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Abstract

The mechanisms driving disparities in mental healthcare are not well understood.
This paper develops a structural model of diagnosis for Attention Deficit Hyperactivity
Disorder (ADHD), highlighting how patient and physician factors can result in dispar-
ities. Using electronic health record data, I estimate model parameters and decompose
the observed male:female ADHD diagnostic difference of 2.3:1. Simulations show that
only 46-55% of this diagnostic difference can be explained by underlying symptom
prevalence, with the remainder driven by differences in diagnostic thresholds. I find
that physicians view missed diagnosis to be costlier for their male patients, which I
argue may have economic justifications.
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1 Introduction

While overall health disparities have broadly declined in the last decade, mental health dis-

parities show the opposite trend (Agency for Healthcare Research and Quality, nd). Mental

health conditions- especially when diagnosed in childhood— can significantly shape long-

run educational attainment, social program participation, and labor market outcomes (see

Currie, 2025, and cites therein). Accordingly, understanding the sources of mental health

diagnosis, in particular whether they come from patient-side demand factors or physician-

side supply decisions, is essential for designing effective policies to address the potential for

mental health disparities and their long-run consequences.

In this paper, I develop a model of mental health diagnosis and use electronic health

record data to quantify the mechanisms that contribute to mental health diagnostic dispar-

ities. I focus on a common child mental health diagnosis, Attention Deficit Hyperactivity

Disorder (ADHD), which has a particularly salient diagnosis rate difference by gender. In

the United States, approximately 11.5% of children are diagnosed with ADHD, with males

diagnosed and treated more than 2 times the rate of females. ADHD is a particularly useful

condition through which to examine mechanisms of diagnostic disparities. Clinical diag-

nostic guidelines for ADHD are uniform and not gender-specific, raising questions about

whether observed differences reflect true differences in symptom prevalence, patient behav-

ior, or physician decision-making under uncertainty. Moreover, ADHD diagnosis is based

on subjective assessments of behavior rather than objective medical testing, which may

introduce substantial physician discretion.1 While economists have studied the short and

long run impacts of ADHD diagnosis and treatment (e.g., Currie and Stabile, 2006; Currie

et al., 2014; Chorniy and Kitashima, 2016), documenting the factors that influence ADHD

diagnostic disparities, particularly the role of the physician, remains an understudied area.

1A large literature studies factors that influence physician decision-making, discretion, and the potential
role of guidelines in shaping their behavior (see overview in Currie et al., 2024). There is also a more
recent and growing economic literature on factors that influence the treatment and impact of mental health
conditions in general. See, for example, Alexander and Schnell (2019),Currie and MacLeod (2020), Biasi
et al. (2021), and Cuddy and Currie (2024).
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To address this open question, I begin by introducing a model that illustrates how dif-

ferences in ADHD diagnosis can be explained by variation in underlying ADHD symptom

prevalence, patient preferences, and factors driving physician decision-making under uncer-

tainty. I use electronic health record data to estimate gender-specific model parameters,

which allows me to quantify the male/female ADHD diagnostic disparity and isolate how

each of these mechanisms contribute to differences in observed diagnosis rates.2 Under-

standing the factors that contribute to clinical ADHD diagnosis decisions is important as

both missed and mis-diagnosis are costly. On one hand, under-diagnosis can hinder human

capital development through, for example, limited access to benefits of educational accom-

modations (Ballis and Heath, 2021). On the other hand, over-diagnosis may expose children

to unnecessary pharmacological treatment and its potential side effects (Currie et al., 2014).3

My model has three distinct stages to reflect how the mental health diagnosis decision

is made. In the first stage, patients (or rather their caregivers) decide whether or not

to schedule a behavioral assessment with a physician. This is a function of underlying

unobserved symptom severity in addition to mental healthcare utilization costs. Second,

physicians conduct a behavioral assessment for this subset of patients and record/document

the patient responses in a clinical doctor note. The physicians use this information to update

their belief as to whether the patient matches national guidelines for ADHD diagnosis via a

Bayesian learning process. In the final stage, physicians decide whether or not to diagnose

the patient with ADHD. They do so if the patient-specific posterior belief of ADHD symptom

match is above a gender-specific diagnostic threshold. This threshold is set by the physician

ex-ante and is a function of their perceived cost associated with over/under diagnosis or

2It remains an open question within the medical community whether the difference in ADHD prevalence
stems from biological (sex) or social/cultural (gender) factors. In reference to ADHD prevalence differences
in general, Hinshaw (2018) writes: “All-biological or all-cultural perspectives are therefore reductionist and
short-sighted.” To be consistent within this paper, I refer to differences in male and female model parameters
and outcomes as gender-specific rather than sex-specific differences.

3Diagnosed ADHD is often managed with stimulant medications that fall under the CDC schedule IIN
controlled substance category associated with “high potential for abuse which may lead to severe psycholog-
ical or physical dependence.” Further, (Doshi et al., 2012) estimate the annual economic impact of ADHD
diagnosis at 168-312 billion U.S. dollars (inflated to 2019 $ with CPI).
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strict guideline adherence.

Taken as a whole, the model highlights four key mechanisms of mental health diagnosis

that can potentially vary by patient gender and therefore contribute differentially to ob-

served diagnostic differences. These key mechanisms are: (1) underlying differences in the

true prevalence of ADHD symptoms between male and female children, (2) patient prefer-

ences/costs of seeking mental health care, (3) varying rates of diagnostic uncertainty, and

(4) heterogeneous physician preferences/costs for ADHD diagnosis.

I estimate the model parameters and empirically analyze the male/female ADHD diag-

nostic gap using data derived from electronic health records from 2014 to 2017 provided

by a large healthcare system in Arizona. The dataset includes over 36,000 pediatric visits

for approximately 11,000 patients. In the raw data, 7% of males and 3% of females are

diagnosed with ADHD, implying a male-to-female ADHD diagnostic difference of roughly

2.3:1. I show that this gap persists even after controlling for a variety of patient observables

and selection into care, motivating the need for a structural model to help decompose and

quantify the underlying mechanisms of this diagnostic difference.

I first apply novel natural language processing and machine learning techniques to clinical

doctor note text as a way to construct mental health related variables necessary for model

estimation. Specifically, I determine whether patients receive a behavioral assessment using

a machine learning prediction approach based on a training set of appointments in which

this label is readily observed in the electronic health record. For the set of patients who

seek mental health care, I also use the information provided in the clinical doctor note to

construct an observable proxy for the ADHD match signal that physicians receive during

the behavioral assessment. To do this, I use natural language processing techniques to

measure how closely the encounter summary provided in the doctor note matches the national

diagnostic guidelines for ADHD.

I then use the constructed mental health variables and clinical diagnoses to estimate the

underlying parameters of the structural model. My first stage presents a selection problem

in which the ADHD match signal is only observed if the patient first chooses to schedule a

behavioral assessment with a physician. While this physician may be chosen endogenously, I
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assume that the patients’ choice of initial primary care provider is orthogonal to behavioral

symptom development. I show that these base primary care providers have different risk-

adjusted referral rates, providing an exclusion restriction that allows identification of patient

costs from scheduling a behavioral assessment (mental health utilization costs). This also

allows me to obtain selection-adjusted estimates of the population mean ADHD risk for males

and females via extrapolations of the observed ADHD-match signals on quasi-exogenous

behavioral assessment propensity. This exogenous extrapolation approach is similar to the

methods proposed by Arnold et al. (2022), who measure racial discrimination in judge bail

decisions.

Finally, I recover the remaining model parameters with a method of moments approach

that leverages variation in the patients’ clinical diagnosis, assigned by the physician and ob-

served in the electronic health record. I estimate the components of diagnostic uncertainty

and physician preferences by analyzing differences in diagnosis rates by patient gender con-

ditional on the constructed ADHD match signal. The weight that the physician places on

this signal identifies varying levels of diagnostic uncertainty, with higher weights correspond-

ing to stronger signal quality. I then show that conditional on diagnostic uncertainty and

patient selection, the mean diagnosis rate for each gender is a function of physician prior

beliefs and their perceived tradeoff between over/under diagnosis. I am able to separately

identify these two values using estimates of mean gender-specific ADHD risk obtained in the

initial selection stage.

Counterfactual diagnostic simulations using model parameter estimates show that about

one-half of the observed ADHD diagnostic difference between male and female patients can

be attributed to differences in the underlying ADHD risk distribution, with the rest explained

by variation in physician decision-making across patient gender. In particular, I find that

physicians perceive female ADHD signals to be more informative of true health states and

thus place more weight on female patient symptoms when making a diagnosis decision. I also

find that physicians view missed diagnosis to be relatively more costly than misdiagnosis

for male patients, denoted by lower male diagnostic thresholds. This difference in diagnostic

thresholds by gender is inconsistent with clinical guidelines, yet explains a little over one-half
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of the gap in male/female ADHD diagnosis rates.

I end by exploring mechanisms that may rationalize physicians’ use of gender-specific

diagnostic thresholds, despite uniform clinical guidelines. First, I note that the estimated

diagnostic uncertainty is higher for males, which would justify lower diagnostic thresholds

even under symmetric cost/benefit of diagnosis. However, I also argue that in the case of

ADHD, there are asymmetric externalities associated with diagnosis for boys and girls, fur-

ther supporting the use of gender-specific thresholds. With an additional empirical analysis,

I show that diagnostic thresholds vary based on the specific sub-type of ADHD symptoms

(inattentive vs hyperactive/impulsive), especially for boys. This finding is consistent with

the notion that more salient or disruptive symptoms carry higher external costs (as in Aizer,

2008), which physicians may implicitly incorporate into diagnosis decisions. I also document

higher rates of internalizing mental health diagnoses among females such as anxiety and de-

pression. If treatment for these co-existing conditions mitigates ADHD-related behaviors (or

if treatment for ADHD would exacerbate the other symptoms as in Currie et al., 2014), the

marginal benefit of an additional ADHD diagnosis may be lower for females. Taken together,

the evidence suggests that males and females face different externalities and benefits from

ADHD diagnosis on the margin. While guidelines are uniform, physicians operate under

uncertainty, and when facing heterogeneous externalities or relying on heuristics, physicians

may deviate from clinical guidelines in ways that are economically rational, even if not

guideline-consistent.

