θ) is non-additive if µ(A1 ∪A2) + µ(A1 ∩A2) 6= µ(A1) + µ(A2) for some

A1 6= A2, A1, A2 ∈ B(Θ). A non-additive measure µ is called submodular or 2-alternating if

µ(A1 ∪A2) + µ(A1 ∩A2) ≤ µ(A1) + µ(A2), ∀A1, A2 ∈ B(Θ). (4.1)

If the inequality in (4.1) is reversed, µ is called supermodular or 2-monotone. The core of a non-

additive measure µ is defined by

core(µ) ≡ {π probability measure : π(A) ≥ µ(A) holds for all A ∈ B(Θ)} . (4.2)

The next condition concerns the supermodular (submodular) property of the lower (upper)

posterior probability and the richness of Πθ|Y in the sense that Πθ|Y agrees with the core of its

lower probability. The latter property is called representability of Πθ|Y by a lower probability

(Huber (1973)).

Condition 4.1 The set of posteriors Πθ|Y satisfies the following two conditions:

(i) The lower probability of Πθ|Y, πθ|Y∗, is supermodular, or equivalently, the upper probability

of Πθ|Y, π∗θ|Y, is submodular.

(ii) Πθ|Y is representable by its lower probability πθ|Y∗, i.e., Πθ|Y = core(πθ|Y∗) holds.

Under Condition 4.1, we obtain the following result that expresses the bounds of the posterior

mean of h(θ) on Πθ|Y in terms of the Choquet expectation of h(θ) with respect to the upper

probability of Πθ|Y. This result follows directly from Proposition 10.3 of Denneberg (1994), so we

omit a proof.

Theorem 4.1 Let h : Θ→ R be a measurable real-valued function. If Condition 4.1 holds, then

sup
πθ|Y∈Πθ|Y

Eθ|Y(h(θ)) =

∫
h(θ)dπ∗θ|Y (4.3)

inf
πθ|Y ∈Πθ|Y

Eθ|Y(h(θ)) = −
∫

(−h(θ))dπ∗θ|Y,
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where the integral with respect to non-additive measure π∗θ|Y is defined as the Choquet integral, i.e.,

for measurable real-valued function f : Θ→ R,∫
f(θ)dπ∗θ|Y ≡

∫ ∞
0

π∗θ|Y({θ : f(θ) ≥ t})dt+

∫ 0

−∞
[π∗θ|Y({θ : f(θ) ≥ t})− 1]dt (4.4)

=

∫ ∞
0

π∗θ|Y({θ : f(θ) ≥ t})dt−
∫ 0

−∞
πθ|Y∗({θ : f(θ) ≥ t})dt. (4.5)

In many cases, it is not straightforward to check whether Condition 4.1 holds. One important

case in which this condition is guaranteed to hold is for a set of posteriors whose lower probability

can be represented as the containment probability of some random set and the set of posteriors

includes any measurable selections of the random set. The set of posteriors for set-identified models

considered by GK satisfies this condition. This claim follows from the fact that the posterior lower

probability of ΠFA
θ|Y in (3.7) is the containment probability of the random set ISθ(φ), φ ∼ πθ|φ,

and from Artstein’s inequality (Artstein (1983)) for selectionable distributions from the random

set. Hence, Theorem 4.1 always applies to robust Bayesian analysis with the GK set of priors.

The equivalence relationship (4.3) in Theorem 4.1 is valid for general posterior sets as far as

they satisfy Condition 4.1, and it is not limited to the GK set of priors for set-identified models.

Setting η = h(θ) in this theorem gives the upper and lower bounds of the posterior mean of η in

terms of the Choquet integral. If the Choquet integral (or the upper posterior probability π∗θ|Y) is

analytically or numerically tractable in a given context, this theorem offers a general approach to

deriving and computing the set of posterior moments.

Theorem 4.1 is also useful for solving the posterior Gamma minimax problem. The theorem

implies that the worst-case posterior expected loss coincides with the Choquet expectation with

respect to π∗η|Y. Furthermore, for the GK set of priors, the Choquet expectation of the loss given

action a ∈ A can be expressed as (e.g., Theorem 5.1 in Molchanov (2005))∫
L(η, a)dπ∗η|Y =

∫ ∞
0

πφ|Y ({φ : {η : L(η, a) ≥ t} ∩ ISη(φ) 6= ∅}) dt

=

∫ ∞
0

πφ|Y

({
φ : sup

η∈ISη(φ)
{L(η, a)} ≥ t

})
dt

=

∫
Φ

sup
η∈ISη(φ)

L(η, a)dπφ|Y(φ).

We hence obtain the following theorem for the representation of the posterior Gamma minimax

criterion:

Theorem 4.2 Let L(η, a) be a nonnegative loss function (e.g., the quadratic loss L(η, a) = (η−a)2)

and Πθ be the set of priors constructed in (3.4). With the set of posteriors ΠFA
η|Y obtained in (3.6),

the upper posterior expected loss at action a satisfies

sup
πθ∈ΠFAθ

ρ(πθ, a) =

∫
L(η, a)dπ∗η|Y =

∫
Φ

sup
η∈ISη(φ)

L(η, a)dπφ|Y(φ), (4.6)
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provided that the Choquet integral is finite,
∫
L(η, a)dπ∗η|Y(η) <∞.

The posterior Gamma minimax criterion shown in (4.6) combines the ambiguity about η (given

φ, what we know about η is only that it lies within the identified set ISη (φ)) with the posterior

uncertainty about the identified set ISη (φ) (in finite samples, the identified set of η is known with

some uncertainty as summarized by the posterior of φ). Since Theorem 4.2 imposes no assumption

on the loss function other than its nonnegativity, this result is also applicable to a planner’s policy

decision problem under a set-identified social welfare criterion. See Manski (2000) for statistical

decision theory applied to treatment choice under a set-identified welfare criterion.

Theorem 4.2 also suggests a simple numerical algorithm for computing the posterior Gamma

minimax action using a Monte Carlo sample of φ from its posterior πφ|Y. Let {φs}Ss=1 be S

random draws of φ from the posterior πφ|Y. Then, the posterior Gamma minimax action â∗ ∈
arg mina

{
supπθ∈ΠFAθ

ρ(πθ, a)
}

can be approximated by

â∗ ∈ arg min
a

1

S

S∑
s=1

sup
η∈ISη(φs)

L(η, a).

The posterior Gamma minimax action does not generally coincide with an unconditional optimal

Gamma minimax decision. This is also the case with the prior set (3.4), implying that â∗ fails to

be a Bayesian action with respect to any single prior in the set.

5 Robust Bayesian inference in SVARs

This section discusses the approaches to conducting robust Bayesian analysis in SVARs in GK,

GKV and GLU. We first describe the SVAR framework and outline some commonly used identi-

fying restrictions. We assume the parameter of interest is an individual impulse response, but the

approaches easily extend to other parameters, such as forecast error variance decompositions.

5.1 Setup

Consider an SVAR(p) for the n-dimensional vector yt:

A0yt = a +

p∑
j=1

Ajyt−j + εt for t = 1, . . . , T , (5.1)

with εt a vector white noise process, normally distributed with mean zero and variance the identity

matrix In. The initial conditions y1, . . . ,yp are treated as given.

