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Abstract

We use a panel of historical patent data covering a large range of countries over the

past century to study the evolution of innovation across time and space and its effect

on productivity. We document a substantial rise of international knowledge spillovers

as measured by patent citations since the 1990s. This rise is mostly accounted for by

an increase in citations to US and Japanese patents in fields of knowledge related to

computation, information processing, and medicine. We estimate the causal effect of

innovation induced by international spillovers on sectoral output per worker and total

factor productivity (TFP) growth in a panel of country-sectors from 2000 to 2014, as

well as on aggregate income per capita since 1960. To assess causality, we develop a

shift-share instrument that leverages pre-existing citation linkages across countries and

fields of knowledge, as well as heterogeneous countries’ exposure to technology waves.

On average, an increase of one standard deviation in log-patenting activity increases

sectoral output per worker growth by 1.1 percentage points. We find results of similar

magnitude for sectoral TFP growth and long-run aggregate income per capita growth.
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1 Introduction

Productivity is a key driver of economic growth within and across countries. Clark and

Feenstra (2003) and Klenow and Rodŕıguez-Clare (1997) document that the majority of the

divergence in income per capita over the 20th century can be attributed to cross-country

differences in total factor productivity (TFP) growth. The endogenous growth literature,

starting with the seminal contributions of Romer (1990) and Aghion and Howitt (1992), has

emphasized the role of innovation and idea generation as a central driver of technology and,

ultimately, productivity growth. However, from an empirical point of view, direct measures of

innovation that cover a large number of technologies, countries, and time periods are scant.1

In this paper, we use historical patent data spanning a vast range of countries over the

past one hundred years to study the evolution of innovation across time and space. The use

of patent data allows us to exploit a widely validated quantitative measure for the generation

of new ideas (through patent creation) and knowledge spillovers, i.e., how innovation builds

on previous knowledge (through patent citations). We document a substantial rise of inter-

national knowledge spillovers since the 1990s mostly driven by the United States and Japan,

as well as the rise of innovation related to computation, information and communication

technologies (ICTs), and medicine. We leverage the rich structure of citation linkages across

time, space, and fields of knowledge (FoK) to propose an identification strategy to quantify

the effect of innovation induced by knowledge spillovers on productivity and economic growth

across countries and industries. To the best of our knowledge, our identification strategy is

novel to the endogenous growth literature.

We build our measure of innovation using patent data collected from the European Patent

Office Worldwide Patent Statistical Database (PATSTAT). PATSTAT contains bibliographi-

cal and legal status information on more than 110 million patents from the main patent offices

around the world, covering leading industrialized countries, as well as developing countries.

To avoid some of the arbitrariness of using broad patent technology classes (Keller, 2002),

we classify patents into fields of knowledge that we obtain with a machine-learning approach.

Based on the premise that knowledge is embedded in inventors, the algorithm first calculates

the probability that the same inventor patents inventions in multiple technology classes. It

then uses these probabilities to infer the proximity of technology classes in the knowledge

space and to create knowledge clusters.2

1See Comin and Mestieri (2014) and the references therein documenting the diffusion of major technologies
since the Industrial Revolution. Comin and Mestieri (2018) show that the productivity transitional dynamics
implied by the observed diffusion patterns match well the evolution of the distribution of cross-country income
per capita in the past two centuries. Their analysis is circumscribed to 25 major technologies since 1780.

2As a robustness check, we also perform a clustering analysis where the strength of the linkages between
different patent classes is based on citations and/or co-appearance of these classes on the same patent grant.
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Armed with our newly defined technology classes, we show that their significance—as

measured by the share of patents across fields of knowledge—has importantly evolved over

time. The data reveal substantial technological waves in the past one hundred years. For ex-

ample, mechanical engineering accrued the largest share of innovations near the beginning of

the 20th century. Fields of knowledge related to chemistry and physics (e.g., macromolecular

compounds) were the most prominent fields around the mid-century mark, while inventions

related to medicine and the digital economy appear to be the most prevalent at the end

of the 20th century and over the most recent decades. We also show that while advanced

economies account for the bulk of patenting activity, there is substantial variation in terms of

countries’ specialization across fields of knowledge. Moreover, these patterns of specialization

are heterogeneous over time.

Next, we turn our attention to knowledge spillovers. We measure knowledge spillovers

through patent citations across fields of knowledge and countries. For this exercise, we focus

on the post-1970 sample for which we have data for virtually all countries in the world. We

show that for the average patent, citations tend to be biased towards domestic, as opposed

to international, inventions and toward patents within the same field of knowledge. We also

document that across all these categories, there is an upward trend over time in terms of

citations. That is, new patents tend to cite other patents more.

A striking fact has emerged since the 1990s. Except for the US and Japan, international

citations have grown faster than domestic citations. After the year 2000—excluding the US

and Japan—international patents are cited more than twice as much as domestic patents.

This finding suggests that the reliance on knowledge produced elsewhere—and particularly

in the US and Japan—has markedly increased over this period of time. Even for technology

leaders such as Germany and the United Kingdom, foreign citations now account for most

of the citations. The increase is mainly driven by a handful of fields of knowledge that are

related to ICTs and medicine. This fact may be interpreted as a decline in the prominence

of European inventions relative to their US and Japanese counterparts.

After having laid out these facts, we investigate the effect of innovation (as measured by

patenting) on productivity and income. Our empirical specification is guided by a simple

theoretical framework that incorporates patents and patent citations in a multi-sector growth

model. Our baseline regression studies the effect of innovation induced by international

spillovers on productivity in the latest part of the sample (2000-2014) for which we have high-

quality data on cross-country sectoral value added and TFP, as well as factors of production.

We then extend our analysis back in time and study the effect of innovation on long-run

income growth (for the periods 1980-2016 up to 1960-2016).

Simply correlating innovation and productivity or output per worker is problematic be-
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cause of measurement error (which would generate attenuation bias), potential reverse causal-

ity, and the presence of unobserved factors affecting simultaneously patenting and the de-

pendent variables. Examples of such factors include financial or external shocks that affect

both the output of a country and the amount of innovation produced. We address these en-

dogeneity concerns by constructing a shift-share instrument that exploits country and time

variation in technological waves and the network structure of knowledge spillovers, in the

spirit of Acemoglu et al. (2016) and Berkes and Gaetani (2022). In particular, our proposed

shift-share design leverages pre-existing knowledge linkages across countries and technolo-

gies measured through patent citations to construct the share component of our instrument.

The shift component is obtained using lagged foreign innovative output in other fields of

knowledge and countries as measured by patent filings.3

In our baseline regression, the main variable of interest is value added per worker by

country and sector (measured from the World Input Output Database) over the 2000-2014

period. The regression model includes controls that vary at the country-sector-time level

(e.g., sectoral capital and labor, along with differential country and sectoral trends). We

use patent data starting in 1970 to construct our instrument for this exercise. We find a

robust effect of innovation on value added per employment growth. One standard deviation

increase in patenting activity leads to a 0.078 standard deviation increase in output per

worker growth (after partialling out the regression controls), implying an increase in output

per worker growth of 1.1 percentage points. When we estimate the effect of innovation on

TFP growth, we find a very similar result in magnitude—a result that is implied by our

theoretical framework.

We conduct a number of robustness checks to address concerns regarding the validity

of the instrument, such as the existence of pre-trends or demand-pull anticipatory effects

that might be correlated with the contemporaneous state of the local economy. To do this,

among other things, we show that the pre-period productivity is uncorrelated with subsequent

patent activity predicted by the instrument. We also “reverse” the network of citations that

we used to measure knowledge spillovers and calculate the amount of innovation we would

have expected to observe in the past if the patenting activity was driven only by future

demand. Reassuringly, we find no evidence supporting this alternative hypothesis.

3More precisely, we construct the instrument in two steps. First, we estimate the strength of the linkages
across countries and fields of knowledge (measured by patent citations) in the pre-sample period. These
linkages constitute our pre-determined shares. The shifts of our instrument for country and field of knowledge
(co and ko, respectively) are given by the patents filed in all other countries (cd 6= co) and fields of knowledge
(kd 6= ko) in the sample. We are thus assuming that the probability that patents in (cd, kd) generate a
patent in (co, ko) can be inferred from the network of patent citations, and it is an increasing function of
the strength of these links. Applying this procedure recursively, we obtain a predicted number of patents for
each country and field of knowledge. In fact, we refine this procedure and extend this logic to higher-order
linkages to create our main instrument (see Section 5).
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We conclude our paper by extending our framework to study the effect of innovation on

long-run income per capita growth. In our first exercise, we estimate the effect of innovation

on income per capita over the 1980-2016 period. We reconstruct our shift-share instrument

using pre-1980 patent data, thus exploiting the full extent of the time coverage of our dataset.

Using pre-1980 data allows us to cover patenting activity of virtually all high-income and

upper-middle-income countries (as defined by the World Bank). We perform a second exercise

by estimating the effect on income per capita growth starting in 1960 and 1970. In this

case, we construct our instrument using the pre-1960 and pre-1970 patent data, respectively.

While covering a longer time span, we lose information on the patenting activity of many

upper-middle-income countries. Despite this, we find a positive, comparable-in-magnitude,

significant effect of patenting on income per capita growth across these different time periods.

An increase of one standard deviation in log patenting implies an increase in the growth of

income per capita between 1.6 and 2.8 percentage points. The implied changes in growth rates

represent 24% and 41% of a standard deviation of income per capita growth, respectively.