This paper contributes to several strands of literature. First, it adds to a large body of

work on healthcare disparities and variation in healthcare delivery generally (e.g., Chandra

and Skinner, 2003; Finkelstein et al., 2016; Cutler et al., 2019; Cuddy and Currie, 2020).

Within this literature, studies document large variation due to physician-specific factors

(Badinski et al., 2023), noting differences in treatment decisions across otherwise similar pa-

tients based on demographic characteristics such as race, ethnicity, and gender (e.g., Chandra

and Staiger, 2010; Alsan et al., 2019; Cabral and Dillender, 2024; Corredor-Waldron et al.,

2024). I find that this is also true in the context of ADHD, where physician diagnostic be-

havior contributes substantially to gender disparities in mental health diagnosis, even after
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controlling for observable differences in patient presentation.

This leads to the second strand of literature: understanding expert decision-making under

uncertainty and guidelines adherence. Recent work documents substantial heterogeneity in

how physicians interpret symptoms, follow clinical guidelines, and allocate scarce resources

(e.g., Abaluck et al., 2016; Chan and Gruber, 2020; Currie and MacLeod, 2020; Chan et al.,

2022; Mullainathan and Obermeyer, 2022; Schnell, 2022). A key question in this work is

whether variation in physician decision-making reflects poor non-compliance with guidelines

or appropriate expert discretion. For example, Abaluck et al. (2020) show that physicians

deviate from guidelines in treating atrial fibrillation patients, despite larger benefits from

guideline adherence. On the other hand, Cuddy and Currie (2024) emphasize tensions be-

tween clinical and professional guidelines in mental health prescribing, noting that some

discretionary deviations may be beneficial. My setting—a subjective diagnostic process gov-

erned by uniform clinical guidelines—provides a sharp test of how adherence varies by patient

group, particularly under diagnostic uncertainty and heterogeneous externalities. Taking in-

sights from this literature, I develop a model of mental health diagnosis that incorporates

both patient demand factors along with physician decision-making. Importantly, while tra-

ditional models assume that health states or true diagnoses are observed on some level, this

is not the case in mental health applications as diagnosis is based on the presence of behav-

ioral symptoms and cannot be confirmed via traditional medical testing. My paper innovates

to address this challenge by using clinical doctor note data and text analysis techniques to

construct a proxy for ADHD symptom match based on clinical diagnostic guidelines.

Within the context of ADHD specifically, my paper adds to the existing economic liter-

ature exploring the potential for ADHD diagnostic errors and effects of childhood ADHD

more generally.4 For example, multiple researchers have shown that where a child’s birth-

4Understanding ADHD diagnosis is also explored in the medical/public health literature, including meta
analyses on diagnostic differences (e.g., Sciutto and Eisenberg, 2007; Hinshaw, 2018), physician/patient
surveys (e.g., Visser et al., 2015; Chan et al., 2005), and vignette studies exploring variation in ADHD
diagnosis decisions by patient groups (e.g., Bruchmüller et al., 2012). Broadly, these studies show that
ADHD diagnosis practices vary depending on setting and find inconsistencies in the application of diagnostic
criteria. However, they are limited in their potential for informing policy as sample sizes are small and
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date falls in relation to the school entry cut-off date is a strong predictor of ADHD diagnosis,

implying that teachers are subjectively comparing the younger students in the class to older

students and mistaking immaturity for ADHD (e.g., Elder, 2010; Schwandt and Wupper-

mann, 2016; Layton et al., 2018; Persson et al., 2025). The implications of these potential

ADHD misidentifications are not as clear. Chorniy and Kitashima (2016) find that ADHD

treatment reduces risky behavior and injuries. Aizer (2008) notes that ADHD diagnosis and

treatment may have positive spillover externalities to peers in the classroom, and access to

special education programs have long run benefits (Ballis and Heath, 2021). On the other

hand, Currie et al. (2014) do not find evidence that ADHD drug treatment improves ed-

ucational outcomes and shows that it may even have harmful consequences, especially for

girls. My paper adds to this existing literature by decomposing the underlying sources that

contribute to the male/female diagnostic difference and quantify how much of this diagnos-

tic gap aligns with medical guidelines. Results from the model simulation exercises can also

help guide where policies might best focus efforts to reduce sources of medically-unwarranted

diagnostic differences.

Finally, the methods I use in this paper also add to the more recent literature on using

text analysis, machine learning, and natural language processing in economic research (see

Gentzkow et al., 2019; Currie et al., 2020, and citations therein). In this paper, I combine

machine learning methods outlined in Clemens and Rogers (2020) with text analysis methods

proposed in Marquardt (2022) to construct key mental health variables which I then use in

a structural model to estimate variation in both patient and physician decision-making.

While I focus on ADHD in particular, the methods I propose can be used in a variety of

settings where researchers have access to interview notes that inform agent decision-making,

especially those in which true outcomes cannot be observed directly.

The remainder of this paper is structured as follows. Section 2 provides medical details

on ADHD diagnosis to help motivate the theoretical model, which is then outlined in Section

3. In Section 4, I summarize the electronic health record data with a reduced form analysis

mechanisms are not causally identified.
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and observational comparisons. I also describe the machine learning and natural language

processing techniques used to extract important variables from clinical doctor notes. In

Section 5, I outline the empirical strategy, parameter identification, and present the first

stage estimation results. Section 6 presents the remaining model estimates and results from

various supplementary analyses. This includes a model simulation decomposition exercise

to isolate and quantify mechanisms of disparities, in addition to an extension of the model

allowing for type-specific diagnostic thresholds. I also interpret these results and discuss

both medical and economic rational for the use of physician discretion in diagnosis decisions.

Finally, Section 7 concludes.

2 Background and Medical Details

I study the physician decision to diagnose Attention Deficit Hyperactivity Disorder in chil-

dren and young adolescents. ADHD is a chronic mental disorder associated with symptoms

of inattention, hyperactivity, and impulsivity. These symptoms are associated with lower ed-

ucational attainment (Currie and Stabile, 2006) in addition to long term effects on earnings

and employment opportunities (Fletcher, 2014). Importantly, treatment through stimulant

medication and/or behavioral therapy has been shown to reduce the symptoms and associ-

ated costs related with this condition (Jensen et al., 2001; Chorniy and Kitashima, 2016).

Moreover, academic accommodations are also typically made available for children with

ADHD, through 504 plans or Individualized Education Program (IEPs), which have been

shown to have significant long run benefits (Ballis and Heath, 2021). On the other hand, there

are also costs associated with over diagnosis of ADHD. In particular, stimulant medications

used to treat ADHD are classified as Schedule II controlled substances, with documented

potential for abuse and adverse side effects. These findings highlight the relevant tradeoffs

and importance of accurate ADHD diagnosis for human capital development.

While the exact cause of ADHD is unknown, the medical literature agrees there is a strong

heritability component. However, genetics alone do not indicate a diagnosis, and there is less
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consensus regarding other environmental and structural factors (Hinshaw, 2018).5 There is

no biological or medical test to determine the presence of ADHD in a given patient. Instead,

an ADHD diagnosis is defined by a list of behavioral symptoms outlined in The Diagnostic

and Statistical Manual of Mental Disorders, currently in its fifth edition (DSM-V).

Table 1: DSM-V Symptoms for ADHD

Type I- Inattention
1. Often fails to give close attention to details or makes careless mistakes.
2. Often has difficulty sustaining attention in tasks or play activities.
3. Often does not seem to listen when spoken to directly.
4. Often does not follow through on instructions.
5. Often has difficulty organizing tasks and activities.
6. Often is reluctant to engage in tasks that require sustained mental effort.
7. Often loses things necessary for tasks or activities.
8. Is often easily distracted by extraneous stimuli.
9. Is often forgetful in daily activities.
Type II- Hyperactive/Impulsive
1. Often fidgets with or taps hands or feet or squirms in seat.
2. Often leaves seat in situations when remaining seated is expected.
3. Often runs about or climbs in situations where it is inappropriate.
4. Often unable to play or engage in leisure activities quietly.
5. Is often “on the go,” acting as if “driven by a motor.”
6. Often talks excessively.
7. Often blurts out an answer before a question has been completed.
8. Often has difficulty waiting his or her turn.
9. Often interrupts or intrudes on others.

Note: This table reflects an abbreviated list of DSM-V symptoms by ADHD type. The full version is
published in American Psychiatric Association (2013).

There are three possible types or presentations of ADHD: inattentive, hyperactive-impulsive,

and combined type. While the combined type is most commonly diagnosed (indicating symp-

toms of both inattention and hyperactivity), research shows that males are relatively more

likely to express hyperactive-impulsive symptoms and females are relatively more likely to

express those of inattention (Hinshaw et al., 2022). Importantly, the clinical requirements

for diagnosis are the same regardless of type; A child meets the clinical definition of ADHD

if they experience 6 or more behavioral symptoms of a given sub-type presented in Table

5See Appendix D.2 for discussion on ADHD Heritability. Other risk factors mentioned in the medical
literature include: low birth-weight, prenatal toxins, and exposure to lead (Kim et al., 2020). A list of
more debated causes include: food additives/diet, in-utero cellphone radiation, and excess exposure to
television/video games.
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1.6 In addition, these symptoms should be present in two or more settings (e.g., home and

school) and experienced before age 12.

Figure 1: National Trends in ADHD Diagnosis

Note: This figure plots the ADHD diagnosis rates for male and female children aged 5-17, based on data from the National
Health Interview Survey (NHIS), 2000-2021. Yearly rates are weighted by the NHIS person sample weights, and figure plots
the 3-year moving average.