The reduced-form VAR(p) model is

yt = b +

p∑
j=1

Bjyt−j + ut, (5.2)
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where b = A−1
0 a, Bj = A−1

0 Aj , ut = A−1
0 εt, and E (utu

′
t) ≡ Σ = A−1

0

(
A−1

0

)′
. The reduced-form

parameter is φ = (vec(B)′, vech(Σ)′)′ ∈ Φ, where B = [b,B1, . . . ,Bp]. Let Y denote the sample.

In SVAR applications, we can set the structural parameter vector θ considered in the general

framework of the previous section as θ = (φ′, vec(Q)′)′, where Q is an n × n orthonormal matrix

in the set O(n) of orthonormal matrices (see, e.g., Uhlig (2005) and Rubio-Ramı́rez et al. (2010)).

As far as A0 is invertible, θ transforms the SVAR structural parameters [A0,a,A1, . . . ,Ap] as

B = A−1
0 [a,A1, . . . ,Ap], Σ = A−1

0

(
A−1

0

)′
and Q = Σ−1

tr A−1
0 , where Σtr is the lower-triangular

Cholesky factor of Σ with nonnegative diagonal elements. This transformation is one-to-one and

can be inverted as A0 = Q′Σ−1
tr and [a,A1, . . . ,Ap] = Q′Σ−1

tr B.

We assume that the reduced-form VAR(p) model can be inverted into a VMA(∞) model:

yt = c +

∞∑
j=0

Cjut−j = c +

∞∑
j=0

CjΣtrQεt−j ,

where Cj is the j-th coefficient matrix of
(
In −

∑p
j=1 BjL

j
)−1

.

The h-th horizon impulse response is the n× n matrix IRh, h = 0, 1, 2, . . .

IRh = ChΣtrQ, (5.3)

and the long-run cumulative impulse-response matrix is

CIR∞ =

∞∑
h=0

IRh =

( ∞∑
h=0

Ch

)
ΣtrQ =

In −
p∑
j=1

Bj

−1

ΣtrQ. (5.4)

The scalar parameter of interest η is the impulse-response, i.e., the (i, j)-element of IRh :

η = IRhij ≡ e′iChΣtrQej ≡ c′ih (φ) qj = h(φ,Q), (5.5)

where ei is the i-th column of In and c′ih (φ) is the i-th row of ChΣtr.

5.2 Set-identifying restrictions in SVARs

An SVAR without identifying restrictions is set-identified because there are multiple values of A0

that are consistent with φ:
{
A0 = Q′Σ−1

tr : Q ∈ O(n)
}

. Imposing zero and/or sign restrictions can

be viewed as constraining the set of orthonormal matrices to lie in a subspace Q(φ) of O(n), which

in turn yields the following identified set for the impulse-response η:

ISη(φ) = {η (φ,Q) : Q ∈ Q(φ)} . (5.6)

We now characterize the subspace Q(φ) under typical zero restrictions in SVARs, under re-

strictions induced by external instruments in proxy SVARs and under sign restrictions. In addi-

tion to any such restrictions, we assume one always imposes the sign normalization restrictions
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diag (A0) = diag
(
Q′Σ−1

tr

)
≥ 0n×1, which are inequalities involving the columns σi of Σ−1

tr and qi

of Q:(
σi
)′

qi ≥ 0 for all i = 1, . . . , n. (5.7)

5.2.1 Zero restrictions

Commonly used zero restrictions in SVARs can be written as linear constraints on the columns of

Q. For example:

((i, j) -th element of A0) = 0 ⇐⇒
(
Σ−1
tr ej

)′
qi = 0, (5.8)(

(i, j) -th element of A−1
0

)
= 0 ⇐⇒

(
e′iΣtr

)
qj = 0,

((i, j) -th element of CIR∞) = 0 ⇐⇒

e′i

In −
p∑
j=1

Bj

−1

Σtr

qj = 0.

We represent a collection of zero restrictions as:

F (φ,Q) ≡


F1 (φ) q1

F2 (φ) q2

...

Fn (φ) qn

 = 0∑n
i=1 fi×1, (5.9)

with Fi (φ) an fi × n matrix. We assume that the imposed zero restrictions satisfy fi ≤ n − i,
i = 1, . . . , n, so that we rule out the over-identifying zero restrictions and locally- but not globally-

identified SVARs (Bacchiocchi and Kitagawa (2020)). We assume that the variables in the model

are ordered such that the number of zero restrictions fi imposed on the i-th column of Q satisfies

f1 ≥ f2 ≥ · · · ≥ fn ≥ 0. In case of ties, if the impulse response of interest is that to the j-th

structural shock, one should order the j-th variable first. If there are only sign restrictions, one

should order first the variable whose structural shock is of interest.

The subspace Q(φ) satisfying the restrictions is then given by

Q (φ) =
{

Q ∈ O(n) : F (φ,Q) = 0∑n
i=1 fi×, diag

(
Q′Σ−1

tr

)
≥ 0n×1

}
. (5.10)

5.2.2 Exogeneity restrictions in Proxy SVARs

Proxy SVARs rely on the assumption that there are instruments (‘proxies’) external to the SVAR

that are correlated with particular structural shocks (‘relevant’) and uncorrelated with other shocks

(‘exogenous’).4 Set-identification arises in these models when there are multiple proxies for multiple

shocks. Giacomini, Kitagawa and Read (in press) propose a robust Bayesian approach to inference

4See, for example, Mertens and Ravn (2013) and Stock and Watson (2018).
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in this context that starts by writing the restrictions arising from exogeneity of the proxies as linear

constraints on the columns of Q, as follows.

Let ε(i:j),t = (εi,t, εi+1,t, ..., εj−1,t, εj,t)
′ for i < j. Assume that mt is a k × 1 vector of proxies

(with k < n) that are correlated with the last k structural shocks, so E(mtε
′
(n−k+1:n),t) = Ψ with

Ψ a full-rank matrix, and uncorrelated with the first n− k structural shocks, so E(mtε
′
(1:n−k),t) =

0k×(n−k). We assume that mt follows an SVAR(pm) with εt included as exogenous variables:

Γ0mt = γ + Λεt +

pm∑
l=1

Γlmt−l + νt, t = 1, ..., T, (5.11)

with Γ0 invertible and (ε′t,ν
′
t)
′|Ft−1 ∼ N(0, In+k), where Ft−1 is the information set at time t− 1.

Consider the ‘first-stage regression’

mt = g + Dyt + Gxt +

pm∑
l=1

Hlmt−l + vt, (5.12)

where xt = (y′t−1, . . . ,y
′
t−p)

′ and E(vtv
′
t) = Υ. Since Γ−1

0 Λ = DA−1
0 = DΣtrQ, the instrument

validity conditions imply that

E(mtε
′
t) = DΣtrQ =

[
0k×(n−k),Ψ

]
. (5.13)

The (i, j)th element of this matrix is e′i,kDΣtrQej,n = d′iqj , where d′i ≡ e′i,kDΣtr is the ith row

of DΣtr. The exogeneity conditions in a proxy SVAR therefore generate linear zero restrictions on

the first n − k columns of Q given D and Σtr. Similarly to the previous subsection, we can write

these restrictions in the general form F (φ,Q) = 0k(n−k)×1, where the reduced-form parameter is

now

φ = (vec(B)′, vech(Σ)′, vec(g)′, vec(D)′, vec(G)′, vec(H1)′, . . . , vec(Hpm)′, vech(Υ)′)′.

The subspace Q (φ) satisfying the restrictions is then defined as in (5.10).