Related Literature This paper relates to the vast and rich literature studying the link

between innovation and productivity since, at least, the seminal work of Griliches (1979,

1986). Similar to Kogan et al. (2017), who find large positive effects of patented inventions

on firm growth and productivity, we document positive effects of innovation on output and

productivity growth at the country-sector level. Our instrumental variable approach leverages

knowledge spillovers and the diffusion of technology as measured by patent citations. The

existence of knowledge spillovers has been extensively documented (e.g., Jaffe et al., 1993,

and Murata et al., 2014). However, most of this literature has focused on domestic spillovers,

based on the premise that they are very localized. In this paper, we especially focus on

international spillovers, which have also been documented to be quantitatively important

(e.g., Eaton and Kortum, 1999; Keller, 2002; Keller and Yeaple, 2013; Buera and Oberfield,

2020; Keller, 2004; and Melitz and Redding, 2021 provide excellent surveys). We contribute

to this strand of the literature by documenting an increase of international spillovers since

the 1990s and by using international linkages to build our shift-share design and, ultimately,

quantify the effect of innovation on productivity.

In addition, our paper contributes to a recent literature that uses historical patent data

to shed light on various linkages between innovation and long-run outcomes, e.g., Nicholas

(2010), Packalen and Bhattacharya (2015), Petralia et al. (2016), and Akcigit et al. (2017).

One difference with most of this literature is that we extend our analysis beyond one country

and aim to provide a global view. To the best of our knowledge, this is the first paper that

uses the entire coverage of the PATSTAT database to study patenting activity. Regarding
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the goal of providing a global view, our work is perhaps closest to Bottazzi and Peri (2003),

who use R&D and patent data for European regions in the 1977-1995 period to estimate

research externalities.

This paper is also related to the growing literature that incorporates networks in the

analysis of different aspects of economic growth and trade (e.g., Acemoglu et al., 2015;

Oberfield, 2018; Liu, 2019; Baqaee and Farhi, 2019; and Kleinman et al., 2021). In this regard,

our work complements the recent work by Ayerst et al. (2020) and Liu and Ma (2021), who

use international patent data to study the diffusion of knowledge embedded in trade patterns

and the design of optimal R&D policies in the presence of international knowledge spillovers,

respectively. Finally, our network-based shift-share instrumental approach is related to a

number of papers that have used the network structure of patent citations to construct

shift-share instruments. Our approach is most similar to Berkes and Gaetani (2022), who

construct a shift-share instrument leveraging the network of citations across US cities, and

Acemoglu et al. (2016), who use a citation network to percolate sectoral innovations through

the innovation network and illustrate how technological progress builds upon itself. Both

papers focus on the United States.4

2 Data

2.1 Data Sources

In this paper, we measure new ideas through patent data and productivity through value

added per worker and TFP. Patent data are collected from the European Patent Office’s

Worldwide Patent Statistical Database (PATSTAT, Autumn 2018 version). PATSTAT con-

tains bibliographical and legal status information on more than 110 million patents from the

main patent offices around the world, covering leading industrialized countries, as well as

developing countries, over the period 1782-2018.5 From PATSTAT, we collect information

on patent filing years, inventor and assignee locations, citations, patent families, and tech-

nological classes. While PATSTAT provides the most comprehensive coverage of patenting

activities worldwide, it also has some limitations (Kang and Tarasconi, 2016). The main

limitation for our purposes is data availability in the earlier years. In fact, data along one

4A large number of papers have used more standard shift-share (“Bartik”) instruments in the innovation
and productivity literature. For example, Moretti et al. (2019) estimate the effects of R&D subsidies and
Hornbeck and Moretti (2019) estimate the effect of TFP growth in manufacturing across US cities.

5PATSTAT is increasingly popular in economics as it provides rich information on patents. Most of its
use has focused on particular sectors, countries, or time periods. See, among others, Coelli et al. (2016);
Aghion et al. (2016); Akcigit et al. (2018); Philippe Aghion and Melitz (2018); Bloom et al. (2020); and
Dechezleprêtre et al. (2020).
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or more dimensions are often missing for some countries in the years preceding 1970. We

therefore split our sample into two groups of countries, which we use at different stages of our

analysis. The first group is composed of six major technological leaders – the United States,

the United Kingdom, France, Germany, the Soviet Union, and Switzerland – for which all

the patents’ characteristics required by our analysis are available at least since 1920.6 The

second group includes all the countries covered by PATSTAT and starts in 1970.7 Appendix

A provides more information about the composition of the samples and summary statistics.

We assign each patent to a geographical unit according to the country of residence of

its inventor(s). If this information is not available, we use instead the country of the as-

signee(s) or publication authority. When a given patent is associated with multiple inventors

or applicants from different countries or territories, we assign weights to these patents. The

weights are computed assuming that each inventor or applicant contributed equally to the

development of the invention.8 To avoid double-counting patents that are filed in more than

one patent office, we restrict our analysis to patents that are the first in their (DOCDB)

family (except for our citation analysis, in which we count all given citations to any patent

in a family). We further collect the full distribution of technology classes associated with

each patent based on the International Patent Classification (IPC). For our analysis, we first

consider all the fields at the four-digit level (e.g., A01B)—for a total of 650 classes—and we

then cluster them into consistent groups following the machine-learning procedure outlined

in Section 2.2. Finally, to capture when an idea was completed and abstract from potential

bureaucratic delays that are orthogonal to innovative activities, in our analysis we use the

patent filing years instead of the years in which patents were granted.9

We supplement the patent data with the World Input Output Database (WIOD, Timmer

et al. 2015). This database provides data on prices and quantities of inputs, outputs, and

trade flows covering 43 countries and the Rest of the World for the period 2000-2014. The

data are classified according to the International Standard Classification revision 4 (ISIC) for

a total of 56 sectors. Using the World Input-Output Tables (WIOT) for each set of countries,

6Note that to compare consistent geographical units over time, when appropriate, we aggregate the patents
filed in the German Democratic Republic and the Federal Republic of Germany. Similarly, for the Soviet
Union, we combine all the patents produced by Armenia, Azerbaijan, Belarus, Estonia, Georgia, Kazakhstan,
Kyrgyzstan, Latvia, Lithuania, Moldova, Russia, Tajikistan, Turkmenistan, Ukraine, and Uzbekistan.

7For our empirical analysis, we exclude China from our sample because of a substantial rise in the number
of Chinese patents since the third revision of the patent law in China in 2008. While we see a sharp increase
in the total number of Chinese patents after the implementation of the new law, the same pattern is not
observed in the number of Triadic patents, which are made up of all the patents filed jointly in the largest
patent offices, i.e., the United States Patent and Trademark Office (USPTO), the European Patent Office
(EPO), and the Japan Patent Office (JPO). For more details, see Appendix A.1.

8For example, if a given patent has four inventors, one from the US and three from the UK, then the
patent will be split between the US and the UK with weights of 0.25 and 0.75, respectively.

9We discuss in more detail our data construction procedure in Appendix A.1
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sectors, and years, we construct trade flows, gross output, intermediate purchases, and value

added expressed in US dollars. Additionally, from the Socio-Economic Accounts (SEA) in

the WIOD, we collect industry-level data on employment, capital stocks, gross output, and

value added at current and constant prices. These data allow us to compute country-sector

TFP paths and also to compute trade in intermediate and final goods across country-sector

pairs.10 Finally, we use data from the Maddison Project Database (Inklaar et al., 2018) for

the historical analysis of income per capita growth presented in the Section 5.3.

2.2 Construction of Fields of Knowledge

Innovation is the process of creating new knowledge, potentially building on existing knowl-

edge across different fields. To operationalize our goal of measuring innovation waves across

time and space, we build on the vast existing literature that measures innovative activities

through patent data. We propose grouping finely defined patent classes into broader “fields

of knowledge,” which taken together constitute what we refer to as the “technology space”

of the world.11

We employ a novel approach to grouping patent technology classes based on inventors’

information. Our procedure is based on the likelihood that the same inventor produces

inventions associated with different patent subclasses. The idea is that because knowledge is

embedded in people, it is possible to cluster fields of knowledge based on the IPC subclasses

in which the same inventors tend to patent. More precisely, we build a probability matrix

T642×642,12 where each element (i, j) is the probability that an inventor patents in IPC subclass

i conditional on also having a patent assigned to subclass j.13 For example, a mechanical

engineer specialized in brakes will most likely patent in IPCs B60T (Vehicle Brakes or Parts

Thereof) and F16D (Clutches, Brakes), which our algorithm correctly bundles together.14

10See details in Appendix A.2. In the Appendix, we also discuss the additional database we use (i.e.,
UNIDO INDSTAT2) for historical data on sectoral manufacturing output by country and the Penn World
Data Tables.

11See Kay et al. (2014), Leydesdorff et al. (2014), and Nakamura et al. (2015) for alternative definitions of
technology space based on patent technology classes.

12Eight IPC subclasses whose second level is 99 (i.e., “Subject Matter not otherwise Provided for in this
Section”) were excluded from the analysis because they are assigned to patents with no clear identified
technology.

13The diagonal elements of the matrix, i = j, are set to be equal to one. Note that the so-obtained
matrix does not need to be symmetric because different IPC codes might weight differently in terms of
their importance and centrality relative to other IPC codes within a given field of knowledge. For example,
according to the matrix, manufacture of dairy products (A01J) is closest to dairy product treatment (A23C),
while dairy product treatment is closest to foods, foodstuffs, or non-alcoholic beverages (A23L).