Figure 1 displays the national trend in ADHD diagnosis rates for male and female chil-

dren. These average diagnosis rates have increased over time, but the male/female diagnostic

difference has remained relatively constant around 2.3:1. It is important to reiterate that

while male and female children differ in which sub-type of ADHD they are most likely to

experience, the DSM-V does not have different clinical requirements for these sub-types, nor

does it specify different rules based on patient gender. For both conceptual modeling and

estimation purposes, this fact explicitly restricts differences in overall ADHD prevalence to

come only from differences in number and severity of symptoms between male and female

children. Bruchmüller et al. (2012) discuss the medical and epidemiological literature on

ADHD presentation and diagnosis, and conclude it is “unlikely that gender differences in

the expression of ADHD can fully account for the fact that boys with ADHD receive treat-

ment two to three times more often than girls with ADHD.” This motivates the question:

6For the combined type, patients need 6 or more behavioral symptoms in both the Inattentive and the
Hyperactive/Impulsive symptom lists.
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what other factors contribute to the large difference in ADHD diagnosis rates between boys

and girls? To answer this question I first outline how an ADHD diagnosis is made.

In order to receive a clinical diagnosis, a patient must schedule and receive a behavioral

assessment from a physician. Scheduling this assessment is not required for all children, but

may be encouraged based on feedback from teachers, guidance counselors, or primary care

providers during annual wellness checks. A patients’ primary care provider (PCP) is either

chosen or assigned when the child first enters the health system and is specified as the first

point of contact in the health system for general health care needs. While some PCPs may

diagnose ADHD themselves, given time constraints or practice authority, it is also common

for them to make referrals to other pediatricians or behavioral specialists in the healthcare

system. As I emphasize later in the paper, variation in the referrals from primary care

providers is an important driver of behavioral assessment take-up.

According to published pediatric best-care practices, a behavioral assessment should

include an interview with the patient, the parent, and a teacher or alternative caregiver.

Physicians may use published ADHD rating-scales along with open-ended questions, but

should consult the DSM-V and document the presence of relevant symptoms. Based on

this assessment, the physician should diagnose ADHD if they believe the patient meets the

minimum requirements for diagnosis outlined in the DSM-V.

While American Academy of Pediatrics (2011, 2019) outlines best-practices for ADHD

diagnosis, they also admit that these guidelines are often difficult for physicians to follow

in practice “because of the limited payment provided for what requires more time than

most of the other conditions they typically address.” Due to time, payment, or a variety of

other constraints, it is unlikely that physicians are able to strictly follow these best-practice

guidelines. In fact, surveys suggest that only about 60% of physicians incorporate these

guidelines into their practice (Rushton et al., 2004; Chan et al., 2005). This finding, along

with the institutional features of non-mandatory mental health screening, motivates the

need for a structural model of ADHD diagnosis that incorporates these various elements of

diagnosis in order to separately identify the key mechanisms leading to diagnostic differences.
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3 Conceptual Framework

In traditional models of decision-making under uncertainty, deciding agents receive a noisy

signal of the true state of the world, use the signal to update their prior beliefs, and make

a decision to maximize utility. These types of models have been empirically estimated in

healthcare settings (e.g., Anwar and Fang, 2012; Chan et al., 2022) in addition to other

applications such as the judicial system (e.g., Arnold et al., 2022). What is missing from

these models, however, is individual selection, which I show is an important mechanisms to

understanding disparities in outcomes across patient groups, specifically in relation to mental

health. In what follows, I present a model of ADHD diagnosis that pairs a physician decision-

making under uncertainty model with a first-stage selection component that endogenizes the

patient decision to seek mental health care (selection). I allow, but do not enforce, key

model parameters to vary based on patient gender. I then discuss comparative statics to

highlight the four potential mechanisms underlying ADHD diagnostic differences between

boys and girls: true symptom prevalence, patient utilization costs, diagnostic uncertainty,

and physician preferences.

3.1 Diagnosis Model with Endogenous Selection

The model is composed of three stages: patient selection, physician learning, and clinical

diagnosis. In the first stage, patients choose to schedule a behavioral assessment if their

ADHD symptoms outweigh any costs associated with mental healthcare utilization. Con-

ditional on selecting into care, the patient enters the second stage of the model in which

the physician conducts a behavioral assessment, learns about the relevant symptoms, and

develops a posterior probability of ADHD likelihood. In the final stage, the physician will

choose a diagnosis decision based on ADHD posterior risk and perceived costs of over/under

diagnosis. Underlying the model is a gender-specific ADHD risk distribution that captures

differences in true prevalence rates. The model allows patient mental health utilization,

physician preference thresholds, and physician learning rates to vary by patient gender as a

way to capture the varying components of mental health diagnostic disparities.
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ADHD Prevalence

Each child has some unobserved latent ADHD risk, vi, which measures the extent of ADHD

related symptoms. This comes from a continuous distribution Fθ(v), where θ indicates

whether patient gender is male or female: θ ∈ {m, f}. For computational simplicity, I

assume Fθ(v) is a Normal CDF, though this assumption is not essential for identification,

further discussed in Section 5.

vi ∼ N(µθ, σ
2
θ) (1)

This continuous mental health risk is in line with the medical literature that suggests

ADHD symptoms present on a continuum (AHRQ, 2011). Despite this fact, ADHD clinical

diagnosis is binary by definition. Following the diagnostic guidelines in defining ADHD, a

child has ADHD if and only if they meet all the requirements for diagnosis outlined in the

DSM-V. Therefore, letting Si ∈ {0, 1} denote the true ADHD status, we have Si = 1(vi > v)

where v is the DSM-V defined minimum requirement for diagnosis, which by definition does

not vary by patient gender.7 Thus, differences in true ADHD prevalence between boys

and girls depend only on differences in ADHD risk distribution parameters, with prevalence

increasing in population mean risk, µθ.

Stage 1: Patient Choice to Schedule Behavioral Assessment

In the first selection stage of the model, the patient/parent must decide whether or not

to schedule a behavioral assessment.8 Parents will schedule a behavioral assessment if the

child’s behavioral symptoms outweigh any mental healthcare utilization costs, ci, which in-

cludes a mean component, cθ, and an idiosyncratic cost, εi | vi ∼ N(0, 1). Because health

insurance typically covers behavioral assessments with little to no out of pocket expendi-

tures, ci includes non-monetary constraints (or conversely nudges) impacting the decision

7In the 2013 DSM-V release, guidelines were updated to reflect varying levels of symptoms severity. While
these are associated with different CPT codes in how a physician is reimbursed, ICD-9 and ICD-10 codes
were not adjusted and still reflect binary indicators, validating the assumption to use a single-valued cut-off.
In the main estimation section of this paper, I do not assume a v value, but rather test if doctors use different
thresholds based on patient gender, a practice that implies deviation from the official DSM guidelines.

8Because I focus on children as patients, I assume the parent and child make joint decisions and thus
typically group them together in referring to the “patient” throughout the model.
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to schedule a behavioral assessment. This can include parent time constraints, distance to

the nearest health center, recommendations from school teachers, or information obtained

from primary care providers during annual wellness visits. It may also include any stigma

surrounding potential mental health diagnosis. In other words, ci captures everything that

impacts the decision to seek mental health care net of child symptom level, vi. I allow for

differences in the gender-specific mean utilization cost, cθ, but do not enforce a difference

empirically.

Denoting Qi as an indicator for behavioral assessment, I define Qi = 1(vi > ci), which

reflects patient selection into mental health care either due to high underlying symptoms

concerns (vi), low utilization costs (ci), or both. Equation (2) defines the gender-specific

behavioral assessment rate, which follows from (1) and the assumption that ci = cθ+εi ⊥⊥ vi.

Pr (Qi = 1 | θ) = Φ

(
µθ − cθ√
1 + σ2

θ

)
(2)

Stage 2: Physician Learning via Behavioral Assessment

I assume that the physician knows the gender-specific ADHD risk distribution, but does

not know patient specific ADHD risk, vi, nor the patient specific mental health utilization

costs, ci. Thus, the physician prior can be defined by (1) and is a function of ADHD risk

distribution parameters µθ and σθ.
9

If a patient chooses to schedule a behavioral assessment, the physician will learn about

the patient specific ADHD risk, vi. Through this process, the physician receives a noisy

signal, xi, of the true ADHD risk vi, defined by equation (3). The signal is unbiased and

correlated with the true state through ρθ ∈ (0, 1). I allow correlation to vary by patient

9This assumption allows me to interpret the diagnostic threshold parameter τθ as physician preferences
over diagnostic errors and/or deviations from guidelines. In Appendix D.2, I discuss the benefits of this
assumption and implications if it fails.
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gender as a way to capture variation in diagnostic uncertainty coming from signal quality.10 vi
θ

xi

 ∼ N

µθ

µθ

 ,

 σ2
θ ρθσ

2
θ

ρθσ
2
θ σ2

θ

 (3)

The physician then uses this information to update their belief of ADHD risk via a

Bayesian updating process. After observing xi, the physician updates their prior, resulting

in the posterior ADHD risk distribution defined in (4). Notice that the updated risk posterior

mean is a weighted average of patient observed signal, xi, and the physician prior risk mean,

µθ, where the weight placed on the signal depends on the signal quality, ρθ.

vi | xi ∼ N
(
(ρθxi + (1− ρθ)µθ) , σ

2
θ(1− ρ2θ)

)
(4)

Stage 3: Physician Diagnosis Decision

Finally, the physician makes a binary diagnosis decision, Di ∈ {0, 1}, with the goal of

matching the diagnosis to the true health state. This can be modeled as a risk-threshold

decision rule where physicians diagnose ADHD to patients whose posterior risk of ADHD is

above a diagnostic threshold, τθ.
11

Di | xi, θ = 1(vi | xi ≥ τθ) (5)

In Appendix D.1, I present a physician utility framework and derive this risk-threshold

rule, showing how τθ can be interpreted as reflecting the physician’s perceived tradeoff be-

tween the costs of over- and under-diagnosis.12 Intuitively, if physicians view misdiagnosis

10This health signaling structure is very similar to that defined in Chan et al. (2022), but assumes that
signal strength varies across patient types as opposed to physician types.