5.2.3 Sign restrictions

Sign restrictions on impulse-responses can also be written as linear constraints on the columns of Q:

Shj (φ) qj ≥ 0sjh×1,5 where Shj (φ) ≡ DhjChΣtr, with Dhj a matrix that selects the sign-restricted

responses from ChΣtrqj , with nonzero element 1 or −1 depending on whether the responses are

positive or negative. By stacking Shj (φ) over multiple horizons we obtain the set of sign restrictions

on the responses to the j-th shock, Sj (φ) qj ≥ 0sj×1. We represent a collection of sign restrictions,

{Sj (φ) qj ≥ 0sj×1 for j ∈ IS} as

S(φ,Q) ≥ 0s×1, (5.14)

5For y = (y1, . . . , ym)′, y ≥ 0 means yi ≥ 0 for all i = 1, 2, . . . ,m.
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where IS ⊂ {1, 2, . . . , n} is such that j ∈ IS if some responses to the j-th shock are restricted.

The subspace Q(φ) satisfying the restrictions is then given by

Q (φ) =
{
Q ∈ O(n) : S(φ,Q) ≥ 0s×1, diag

(
Q′Σ−1

tr

)
≥ 0n×1

}
. (5.15)

Sign restrictions on other parameters, such as elements of A0, CIR∞, or (in proxy SVARs) Ψ, can

be imposed similarly.

5.3 Multiple Priors in SVARs

In a standard Bayesian approach to SVAR estimation, one typically specifies a prior for θ = (φ,Q),

πθ = πQ|φπφ, by specifying single priors πφ and πQ|φ. As discussed in Section 3, the former is

updated by the data, while the latter is not updated (see also Baumeister and Hamilton (2015)).

Maintaining the choice of a single prior for φ, we discuss three approaches that rely on different

specifications for the set of priors for Q given φ: the full ambiguity approach of GK, which applies

the set of priors of Section 3.3; the model-averaging approach of GKV, which can be viewed as

robust Bayesian analysis with an ε-contaminated set (Example 2); and the robust control approach

of GKU, which introduces the KL-neighborhood set of conditional priors for Q given φ.

5.3.1 Full ambiguity (GK)

In terms of the current notation for SVAR applications, the set of conditional priors for Q given φ

that represents full ambiguity for the unrevisable component of the prior can be represented as

ΠFA
θ = {πθ =

∫
πQ|φdπφ(φ) : πQ|φ ∈ ΠQ|φ}, (5.16)

where ΠQ|φ allows all conditional priors supported on the subspace Q (φ) of orthonormal matrices,

ΠFA
Q|φ =

{
πQ|φ : πQ|φ (Q (φ)) = 1, πφ-almost surely

}
. (5.17)

As shown in (3.6), the resulting set of posteriors for the impulse response of interest η = h(Q,φ)

is

ΠFA
η|Y =

{
πη|Y(·) =

∫
πQ|φ (h (Q,φ) ∈ ·) dπφ|Y : πQ|φ ∈ ΠFA

Q|φ

}
. (5.18)

The general formulae for the set of posterior means (3.8) and the robust credible regions (3.9) shown

in Section 3.3 can apply as they are. See Section 6.1 for algorithms to compute these quantities.
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5.3.2 Model averaging (GKV)

GKV consider a set of priors for the impulse-response that averages single-prior and multiple-prior

models. Focusing on the case of two models, the approach could be viewed as a refinement to

GK when the researcher has access to a single prior for the impulse-response; for example, that

implied by a prior on the SVAR’s structural parameters (e.g., Baumeister and Hamilton (2015))

or a prior based on a Bayesian DSGE model. Another example is when a set of restrictions give

point-identification but some of the restrictions are controversial. The single prior in this case

corresponds to the point-identified model that imposes all restrictions, while the multiple-prior

model corresponds to a set-identified model that relaxes the controversial restrictions.

Let M s be the single-prior model and Mm the multiple-prior (set-identified) model, with cor-

responding prior probabilities πMs ∈ [0, 1] and 1 − πMs . The single-prior model admits a unique

prior for θ, πθ|Ms , while the input of the multiple-prior model is the GK set of priors for θ, Πθ|Mm ,

given a unique prior for φ, πφ|Mm . GKV obtain a set of posteriors for the impulse-response that

combine the single posterior in model M s and the set of posteriors in model Mm according to the

posterior model probabilities.

This practice of averaging the single-prior (or point-identified) model and the multiple-prior

(set-identified) model can be viewed as a robust Bayesian analysis with the following set of priors:

ΠAvg
θ ≡

{
πθ = πθ|MpπMp + πθ|MsπMs : πθ|Ms ∈ ΠFA

θ|Ms

}
. (5.19)

This set of priors takes the form of an ε-contaminated set of priors as in (2.12), where the benchmark

prior is from the single-prior (point-identified) model π0
θ = πθ|Ms , the amount of contamination is

the prior model probability assigned to the set-identified model ε = πMm and Qθ corresponds to the

full-ambiguity set of priors for the set-identified model ΠFA
θ|Ms . That is, if the single-prior (or point-

identified) model is a possibly misspecified benchmark, averaging it with the set-identified model

can be interpreted as performing Bayesian sensitivity analysis with respect to a contamination

of the benchmark model by an amount πMm in every possible direction, while maintaining the

set-identifying restrictions in Mm.

GKV show that the posterior model probabilities differ from the prior probabilities if the models

are ‘distinguishable’ for some values of φ and/or the two models consider different priors for φ.

Models are distinguishable if they imply different reduced-form parameter spaces. Models that

admit the same reduced-form representation (i.e., a VAR with the same variables and lag length)

but differ in the identifying restrictions they impose are distinguishable if the restrictions rule out

different values of φ (for example, by yielding an empty identified set for some values of φ).
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The posterior model probabilities are obtained as

πMs|Y =
p(Y|M s) · πMs

p(Y|M s) · πMs + p(Y|Mm) · (1− πMs)
,

πMm|Y =
p(Y|Mm) · (1− πMs)

p(Y|M s) · πMs + p(Y|Mm) · (1− πMs)
, (5.20)

where p(Y|M) ≡
∫
p(Y|φ,M)dπφ|M (φ) is the marginal likelihood of model M with p(Y|φ,M) the

likelihood of the reduced-form parameter.

The set of posteriors can again be summarized by reporting a set of posterior means and a

robust credible region. The set of posterior means for η is the weighted average of the posterior

mean in model M s and the set of posterior means in model Mm:[
inf

πη|Y∈Πη|Y
Eη|Y(η), sup

πη|Y∈Πη|Y

Eη|Y(η)

]
=πMs|YEη|Ms,Y(η) + πMm|Y

[
Eφ|Mm,Y(`(φ)), Eφ|Mm,Y(u(φ))

]
, (5.21)

where (`(φ), u(φ)) are as defined in (3.8) and Eφ|Mm,Y(·) is the posterior mean with respect to the

φ-prior in model Mm. Section 6.2 discusses how to compute the set of posterior moments and the

robust credible regions.