14Other procedures for bundling patent classes have been proposed in the literature. One strand of the
measures uses patent citation information (e.g., Zitt et al., 2000; von Wartburg et al., 2005; Leydesdorff and
Vaughan, 2006; and Leydesdorff et al., 2014). We also conduct such grouping as a robustness check and
find substantial overlap. Another strand of the measures uses the “co-classification” information of patents

8



We then use a k-medoids clustering algorithm to group the IPC subclasses into knowledge

clusters. We interpret each resulting cluster as a field of knowledge, and use this classification

to analyze the evolution of patenting in the next section. The k-medoids algorithm minimizes

the distance within clusters by comparing all possible permutations of subclasses, conditional

on a specific number of clusters, k. To determine the optimal number of clusters, we first

compute the optimal clustering for each possible k and we then “score” each result using

the silhouette coefficient. The score takes into consideration the distance between elements

within a cluster, as well as the distance across clusters, while also penalizing the existence of

singletons.15 The optimal number of clusters implied by the silhouette coefficient is k = 164.

Table E in the Appendix reports the subclasses assigned to each cluster.16

3 Some Stylized Facts on World Innovation

We start our empirical analysis by presenting some stylized facts about the evolution of

innovation and knowledge spillovers across time and space. We use the fields of knowledge

created in Section 2.2 as our unit of analysis of the technology space.

3.1 Evolution of Fields of Knowledge across Space and Time

We first document the evolution of the major fields of knowledge for the past hundred years

and highlight how different countries contributed to their growth at different points in time.

To measure the importance of each field of knowledge at any point in time, we compute the

share of patents belonging to that field of knowledge. Each patent is weighted by the total

(Jaffe, 1986; Engelsman and van Raan, 1994; Breschi et al., 2003; Leydesdorff, 2008; Kogler et al., 2013; and
Altuntas et al., 2015). Others used the likelihood of diversification as measures of distance (Hidalgo et al.,
2007) and analysis of patent texts (Fu et al., 2012, and Nakamura et al., 2015).

15To apply the k-medoids algorithm requires the creation of a dissimilarity matrix D, which needs to
be symmetric. To obtain such dissimilarity matrix, we apply the following transformation to the inventor
probability matrix:

Dij = 1− (Tij + Tji) = Dji,

where each element in the dissimilarity matrix D is interpreted as a measure of distance between subclass i
and subclass j. We use this matrix in our k-medoids clustering algorithm to group the IPC subclasses into
clusters. More details on the procedure used to construct fields of knowledge can be found in Appendix A.4.

16As a robustness check, we also construct the proximity matrix based on the citation linkages instead,
and apply the same procedure. The results are similar to the ones obtained with our proximity matrix: (i)
the percentage of pairwise IPC subclasses that are in the same cluster is 50.6 (excluding singleton clusters,
which accounts for 22.6 percent of all clusters); (ii) the percentage of pairwise IPC subclasses that are in the
same cluster weighted by importance, measured by the number of patents in the respective subclass relative
to all patents, in the sample is 51.9 (excluding singletons); (iii) the percentage of clusters’ centers that are
the same is 67.1.
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number of forward citations.17 We split our data set into nineteen 5-years periods from 1920

to 2015, plus a period prior to 1920 where we lump together all the patents filed before that

year. For each time period, we rank every field of knowledge based on its relative contribution

to the overall patent activity.

Figure 1 shows the evolution of the fields that were ever present in the top five fields

at any point in time according to our measure. Two trends are readily noticeable. First,

we observe a substantial increase in the concentration of innovation, especially around the

1990s – approximately 10% of the fields of knowledge account for 60% percent of all patent

activity in the 2000s compared with 30% in the first half of the 20th century. Second, there is

substantial heterogeneity in the evolution of fields of knowledge over time. At the beginning of

the 20th century, fields of knowledge belonging to Mechanical Engineering and Transportation

(Packaging & Containers; Geothermal Systems) are the most prominent fields. Starting in the

1950s, we observe a shift towards chemistry and physics (e.g., Macromolecular Compounds).

Around the 1980s there was substantial increase in medical and veterinary science (e.g.,

Diagnosis and Surgery or Medical Preparation). Finally, and as expected, around the mid-

1990s the fields of knowledge related to computing and communication techniques started

playing a leading role in the innovation landscape.

We perform the same exercise using alternative measures of importance that address

possible concerns related to, for example, heterogeneous patenting practices across countries

or strategic patenting behavior that gained more prominence in the past few decades. To

do this, we build importance measures that take into consideration country fixed effects or

patents that were cited at least once. Table B.2 in the Appendix shows that these measures

are highly correlated to our baseline.

Next, we turn to the spatial heterogeneity of innovation activities by studying the contri-

bution of different countries to the growth of top fields of knowledge. We divide the sample

into four periods: 1920-1944, 1945-1969, 1970-1994, and 1995-2015. We concentrate our

analysis to the seven fields of knowledge that took a leading role based on the number of

patents throughout the entire period of study. Similarly to what we did in Figure 1, we

assess the contribution of each country by computing its patenting share in a certain field of

knowledge.18

Because of data limitations, for the period 1920-1970, our sample is made up of just six

countries: the US, the UK, France, Germany, the Soviet Union, and Switzerland. Figure B.1

17Note that we are using only the first patent of the family. Moreover, if a patent belongs to multiple
fields, we add a fraction of the patent to each field proportional to the number of IPC subclasses reported on
the patents.

18To account for potential differences in how countries assign patent citations, in this part of the analysis,
we use the total number of patents without weighting by the number of citations for better comparability.
We also verify that the results are robust to citation-weighted measures.
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Figure 1: Evolution of Top Fields of Knowledge

Notes: This figure represents the share of each field of knowledge, measured by the number of first-in-the-
family patents weighted by backward citations, in total patent activity across all fields in a given period of
time. The width of the colored bars reflects the share of the knowledge field. Exact values for shares can be
found in Table B.1.

in the Appendix shows that during this time period, the leading innovating role in major

fields of knowledge was split between the US and Germany, followed by the UK and France.

In fact, Germany overtook the US in every leading field in the period between the end of

World War II and 1970.

In Figure 2, we consider the whole sample of countries in the years after 1970. Between

1970 and 1995, there are three clear technological leaders: Japan, the US, and Germany. The

preponderant role played by Japan in the major fields of knowledge is remarkable. The US

also gains substantial prevalence in the second part of the sample. After 1995 other Asian

countries, such as South Korea, start rising to the forefront of the technological frontier. In

this period, France experiences a decrease in importance in the innovation landscape. Asian

countries dominate in the fields related to computing, engineering, and digital information,

while their role in chemistry and medicine is less pronounced.

We extend our analysis beyond the top fields of knowledge and compute an overall ranking

by averaging the country ranking across all fields of knowledge. This exercise paints a picture

similar to the one in Figure 2. Japan and the US are the technological leaders from 1970

until 1995, with Japan falling behind after the 2000s. The Soviet Union’s ranking is similar

to the one of the US in 1970 and it declines subsequently, while Asian countries such as

11



Figure 2: Countries Shares in Top Fields, 1970-2015

Taiwan gain prominence after the 2000s. See Section B in the Appendix for further details

and discussion of this exercise.19

3.2 Using Citations to Measure Spillovers across Time and Space

So far, we have shown that there is substantial time variation in terms of the composition

of the technological output and in terms of the geographical contribution to worldwide inno-

vation. We now turn our attention to knowledge spillovers. We measure spillovers through

patent citations across fields of knowledge and countries. There is an abundant literature

studying within-country spillovers using patent citations (e.g., Jaffe et al., 1993, and Murata

et al., 2014, for the United States), but the evidence on cross-country knowledge spillovers

is more scarce. Despite being an imperfect measure of knowledge spillovers, patent cita-

tions provide a useful quantifiable benchmark that can be easily measured and used in our

empirical analysis.

We focus our analysis on the post-1970 sample, for which we have data on filed patents

19In the Appendix, we report two additional results that shed more light on the spatial heterogeneity of
innovative activities over time. First, we decompose inequality in innovation within and between countries,
and find that the inequality in patenting across countries has increased since the 2000s, while the within
component has remained mostly stable. Second, we use a gravity-type regression to estimate the relationship
between gross domestic product (GDP) per capita, geographical distance, and production of technologies.
We find that changes in patenting shares across fields of knowledge are correlated across countries that are
geographically and linguistically close to each other.
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for virtually all countries in the world. We compute the citations given by these patents to

patents filed after 1900. Panel (a) in Figure 3 shows the evolution of the average number of

citations given by patents filed after 1970. The average number of citations experiences an

important increase starting around the 1980s. Domestic citations keep increasing up until

2002 and they then show a marked decline, whereas international citations plateau at about

4 international citations per patent in the late 1990s. A closer look at panel (a) further

reveals that domestic patent citations tend to be more prominent than international patent

citations: domestic patents are cited at roughly double the rate that of international patents

are. Panel (b) breaks down these trends by additionally looking at whether citations belong

to the field of knowledge (or FoK, as noted in Figure 3) of the citing patent.20 The plot shows

that citations tend to be concentrated not only geographically (i.e., domestic patents being

cited relatively more), but also technologically (i.e., patents in the same field of knowledge

being cited relatively more). Moreover, these gaps appear to have widened over the past

decades.

An important pattern that is revealed by our analysis is that most knowledge (as measured

by patent filings) is produced by a handful of countries – what we refer to as the “technological

leaders.” Specifically, as we have already seen in Figure 2, for the period 1970-2015 Japan

and the United States are responsible for the largest share of patents produced worldwide.