11While the baseline model allows diagnostic thresholds to vary by patient gender, it assumes a constant
threshold across ADHD sub-types within each gender. In a supplementary analysis (Section 6.2), I relax
this assumption and examine its relevance in rationalizing physician diagnostic decision-making.

12While rare in practice, its possible that ADHD diagnosis decisions can be reversed. Therefore, τθ
measures physicians perceived tradeoffs at the time of behavioral assessment. In this way, τθ also captures
the perceived cost of delaying and/or reversing diagnosis down the road, which also could vary based on
patient gender.
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as costly, they are worried about diagnosing children on the margin of ADHD according to

risk and will thus apply a higher diagnostic threshold than imposed by the guideline. On

the other hand, if physicians view missed diagnoses as costly, they would prefer to diagnose

children on the margin of ADHD and will thus apply a lower diagnostic threshold. While

uniform clinical guidelines imply a fixed threshold, physicians may differentially deviate by

patient gender if they believe the relative costs of diagnostic outcomes differ across these

groups. Therefore, I allow these thresholds to vary by patient gender to capture heterogene-

ity in physicians’ perceived diagnostic tradeoffs and in the potential benefits of discretionary

deviation from uniform guidelines.13

Using the physician posterior in equation (4), the probability a patient is diagnosed,

conditional on behavioral assessment and received signal, is:

Pr (Di = 1 | Qi = 1, xi, θ) = Φ

(
1

σθ

√
1− ρ2θ

(ρθxi + (1− ρθ)µθ − τθ)

)
(6)

3.2 Mechanisms of Diagnosis and Diagnostic Disparities

Combining equations (2) and (6) yields the following gender-specific diagnosis rate:

Pr (Di = 1 | θ) = Pr (Di = 1 | Qi = 1, xi, θ)× Pr (Qi = 1 | θ)

= Φ

(
1

σθ

√
1− ρ2θ

(ρθxi + (1− ρθ)µθ − τθ)

)
︸ ︷︷ ︸

Physician Diagnosis Rate

× Φ

(
µθ − cθ√
1 + σ2

θ

)
︸ ︷︷ ︸

Patient Assessment Rate

(7)

Diagnosis rates are a function of underlying prevalence, mental healthcare utilization

costs, diagnostic uncertainty, and physician preferences/diagnostic thresholds. My model

13In related models from the physician bias literature, variation in thresholds is often interpreted as taste-
based discrimination as it captures the difference in diagnosis rates for identical patients in terms of risk.
However, if the perceived costs of diagnostic outcomes differ by gender, heterogeneous thresholds may be
warranted and should not necessarily be viewed as “discrimination.” In the model and estimation, I remain
agnostic and refer to τθ as gender-specific diagnostic thresholds. In Section 6.2, I further consider whether
these threshold differences are economically and/or medically warranted.
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captures each of these elements via µθ, cθ, ρθ, and τθ, respectively.

The comparative statics of population-group diagnosis rates are quite intuitive. Groups

with higher prevalence, captured by mean risk, µθ, are associated with higher diagnosis

rates.14 This increase can be attributed to both the patient selection channel (∂Pr(Qi)
∂µθ

> 0)

and the physician conditional diagnosis channel (∂Pr(Di|Qi)
∂µθ

> 0), where the latter is due to

higher physician prior beliefs. On the other hand, high patient utilization costs imply lower

diagnosis rates because fewer patients choose to seek mental health care (∂Pr(Qi)
∂cθ

< 0). In

terms of physician preferences, high diagnostic thresholds are associated with lower diagnosis

rates (∂Pr(Di|Qi)
∂τθ

< 0). Finally, groups with lower diagnostic uncertainty (i.e., higher ρθ) will

have higher population diagnosis rates ( ∂P (Di=1|Qi=1)
∂ρθ

> 0 in the selected sample).15

These population-group comparative statics map directly into mechanisms explaining di-

agnostic differences between males and females: ∆ = P (D|θ=m)
P (D|θ=f)

. Diagnosis rates increase with

population prevalence and signal quality and decrease with utilization costs and diagnostic

thresholds. Therefore, the ADHD diagnostic difference seen between males and females may

be attributed to some combination of the following– 1. higher male prevalence (µm > µf ),

2. higher signal strength for male patients (ρm > ρf ), 3. lower utilization costs for male

children (cm < cf ), and/or 4. lower diagnostic thresholds applied to male patients (τm < τf ).

From a policy standpoint, it is essential to identify whether true prevalence is the driving

factor of differing diagnosis rates, or if these other mechanisms contribute to diagnostic dis-

parities. The direction and relative contribution of each mechanism is an empirical question

which I explore in the remainder of this paper.

14Prevalence rates are technically defined as P (S = 1|θ) = P (vi > v|θ) where v is the DSM-V specified
cut-off rule. Provided v is not too large, it follows from vi ∼ N(µθ, σ

2
θ) that there is a one-to-one monotonic

correspondence between prevalence and mean risk.
15 ∂P (Di=1|Qi=1)

∂ρ = ϕ(ρ(x−µ)+µ−τ
σ(1−ρ2)(1/2)

)(x−µ+ρ(µ−τ)
σ(1−ρ2)(3/2)

). By contradiction, assume this partial derivative is neg-

ative. As σ > 0 and ρ ∈ (0, 1), this implies that ρ(x − µ) + (µ − τ) and x − µ + ρ(µ − τ) have opposite
signs. For the selected sample with Qi = 1, symptoms are on average higher than underlying risk implying
x > µ. Additionally, assuming physicians would diagnose less than 50% of population, τ > µ. Therefore,
this partial derivative is negative if and only if ρ > τ−µ

x−µ and ρ > x−µ
τ−µ which violates the requirement that

ρ ∈ (0, 1). Thus, it must be that ∂P (Di=1|Qi=1)
∂ρθ

> 0 for selected sample.
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3.3 Empirical Approach Outline

To identify the mechanisms leading to different male/female diagnosis rates, I separately

estimate the model parameters for both male and female patients: (µθ, σθ, cθ, ρθ, τθ) for

θ ∈ {m, f}. I use electronic health record data and estimate equation (7) separately for

male and female sub-samples.

The variables required to estimate gender-specific diagnosis rates (7) are clinical diagnosis

decision, Di, behavioral assessment indicator, Qi, ADHD match signal, xi, and patient

gender, θi. However, the only variables directly observed in the electronic health record are

Di (via associated ICD-9 or ICD-10 codes) and patient gender, θi. Even though behavioral

assessment, Qi, and ADHD match signals, xi, are not directly imputed into electronic health

record systems, I show how both variables can be recovered from clinical doctor note text.

I then use these observed and constructed variables to estimate the structural model

parameters. I break this down into two steps where the first recovers the gender-specific

population mean ADHD risk parameter, µθ. Because ADHD match signals are only observed

for an endogenously selected sample, I recover this parameter using quasi-exogenous variation

in scheduling costs following an approach outlined in Arnold et al. (2022). Once male and

female population mean risk are estimated, the remaining parameters are identified and

estimated from moments defined by behavioral assessment rates and the conditional diagnosis

probit following equation (7). I further detail this estimation process in Section 5.

4 Data and Variable Construction

The data come from de-identified electronic health records (EHR) provided by a large health-

care center in Arizona. I first identify the set of physicians (whether general practice or

behavioral specialty) who have diagnosed ADHD at least once over the sample period of

January 2014 to September 2017. I then obtain encounter-level data for all pediatric pa-

tients of this set of physicians over the same sample period.16

16The details (and implications) of the sample inclusion criteria are discussed in Appendix B.1.
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Next, I exclude children younger than 5 years old, whose rates of ADHD diagnosis and

treatment are very low and whose medical care requires peer-to-peer review and prior au-

thorization. I then drop erroneous encounters, visit cancellations or no-shows, and patients

with missing demographic information. The remaining data encompass 36,193 unique pa-

tient encounters, for 11,070 unique patients. Patient characteristics include: birth year,

gender, race/ethnicity, initial primary care provider, and insurance status. Encounter char-

acteristics include: patient age, visit provider ID, appointment date, broad appointment

type descriptors, associated diagnoses (if any), and most importantly, the clinical doctor

note summarizing the encounter.

As ADHD is a chronic condition, the unit of observation in the model is at the patient

level. I label a patient as clinically diagnosed with ADHD (Di = 1) if the patient has an

encounter during the sample period in which the main associated ICD-9 or ICD-10 code

corresponds to an ADHD diagnosis. While the specific symptoms differ by sub-type of

ADHD, the clinical requirements for diagnosis are the same (e.g. ≥ 6 symptoms). Further,

the ICD coding did not update until mid-2015, making it difficult to distinguish between

specific ADHD types using diagnosis codes alone.17 Patient-level summary statistics are

presented in Table 2. Therefore, I group together the different types of ADHD into a single

diagnosis category, but appropriately adjust for the different symptom presentations when

constructing the patient ADHD match signal, detailed in Section 4.2.

Of the roughly 11,000 patients seen from 2014 to 2017, 5.2% received a clinical ADHD

diagnosis. The in-sample ADHD diagnosis rate is slightly lower than the national average

during this time period, but the male/female diagnostic difference is representative of na-

tional values.18 Males are diagnosed with ADHD significantly more than females. The raw

17The diagnosis codes for ADHD include: 314.0 and 314.1 (ICD-9) and F90.0, F90.1, F90.2, F90.9 (ICD-
10). Until the updated ICD-10 codes were released in end of 2015, physicians used the ICD-9 codes for
ADHD diagnosis, despite there not being a one-to-one mapping with the existing DSM-V criteria.