A potentially useful analysis that can be carried out in this context is a reverse-engineering

exercise that computes the prior weight w one would assign to the restrictions in M s to obtain a

given conclusion. For example, to find the smallest weight such that the set of posterior means is

contained in the positive real half-line, one solves for w in the equation

p(Y|M s) · w
p(Y|M s) · w + p(Y|Mm) · (1− w)

Eη|Ms,Y(η)

+
p(Y|Mm) · (1− w)

p(Y|M s) · w + p(Y|Mm) · (1− w)
Eφ|Mm,Y(`(φ)) = 0. (5.22)

5.3.3 KL-neighborhood (GKU)

GKU consider a refinement of the set of priors in GK. The starting point is the availability of

a benchmark conditional prior for θ given φ, π0
θ|φ. By considering the set of priors in a KL

neighborhood of the benchmark prior with a given radius λ > 0,

ΠKL
θ|φ(λ) =

{
πθ|φ :

∫
Θ

ln

(
dπθ|φ

dπ0
θ|φ

)
dπθ|φ(θ) ≤ λ, πφ–almost surely

}
, (5.23)

one can obtain a set of posteriors for the impulse-response η as

ΠKL
η|Y(λ) =

{
πη|Y(·) =

∫
πθ|φ(h(θ) ∈ ·)dπφ|Y(φ) : πθ|φ ∈ ΠKL

θ|φ(λ)

}
. (5.24)
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ΠKL
θ|φ(λ) refines ΠFA

θ|φ in the following aspects. First, by choosing a partially credible benchmark prior

π0
θ|φ, one can anchor the set of priors to the plausible one, disregarding from ΠFA

θ|φ those that are far

from the benchmark prior. Second, any prior πθ|φ ∈ ΠKL
θ|φ(λ) is absolutely continuous with respect

to the benchmark prior. Hence the support of πθ|φ is contained in that of π0
θ|φ, and they share

a common dominating measure, implying that one can constrain the support of πθ|φ ∈ ΠKL
θ|φ(λ)

by the choice of π0
θ|φ. Third, the choice of λ > 0 conveniently controls the size of the prior set.

Specifically, in terms of the set of posterior means spanned, varying λ from 0 to ∞ lets ΠKL
θ|φ(λ)

vary from a single-prior Bayes approach under the benchmark prior to the multiple-prior Bayes

approach under ΠFA
θ|φ. GKU suggest eliciting λ by assessing the set of prior means of η or other

parameters that ΠKL
θ|φ(λ) spans and matching it with the researcher’s partial prior knowledge.

The set of posteriors obtained in (5.24) can be used for sensitivity analysis by reporting, for

example, the set of posterior means of a function of interest f(η) (e.g., f(η) = η or f(η) = 1{η ∈
D}). GKU show that this set of posterior means is given by[∫

Φ

(∫ ∞
−∞

f(η)dπ`η|φ(η)

)
dπφ|Y(φ),

∫
Φ

(∫ ∞
−∞

f(η)dπuη|φ(η)

)
dπφ|Y(φ)

]
, (5.25)

where π`η|φ and πuη|φ are obtained by exponential tilting of the benchmark priors,

dπ`η|φ ≡
exp{−f(η)/κ`λ(φ)}∫

exp{−f(η)/κ`λ(φ)}dπ0
η|φ
· dπ0

η|φ, (5.26)

dπuη|φ ≡
exp{f(η)/κuλ(φ)}∫

exp{f(η)/κuλ(φ)}dπ0
η|φ
· dπ0

η|φ,

κ`λ(φ) ≡ arg min
κ≥0

{
κ ln

∫
exp

{
−f(η)

κ

}
dπ0

η|φ(η) + κλ

}
,

κuλ(φ) ≡ arg min
κ≥0

{
κ ln

∫
exp

{
f(η)

κ

}
dπ0

η|φ(η) + κλ

}
,

where π0
η|φ is the benchmark conditional prior for η given φ obtained by marginalizing π0

θ|φ to η.

See Section 6.3 for how to compute these bounds.

The posterior mean upper bound obtained in (5.25) is also useful for solving the posterior

Gamma minimax problem. For instance, let δ(Y) be an estimator for η and L(δ(Y), η) be an

estimation loss function. The posterior Gamma minimax estimator δλ(Y) with prior set ΠKL
θ|φ(λ)

can be obtained by

δλ(Y) ∈ arg min
a

∫
Φ

[∫
ISη(φ)

L(a, η)dπuη|φ(η)

]
dπφ|Y(φ), (5.27)

where

dπuη|φ =
exp {L(a, η)/κλ(a,φ)}∫

ISη(φ) exp {L(a, η)/κλ(a,φ)} dπ0
η|φ
· dπ0

η|φ
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and κλ(a,φ) > 0 is the unique solution to the following convex minimization:

min
κ≥0

{
κ ln

∫
ISη(φ)

exp

{
L(a, η)

κ

}
dπ0

η|φ + κλ

}
.

We emphasize that ΠKL
θ|φ(λ) constructed above is distinct from the KL-neighborhood set for the

unconditional prior discussed in Example 5. The main difference is that the set of priors in (2.15)

allows multiple priors not only for the conditional prior of θ|φ but also for the marginal prior of

φ. Having multiple priors for φ enables one to assess posterior sensitivity with respect to the prior

for the identifiable reduced-form parameter, but masks the shape of the posterior distributions if

the set contains a prior that fits the data poorly. This is because obtaining a large set of posteriors

could be due to some priors for φ that are severely in conflict with the data, rather than indicating

a lack of information in the observed likelihood. With ΠKL
θ|φ(λ), in contrast, all the posteriors in

the set share the same value of the marginal likelihood, so we can assess posterior sensitivity while

keeping the denominator of Bayes’ rule constant.

5.4 Frequentist properties of the robust Bayesian approach

The methods described in the previous sections are valid from a Bayesian perspective as tools for

robust Bayesian sensitivity analysis, but it can also be important to understand their frequentist

properties. This section briefly summarizes the asymptotic frequentist properties of the multiple-

prior estimation and inference procedures covered in this paper, and overviews other approaches.

See the individual papers for precise regularity conditions, formal statements of the frequentist

results, and proofs.

In the setting considered in Section 3, GK examine whether the robust Bayesian approach

restores the asymptotic equivalence between frequentist and Bayesian inference – an equivalence

that breaks down under set-identification if one adopts a single-prior Bayesian approach (Moon

and Schorfheide (2012)). Under the assumptions that the Bernstein-von Mises property holds for

estimation of the reduced-form parameter and that the identified-set mapping is convex, continuous

and differentiable, the set of posterior means is consistent and the robust credible region has valid

frequentist coverage for the true identified set asymptotically. GK also provide primitive conditions

in SVARs under which the high-level conditions are satisfied; these typically require checking the

pattern of zero and sign restrictions imposed. See also Liao and Simoni (2013) and Kline and

Tamer (2016) for Bernstein-von Mises results of the Bayesian confidence sets for the identified set.

Chen et al. (2018) develop a Monte Carlo-based confidence interval that projects a highest density

posterior credible region for the parameter vector θ, and show its asymptotic frequentist validity

without requiring differentiability of the identified-set mapping.

Giacomini et al. (in pressa) provide conditions for asymptotic frequentist validity of the robust

Bayesian approach in the case of proxy SVARs, and discuss how the case of proxies that are only
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weakly correlated with the structural shocks (‘weak proxies’) affects the asymptotic frequentist

properties of the GK robust Bayesian credible sets.

The asymptotic frequentist validity of robust Bayesian inference shown in GK reveals that for

set-identified models, ambiguity about the parameters represented by ΠFA
θ can match the absence

or removal of a prior in frequentist inference. This means that robust Bayesian inference under a

set of priors Πθ that is a strict subset of ΠFA
θ generally leads to more informative inference than

frequentist inference when the models are set-identified. Accordingly, the robust credible regions

obtained under the GKV set of priors ΠAvg
θ and the GKU set of priors ΠKL

θ (λ), λ < ∞, yield

posterior inference that is too optimistic in terms of frequentist coverage.