Panels (c) and (d) of Figure 3 separately depict citation dynamics for Japan and the US and

the rest of the world. While we observe an increase in the average number of citations per

patent, there are two important differences between the two panels. First, the United States

and Japan, on average, make more citations per patent than the rest of the world. Second,

most of the citations in the US and Japan are given to domestic patents, while the rest of

world mostly relies on knowledge produced in other countries, at least according to the data

on patent citations.21

Figure 3 depicts a rapid increase in the overall average number of citations per patent. To

better understand what lies behind this increase, we concentrate on the backward citations

received by the five leading fields of knowledge over the past five decades. Figure 4 shows that

the substantial increase in the number of citations observed in Figure 3 is mainly driven by two

fields of knowledge: Computing, Calculating, Counting and, to a lesser extent, Transmission

of Digital Information. What is perhaps even more striking is the fact that most citations to

20The sum of the four lines in panel (b) is not equal to the total number of backward citations, since there
is some double-counting due to the fact that cited patents belong to multiple fields of knowledge and (more
rarely) to multiple countries.

21Decomposition of citations for other countries, namely, Germany, France, and the UK, are reported in
Figure B.2. The plots for these three frontier countries show how they moved from mostly relying on domestic
knowledge in the early periods to foreign knowledge later in the sample.
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(d) All Countries except US and Japan

Figure 3: Citation Dynamics, 1970-2015

this field of knowledge are given to US and Japanese patents, as illustrated by Figure 4.22

Taken together, the evidence presented in this section paints a picture consistent with

the view that knowledge spillovers have increasingly become an important component of the

innovation process in the past few decades. Although spillovers that originate from the same

country and field of knowledge are still the most relevant, international knowledge spillovers

have been steadily gaining importance over the past few decades. This increase is visible

when considering spillovers coming both from the same field of knowledge and from other

fields of knowledge, and it is mainly driven by a dramatic increase in the citations received

by US and Japanese patents, especially in the fields of knowledge related to computing,

information processing, and medicine.

22Relatedly, Liu and Ma (2021) document a high reliance on domestic knowledge in both the US and Japan
using Google Patents’ global patent data for 40 countries during the period 1976-2020.
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Figure 4: Share of citations to US and Japanese patents by FoK, 1970-2015. Each line in the plots
represents the share of citations to US and Japanese patents that belong to a given field of knowledge. Panel
(a) depicts the shares of domestic citations given by US and Japanese patents, and panel (b) depicts the
shares of international citations received by patents filed in the US and Japan given by other countries.

4 Conceptual Framework

In this section, we present the framework that will guide our empirical analysis. This frame-

work incorporates patents and patent citations to a standard, multi-sector growth model.23

Importantly, our framework only specifies the production-side of the economy, and it does

not assume the existence of a balanced growth path of output or productivity at the sectoral

(or aggregate) level.24

Consider a world economy with C countries, S sectors, and K fields of knowledge, where

we index countries by c, sectors by s, fields of knowledge by k, and time by t. We denote

by Ncskt the stock of ideas available in country c, sector s, field of knowledge k, and time t.

The state of world ideas at time t is thus summarized by the vector Nt ≡ (N111t, . . . , Ncskt,

. . . , NCSKt). There is a production function for new ideas, I(·), that establishes the rela-

tionship between the flow of new ideas in a given field of knowledge and production sector,

∆Ncskt; the current stock of knowledge, Nt; and inputs devoted to generate new ideas, Rcskt;

∆Ncskt = I (Scsk(Nt), Rcskt) , (1)

where ∆ denotes the time difference operator between t + 1 and t. The spillover function

23Our formulation builds upon previous studies that have been applied to the study of the patent network
of citations, such as Acemoglu et al. (2016). Relative to Acemoglu et al. (2016), we present additional model
elements to relate our results to TFP and output per capita and also extend the model to a multi-country
setting.

24Unbalanced sectoral growth is indeed the empirically relevant case for the United States and other
advanced economies (Comin et al., 2019).
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Scsk(Nt) captures how the current world stock of knowledge Nt helps generate new ideas in

country c, field of knowledge k, and sector s. We assume the spillover function to be

Scsk(Nt) =
∑
c′∈C

∑
s′∈S

∑
k′∈K

αc′s′k′tNc′s′k′t, (2)

where αc′s′k′t captures the reliance of the production function of ideas in csk on ideas from

c′s′k′ at time t. We leverage this structure to construct our instrumental variable. Note

that we purposefully state Equation (1) generically so that it subsumes the first generation

endogenous growth models as in Romer (1990) or Aghion and Howitt (1992), semi-endogenous

growth models as in Jones (1995), Kortum (1997), or Segerstrom (1998), or second generation

models as in Aghion and Howitt (1998), Young (1998), or Peretto (1998).25

Since ideas are to a large extent non-rival (Romer, 1990), the vast majority of endoge-

nous growth theories resort to intellectual protection in the form of patents to ensure that

investments in new ideas can be recovered with future profits.26 This observation motivates

our empirical strategy to proxy the generation of new ideas through patent filings. Patents

provide a quantifiable measure over time and space that is arguably hard to obtain with

other measures of ideas or innovation. Moreover, through citations, patents also provide an

empirical measure of reliance on existing ideas across space and fields of knowledge. We rely

on these spillover measures in our empirical analysis and, in particular, in our instrumental

variables strategy. In practice, however, not all ideas are patented, and not all ideas which

a patent builds on are cited. We thus think of patents as a proxy for new ideas, ∆Ncskt,

and citations as a proxy for spillovers. We discuss in the next section how our empirical

specification addresses these potential discrepancies between idea generation and patenting.

In our framework, there is a representative firm in each country-sector that produces sec-

toral output combining physical inputs (labor and capital) according to the best production

methods available in that country-sector at time t, which are summarized by sectoral TFP,

denoted TFPcst. Sectoral value added per worker, ycst, is given by the Cobb-Douglas produc-

tion function log ycst = φcst + log TFPcst + α log kcst, where ksct denotes capital per worker,

0 < α < 1, and φcst denotes potential additional sources of variation of total productivity that

are not captured by our framework. To obtain the baseline empirical specification, we assume

that this effect can be parameterized as a full set of dyadic fixed effects, φcst = δ̃ct + δ̃st + δ̃cs.

This parametrization captures the fact that the productivity of ideas (and/or other unmod-

eled sources of productivity differences) may differ across country-sector-time pairs because

25For example, one specification extensively used in the literature (e.g., Romer, 1990, and Jones, 1995)
ignores cross-country spillovers, and corresponds to having S = K = 1 and Sc(Nt) = Nct and postulates a

log-linear relationship, I = Nφ
ctRct with φ ≤ 1.

26See, among others, Aghion and Howitt (1998), Acemoglu (2009a), and the references therein.

16



some country-sector pairs may be better suited at certain sectors than others (captured by

δ̃cs), there may be some global technology trends affecting certain sectors (captured by δ̃st),

or there may be some country-specific shocks (captured by δ̃ct).

Following the endogenous growth literature, we assume that the role of ideas is to increase

firms’ productivity by developing and improving methods of production (e.g., Acemoglu,

2009b). That is, we assume that there is a positive relationship between ideas produced

and sectoral TFP growth. Moreover, as TFP grows and new production methods are im-

plemented, we allow for the existence of fixed costs of adjustment scaling up with (a power

function of) total output. This adjustment cost stands in for production disruptions related

to the adoption of new technologies (e.g., as in Perla and Tonetti, 2014 or Comin and Gertler,

2006). In particular, our empirical specification assumes an iso-elastic relationship between

TFP growth, ideas, and adjustment costs,

log

(
TFPcst+1

TFPcst

)
= φ0 + φN log(1 + ∆Ncst)− φY log ycst, (3)

where φ0, φN , φY ≥ 0 and ∆Ncst =
∑K

k=1 ∆Ncskt denotes the total number of ideas generated

in country c and sector s at time t across all fields of knowledge. Combining the idea

production function, Equation (1), with the TFP Equation (3), we can readily verify that

our framework nests a number of cases often considered in the literature, such as endogenous

and semi-endogenous growth models.27

To derive our baseline empirical specification, we take the time difference in log-sectoral

output between two adjacent time periods, t and t + 1. Combining the resulting expression

with the law of motion for TFP, Equation (3), we find that

log ycst+1 = φN log(1 + ∆Ncst) + φA log ycst + δct + δst, (4)

where δct and δst denote country-time and sector-time fixed effects and φA = 1 − φY . The

focus of our analysis is on the effect of patenting on value added per worker. This effect is

27Given our multi-sector, multi-country set-up, we find useful to separate the idea production function,
Equation (1), which relates the evolution of the stock of knowledge across cskt bins from the law of motion
for TFP, Equation (3). Most models in endogenous growth theory do not present these equations separately.
To relate our framework to the standard endogenous growth models, consider a one-country, one-sector and
one-field of knowledge economy (or alternatively, a multi-country, multi-sector economy without spillovers
across sectors and countries). Assume further that TFPct = Nct, φ0 = φY = 0, βN = 1 and that the idea

production function (1) is I = Nφ
ctRct (as discussed in footnote 25). Then, we find that TFP growth is

Nct+1

Nct
− 1 = Nφ

ctRct. For φ = 1, the model generates the first-generation building-on-the-shoulders-of-giants
dynamics (Romer, 1990), whereby the growth rate of TFPcst is directly controlled by the number of ideas
produced at time t with an elasticity of one. Letting φ < 1 introduces the semi-endogenous growth fishing-
out-of-the-same-pond effect so that increasingly more ideas become necessary to sustain constant TFP growth
(Jones, 1995).
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captured by φN , which corresponds to the elasticity of value added per worker growth on

patenting. Note also that the country-sector fixed effect δ̃cs appearing in our specification

of the production function drops from Equation (4) because we take the time difference of

log-sectoral output. In addition, note that the country-time fixed effect δct absorbs the terms

corresponding to sectoral capital-labor ratios (under the assumption of competitive markets

for capital and labor across sectors). Since the assumption of factor markets being competitive

may seem somewhat stringent, we present empirical specifications that also include as direct

controls sectoral capital and labor.28

5 Empirical Analysis

In this section, we empirically study the effect of innovation on productivity. We begin

analyzing the effect of innovation on sectoral output per worker and TFP using cross-country

panel data. We present our identification strategy in Section 5.1 and report our baseline

results in Section 5.2. In Section 5.3, we extend our baseline estimation to a longer time

horizon – at the expense of losing sectoral variation – where the dependent variable is output

per capita.