18This lower-than-average diagnosis rate is likely due to the fact that a large portion of the sample pop-
ulation is of Hispanic ethnicity (49.5%), and research shows a significantly lower diagnosis rate for this
population (see Morgan et al., 2013). However, given that males and females in the sample are similar with
respect to ethnicity and other observables (see Appendix Table A1), this does not pose a concern for the
analysis which focuses on relative differences in diagnostic mechanisms by gender.
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diagnostic difference is 2.32:1, with 7.2% of males receiving a clinical diagnosis but only 3.1%

of females. On average, patients will be seen by two different physicians over an average of

3.3 appointments, a majority of which are with a provider other than their initial primary

care provider.19

Table 2: Summary Statistics

Mean Std. Dev. Min Max

ADHD Dx. 0.052 0.221 0 1
Male Dx. 0.072 0.259 0 1
Female Dx. 0.031 0.172 0 1

Male 0.508 0.500 0 1
Age 10.316 3.551 5 18
White 0.561 0.496 0 1
Hispanic 0.494 0.500 0 1
Medicaid 0.535 0.499 0 1

# of Physicians 1.933 1.502 1 15
# of Appt. 3.269 4.111 1 85
# of Appt. (not IPCP) 2.542 3.849 0 85
# Yrs. in Sample 1.690 0.891 1 4

N Patients 11070

Note: This table presents summary statistics for the full set of patients in the estimation sample. For each patient, age is
defined as the average age across all visits in the sample. # of Physicians indicates the number of unique providers seen by the
patient during the sample period. # of Appt. indicates the total number of patient appointments during the sample period,
and # of Appt. (not IPCP) denotes the total number of patient appointments where the visit provider was not the patient’s
initial primary care provider. See Appendix B for additional details on data and variable construction.

Table 3 presents reduced-form ADHD diagnostic regressions that control for demograph-

ics and any other observable differences in healthcare utilization by gender.20 In all instances,

male patients are significantly more likely to be diagnosed with ADHD than female patients.

This is true at baseline (column 1), and persists after controlling for differences in other demo-

graphics (column 2), general healthcare utilization (column 3), and other mental healthcare

utilization more specifically (column 4). This analysis highlights the inability to explain

19The initial primary care provider is defined as the specified PCP during the patient’s first visit in the
sample. See Appendix B.1 for additional details on provider types.

20Appendix Table A1 presents differences in male and female patients based on age, race/ethnicity, and
health insurance coverage. While male patients are on average 4 months younger than female patients and
slightly less likely to be covered by Medicaid, the magnitude of these differences are small.
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the male-female diagnostic difference using only directly observable information in electronic

health record or claims-based datasets.

Table 3: Reduced Form ADHD Diagnostic Regressions

(1) (2) (3) (4)

Male 0.041*** 0.041*** 0.044*** 0.036***
(0.004) (0.004) (0.004) (0.004)

Added Patient Observables:
Demographics N Y Y Y
General Healthcare Utilization N N Y Y
Mental Healthcare Utilization N N N Y

Adj. R-squared 0.0086 0.0164 0.0502 0.1687
N 11070 11070 11070 11070

Note: This table presents the estimated coefficient on male indicator from a OLS regression of ADHD clinical diagnosis on
patient-level observables. Demographic Variables: age and age-squared (averaged across all patient appointments), indicators
for insurance coverage, indicators for race/ethnicity, and birth year fixed effects. General Healthcare Utilization Variables: #
of doctors seen (across all patient visits), # of appointments, indicator for any wellness-related appointment descriptor, and
appointment year fixed effects. Mental Healthcare Utilization Variables: indicators for having any other (non-ADHD) mental
health diagnosis, any behavior-related appointment descriptor, and any visit with a psych specialty provider. See Appendix B
for additional details on data and variable construction. Robust standard errors in parenthesis. * p < 0.10, ** p < 0.05, ***
p < 0.01

However, as discussed in Section 3.3, there are two key mental health variables that

are unobserved to the econometrician yet play a central role in the physician diagnosis

decision. These are (1) Qi, which is an indicator for whether a patient receives a behavioral

assessment, and (2) xi, which is the patient specific ADHD match signal observed conditional

on behavioral assessment. In the next two sections I discuss how both of these variables are

defined and constructed using clinical doctor note text data combined with machine learning

and natural language processing techniques, respectively.

4.1 Behavioral Assessment: Qi

The electronic health record does not specifically indicate whether a behavioral assessment

was conducted during the visit. While appointment type descriptors are denoted in the

record, the majority are either “office/return” or “urgent/acute” which may include both

behavioral and non-behavioral assessment of symptoms. Therefore, I manually construct

this variable from the data by applying machine learning techniques to clinical doctor notes

as a way to predict whether a behavioral assessment was conducted during an appointment
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using the content of the doctor note. I give a general outline of the procedure here and

provide additional details in Appendix C.1.

I first take a subset of appointments in which the behavioral assessment indicator variable

is known with almost certainty. This subset is constructed by assuming that a behavioral as-

sessment was conducted if the encounter is associated with an ADHD diagnosis, a differential

mental health diagnosis (e.g., conduct disorder), or a comorbid condition (e.g., generalized

anxiety disorder) as noted by the DSM-V.21 I then assume appointments are not behavioral

assessments if (i) they have a diagnosis code that is not considered a mental health related,

and (ii) the patient never receives a mental health diagnosis at any point in the sample pe-

riod. The most common diagnosis categories in this negatively labeled set include disorders

of the eye (ICD10 codes: H00–H60) and diseases of the respiratory system (ICD10 codes:

J00–J99).

The remaining appointments are considered ‘unlabeled’. These are appointments in

which there is either no associated diagnosis code in the record, or those for which the

diagnosis code could plausibly reflect either a mental or physical health concern, particularly

when the patient has a mental health diagnosis elsewhere in their record (e.g., abdominal

pain can be associated with anxiety or a virus). The purpose of this machine learning

approach is to determine whether behavioral symptoms were discussed and ADHD diagnosis

considered by the physician during these unlabeled set of appointments.

Using information from the clinical doctor notes in the labeled dataset, I next deter-

mine a set of machine learning model features. I consider 41 features: note length, the

relative frequency of the top 20 ‘positive’ label words, and the relative frequency of the top

20 ‘negative’ label words. Figure 2 provides a visual of these features with a word cloud

21Mental health conditions are often co-existing (i.e., patients meet the criteria for multiple diagnoses)
and thus behavioral evaluations for one condition likely involve considerations of the symptoms associated
with others. According to published clinical guidelines (American Academy of Pediatrics, 2011, 2019), “ In
the evaluation of a child or adolescent for ADHD, the [provider] should include a process to at least screen
for comorbid conditions, including emotional or behavioral conditions (eg, anxiety, depression, oppositional
defiant disorder, conduct disorders, substance use), developmental conditions (eg, learning and language
disorders, autism spectrum disorders), and physical conditions (eg, tics, sleep apnea).”
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representation for both negative and positive behavioral assessment labels. As expected, the

positive behavioral assessment label includes words related to behavioral symptoms such as:

behavior, school, social, and feel. The negative behavioral assessment label includes words

more related to physical rather than mental health concerns. These include words such as:

pain, fever, cough, and rash.

Figure 2: Behavioral Assessment Indicator Word Clouds

(a) Non-Behavioral Words (b) Behavioral Words

Note: This figure shows “Word Clouds” of most predictive word-stems in labeled appointments used for machine learning model
training, shown separately for Non-Behavioral (Qij = 0) and Behavioral (Qij = 1) labeled appointments, respectively. This
figure presents full words, whereas actual stems used for prediction are listed in Appendix C.1.

Finally, I use the labeled data and selected features to train a random forest machine

learning algorithm, which I then apply to the unlabeled set of appointments in order to

predict whether behavioral symptoms were discussed during the appointment based on the

information in the clinical doctor note. I take the maximum of this prediction across patient

encounters to obtain the patient-level behavioral assessment indicator Qi used in model

estimation.

The machine learning algorithm predicts that approximately 20.8% of children receive

a behavioral assessment. Table 4, presented in the following section, compares behavioral

assessment rate predictions by patient gender. Males are significantly more likely than

females to schedule and receive a behavioral assessment, at 23.2% and 18.3% respectively.

In Appendix C.1, I present results from various validation exercises, and I discuss external

validity in Appendix B.2.
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4.2 ADHD Match Signal: xi

Recall that vi is the (unobserved) true health state and represents a measure of ADHD

risk based on behavioral symptoms. The ADHD match signal, xi, is an unbiased yet noisy

signal of vi that physicians observe during patient behavioral assessment. Because ADHD

diagnosis is defined by a list of behavioral symptoms (see Table 1), I interpret vi as a

composite measure summarizing number and severity of symptoms experienced by patient

i. Following this logic, xi is then a composite measure summarizing number and severity of

symptoms discussed with a physician during behavioral assessment.

Even detailed electronic health records do not report readily observable patient behav-

ioral symptoms. Instead, this information is collected during an interview and documented

in the clinical doctor note. With access to these clinical doctor notes, I construct a proxy for

xi using a natural language processing algorithm originally proposed in Marquardt (2022).

Essentially, I calculate the overlap between symptoms in the DSM-V symptom criteria list

(see Table 1) and symptoms in the collective doctor notes for a given patient, making neces-

sary adjustments to account for semantic content. This text-constructed value is a proxy for

the signal observed by the physician assuming they follow clinical guidelines in document-

ing all “relevant behaviors of inattention, hyperactivity, and impulsivity from the DSM”

(American Academy of Pediatrics, 2011).22

As xi is defined on the patient level, I first combine patient notes across encounters into

a single document, keeping only those identified as behavioral assessments and occurring

before or during initial ADHD diagnosis. I then calculate ADHD match signal, xi, following

a natural language processing algorithm in which patient documents and DSM-V symptom

requirements are compared using an Adjusted Bag-of-Words Model. I give a general outline

of the procedure here and provide additional details in Appendix C.2.