6 Numerical Implementation

This section explains how to numerically implement the three approaches described in the previous

section. We emphasise the key choices that practitioners face when implementing the algorithms.

6.1 Full ambiguity (GK)

We present a general algorithm to numerically approximate the set of posterior means and the

robust credible region. The algorithm assumes thatfi ≤ n− i for all i = 1, . . . , n.

Algorithm 1. Let F (φ,Q) = 0∑n
i=1 fi×1 and S(φ,Q) ≥ 0s×1 be the set of identifying restrictions,

and let η = c′ih (φ) qj∗ be the impulse response of interest.

• Step 1: Specify a prior for the reduced-form parameter, π̃φ.

• Step 2: Draw φ from its posterior, π̃φ|Y, and check whether the set of orthonormal matrices

satisfying the identifying restrictions, Q (φ), is empty. If so, repeat Step 2. Otherwise, proceed

to Step 3.

• Step 3: Given φ obtained in Step 2, compute the lower bound, `(φ), and upper bound, u(φ),

of the identified set for η, ISη (φ). `(φ) is defined by the following minimisation problem:

`(φ) = arg min
Q

c′ih (φ) q∗j ,

s.t. Q′Q = In, F (φ,Q) = 0∑n
i=1 fi×1, diag(Q′Σ−1

tr ) ≥ 0n×1, S(φ,Q) ≥ 0s×1,

and u(φ) = arg maxQ c′ih (φ) q∗j under the same set of constraints.

• Step 4: Repeat Steps 2–3 M times to obtain [l(φm), u(φm)], m = 1, . . . ,M . Approximate

the set of posterior means by the sample averages of l(φm) and u(φm).
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• Step 5: To obtain an approximation of the smallest robust credible region with credibility

α ∈ (0, 1), define d (η, φ) = max {|η − `(φ)| , |η − u(φ)|}, and let ẑα(η) be the sample α-th

quantile of (d(η,φm) : m = 1, . . . ,M). An approximated smallest robust credible region for η

is an interval centered at arg minη ẑα(η) with radius minη ẑα(η).6

The method used to draw φ from its posterior in Step 2 depends on the prior specified in

Step 1 (which may be improper). A commonly used prior for φ is the normal-inverse-Wishart (e.g.,

Arias et al. (2018)); this prior induces a normal-inverse-Wishart posterior, from which it is easy to

obtain independent draws (e.g., Del Negro and Schorfheide (2011)). It is also possible to apply this

algorithm when the prior is specified for the structural parameters rather than the reduced-form

parameters, provided that the prior for the structural parameters embeds exact zero restrictions

and/or dogmatic sign restrictions (e.g., Baumeister and Hamilton (2015)). In this case, draws of the

structural parameters (e.g., obtained via Markov Chain Monte Carlo methods) can be transformed

into draws of the reduced-form parameters. When the identified set is empty at some values of

φ that receive positive prior probability under π̃φ, the prior for φ is implicitly trimmed by the

algorithm to support only values of φ that yield a nonempty identified set.

Step 2 requires checking whether the identified set for Q given φ is empty. In the case where

there are zero restrictions only subject to fi ≤ n − i, i = 1, . . . , n, the identified set is never

empty. When there are sign restrictions (possibly alongside zero restrictions), there are different

algorithms to check whether the identified set is empty, and their applicability depends on the

types of restriction. The following algorithm in GK can be applied to any pattern of zero and sign

restrictions.

Algorithm 2.

• Step 1: Draw z1 ∼ N(0n×1, In) and let q̃1 =
[
In − F′1(F1F

′
1)−1F1

]
z1, then, for i = 2, . . . , n,

draw zi ∼ N(0n×1, In) and compute q̃i =
[
In − F̃′i(F̃iF̃

′
i)
−1F̃i

]
zi, where Fi ≡ Fi(φ) and

F̃′i = [F′i, q̃1, . . . , q̃i−1].

• Step 2: Compute

Q0 =

[
sign((Σ−1

tr e1,n)′q̃1)
q̃1

‖q̃1‖
, . . . , sign((Σ−1

tr en,n)′q̃n)
q̃n
‖q̃n‖

]
.

• Step 3: Check whether Q0 satisfies S(φ,Q0) ≥ 0s×1. If so, conclude Q(φ) is nonempty.

Otherwise, repeat Steps 1–2 (up to a maximum of L times) until Q0 is obtained satisfying

S(φ,Q0) ≥ 0s×1. If no draws of Q0 satisfy S(φ,Q0) ≥ 0s×1, approximate Q(φ) as being

empty.

6The objective function in this minimisation is nondifferentiable in η, so we recommend obtaining this interval via

grid search.
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Step 1 of this algorithm generates vectors (q̃1, ..., q̃n) that are orthogonal and satisfy the zero

restrictions. Step 2 normalises these vectors to have unit length and imposes the sign normalisation

that the diagonal elements of A0 are nonnegative. The resulting Q0 is an orthonormal matrix that

satisfies the zero restrictions and the sign normalisations. Step 3 checks whether the drawn Q0

satisfies the sign restrictions. The advantage of this algorithm is its generality. A drawback is that,

for a finite value of L, the algorithm may misclassify the identified set as being empty. Increasing

the value of L reduces the chance of this happening, but at the cost of increased computing time

when the identified set is actually empty at some values of φ. In practice, practitioners using this

algorithm should check whether the chosen L is large enough by seeing whether the proportion of

draws with empty identified set is sensitive to an increase in L.

When there are zero and sign restrictions on a single column of Q, emptiness of the identified

set can be determined without recourse to random sampling by using the following algorithm in

GKV:

Algorithm 3. Assume any zero and sign restrictions apply to q1 only and let the value of φ

be given. Let S(φ)q1 ≥ 0s×1 represent the sign restrictions (including the sign normalisation).

Further, assume that the (n − 1) × n matrix Z(φ) = [F (φ)′, S̃(φ)′]′ has rank n − 1 for any (n −
f1 − 1)× n matrix S̃(φ) constructed from a selection of n− f1 − 1 rows of S(φ).

• Step 1: Choose n − f1 − 1 rows from S(φ) and collect these in S̃(φ). Construct Z(φ) =

[F (φ)′, S(φ)′]′.

• Step 2: Compute an orthonormal basis for the null space of Z(φ), N(Z(φ)), which is an

n× 1 vector.

• Step 3: Check if either N(Z(φ)) or −N(Z(φ)) satisfies the remaining s− (n− f1 − 1) sign

restrictions not contained in S̃(φ). If so, conclude that Q(φ) is nonempty. Otherwise, return

to Step 1 until all
(

s
n−f−1

)
combinations are exhausted, in which case conclude that Q(φ) is

empty.

This algorithm relies on the fact that any nonempty identified set for q1 must contain a vertex

on the unit sphere where at least n− 1 constraints are binding. The algorithm determines whether

the identified set is nonempty by considering all possible combinations of n − f1 − 1 binding sign

restrictions and checking whether the implied vertex satisfies the remaining s − (n − f1 − 1) sign

restrictions. Under the assumptions stated in the algorithm, the rank-nullity theorem implies

that the null space of Z(φ) is one-dimensional, but if some q satisfies Z(φ)q = 0(n−1)×1, then

so too does −q, so it is necessary to check whether N(Z(φ)) or −N(Z(φ)) satisfies the sign

restrictions excluded from S̃(φ). The advantage of this algorithm over Algorithm 2 is that it

will never misclassify the identified set as being nonempty. However, since the algorithm requires
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checking
(

s
n−f−1

)
combinations of restrictions, the algorithm may become slow or infeasible when

there is a large number of sign restrictions.7

A third approach to checking whether the identified set is empty is the ‘Chebyshev criterion’

proposed in Amir-Ahmadi and Drautzburg (2021). This algorithm is applicable when there are sign

restrictions that constrain a single column of Q and there are no zero restrictions. Read (2021)

extends this algorithm to allow for zero restrictions.