5.1 Estimating Equations and Identification Strategy

Our baseline regression model closely follows Equation (4) and is specified as follows,

log ycst+n = φN log (1 + patcst) + φA log ycst + φ0Xcst + δct + δst + εcst, (5)

where log ycst+n is future annual output per worker in period t + n; Xcst denotes a set of

controls for country c, sector s, and time t; δct and δst denote country-time and sector-time

fixed effects; and εcst is the error term. The number of ideas in our model framework ∆Ncst is

proxied by the number of first-in-the-family patents filed in cst. Thus, there is one departure

relative to the model presented in the analytical framework. Rather than looking at one

period ahead from t, we look at a measure of output per worker n years ahead of period t. In

particular, we take the three-year average annual output per worker as our baseline measure

(but we also show in the appendix that the results are robust to selecting any of these years in

isolation, n ∈ {1, ..., 3}). We follow this approach, since it is common in the empirical growth

28Our framework implies that the lagged level of sectoral output per worker appears on the right-hand-side
of Equation (4) with a coefficient φA = 1 − φY < 1. This result follows from the lagged structure of the
TFP, Equation (3), and it is not due to a log-linearization result around a steady state. The coefficient on
lagged output per worker has been the focus of much of the cross-country growth literature. This coefficient
is typically interpreted as proxying for convergence effects in regressions using aggregate data.
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literature to smooth out short-term fluctuations in the variable of interest and concentrate

on longer-run trends (e.g., Arcand et al., 2015). Moreover, using this three-year average also

alleviates the concern that the effect of a new patent may not be (fully) realized one year

after its filing year.

The main coefficient of interest of our empirical equation, Equation (5), is the coefficient

on patenting, φN . It relates changes in the number of patents at the country-sector level in

a given year to changes in output per worker in the following years, and it corresponds to

the elasticity of output per worker growth to patenting. The presence of the fixed effects in

Equation (5) follows from our conceptual framework. Intuitively, the inclusion of sector-year

dummies controls for the fact that different industries may differently rely on innovation, as

well as the fact that this relationship may vary over time. Sector-year dummies allow us to

control for the presence of technological waves and other sectoral shocks that are common

across all countries. Finally, the inclusion of country-year fixed effects controls, first, for

the fact that different countries have different propensities to innovate, and, second, for any

business cycles fluctuations at the country level (e.g., a financial crisis).29

Our main specification uses value added per worker from the World Input Output Database

(WIOD). We also use TFP measures derived from the WIOD as part of our robustness ex-

ercises. The data used in our baseline analysis span from 2000 through 2014, and covers

36 countries and 20 sectors (see Appendix A for more details). Figure 5 shows the binscat-

ter plot of the raw correlation between patent activity, log (1 + patcst), and value added per

employment, log(va emcst+n), over our sample period. In the cross-section of countries and

sectors, a one percent increase in the number of patents is associated with a 0.10 percent

increase in future output per worker averaged over the next three years. The coefficient is

statistically significant at conventional levels.30

To evaluate the strength of the causal relationship between innovation and productivity,

we need to identify variation in patent activity that is orthogonal to unobserved factors that

might affect innovation activity and productivity at the same time. There is a wide range of

such possible factors and the direction of the bias is ex-ante ambiguous. An example of such

factors is technological obsolescence of some industries. Reverse causality is also a concern –

with higher productivity being the cause, rather than the consequence, of higher innovation

activity in a given sector. Finally, estimates might be suffering from attenuation bias, due

to presence of measurement error, given that patents are an imperfect measure of ideas and

innovation.

29As we showed in Section 4, country-sector fixed effects are differenced out.
30Standard errors are clustered at the country and sector level.
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Figure 5: Unconditional Correlation between Value Added Per Worker and Number of
Patents
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5.1.1 Instrument Construction

To deal with these threats to identification, we build an instrumental variable for patenting

activity in a given country and sector. Our instrument is based on a shift-share design

that leverages pre-existing cross-country, cross-sector variation to predict the current level

of patenting. We exploit the pre-determined network of patent citations during the period

1970-90 to identify knowledge links and construct the “share” component of our shift-share

instrument. We then construct the “shifts” for the period 1990-2014 using a mix of the

observed and predicted number of patents in other countries and sectors starting from the

year 1980 on a rolling basis. Interacting the shares with the shifts and adding those up,

we obtain the “predicted” number of patents in the period 2000-2014 as our shift-share

instrument.31 Thus, our instrument predicts patenting activity in the current period based on

knowledge spillovers from other countries and sectors. In this sense, our shift-share design can

be interpreted as a particular application of the linear knowledge spillover function presented

in Equation (2) in Section 4.

Before delving into the details of the instrument, it is worth emphasizing that our proposed

shift-share design differs from a more standard “Bartik” design. The reason is that we exploit

31As we will discuss in detail below, we only use “predicted” patents coming from lagged, pre-2000 patenting
data as shifts to generate the instrument for our baseline sample.
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the directed network of citations to construct linkages across country-sector pairs and then

use shift terms that also vary at the country-sector level. In contrast, a standard “Bartik”

would only use as sources of variation the own country-sector exposure (shares) and the

world patenting activity in a sector (shifts). For our purposes, the standard Bartik design is

unappealing, since it may confound innovation shocks with world industry or technological

trends that also affect productivity.32

Next, we discuss in detail the steps we follow to construct our proposed instrument. To

compute the “share” terms of our instrument, we gather patent information on the country of

origin, technological field, backward and forward citations for all patents filed from T share
0 =

1970 to T share
1 = 1990. We use a correspondence from technological fields to industry codes to

assign each patent to one or multiple sectors, with their respective weights in the latter case.33

The underlying idea is to measure knowledge flows across countries and sectors through the

share of citations that each patent produced in the country co and sector so of origin o gives

to patents in country of destination d, cd, and sector, sd. In particular, for each patent of

sector so belonging to country co at time t, we calculate the share of citations given to patents

produced in sector sd and country cd at time t−∆ for some citation lag ∆ > 0. We repeat

this procedure for each time period t between T share
0 and T share

1 and sum these shares to

obtain the total number of citations over the T share
1 to T share

0 period. Importantly, to control

for size effects due to the fact that some locations and/or sectors tend to patent more for

idiosyncratic reasons, we normalize this measure by the total number of patents produced in

the country-sector of the destination country d.

Formally, the entries of the adjacency matrix of the knowledge network for a citation lag

∆ are given by,

mco,cd,so,sd,∆ =

T share
1∑

t=T share
0

∑
p∈P(co,so,t)

sp→(cd,sd,t−∆)

T share
1∑

t=T share
0

|P (cd, sd, t−∆) |

, (6)

where sp→(cd,sd,t−∆) denotes the share of citations that patent p gives to patents of sector sd

produced in country cd filed at time t−∆, P (so, co, t) denotes the set of patents in (co, so)

at time t, and |P(·)| denotes the total number of patents in the set (i.e., the set cardinality).

As the numerator shows, we add the citations of all patents originating in country-sector

(co, so) at time t over the time period from T share
0 through T share

1 going to patents filed in

32Consider, for example, a world where a few countries leaders determine in which sectors most of innovation
activity is going to happen. In this case, the shift components that we would use in the construction of the
instrument would not be orthogonal to either patent activity or productivity.

33We use Eurostat correspondence tables (Van Looy et al., 2014).
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country-sector (cd, sd) at time t −∆, and normalize by the patent count in the destination

country-sector at time t − ∆. We use the resulting object mco,cd,so,sd,∆ to construct the

“shares” in our shift-share instrument.34 Note that the “share” terms mco,cd,so,sd,∆ do not

need to add up to one, since their levels capture the number of citations from (co, so) that

are typically received by patents filed in (cd, sd) with a lag ∆.

Our network analysis also takes into account the fact that the speed at which ideas

diffuse might differ across locations and sectors. We formally capture this effect by allowing

the weights in our network to be time specific. We compute the citation shares at different

time horizons, with citations lags ∆ ∈ {1, · · · , 10}. In other words, we allow for the strength

of the links to depend on how many years have passed between when the cited and citing

patents were filed. In sum, our share terms are allowed to vary by country-sector citing-cited

pairs and by time lag between cited and citing patents.

Our shift-share design is based on the idea that it is possible to predict the number

of patents in a country and sector of interest based on pre-determined knowledge linkages.

Intuitively, this approach mirrors the one of an input-output model for idea production except

that it recognizes the non-rival nature of ideas (an idea in one country-sector can potentially

spillover to multiple country-sector pairs). To carry out this approach, we then use as shift

terms patents filed ∆ years before the period of interest t in other countries and sectors (or

predicted patents as we explain below), and use the strength of the linkages to predict the

number of patents filed in the country-sector of interest. We assume that the strength of

knowledge spillovers between country-sector dyads is mediated through how ideas in other

country-sectors (as measured by our shift terms) diffuse through the knowledge network (as

measured by the linkages mco,cd,so,sd,∆). By interacting the shift and share terms and summing

across countries, sectors, and diffusion lags, we then obtain a predicted number of patents

p̂atco,so,t in country co, sector s0 and time t.