22In Appendix Figure C2 and Table C1, I show that male and female patients have similar doctor notes
in terms of both note length and words predictive of high ADHD match. In Appendix D.2, I discuss
the implications of this full documentation assumption. I argue that if the assumption fails equally for
male and female patients, the diagnostic disparities mechanism decomposition, and subsequent results from
supplementary analysis, remain unaffected.
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I first pre-process the clinical texts following standard medical text cleaning procedures

(e.g., spell check, abbreviation replacement, and size reductions). I next group words accord-

ing to contextual meaning which requires part-of-speech tagging and synonym replacement.

Each document is then broken into uni-gram and bi-gram tokens, where the latter is included

to preserve meaning from negation. Using these tokenized documents, I build the adjusted

Bag-of-Words (BOW) matrix where rows (i) represent patient documents, columns (k) rep-

resent bi-grams of word groups, and matrix elements (i,k) are the “tf-idf” values indicating

the relative frequency and importance of bi-gram k in document i.23

I then calculate the patient overall ADHD match signal by taking the cosine similarity

measure between the patient document vector and the official ADHD symptoms listed within

The Diagnostic and Statistical Manual of Mental Disorders, (DSM-V), rescaling to be within

0 and 1 for better interpretability. I do this for each sub-type of ADHD, with xi1 and xi2

denoting relative match between patient i note and ADHD symptoms of Inattention (Type

I in Table 1) and Hyperactive/Impulsivity (Type II in Table 1), respectively. I then define

xi = max{xi1, xi2}. While I take the maximum match across symptom types for the main

analysis, I relax this definition in Section 6.2 and discuss implications of varying symptom

types and their salience/externalities.

In total, the average signal match is 0.319 with a standard deviation of 0.140. For

reference, a value of xi = 1 indicates that the patient had the highest overlap between

their symptoms and those defined by the DSM-V, relative to other patients. Conversely, a

value of xi = 0 indicates the lowest match between the patient note and DSM-V defined

symptoms of ADHD. The average signal for males is 0.326, which is only slightly larger than

the average female signal match of 0.311 (see Table 4). Figure 3 presents a visual for the

ADHD match signal distribution by patient gender. This provides only suggestive evidence

of true prevalence differences as the plot represents the match for the (endogenous) set of

23The “tf-idf” value is defined as fki

Fi
× [1 + log( D

Dk
)] where fki is frequency of uni/bi-gram k in document

i, Fi is length of document i, D is number of documents, and Dk is number of documents with uni/bi-gram
k.
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patients that receive a behavioral assessment.

Figure 3: Observed ADHD Match Signal by Patient gender

Note: This figure shows gender-specific distribution of constructed ADHD match signals xi based on NLP techniques described
in Section 4.2. This implicitly covers the set of patients with behavioral assessment, Qi = 1, thus presents only a truncated
distribution of the true population ADHD risk.

Table 4 presents summary statistics for the key variables needed to estimate the diagnosis

model parameters. The top panel of Table 4 shows ADHD diagnosis rates and behavioral

assessment rates for the full sample. While males do receive behavioral assessments signifi-

cantly more than females, this selection does not explain the entire diagnostic disparity as

seen by the lower panel of Table 4. For those that receive a behavioral assessment, 31.0%

of males will be diagnosed with ADHD and only 16.8% of females will be diagnosed. It

is also unlikely that differences in symptom presentation fully explain the diagnostic gap

as the difference in ADHD symptom match is relatively small in magnitude. This table

provides suggestive evidence that the ADHD diagnostic difference is a function of selection,

prevalence, and physician decision-making factors. I next outline the model estimation ap-

proach which allows me to separate out the magnitude and direction of these underlying

mechanisms.

27



Table 4: Mental Health Observational Comparisons

Total Male Female Difference

Full Sample
ADHD Dx. 0.052 0.072 0.031

0.0413***
(0.221) (0.259) (0.172)

Behav. Appt. (Qi) 0.208 0.232 0.183
0.049***

(0.406) (0.422) (0.387)
N 11070 5624 5446

Behavioral Assessment Subsample (Qi = 1)
ADHD Dx. 0.248 0.310 0.168

0.1428***
(0.432) (0.463) (0.374)

ADHD Match Signal (xi) 0.319 0.326 0.311
0.0146**

(0.140) (0.139) (0.139)
N 2302 1305 997

Note: This table shows differences in mental health variables by patient gender. ADHD Dx. (Di) based on ICD codes in the
EHR. Behavioral Assessment rates (Qi) and ADHD Match Signal measures (xi) are constructed using machine learning and
natural language processing techniques outlined in Sections 4.1 and 4.2, respectively. Differences calculated as female means
subtracted from male means, and significance based on two-sample T-test difference in means. * p < 0.10, ** p < 0.05, ***
p < 0.01

5 Model Parameter Estimation and Identification

With data on ADHD diagnosis Di, behavioral assessment Qi, patient gender θi, and condi-

tional ADHDmatch signal xi, I estimate the structural parameters of the model: (µθ, σθ, cθ, ρθ, τθ)

for θ ∈ {m, f}. As discussed in Section 3.3, the parameter estimation procedure involves two

steps where the first recovers the gender-specific population mean ADHD risk parameter, µθ.

The remaining parameters are obtained by matching a set of moments defined by behavioral

assessment rates and components of conditional diagnosis probabilities following equation

(7), estimated separately for male and female patient groups.

5.1 First Stage: ADHD Population Risk

The reason for a first stage estimation of population mean ADHD risk µθ is shown mathe-

matically in equation (7) but also intuitively following the comparative statics discussion in

Section 3.2. Behavioral assessment rates are increasing in mean risk, µθ, and decreasing in

patient utilization costs, cθ. At the same time, conditional diagnosis rates are increasing in

mean risk, µθ, and decreasing in diagnostic thresholds, τθ. This makes it difficult to sepa-
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rately identify the three components even with information on Qi, xi, and Di. In an ideal

setting in which ADHD match signals are observed for all patients, one could estimate µθ

using gender-specific sample average of ADHD match signals, 1
Nθ

∑
i∈Nθ

xi. However, xi is

only observed for the subset of patients that receive a behavioral assessment. Because pa-

tients endogenously select into behavioral assessment according to unobserved ADHD risk,

the average value of observed signals will over-estimate the population risk mean, as shown

by equation (8).

E[xi|Qi = 1] = E[xi|vi > ci] = µθ + ρθσθ

ϕ( ci−µθ

σθ
)

1− Φ( ci−µθ

σθ
)︸ ︷︷ ︸

upward bias

(8)

To recover unbiased estimates of mean population risk for males and females, I leverage

quasi-exogenous variation in the otherwise unobserved utilization costs, ci. To build intuition

for this approach, consider a set of patients who, regardless of symptom levels, do not have

any constraints (and may even be nudged) to scheduling a behavioral assessment. For low

enough levels of ci, the probability of behavioral assessment is approximately 1, so the patient

will schedule a behavioral assessment and thus ADHD match signals, xi, will be observed.

Further, the bias term in (8) for these patients with low ci goes to 0, and thus sample mean

of xi for patients with low utilization costs (or conditionally high probability of behavioral

assessment) provides an unbiased estimation of population mean risk, µθ.

As ci is unobserved in application, I instead estimate individual propensity to schedule a

behavioral assessment using quasi-exogenous “cost-shifters”. A valid cost-shifter must be (a)

correlated with behavioral assessment propensity through the unobserved patient utilization

costs, ci, and (b) independent of patient ADHD risk, vi.

I use regression-adjusted referral rates of the patient’s initial primary care provider

(IPCP)—defined as the PCP listed at the patient’s first visit in the sample—as the source

of quasi-exogenous variation in behavioral assessment propensity. To see how the IPCP

is correlated with behavioral assessment scheduling costs, it is relevant to recall Section 2

where I discuss the institutional details of behavioral assessment scheduling. Parents may
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schedule these appointments independently based on their own concerns or suggestions from

teachers. However, they may also bring up these concerns with their child’s primary care

provider who is trained to ask about patient school performance and behavioral concerns

during annual wellness visits (American Academy of Pediatrics, 2011, 2019). Therefore, pri-

mary care providers play a role in lowering patient scheduling costs, ci, through subsequent

referral. It is important to note that I cannot observe actual referral events in the data.

Instead, I define the “referral rate” of an IPCP as the share of their patients that ultimately

receive a behavioral assessment at some point in the sample. This rate may reflect formal

referrals but may also capture indirect effects that lower patient scheduling costs such as:

providing mental health education, comfortability with health system personnel, help with

internal scheduling software, etc., thus satisfying the relevance condition (a).

Importantly, IPCPs have discretion over what to address during routine check-ups and

whether or not to suggest the patient seek follow-up mental health care. Some may be

more thorough during these wellness checks in regard to questions about child behavior,

and thus differ in the rates at which they suggest their patients seek follow-up care and

schedule behavioral assessments (referral rates).24 To empirically verify that the IPCP iden-

tifier meaningfully influences the patient probability of scheduling a behavioral assessment

(relevance), I regress patient behavioral assessment indicator, Qi, on a set of patient con-

trols and the leave-one-out IPCP residualized referral rate. These IPCP referral rates are

estimated using data from all other patients of a given IPCP, and residualized measures are

used to ensure the variation is coming from IPCP referral rates relative to IPCP who see

observably similar patient mix. Panel A of Appendix Table A2 presents the result of this ex-

ercise, highlighting that these PCP referral rates are strongly predictive of actual behavioral

assessments.

Condition (b) is satisfied if IPCPs are chosen or assigned independently of true ADHD

risk, vi. As vi is unobserved, I cannot test for this directly, though a list of observations and

24Appendix Figure A1 shows the variation across IPCPs, with a histogram of the residualized leave-one-out
IPCP referral rates for both male and female patients.
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institutional details provide support for its validity. First, while a child may switch primary

care providers during the sample in response to unobserved (to the econometrician) shocks,

I use the identity of the initial primary care provider denoted in the patients health record.