Step 3 of Algorithm 1 requires computing the bounds of the identified set for η at each draw

of φ. If one is interested in more than one scalar object at a time (e.g., impulse responses for

multiple variables), this step is run repeatedly at each draw of φ. As for Step 2, there are multiple

approaches for computing the bounds of the identified set. GK suggest two different approaches

that are applicable under arbitrary configurations of zero and sign restrictions. The first is to use a

numerical optimizer initialised at the value of Q0 obtained using Algorithm 2. This is a nonconvex

optimization problem, so convergence to the true optimum is not guaranteed. The second approach

is to repeat Algorithm 2 many times at each draw of φ to obtain a large number of draws of Q

from Q(φ) and then to compute the minimum and maximum of η over the draws. This provides

an approximated identified set that is smaller than the actual identified set, but that converges

to the actual identified set as the number of draws goes to infinity. A third approach is available

when the zero and sign restrictions constrain a single column of Q only, in which case the bounds

of the identified set can be computed using the active-set algorithm in Gafarov et al. (2018). This

approach may be prohibitively slow when there are many sign restrictions.

6.2 Model averaging (GKV)

This section presents a general algorithm to numerically approximate the set of posterior means

when there is uncertainty over the set of identifying restrictions, as in GKV.

Algorithm 5.

• Step 1: Draw a model M ∈ M from a multinomial distribution with parameters (πM |Y :

M ∈M).

• Step 2: If the drawn M belongs to Mp, draw η ∼ πη|M,Y and set ISmixη = {η}. If the drawn

M belongs to Ms, draw φM ∼ πφ|M,Y and set ISmixη = ISη(φM |M).

• Step 3: Repeat Steps 1 and 2 G times to obtain G draws of ISmixη .

7This algorithm can be straightforwardly extended to the case where the first i∗ columns of Q are exactly identified

by zero restrictions and there are zero and/or sign restrictions on the (i∗ + 1) column, or when the first i∗ columns

of Q are determined up to an i∗-dimensional linear subspace of Rn.
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• Step 4: Let lmixg and umixg be the upper and lower bounds of ISmixη , respectively, where

lmixg = umixg if the gth draw of M belongs to Mp. Approximate the bounds of the set of

posterior means by the sample averages of lmixg and umixg .

Step 1 of this algorithm requires computing the posterior model probabilities, πM |Y, for each

model or, equivalently, the marginal likelihood for each model. Algorithms to compute the marginal

likelihood include those in Chib and Jeliazkov (2001), Geweke (1999) and Sims et al. (2008).

When the models admit an identical reduced form, it is unnecessary to compute the marginal

likelihoods, because the posterior model probabilities depend only on posterior-prior plausibility

ratios, which are the posterior probability that the identified set is nonempty divided by the prior

probability that the identified set is nonempty in each model. These ratios can be computed

using numerical approximations of the prior and posterior probabilities that the identified set is

nonempty. Depending on the pattern of zero and sign restrictions considered, these probabilities

can be computed by drawing φ from its prior or posterior and using the algorithms described in

the previous subsection to check whether the identified set is nonempty. Since computing these

ratios requires drawing φ from its prior, it is necessary for this prior to be proper.8

Step 2 requires drawing from the posterior of the object of interest η when the model is point-

identified or the prior is for the structural parameters, which are standard problems. For example,

when the prior is for the reduced-form parameters, one simply draws from the posterior for φ and

transforms the draw. When the sampled model is set-identified, Step 2 requires drawing φ from

its posterior and computing the identified set for the object of interest. Note that πφ|M,Y supports

only values of φ with nonempty identified set. In practice, the practitioner may specify a prior that

assigns positive probability to regions of the reduced-form parameter space with empty identified

set and simply continue to draw φ from its posterior at a given draw of M until the identified set is

nonempty. The bounds of the identified set can be computed using any of the approaches described

in the previous subsection (depending on the pattern of zero and sign restrictions). As in GK, the

draws of lmixg and umixg can be used to construct a robust credible interval.

6.3 KL-neighborhood (GKU)

This section discusses how to compute the set of posterior means and the posterior Gamma minimax

decision (i.e., the point-estimator under ambiguity). The algorithms below assume that posterior

draws of φ are given and that η can be drawn from the benchmark conditional prior. GKU also

present modifications of these algorithms when direct draws of η are unavailable but its probability

8It is possible to eliminate a source of Monte Carlo sampling variability arising from Step 1 by avoiding sampling

M from a multinomial distribution. For example, if the posterior model probabilities are known to be 0.5 when

averaging over two models, one simply needs to draw G/2 times from the relevant posterior for each model.
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density can be evaluated up to a proportional constant. The first algorithm below describes how

to compute the set of posterior means for some object of interest f(η).

Algorithm 6. Let G posterior draws of φ, {φ1, . . . ,φG}, and benchmark conditional prior π∗η|φ be

given.

• Step 1: For each g = 1, . . . , G, obtain K independent draws of η, ηgk ∼ π∗η|φ, k = 1, . . . ,K.

Approximate the Lagrange multipliers, κlλ(φg) and κuλ(φg), by solving the following optimiza-

tion problems:

κ̂lλ(φg) ≡ arg min
κ≥0

{
κ ln

(
1

K

K∑
k=1

exp

(
−
f(ηgk)

κ

))
+ κλ

}
(6.1)

κ̂uλ(φg) ≡ arg min
κ≥0

{
κ ln

(
1

K

K∑
k=1

exp

(
f(ηgk)

κ

))
+ κλ

}
. (6.2)

• Step 2: Approximate the set of posterior means of f(η) by 1

G

G∑
g=1

∑K
k=1 f(ηgk) exp

(
− f(ηgk)

κ̂lλ(φg)

)
∑K

k=1 exp
(
− f(ηgk)

κ̂lλ(φg)

)
 ,

1

G

G∑
g=1

∑K
k=1 f(ηgk) exp

(
f(ηgk)
κ̂uλ(φg)

)
∑K

k=1 exp
(
f(ηgk)
κ̂uλ(φg)

)
 . (6.3)

The optimization problems in Step 1 are convex and can be solved reliably using a gradient-

based numerical optimization routine, such as the interior-point algorithm in Matlab’s ‘fmincon’

optimizer. Care should be taken when the Lagrange multipliers are close to zero, since terms in

the expression for the set of posterior means may be very large and result in numerical overflow.

The following algorithm can be used to approximate the worst-case risk of decision (i.e., esti-

mator) δ, which can then be used to compute the posterior Gamma minimax estimator.

Algorithm 7. Let G posterior draws of φ, {φ1, . . . ,φG}, and benchmark conditional prior π∗η|φ be

given. Let h(δ, η) be the loss function (e.g., quadratic or check).

• Step 1: For each g = 1, . . . , G, obtain K independent draws of η, ηgk ∼ π∗η|φ, k = 1, . . . ,K.