Formally, our baseline shift-share design is constructed iteratively as follows. For 1990,

we obtain predicted patents as

p̂atco,so,1990 = a1990

∑
sd∈S\so

∑
cd∈N\co

10∑
∆=1

mco,cd,so,sd,∆ · patcd,sd,1990−∆,

where at is a rescaling term that ensures that predicted number of patents is equal to the

34As discussed in Section 2, we restrict our sample to patents that are the first in their family to avoid
double-counting of the same idea and capture only knowledge creation originated in a particular country-
sector. However, for cited patents, we count all cited patents irrespective of whether they are the first or
not in their family to capture all innovations on which any given patent builds on. We also note that Berkes
and Gaetani (2022) show that the network of patents in the United Stated is stable in the time frame they
consider, which roughly coincides with ours.
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actual number of patents in period t worldwide and patcd,sd,1990−∆ is the actual number of

patents filed in cd, sd, 1990−∆.35 Between 1991 and 1999 we construct the predicted number

of patents using the previously computed predicted number of patents for years since 1990,

and the observed patenting activity prior to 1990. That is, for t ∈ (1990, 2000) we have that

p̂atco,so,t = at
∑

sd∈S\so

∑
cd∈N\co

(
t−1990∑
∆=1

mco,cd,so,sd,∆ · p̂atcd,sd,t−∆ +
10∑

∆=t−1990

mco,cd,so,sd,∆ · patcd,sd,t−∆

)
,

where p̂atco,so,t denotes predicted patenting. Finally, starting in year 2000, we construct

predicted patenting only leveraging the predicted patenting computed in the 1990s described

above:

p̂atco,so,t = at
∑

sd∈S\so

∑
cd∈N\co

10∑
∆=1

mco,cd,so,sd,∆ · p̂atcd,sd,t−∆.

To mitigate endogeneity concerns, the proposed shift-share design avoids using contem-

poraneous shares and shifts. First, to construct the share terms, we use the pre-sample

period 1970-1990 to construct the knowledge network. Second, when constructing the shift

terms, we diffuse the observed patents filed pre-1990 over the period 1990-1999 to predict

the patenting activity in the 1990s. We then use this predicted patenting activity to predict

patenting activity over the sample period (2000-2014). Last but not least, we discard cita-

tions coming from the same country and from the same sector when we construct predicted

patents. In other words, when calculating the mco,cd,so,sd,∆ terms in Equation (6), we set the

own-country and own-sector terms to 0,

mco,cd,so,sd,∆ =

0 co = cd

0 so = sd.

We exclude own country and sector to avoid endogeneity concerns arising from the fact that

the links that connect the same country or sector might be correlated with future shocks

(despite being at least 10 years apart).36

Figure 6 visually compares the actual and predicted number of patents through a binscat-

ter plot. The two variables are strongly but not perfectly correlated: the coefficient of the

regression is 0.65 and R2 = 0.50. The Kleibergen-Paap Wald F statistics in the benchmark

regression is 34, which rules out weak instrument concerns.

To provide evidence in support of our instrument, we report in the next section tests for a

35Figure C.1 in the appendix shows a simple example of this procedure.
36For example, Cai and Li (2019) document the importance of multi-sector firm innovation using US

patents, suggesting that some firms are able to internalize knowledge spillovers across sectors.
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Figure 6: Unconditional Correlation between Actual and Predicted Patents
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number of assumptions underlying the identification restrictions of shift-share designs, along

the lines of Tabellini (2020).37 First, the validity of the shift-share instrument rests on the

assumption that countries and sectors giving more citations (to other sectors and countries)

in the period between 1970 and 1990 are not on different trajectories in terms of the evolution

of output per worker in the analysis period (2000-2014). We test this assumption in two ways:

i) by regressing productivity in 1990 against average patent activity in the period of 2000-14

predicted by the instrument and ii) by checking that results are unchanged when controlling

for an average level of patent activity in the period 1970-90.38

Second, we rule out the possibility that the links of knowledge diffusion used to construct

the instrument capture demand pull factors from the destination country and sector, rather

than a supply push from the origin country and sector. We do so by directly controlling by a

shift-share variable constructed analogously to our instrument but with the timing reversed,

so that it predicts the number of patents that should have been produced in the past in other

countries and sectors to generate the current level of patenting in other country-sector pairs.

More precisely, we start by constructing the pre-determined network of citations, this time

37The analysis of the validity of our instrument falls within the shift-share instrumental variable framework
and it must rely on some assumptions about the exogeneity of the shift terms, exposure shares, or both; see
Borusyak et al. (2018) and Goldsmith-Pinkham et al. (2020) for a technical discussion of those assumptions.

38We use value added per employment obtained from United Nations Industrial Development Organization
(UNIDO) data as a measure of productivity.
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using forward citations instead. Then, using the patenting activity across country-sector

pairs during our sample period (2000-2014) and the forward citation network generated in

the previous step, we infer the number of patents in the period 1970-1990 that would have

been necessary to rationalize the 2000-2014 period. Finally, we include this predicted number

of patents in our baseline regression as an additional control. These are patents that should

have been filed in the period of 1970-1990 to generate patent activity in the period 2000-2014

that we observe in the data according to our idea generation empirical model.

5.2 Innovation and Productivity

In this section, we explore the effect of innovation on productivity. As we have just discussed,

our identification strategy relies on pre-determined network knowledge linkages. They allow

us to predict country- and sector-specific shocks to innovation activity (measured by patent

filings) due to knowledge created in other geographical areas and sectors.

Table 1 shows our benchmark estimates of the relationship between value added per em-

ployment and innovation instrumented with predicted innovation. As discussed above, we use

a three-year average of output per worker to remove short-term business cycle fluctuations.39

Our benchmark regression uses data from the years 1970-90 to compute pre-determined net-

work linkages, and the period of our analysis is 2000-2014. The first two columns report the

estimated results when we only include lagged value added as a control, as well as country-

year and sector-year fixed effects. In the third and fourth columns, we add to our empirical

model lagged capital and employment as controls, to account for differences in inputs across

countries and sectors. We find similar results to the regressions in columns (1) and (2). We

use the specification in columns (3) and (4) as our a baseline.40

Finally, in the fifth and sixth columns, we exploit the trade linkages given by the world

input-output structure and add as controls the value of intermediates imported by each

country-sector pair to explore the possibility that foreign imports of intermediates may dis-

proportionately contribute to value added per worker, perhaps because of diffusion of ideas

or intangible knowledge (Ayerst et al., 2020). We find no support for this hypothesis: the

estimated coefficient on patenting hardly changes relative to our baseline.

39Our baseline specification log (1 + pat) allows us to retain the observations with zero patenting. The
results are robust to using the inverse hyperbolic sine transformation of the number of patents instead of
log(1+pat). Results for alternative log transformation of patents and forward lags for the dependent variable
are reported in Table C.2 in the Appendix.

40Results with both lagged and contemporaneous capital and employment as controls are very similar.
They are reported in Table C.3 in the Appendix. The fact that the inclusion of these controls does not
change the estimated coefficient on patenting is consistent with our conceptual framework – which suggests
that, with competitive factor markets, capital labor ratios across sectors are equalized and thus absorbed by
the country-time fixed effects.
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Table 1: 2SLS Estimates: 2000-2014

log(va emcst+n) n ∈ {1, 2, 3}

OLS 2SLS OLS 2SLS OLS 2SLS

(1) (2) (3) (4) (5) (6)

log(1 + patcst) 0.006 0.019 0.004 0.017 0.005 0.019

(0.003) (0.008) (0.003) (0.008) (0.003) (0.007)

log(va emcst) 0.919 0.917 0.942 0.937 0.934 0.928

(0.012) (0.012) (0.016) (0.016) (0.016) (0.015)

log(capitalcst) -0.016 -0.014 -0.015 -0.014

(0.008) (0.008) (0.008) (0.008)

log(employcst) 0.020 0.015 0.012 0.006

(0.010) (0.010) (0.011) (0.010)

log(int importcst) 0.009 0.010

(0.009) (0.009)

Country-Year FE Y Y Y Y Y Y

Sector-Year FE Y Y Y Y Y Y

# obs. 8,357 8,357 8,357 8,357 8,357 8,357

# countries 36 36 36 36 36 36

First-stage estimates

Predicted 0.496 0.461 0.461

log(1 + patcst) (0.082) (0.079) (0.079)

F-stat 36.7 33.9 34.3

Notes: Period of the analysis is 2000-14 using pre-determined matrix based on the data from 1970-90. First-
stage estimates include all the controls. Standard errors (in parentheses) are two-way clustered at the country
and sector levels. Columns (1), (3), and (5) report the results using OLS, and Columns (2), (4), and (6)
report the results obtained with 2SLS. Kleibergen-Paap Wald F-stat is reported for the first stage.

The coefficient on innovation activity is positive, and statistically significant across the

board. The magnitude of the two-stage least squares regressions is also stable across spec-

ifications. The coefficient in column (4) suggests that a 1% increase in patenting leads to

0.017% increase in value added per employment. Using the structure of our simple frame-

work, we can rewrite the estimating equation by subtracting the current level of log value

added per worker to also conclude that the estimated elasticity implies that a 1% increase in

patenting leads to a 0.017% increase in the growth of value added per worker. This estimated

elasticity implies that a one residual standard deviation increase in log patenting generates

an increase in value added per employment growth of 1.1 percentage points. This change in

valued added growth represents 7.8% of the standard deviation in output per worker growth
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in our sample.41 To have a sense of magnitudes, one standard deviation increase corresponds

to an increase in innovation activity in the pharmaceutical sector from the level of innovation

observed in Canada to the level observed in the US in 2000. This also approximately cor-

responds to an increase in innovation activity in computer and electronic products from the

level of innovation observed in Australia or France to the level observed in the US in 2000.