IPCPs are typically selected by patients before age 5, which is the age at which behavioral

symptoms may develop. This timing of symptom development means that parents do not

selectively chose their IPCP after observing vi. Second, I note that only 28% of the IPCPs

covering patients in my sample ever diagnose ADHD (to any patient).25 So, while IPCPs

may differ in the number of patients they refer or encourage to seek follow-up mental health

care, they generally do not diagnose ADHD themselves, suggesting that patients set up

behavioral assessments with alternative physicians, again implying no relation between the

IPCP and patient vi.

Finally, while patients may not select their IPCP based on vi directly, condition (b)

would still be violated if IPCP selection is based on other factors, Wi, that are correlated

with ADHD risk. To test for this, I conduct a balancing-type exercise in which I first regress

patient behavioral assessment indicator, Qi, on a set of observable patient controls. The

predicted value of this regression adjusts for the variation in behavioral assessment prob-

abilities coming from observed patient demographics and prior utilization controls. I then

test whether the residualized IPCP referral rate is associated with the predicted rather than

actual behavioral assessment probability for each patient. The results of this exercise are

presented in Panel B of Appendix Table A2. I find that while IPCP referral rates are pre-

dictive of actual behavioral assessment (panel A), they are not significantly associated with

predicted behavioral assessment probabilities (panel B), providing support for the indepen-

dence assumption.26

25In many cases, the physician who ultimately conducts the full behavioral assessment and diagnosis is
not the patient’s IPCP. These “referrals” may reflect actual formal provider hand-offs, but could also be a
result of PCP switches, provider capacity/availability, patient scheduling conflicts, etc.

26There may still be concern that patients choose their IPCP based on unobserved factors that are corre-
lated with ADHD risk, leading to biased estimates of µθ. However, so long as these unobserved factors are
independent of patient gender, the relative difference between male and female ADHD risk is unaffected. I
further discuss the implications of this assumption in Appendix D.2.
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Under conditions (a) and (b), I can recover population ADHD risk estimates for male and

female patients by taking the vertical intercept at one from the fitted relationship between

observed ADHD match signals and exogenous behavioral assessment propensity stemming

from IPCP referral rates. Empirically, I first estimate a probit regression of behavioral

assessment, Qi, according to equation (9) where Wi includes a set of demeaned patient

controls (to net out any IPCP selection based on observables) and γθ
j denotes IPCP-by-

gender fixed effects.27

P (Qi = 1) = Φ
(
W ′

iβ + γm
j 1(θi=m) + γf

j 1(θi=f)

)
(9)

With Wi demeaned, γ̂θ
j = (γ̂m

j , γ̂f
j ) is the regression-adjusted IPCP referral rate for male

and female patients, respectively. In other words, γ̂θ
j measures IPCP j’s propensity to refer

the average patient. While there is significant variation in these adjusted referral rates, the

maximum value is only about 0.75. In the absence of an IPCP with regression-adjusted

referral rates near 1, values of µθ can be estimated via extrapolations of observed ADHD

match signals on exogenous behavioral assessment propensity. This exogenous extrapolation

approach is similar to the methods proposed in Arnold et al. (2022) and in line with the

literature on identification in selection models (see Chamberlain, 1986; Heckman, 1990).

Specifically, after obtaining IPCP-by-gender referral rates (γ̂θ
j ) from equation (9), I then

obtain the gender-specific average observed ADHD risk for that IPCP via the analogous OLS

regression in equation (10) where xi is the observed ADHD risk signal for those with Qi = 1,

and δθj are again IPCP-by-gender fixed effects.

xi = δmj 1(θi=m) + δfj 1(θi=f) + ui (10)

With this, I fit a model of average observed ADHD match signals among patients referred

27W ′
i includes indicators for patient race, ethnicity, insurance type, and year of birth fixed effects. It also

includes the following based on the set of patient visits prior to the first visit t with Qit = 1: average age and
age squared, total number of appointments by year, number of unique visit providers, indicator for general
wellness appointment descriptor, indicator behavior-related appointment descriptor, and indicator for any
visit with a psych specialty provider.
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by a given IPCP, δ̂θj , on the IPCP’s referral rate propensity, γ̂θ
j , separately for θ ∈ {m, f},

inverse weighting by the variance of the observed ADHD risk signal for patients of that IPCP.

The resulting selection-adjusted values of µm and µf are determined by evaluating the fitted

model at γ̂θ
j = 1 for θ ∈ {m, f}, respectively.

Figure 4 provides a visualization of the identification for mean ADHD risk by patient gen-

der. Each dot represents a different IPCP, where the horizontal axis denotes their regression-

adjusted referral rate propensity (γ̂θ
j ) and the vertical axis denotes the average observed

ADHD match signal for their referred patients (δ̂θj ).

Figure 4: Behavioral Assessment Rates and Observed ADHD Risk

Note: This figure plots IPCP-by-gender average observed ADHD match signals ( δ̂θj from equation 10) on regression-adjusted

IPCP referral rates (γ̂θ
j from equation 9). This figure also shows the gender-specific model fit, obtained from IPCP-by-gender

regressions that inverse weight by the variance of observed ADHD match signals among the IPCPs referred patient set. The
exponential and linear model fits are represented by the solid and dashed line, respectively,

Consistent with the theory, observed average ADHD match signals, xi, are decreasing in

regression-adjusted IPCP referral rates, γ̂θ
j . An IPCP with low γ̂θ

j implies that IPCP has a

low propensity to refer the average patient. Thus, patients of said IPCP are ex-ante unlikely

to schedule a behavioral assessment appointment. Despite this, the patient appears in the

data as receiving a behavioral assessment anyway, which means that they must have high

ADHD risk, vi, consistent with high observed average match signal, xi. On the other hand,

33



a large value of γ̂θ
j implies the child is a patient of an IPCP with conditionally high referral

rates. These patients are more likely to schedule behavioral assessments regardless of true

symptom risk, and thus have lower observed match signals on average.28

The solid lines in Figure 4 represent the gender-specific lines of best fit through the

data. These are obtained via non-linear least squares estimation, specifying an exponential

functional form to ensure estimates above 0, and inverse weighting by the variance of observed

ADHD match signals among IPCP’s referred patients. Table 5 presents the estimated model

fit coefficients for both males and females. This table also presents the vertical intercept at

γ̂θ
j = 1 of the gender-specific curves, corresponding to the unbiased estimates of male and

female population mean ADHD risk, µθ. Figure 4 also includes the linear fit (dashed lines),

with coefficients and extrapolation in Appendix Table A4.

Table 5: Male/Female Extrapolation

Male Female
(1) (2)

α̂0 0.381 0.382
(0.015) (0.021)

α̂1 -0.602 -0.859
(0.172) (0.264)

Fitted µθ 0.208 0.162

Note: This table shows coefficients from non-linear least squares regression with exponential functional form: Y = α0exp(α1X)

where Y is the average observed ADHD risk signal among referred patients of the IPCP (δ̂θj ), and X is regression-adjusted IPCP

referral rate (γ̂θ
j ). All regressions weighted by the inverse variance of observed ADHD match signals among the IPCPs referred

patient set. Fitted µθ denotes the intercept at X=1. Standard errors in parenthesis.

28Appendix Table A3 compares IPCPs by tercile of regression-adjusted referral rates. IPCPs in the top
and bottom terciles have fewer patients than those in the middle tercile, resulting in greater variance in
their fixed effect estimates from Equation 10 and therefore they are given less weight in the extrapolation
procedure. IPCPs do not differ meaningfully by credential, specialty, or training. Those in the top tercile
tend to be less experienced (i.e., fewer years since medical school graduation year), but this pattern holds
similarly for both male and female patient sets.
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5.2 Second Stage: Recovering Remaining Parameters

I estimate the remaining model parameters by matching moments defined by behavioral

assessment rates and coefficients from a conditional diagnosis probit obtained via maximum

likelihood estimation, separately for male and female patient groups. Appendix Table A5

further details these moments with their empirical and theoretical counterparts.

With µθ estimated in the first stage, it is clear how remaining parameters are identified up

to ADHD risk dispersion, σθ. Gender-specific mean utilization cost, cθ, is identified through

variation in behavioral assessment rates conditional on mean ADHD risk parameter µθ (see

equation 2). Both diagnostic uncertainty, ρθ, and diagnostic thresholds, τθ, are identified in

the conditional physician diagnosis probability equation (see equation 6). The correlation

between physician diagnosis, Di, and patient ADHD match signal, xi, identifies the signal

strength, ρθ. The diagnostic threshold, τθ, is identified by mean diagnosis rates conditional

on ADHD match signals, xi, and mean risk, µθ.

Up to this point, the parameter identification has not relied on any functional form

assumptions, and thus would follow through if instead ADHD risk and signals were modeled

using alternative distributions (e.g., the Beta distribution). However, estimation of the final

parameter, ADHD risk dispersion, σ2
θ , requires an additional moment that depends on this

parametric form. Specifically, I estimate σθ using the moment defined by equation (11) which

follows from the truncated normality of selected ADHD match signals. Thus, σθ is identified

by the difference between observed match signals and population mean risk, adjusting for

selection due to different healthcare utilization costs and signal strength by patient gender.

xobs|θ = E[xi|vi > ci] = µθ + ρθσθ

ϕ
(
Φ−1(1− Q̂|θ)

)
Q̂|θ

(11)

6 Results and Supplementary Analyses

Table 6 presents the full set of estimated model parameters and the male/female parameter

differences. The sign of each parameter difference in Table 6 can be informative about which
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mechanisms contribute to the male/female ADHD diagnostic gap and in what direction.

As discussed in Section 3.2, diagnostic differences between male and female patients can be

attributed to variation in prevalence, mental healthcare utilization, diagnostic uncertainty,

and diagnostic thresholds. The results in Table 6 suggest that both underlying ADHD

prevalence and physician diagnostic uncertainty/thresholds play an important role explaining

diagnosis rate differences.