Approximate the Lagrange multiplier, κλ(φg), by solving the following optimization problem:

κ̂λ(δ,φg) ≡ arg min
κ≥0

{
κ ln

(
1

K

K∑
k=1

exp

(
h(δ, ηgk))

κ

))
+ κλ

}
. (6.4)

• Step 2: For each g = 1, . . . , G, compute

r̂λ(δ,φg) =

∑K
k=1 h(δ, ηgk) exp

(
h(δ,ηgk)
κ̂λ(δ,φg)

)
∑K

k=1 exp
(
h(δ,ηgk)
κ̂λ(δ,φg)

) . (6.5)
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The posterior Gamma minimax estimator is then obtained by minimising (1/G)
∑G

g=1 r̂λ(δ,φg)

with respect to δ. If the loss is differentiable in δ, this minimisation can be carried out using a

gradient-based numerical optimization routine. Otherwise, the minimisation can be done via grid

search, which is not computationally costly because δ is a scalar. In either case, the same draws of

φ and η (at each draw of φ) should be used for the optimization.

7 Empirical Illustration

This section illustrates how to apply the methods described above using an empirical example. The

empirical application considered is from Arias et al. (2019; henceforth, ACR), who estimate the

effects of monetary policy shocks in the United States using a mixture of zero and sign restrictions

on the systematic response of the federal funds rate to macroeconomic variables.

Reduced-form VAR. The model’s endogenous variables are real GDP (GDPt), the GDP defla-

tor (GDPDEFt), a commodity price index (COMt), total reserves (TRt), non-borrowed reserves

(NBRt) (all in natural logarithms) and the federal funds rate (FFRt). The data are monthly and

run from January 1965 to June 2007. The VAR includes 12 lags and no deterministic terms.

In order to apply the approach in GKV, we need to compute the posterior-prior plausibility

ratio. This requires drawing from the prior for φ, so this prior needs to be proper. ACR use

an improper normal-inverse-Wishart prior, which is inappropriate for our purposes. Instead, we

use a diffuse (but proper) normal-inverse-Wishart prior under which the prior means of the VAR

coefficients imply that each variable in yt follows a univariate random walk a priori. The posterior

for the reduced-form parameters is then also a normal-inverse-Wishart distribution, from which it

is straightforward to obtain independent draws (e.g., using the sampler described in Del Negro and

Schorfheide (2011)).9

Identifying restrictions. Let yt = (FFRt, GDPt, GDPDEFt, COMt, TRt, NBRt)
′. The mone-

tary policy shock is ε1t and the first equation of the SVAR can be interpreted as the monetary

policy reaction function. ACR19 set-identify impulse responses to the monetary policy shock

using a mixture of sign and zero restrictions on the systematic response of monetary policy to

macroeconomic variables, which are restrictions on the first row of A0. The zero restrictions

that they impose are that FFRt does not react contemporaneously to TRt and NBRt (i.e.,

these two variables do not appear in the central bank’s reaction function), which implies that

e′1,6A0e5,6 = (Σ−1
tr e5,6)′q1 = 0 and e′1,6A0e6,6 = (Σ−1

tr e6,6)′q1 = 0. The sign restrictions that

they impose are that the contemporaneous reactions of FFRt to GDPt and GDPDEFt are non-

negative, which – given the sign normalisation that e′1,6A0e1,6 = (Σ−1
tr e1,6)′q1 ≥ 0 – implies that

9The results when conducting standard Bayesian inference (as in ACR) and robust Bayesian inference (as in GK)

reported below are very similar to those obtained using the same (improper) prior used in ACR.
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e′1,6A0e2,6 = (Σ−1
tr e2,6)′q1 ≤ 0 and e′1,6A0e3,6 = (Σ−1

tr e3,6)′q1 ≤ 0. Additionally, the impact im-

pulse response of the federal funds rate to a monetary policy shock is restricted to be nonnegative,

which implies that e′1,6A
−1
0 e1,6 = e′1,6Σtrq1 ≥ 0.

Standard Bayesian inference. The approach to Bayesian inference used in ACR assumes a

uniform prior for Q. Here, we assume that the conditional prior for Q given φ is uniform over

the space of orthonormal matrices satisfying the identifying restrictions.10 We obtain 10,000 in-

dependent draws from the normal-inverse-Wishart posterior for φ such that the identified set is

nonempty; we check whether the identified set is nonempty using Algorithm 3. At each draw of φ,

we obtain a draw of Q from the uniform distribution over Q(φ|S) using Algorithm 2. The resulting

joint draw of (φ,Q) is then used to compute the impulse responses.

Figure 1 plots the impulse responses of the federal funds rate and real GDP to a positive

standard-deviation monetary policy shock (the responses of the remaining variables are omitted

for brevity). Based on the posterior mean (black circles), the federal funds rate increases by about

20 basis points in response to the shock before declining to be around its pre-shock value after

six months. Output is around 0.2 per cent lower in the year after the shock and the posterior

probability of a negative output response is reasonably high at short horizons (e.g., around 85 per

cent on impact and one year after the shock). Overall, the results essentially replicate those in

ACR and suggest that a positive monetary policy shock results in an economic contraction.

Full ambiguity (GK). As discussed above, the results obtained under the single prior may be

sensitive to the choice of prior for Q given φ, which is not updated by the data. To address this

concern, the robust Bayesian approach of GK replaces the unrevisable prior for Q given φ with the

set of all (conditional) priors that are consistent with the identifying restrictions in the sense that

the prior places probability one on the identified set given φ. This generates a set of posteriors,

which can be summarised by a set of posterior means (an estimator of the identified set) and a

robust credible region (the shortest interval that is assigned at least a given posterior probability

under all posteriors within the set). To obtain these quantities, it is necessary to compute the lower

and upper bound of the identified set for the object of interest (i.e., the impulse response at each

horizon) at each draw of φ. As discussed above, there are several ways to this. Here, we apply the

active-set algorithm described in Gafarov et al. (2018) at each draw of φ from its posterior.

The set of posterior means (the vertical lines) includes zero at all horizons. This means that

there exist (unrevisable) priors for Q given φ that are consistent with the identifying restrictions

10This differs slightly from the prior used in ACR, who assume a uniform-normal-inverse-Wishart prior for Q and φ.

In terms of implementation, our prior requires a single draw of Q to be obtained at each draw of φ (with nonempty

identified set). In contrast, the prior in ACR is imposed by making a joint draw of φ from the normal-inverse-

Wishart posterior and Q from the uniform distribution over O(n), and rejecting joint draws that do not satisfy the

sign restrictions. See Uhlig (2017) for a discussion of this point. This difference in priors does not substantively affect

the results.

31



Figure 1: Impulse Responses to a Monetary Policy Shock – Standard and Robust

Bayesian Inference
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Notes: Circles and dashed lines are, respectively, posterior means and 95 per cent (pointwise)

highest posterior density intervals under the uniform prior for Q|φ. Vertical bars are

sets of posterior means and solid lines are 95 per cent (pointwise) robust credible regions.

Impulse responses are to a standard-deviation shock.

and yield positive posterior mean output responses. The posterior lower probability – the lowest

probability over all posteriors generated by the set of priors – of a negative output response is

close to zero for all horizons considered.11 This suggests that the result that output falls with

high posterior probability that is obtained under standard Bayesian inference is sensitive to the

choice of unrevisable prior. GK propose to quantify the influence of the choice of single prior on

posterior inference by comparing the width of the highest posterior density intervals (the dashed

lines) against that of the robust Bayesian credible intervals (the solid lines). On average across the

horizons considered, the width of the 95 per cent highest posterior density intervals for the output

response is 40 per cent that of the robust credible intervals, which suggests that the unrevisable prior

contributes a substantial amount of the information contained in the standard Bayesian posterior.