If we used interquartile range changes to quantify our results instead of standard deviation

changes, we would obtain similar results. A one interquartile range increase in the log

of the number of patents implies an increase of 10.4% of the interquartile range in value

added per employment growth. Looking at countries at the bottom quartile of the patenting

distribution in our sample, our estimated elasticity implies that, ceteris paribus, if Mexico

in 2000 innovated in computer and electronic products and pharmaceuticals at the level

of the US, output per worker in these sectors would have been higher by 3.1% and 2.9%,

respectively.

The estimated 2SLS coefficients are larger than the ones obtained with the OLS regression.

This increase is consistent with the likely scenario in which our OLS estimates suffer from

attenuation bias because patents are an imperfect measure of innovation activity. Another

possible explanation for the downward bias could be an increase in market concentration—a

trend observed in most advanced countries since the 2000s. In particular, Akcigit and Ates

(2021) and Olmstead-Rumsey (2019) have argued that higher market concentration leads

to a slowdown in aggregate productivity growth while stimulating the innovation activity of

market leaders to maintain their technological advantage.

First-Stage Estimates and Knowledge Spillovers Before turning to the robustness

checks, we discuss the first-stage results reported in Table 1. We find positive and significant

coefficients across the board of predicted patents constructed using our shift-share design on

actual patenting. These estimates inform us directly about the average knowledge spillovers

from other country-sector pairs on a given country-sector pair. The estimated coefficient

implies an elasticity of 0.46 between the predicted patents from our shift-share design and

the actual patenting activity. In terms of magnitude, a one standard deviation increase in

predicted patents outside country-sector (c, s) implies a 0.46 increase in actual patenting in

country sector (c, s) in a sample period.42

41Note that these results are calculated using residual standard deviations, that is, standard deviations
obtained after partialling out the full set of controls in column (4). Without doing that, we would obtain
larger effects. In fact, a one standard deviation increase in log patents implies an increase in log value added
per employment (or value added per employment growth) of 4.4 percentage points.

42We residualize all variables with all regression controls before computing the standard deviations. An
analogous exercise without partialling out the controls would imply a 0.43 standard deviation increase.
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Table 2: 2SLS Estimates: 2000-2014 TFP and VA/EMP growth

∆ log(ycst+n) n ∈ {1, 2, 3}

VA/EMP Primal TFP Dual TFP

2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS 2SLS
(1) (2) (3) (4) (5) (6) (7) (8) (9)

log(1 + patentcst) 0.011 0.009 0.009 0.007 0.010 0.010 0.004 0.008 0.008
(0.004) (0.004) (0.003) (0.004) (0.006) (0.005) (0.004) (0.003) (0.003)

log(ycst) -0.044 -0.031 -0.033 -0.017 -0.010 -0.011 -0.018 -0.009 -0.009
(0.009) (0.007) (0.007) (0.010) (0.009) (0.008) (0.009) (0.005) (0.005)

log(capitalcst) -0.005 -0.005 -0.023 -0.022 -0.031 -0.031
(0.003) (0.003) (0.003) (0.003) (0.003) (0.004)

log(employcst) 0.005 0.002 0.021 0.022 0.026 0.023
(0.004) (0.005) (0.004) (0.004) (0.004) (0.003)

log(int importcst) 0.003 -0.002 0.001
(0.004) (0.005) (0.003)

Country-Year FE Y Y Y Y Y Y Y Y Y
Sector-Year FE Y Y Y Y Y Y Y Y Y

# obs. 8,834 8,357 8,357 7,931 7,931 7,931 8,554 8,336 8,336
# countries 36 36 36 36 36 36 36 36 36

First-stage estimates

Predicted 0.468 0.461 0.461 0.498 0.470 0.472 0.498 0.472 0.473
log(1 + patt) (0.085) (0.079) (0.079) (0.081) (0.080) (0.080) (0.085) (0.083) (0.083)

F-stat 30.5 33.9 34.3 34.5 32.5 32.4 38.1 35.0 34.9

Notes: Period of the analysis is 2000-14 using the pre-determined matrix based on the data from 1970-90. First-stage

estimates include all controls. Standard errors (in parentheses) are two-way clustered at the country and sector levels. ycst
is a respective measure of productivity (in columns (1)-(3) ycst is value added per employment, and in columns (4)-(9) ycst
stands for TFP measured using either the primal or dual approach). In the case of primal TFP for our baseline specification

(Column (5)), the main coefficient of interest is significant at the 10% level with p=0.09. Kleibergen-Paap Wald F-stat is

reported for the first stage.

Alternative Growth Specification and TFP Regressions To assess the robustness

of our findings, we extend our analysis to using TFP growth instead of output per worker

as our dependent variable.43 Table 2 shows our estimates for two measures of TFP growth,

as well as value added per employment growth (rather than in levels, as in our baseline

specification). The coefficient on innovation activity is positive, statistically significant across

different measures, and quantitatively consistent with our baseline results.44 Moreover, when

comparing the coefficient on patenting, φN , across different specifications, e.g., columns (3),

(6), and (9), we see that, as implied by our simple framework, its magnitude is similar

regardless of whether we use value added or TFP as the dependent variable.45

43We obtain measures of TFP growth at a country-sector level at a given period of time using “dual” and
“primal” approaches as in Hsieh (1999) and Hsieh (2002).

44As in our baseline specification, the results reported in Table 2 are robust to using the inverse hyperbolic
sine transformation of the number of patents instead of log(1 + pats) and adding forward lags as controls.
See Tables C.5 and C.4 in the Appendix.

45We also find similar results to our baseline φN when estimating Equation (5) assuming φA = 1 (and,
thus, having the growth rate as a dependent variable). These are reported in Table C.1 in the Appendix.
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Table 3: Checking for Pre-trends

log(va empcs)

Sample Period Pre-Sample Period

(1) (2) (3) (4)

log(1 + patcs2000−14) 0.080 0.102 0.032 0.014

(0.033) (0.046) (0.064) (0.053)

Controls X X X X

Country FE Y Y Y Y

Sector FE Y Y Y Y

# obs. 641 433 433 424

Notes: Columns (1) and (2) use average value added per employment in the period 2000-14 as a depen-
dent variable computed with WIOD and UNIDO data, respectively. The latter one is included for better
compatibility with results in Columns (3) and (4), where the dependent variable is the average value added
per employment computed with UNIDO data for the periods 1981-90 and 1971-90, respectively. All regres-
sions include average (log) values for capital, employment, and intermediate imports in the period 2000-14.
Standard errors (in parentheses) are two-way clustered at a country and sector levels.

5.2.1 Robustness Checks

As discussed above, the validity of our shift-share design rests on country-sector pairs that

give more citations pre-1990 not being on different trajectories in the terms of output per

worker post-2000. This assumption is violated if the characteristics of countries and sectors

that give more citations to particular countries and sectors in the period 1970-90 had persis-

tent effects on patenting activity, as well as on changes in the outcomes of interest, and these

are not captured by our controls. We test this assumption in a variety of ways. First, we

test for pre-trends by showing that the pre-period productivity is uncorrelated with subse-

quent patent activity predicted by the instrument. Table 3 presents the results of regressing

the average value of productivity during the pre-sample period against the average annual

number of patents in the period 2000-14.46 The coefficients of this regression, reported in

Columns (3) and (4), are not significantly different from zero,while the estimates obtained for

the period used in the main exercises, reported in Columns (1) and (2), are indeed significant.

Second, in Column (2) of Table 4, we check that our results hold when controlling for

the average level of patenting activity in the period 1970-90. The results remain virtually

unchanged. The coefficient of interest becomes larger in magnitude (in absolute value), but

it is statistically indistinguishable from the baseline level because the standard error also

46As a measure of productivity we use value added per employment data from UNIDO database, since data
for historical periods is not available in WIOD. We also averaged all the variables in order to suppress the
time dimension as the left-hand side and right-hand side of our regression belong to different time periods.
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increases.

Next, we present evidence consistent with ruling out the possibility that the links of

knowledge diffusion used to construct the instrument capture a demand pull factors from the

destination country and sector, rather than a supply push from the origin. To do that, we

include in our baseline regression as a control the number of patents that should have been

filed in the pre-sample period to explain the actual number of patents observed in the sample

in the period of study given the citations linkages in the pre-sample.47 The results presented

in Column (3) of Table 4 are stable. The coefficient of interest remains statistically significant

and quantitatively close to the baseline. Column (4) includes both controls simultaneously,

i.e., the historical patent activity and the demand-driven number of patents in the past in

the baseline regression. The coefficient remains significant and has a similar magnitude.

Finally, to check for whether some outliers are driving our results, we repeat our baseline

regression excluding one country or sector at a time. We find that our results remain stable

and are essentially unchanged across all these regressions.48

5.3 Innovation and Long-term Development

Our baseline analysis studied value added per worker after the year 2000. This section

extends our analysis to a longer time frame. One challenge of looking at long-term outcomes

is that high-quality value added per employment or TFP panel data spanning a large number

of countries and sectors are not readily available. To circumvent this problem, we adapt

our empirical strategy to study the relationship between innovation activity and GDP per

capita at the aggregate country level since 1980 (and later extend it back to 1960), using

real GDP per capita data from the Maddison Project Database (Inklaar et al., 2018). We

therefore depart from our baseline exercise along two dimensions. First, we abstract from

sectoral variation both when we construct our instrument and when we conduct the regression

analysis. Second, we use GDP per capita rather than output per worker as our outcome

variable.

The choice of the time period for our analysis is the result of a balancing act. On the one

hand, since we are interested in long-run growth, we would like to study a long time period.