Model averaging (GKV). To illustrate the application of the (robust) Bayesian model-averaging

procedure in GKV, we consider a second set of identifying restrictions in addition to the set con-

sidered above. Specifically, we use the classic recursiveness assumption considered in, for example,

Christiano, Eichenbaum and Evans (1999). Under this set of restrictions, GDPt, GDPDEFt and

COMt do not respond contemporaneously to a monetary policy shock (i.e., a shock to FFRt),

while FFRt does not respond contemporaneously to shocks in TRt and NBRt. After re-ordering

the variables so that yt = (GDPt, GDPDEFt, COMt, FFRt, TRt, NBRt)
′, the restrictions imply

11The posterior lower probability that the output response is negative at a given horizon is approximated by the

share of draws from the posterior of φ where the upper bound of the identified set for the output response is negative

(i.e., u(φ) < 0).
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that A−1
0 is block lower-triangular. These restrictions are sufficient to point-identify the impulse

responses to a monetary policy shock; in particular, the fourth column of A−1
0 is identified by the

fourth column of Σtr.

We assume there is uncertainty over the set of identifying restrictions. For the sake of illustra-

tion, we place equal weights on the two sets of restrictions. GKV discuss when the prior model

probabilities are updated by the data. In particular, the prior model probabilities are not updated

when the models are ‘indistinguishable’ (i.e., they admit an identical reduced-form defined on a

common parameter space) and share a common prior for φ, where the prior for φ is the notional

reduced-form prior truncated to the region with nonempty identified set. Under the set-identifying

restrictions considered, the identified set is never empty at any value of φ supported by the reduced-

form prior. The identified set under the point-identifying restrictions (which is a singleton) is also

never empty. The two models share a common reduced-form prior and the posterior model proba-

bilities are equal to the prior model probabilities. The set of posteriors that allows for uncertainty

over the identifying restrictions is then given by the simple average of the set of posteriors under

the set-identifying restrictions and the single posterior under the point-identifying restrictions.

The top panels of Figure 2 plot the posterior means and 95 per cent highest posterior density

intervals under the point-identifying restrictions alongside the robust Bayesian output under the

set-identifying restrictions (i.e., the robust Bayesian output plotted in Figure 1). Under the point-

identifying restrictions, output falls with high posterior probability. The bottom panels plot the

model-averaged set of posterior means and robust credible intervals. The set of posterior means

under the set-identifying restrictions has been shrunk towards the posterior mean under the point-

identifying restrictions; since the posterior model probabilities are equal, the lower (upper) bound

of the set of posterior means is the average of the lower (upper) bound of the set of posterior

means in the set-identified model and the posterior mean in the point-identified model. As a

result, the set of posterior means for the output response now excludes zero at horizons of less

than one year. Nevertheless, the robust credible intervals contain zero at all horizons and the

posterior lower probability that the output response is negative at the one-year horizon is only

50 per cent. Equally weighting models identified using the set-identifying restrictions in ACR and

classic recursive restrictions thus provides little evidence that output falls following a monetary

policy shock once one allows for ambiguity over the unrevisable prior in the set-identified model.

This approach can also be used to back out the prior model probabilities that would lead to

particular posterior inferences. For example, one would need to place a prior probability of at least

0.55 on the point-identified model for the model-averaged set of posterior means to unambiguously

imply a negative output response at the one-year horizon.

KL-neighborhood (GKU). To illustrate the approach in GKU, we treat the normal-inverse-

Wishart prior for φ and the conditionally uniform prior for Q given φ as a benchmark prior and

conduct a posterior sensitivity exercise. The conditionally uniform prior for Q given φ implies a
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Figure 2: Impulse Responses to a Monetary Policy Shock – Uncertain Identification
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Notes: Top panels plot robust Bayesian output under set-identifying restrictions and standard

Bayesian output under point-identifying restrictions. Bottom panels plot robust Bayesian

output from GKV, assuming equal prior probabilities on the two sets of restrictions. Circles

and dashed lines are, respectively, posterior means and 95 per cent (pointwise) highest

posterior density intervals under point-identifying restrictions. Vertical bars are sets of

posterior means and solid lines are 95 per cent (pointwise) robust credible regions.

benchmark (conditional) prior for the impulse response of interest, η. We consider perturbations

of the prior for η within a neighborhood of the benchmark prior. The size of the neighborhood is

determined by the KL distance, λ. We consider different values of λ and document how posterior

inference changes depending on the size of the neighborhood.

At each draw of φ from its posterior, {φm}Mm=1, we obtain N draws of Q from the conditionally

uniform distribution over the identified set. We transform these draws into impulse-response space,

so we have a set of draws of η from the benchmark prior at each draw of φ, {ηmi}Ni=1. We

then approximate the Lagrange multipliers, κlλ(φ) and κuλ(φ), using an interior-point algorithm

implemented within Matlab’s ‘fmincon’ optimizer. After computing the Lagrange multipliers, we

compute the set of posterior means using the sample analogue of (5.25) (i.e., with integration
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Figure 3: Impulse Responses to a Monetary Policy Shock – Posterior Sensitivity

Analysis
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Notes: Circles are posterior means under the benchmark conditional prior, coloured solid lines are

bounds of sets of posterior means for different values of the Kullback-Leibler distance λ

and dashed lines are bounds of sets of posterior means using the approach from GK (i.e.,

from the right panel of Figure 1).

replaced by averaging over the draws of η and φ). For the purposes of illustration, we conduct the

sensitivity exercise under different values of λ ∈ {0.1, 1, 10}.
Figure 3 presents the set of posterior means of the output response to a monetary policy shock

at each horizon of interest and for each value of λ considered. For comparison, the figure also

plots the posterior mean under the benchmark prior (which is equivalent to the case where λ = 0)

and the set of posterior means obtained using the approach from GK described above (which is

equivalent to the case where λ→∞). When λ = 0.1, the set of priors is constrained to lie within

a relatively small KL distance of the benchmark prior, and the resulting set of posterior means

lies entirely below zero at all horizons considered; in other words, for priors within a relatively

small neighborhood of the benchmark prior, the set of posterior means supports the conclusion

that output falls following a positive monetary policy shock. As λ increases, we allow for priors

that are further from the benchmark prior and the set of posterior means expands. At λ = 1, the

set of posterior means excludes zero at only some horizons shorter than one year, and at λ = 10 the

set of posterior means includes zero at all horizons. For large values of λ, the set of priors grows to

include all priors that are consistent with the identifying restrictions. Consequently, as λ increases,

the set of posterior means converges towards that obtained using the approach from GK, which

allows for full ambiguity over the set of priors that are consistent with the identifying restrictions.
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8 Conclusion

We overviewed how Robust Bayesian analysis provides useful tools for Bayesian econometricians

and decision-makers who want to assess the sensitivity of inferences and statistical decisions to

the choice of a prior. The main idea is to construct a set of priors, which in turn delivers: 1) a

set of posterior quantities that can be used for inference; and/or 2) an optimal statistical decision

for ambiguity-averse decision-makers. We discussed how the sensitivity concerns are particularly

salient in set-identified structural models due to the fact that a component of the prior is not

revised by the data even in large samples. We reviewed different ways to construct the set of priors

and discussed in detail how to implement the methods in macroeconometric applications using

set-identified SVARs.
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