On the other hand, given that comprehensive patent data for the period prior to 1970 mostly

covers advanced economies and given that for most developing countries we observe little to

47We construct this variable by using the ”reverse” matrix procedure described in the end of Section 5.1.
To deal with the time dimension of data, we include in the regression the predicted number of patents that
should have been filed 30 years in the past. The results hold for other choices of lags.

48The largest change in magnitude that we obtain in φN is when we exclude the sector called Manufacture
of wood and of products of wood and cork, except furniture; manufacture of articles of straw and plaiting
materials. In this case, it increases from 0.017 to 0.023. These results are available upon request.
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Table 4: 2SLS Estimates: Robustness

log(va emcst+n) n ∈ {1, 2, 3}

(1) (2) (3) (4)

log(1 + patcst) 0.017 0.029 0.025 0.030

(0.008) (0.010) (0.010) (0.010)

log(1 + patcs1970−90) -0.009 -0.009

(0.005) (0.005)

log(1 + p̂atcst−30) -0.006 -0.001

(0.007) (0.006)

Controls X X X X

Country-Year FE Y Y Y Y

Sector-Year FE Y Y Y Y

# obs. 8,357 8,357 8,357 8,357

First-stage estimates

Predicted 0.461 0.264 0.388 0.305

log(1 + patcst) (0.079) (0.058) (0.065) (0.056)

F-stat 33.9 20.9 35.5 29.3

Notes: Column (1) shows the results of our baseline regression. Column (2) and (3) show the regression
results when including separately the historical levels of average patent activity and the predicted number
of patents driven by demand pull factors, respectively; and Column (4) shows the regression results when
including them together. All regressions include (log) values for value added per employment, capital, and
employment as controls. Standard errors (in parentheses) are two-way clustered at the country and sector
levels. Kleibergen-Paap Wald F-stat is reported for the first stage.

no innovation activity measured in terms of patents prior to 1970, our shift-share design may

miss a part of the variation we are interested in capturing. For these reasons, we choose the

years 1980-2016 as our baseline time period, while we use the pre-1980 data to construct our

instrument (so that we include the 1970s, for which there are data on a substantial number

of patents for middle-income economies). The set of countries that we consider are the ones

categorized as high-income and upper-middle-income countries according to the World Bank

classification,49 for which we have substantial variation in patenting activity.50

49https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-an

d-lending-groups
50Our patent data cannot distinguish between zero patenting activity and missing data in a given country,

sector, and year. Throughout our analysis, we assume that no records of patenting activity are treated as
zero patents. Under this assumption, the average annual number of patents in the period 1960-80 is 21,264
and 1,227 patents for high-income and upper-middle-income countries, respectively. At the same time, the
average number of annual patents for the same period for lower-middle-income and low-income countries
is 45 patents and 1 patent, respectively. Given the little variation in patenting activity for the historical

31

https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups
https://datahelpdesk.worldbank.org/knowledgebase/articles/906519-world-bank-country-and-lending-groups


To obtain our shift-share instrument in this cross-country setup, we use only country-time

variation in citations to generate the pre-determined matrix of linkages. Each element of the

matrix is computed as

mco,cd,∆ =

T share
1∑

t=T share
0

∑
p∈P(co,t)

sp→(cd,t−∆)

T share
1∑

t=T share
0

|P (cd, t−∆) |

,

and we thus abstract from sectoral variation.51 We use the citation data observed in the

period prior 1980 to construct the pre-existing linkages across countries, along with countries’

patenting activity during the period starting in 1970, as shifts to construct our instrument

for patenting activity during the period 1980-2016.52

The empirical specification we run corresponds to Equation (4) in our motivating frame-

work (without sectoral variation). As a reminder, it is obtained from combining a Cobb-

Douglas aggregate production function and our law of motion for TFP. The following speci-

fication is used in the analysis:

log(gdp capct+n) = φN log(1 + patct) + φA log(gdp capct) + δt + δc + εct, (7)

where on the left-hand side we use the average level of GDP per capita over n = 3 years after

t to smooth out variation driven by business cycles and other idiosyncratic shocks.

Table 5 shows our results. As in the previous section, the 2SLS estimates reported in

columns (2) and (4) imply a higher elasticity of patenting on income compared with the OLS

estimates in columns (1) and (3). In our preferred specification, which includes country and

year fixed effects, we find a positive, significant coefficient that is similar in magnitude to the

elasticity of patents to sectoral output per worker that we find for the period 2000-2014. The

time period in less developed economies, we focus on high-income and upper-middle-income countries for our
long-term analysis. We report a number of robustness checks at the end of the section.

51As a robustness check, we also compute our shift-share instrument using cross country and sector variation
and then aggregate up the sectoral variation. That is, we compute the linkages at the country-sector level as
in our baseline regression and then create our shift-share instrument at the country-sector level first. Then,
we aggregate the predicted number of patents across sectors within a country (and year) to construct the
instrument. We find very similar results with this alternative procedure.

52Similar to our baseline instrument, we use a mix of actual and predicted patents as shifts. We also do
not take into account domestic spillovers when constructing the instrument, i.e., mco,cd = 0, when o = d and
consider citation lags ∆ ∈ {1, · · · , 10}. However, we no longer have the intermediate 10-year period between
the pre-determined matrix and instrument as in our baseline. This is to ensure both that we have a sufficiently
long sample size of GDP growth rates and that we include patenting activity of the 1970s to construct our
shift-share. We also performed as a robustness check analysis where we use all citations available before
1960/70 to construct the pre-determined matrix of citation linkages, along with 1970/80-2016 as a period for
the regression analysis, obtaining similar results.
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Table 5: 2SLS Estimates: Innovation and Long-term Development: 1980-2016

Dependent Variable is: log(gdp capct+n)

OLS 2SLS OLS 2SLS

(1) (2) (3) (4)

log(1 + patct) 0.013 0.086 0.005 0.034

(0.004) (0.021) (0.003) (0.012)

log(gdp capct) 0.906 0.735 0.852 0.804

(0.026) (0.052) (0.025) (0.028)

Country FE Y Y Y Y

Year FE N N Y Y

# obs. 1,985 1,985 1,985 1,985

# countries 60 60 60 60

First-stage estimates

Predicted 0.771 1.884

log(1 + patct) (0.199) (0.695)

F-stat 15.0 7.3

Notes: Period of the analysis is 1980-2016 using pre-determined matrix based on the data for the pre-1980
period. Standard errors (in parentheses) are clustered at the country level. Columns (1) and (3) present the
results for OLS, and Columns (2) and (4) presents the results obtained with 2SLS. In regressions (1) and
(2) only country fixed effects are used. To account for a trend in the number of patents, the regressions in
columns (3) and (4) also include year fixed effects. Kleibergen-Paap Wald F-stat is reported for the first
stage.

elasticity of patenting to income per capita is 0.034.53 Quantitatively, this elasticity implies

that one standard deviation increase in the logarithm of the annual number of patents leads

to 0.41 standard deviations increase in the logarithm of annual GDP per capita, implying an

increase of 2.8 percentage points in the growth of GDP per capita.

Income per capita growth over longer horizons. We extend the period of analysis

to longer time horizons. Columns (1)-(4) in Table C.7 in the Appendix report the results

of running the same specification, Equation (7), using income per capita data spanning the

periods 1960-2016 and 1970-2016. In each case, we construct our shift-share instrument in

an analogous way to what we have done so far in this section, but now with patenting data

pre-1960 or pre-1970, respectively. In both cases, we find a positive and significant first stage,

despite our network of innovation being more sparse. We estimate a positive and significant

53If we run our regression for all countries in our sample rather than only middle and upper income
countries, we find an almost identical coefficient of 0.31. However, the first stage is weak and the estimated
coefficient is not significant at conventional levels. See columns (5) and (6) of Table C.7 in the Appendix.
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effect of innovation on income per capita growth in both regressions. The implied magnitudes

suggest that that one standard deviation increase in the logarithm of the annual number of

patents generates an increase of 1.64 and 2.15 percentage points in GDP per capita growth

for the periods 1960-2016 and 1970-2016, respectively.

6 Conclusion

In this paper, we use a panel of historical patent data spanning the past hundred years and

a large range of countries to study the evolution of innovation across time and space and

its effect on productivity. In the first part of the paper, we propose a clustering algorithm

to classify finely defined patent classes into fields of knowledge based on inventors’ patent

activity. We then turn to documenting some salient facts of patenting activity since the be-

ginning of the 20th century. We document broad technological waves over the 20th century

and in the early decades of the 21st century, and the heterogeneous contribution of countries

to these waves. We also document a substantial rise of international knowledge spillovers,

as measured by patent citations since the 1990s. This rise is mostly accounted by an in-

crease in citations to US and Japanese patents in fields of knowledge related to computation,

information processing, and medicine.

After documenting these facts, we propose a shift-share approach that leverages the di-

rected network of knowledge spillovers across fields of knowledge and countries (to construct

the shift terms) and the heterogeneity in exposure of countries to technological waves (to

construct the share terms). We then utilize our proposed instrument to estimate the effect

of innovation on output per worker and TFP growth in a panel of country-sectors over the

period 2000-2014, with our instrument using historical patent data spanning the years 1970

through 2000. We find that, on average, an increase of one standard deviation in patenting

implies a 1.1 percentage point increase of output per worker growth.

Finally, we estimate the effect of innovation on long-run income per capita growth and

find a positive effect, similar in magnitude to our baseline results. We believe that our shift-

share design can be applied to other settings in which the effect of innovation or productivity

are of interest. For example, our empirical strategy can be employed in a multi-sectoral

Ricardian trade model as in Costinot et al. (2012) to estimate the elasticity of trade flows to

productivity differences.
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