Table 6: Model Parameter Estimates

Male Female Difference

Pop. Mean Risk µθ 0.208 0.162
0.047

(0.032) (0.043)
Pop. Risk Dispersion σθ 0.328 0.310

0.018
(0.086) (0.101)

Utilization Costs cθ 0.448 0.442
0.007

(0.051) (0.079)
Signal Quality ρθ 0.272 0.332

-0.060
(0.058) (0.071)

Diagnostic Threshold τθ 0.397 0.497
-0.099

(0.033) (0.084)

Note: This table presents the full model parameter estimates along with the difference between the male point estimate and
female point estimate. Row 1 parameters come from the estimation procedure described in Section 5.1. Remaining rows
correspond to the estimation procedure described in Section 5.2 and Appendix Table A5. Standard errors (in parenthesis)
based on replicating the procedures for 1000 bootstrapped patient samples.

First, the population mean risk for males is higher than that for females, with a difference

of 0.047. This higher male ADHD prevalence will increase the ADHD diagnostic difference

through both the patient selection channel (behavioral assessment scheduling) and through

higher physician posterior beliefs. This result is directionally consistent with the medical

literature which notes higher ADHD symptom prevalence in boys than girls (AHRQ, 2011).

The risk dispersion estimates are noisier, but point estimates suggest that symptom preva-

lence has higher variation among boys. The utilization cost estimate is slightly higher for

male children, though the difference is small in comparison to overall magnitudes and male-

female difference is not statistically significant. This suggests that, conditional on symptom

prevalence, other patient/parent factors are not the main driver of differences in ADHD

diagnosis rates.

Next, both signal quality and diagnostic thresholds are higher for females than for males.
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This implies that physicians put more weight on female ADHD match signals (ρf > ρm),

which by construction measures the overlap between patient symptoms and DSM-V defined

symptoms. This finding is consistent with the results in Bruchmüller et al. (2012) who show

that physicians are more likely to follow DSM-V criteria when diagnosing female patients

and rely more on heuristics for male patients.

Most striking is the large relative difference in diagnostic thresholds between male and

female patients. Physicians use much lower diagnostic thresholds for male patients (τm <

τf ), meaning that they are more likely to diagnose a male patient than a female patient

with identical posterior ADHD risk. Because the DSM-V does not specify gender specific

diagnostic requirements, this finding suggests that physicians deviate from clinical guidelines

when making the diagnosis decision in ways that contribute to an ADHD diagnostic disparity

by gender. Paired with the utility model that defines these diagnostic thresholds, this key

result suggests that physicians deviate from clinical guidelines because their perceived cost of

missed -diagnosis relative to mis-diagnosis is higher for male patients than female patients. I

further examine and discuss the interpretation and implications of these diagnostic threshold

differences in the following section.

6.1 Simulated Mechanisms Contribution

How do these gender-differences in ADHD diagnosis parameters contribute to the overall

differences in diagnosis rates between male and female patients? In this section, I use the

structural model and estimates in Table 6 to run ADHD diagnosis simulations, which allows

me to isolate and quantify the role of each mechanism as motivated by the model and

discussion in Section 3.2.29

To show how the various mechanisms contribute to the ADHD diagnostic difference

measure, I analyze simulated diagnosis rates under counterfactual scenarios that place re-

29Appendix Table A6 compares the simulated model moments to those observed in the raw data, both
overall and for male and female subsets of patients. The simulated model does extremely well at matching
average diagnosis rates (D), behavioral assessment rates (Q), and mean ADHD match signals (x|Q). It
slightly overestimates conditional diagnosis rates (D|Q), relatively more-so for female patients than male
patients, but differences are not large.
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strictions on the source of gender-specific variation. The results of this analysis are presented

numerically in Table 7 and visually in Figure 5. The first row of Table 7 corresponds to no

diagnostic difference (1.00:1), in which parameters are restricted to be identical for both

boys and girls. The path of added variation in this simulation decomposition exercise then

follows the natural structure of the model, starting with underlying gender-specific ADHD

risk parameters (µθ, σθ), then patient mental healthcare utilization costs (cθ), followed by

physician learning (ρθ) and finally physician diagnosis decisions (τθ).
30

Table 7: Simulated Mechanism Contribution

Diagnostic Added Relative
Difference Effect Contribution

No Difference 1.00 - -

Prevalence Contribution
ADHD Risk Distribution: µθ and σθ

at Male estimates 1.59 +0.59 46%
at Female estimates 1.70 +0.70 55%

Patient Contribution
Utilization Costs: cθ

at Male estimates 1.55 -0.04 -3%
at Female estimates 1.66 -0.04 -3%

Physician Contribution
Signal Quality: ρθ

at Male estimates 1.46 -0.09 -7%
at Female estimates 1.57 -0.09 -7%

Diagnostic Thresholds: τθ
at Male estimates 2.28 +0.82 64%
at Female estimates 2.28 +0.71 55%

Overall Difference 2.28 +1.28 100%

Note: This table presents results from diagnostic simulations with sequential restrictions on the model parameters. Rows
show which parameters are varied, starting with no variation, and adding variation until all parameters are at estimated value.
Diagnostic Difference is calculated as simulated male diagnosis rate divided by simulated female diagnosis rate. Added Effect
calculates the added net diagnostic difference from the previous simulation. Relative Contribution calculated as added effect
divided by total effect of 1.28.

Prevalence Contribution in Table A6 shows what happens when only ADHD risk distribu-

30See Appendix Table A7 for a complementary exercise, showing the simulated diagnostic disparity with
a ‘one-at-a-time’ approach, in which all but one of the model parameters are fixed. Consistent with Table 7,
this table shows that both population mean risk µθ and physician diagnostic threshold τθ contribute most
to the observed diagnostic disparity.
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tion parameters µθ and σθ are allowed to vary. The remaining parameters are held constant

at either the male or female estimates. When only underlying true ADHD symptom risk

varies by patient gender, the simulated diagnostic difference increases from 1.00:1 to 1.59:1

or 1.70:1 depending on at which estimates the remaining parameters are held. This repre-

sents 46% or 55% of the observed difference in male and female diagnosis rates, suggesting

that about one-half of the male/female ADHD diagnostic difference can be attributed to

differences in the underlying ADHD symptom prevalence.

When patient mental healthcare utilization costs are also allowed to vary by patient

gender, diagnostic differences decrease only slightly (3%), suggesting that very little of the

male/female disparity can be attributed to differences in selection into mental health care

(net of true prevalence differences). Finally, to analyze the physician decision-making contri-

bution, I relax the restrictions on signal quality and physician thresholds sequentially. The

differences in signal quality actually reduce the male/female diagnostic gap, but this is more

than made up for by different diagnostic thresholds which explain between 55% to 64% of

the observed diagnosis rate difference between male and female patients.

Figure 5: Cumulative Simulated Mechanism Effect

Note: This figure shows the cumulative effect of each mechanism in explaining the ADHD male/female diagnostic difference.
Values come from Column 2 of Table 7, where parameter restrictions in simulations are set at male parameter values.

Figure 5 presents the mechanism decomposition visually. The first bar, which corre-

sponds to true underlying ADHD risk, fills about one-half of the overall male/female ADHD
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diagnostic difference, meaning that at least some of the difference in diagnosis rates between

male and female patients can be attributed to differences in true underlying prevalence rates.

However, this suggests that the remaining 50% of the diagnostic difference is an unwarranted

disparity, at least according to the DSM-V guidelines. The final bar in Figure 5 shows that

the ADHD diagnostic disparity primarily stems from physicians using different thresholds

based on patient gender, a practice that suggests deviations from clinical guidelines. In the

following section, I discuss implications of this deviation and whether or not this disparity

is medically and even economically unwarranted.

6.2 Physician Diagnostic Thresholds

The results presented above show that male children are more likely to match ADHD diag-

nostic guidelines, both in the selected sample and the population more broadly. However,

I also show that conditional on the true prevalence difference between boys and girls, there

is still a significant diagnostic disparity, that is mostly explained by differences in physician

thresholds for diagnosis. In this subsection, I examine potential mechanisms that may ratio-

nalize these heterogeneous thresholds and explore how they relate to clinical presentation,

potential for negative externalities, and the prevalence of other mental heatlh comorbidities.

I end with a brief discussion of the broader welfare implications of these results.

Table 6 shows that physicians apply lower diagnostic thresholds to male patients than

to female patients, despite uniform DSM-V guidelines that do not differentiate by gender.

To further quantify the role of these heterogeneous thresholds, I re-simulate the model,

restricting diagnostic thresholds to be identical for both boys and girls. Specifically I restrict

τm = τf , but allow all other model parameters to be at their estimated values in Table 6.

Results are presented in Table 8, with the first two rows provided for comparison to the raw

data and baseline simulated outcomes.

If physicians applied the lower male diagnostic threshold to female patients as in row 3 of

Table 8, the female ADHD diagnosis rate would increase by two percentage points (to 5.1%),

and the diagnostic gender gap would decline to 1.46:1. Conversely, applying the higher female

threshold to male patients (row 4 of Table 8) would reduce male diagnosis rates and yield a
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gap of 1.57:1. In both cases, holding thresholds constant significantly narrows the diagnostic

disparity, confirming that threshold heterogeneity is a major driver of the observed gender

gap in ADHD diagnosis.

Table 8: Diagnostic Gender Gap - Using Same Thresholds

Male Female Diagnostic
Diagnosis Rate Diagnosis Rate Gender Gap

Data 7.2% 3.1% 2.32
Baseline 7.4% 3.2% 2.28

τf = τ̂m = 0.397 7.4% 5.1% 1.46
τm = τ̂f = 0.497 5.1% 3.2% 1.57

Note: This table compares male diagnosis rate, female diagnosis rate, and the ratio (diagnostic gender gap) under various
scenarios. Data corresponds to rates observed in the raw data. Baseline corresponds to rates from simulated model at gender-
specific parameter estimates from Table 6. The following two rows correspond to simulations holding τ fixed at the male
estimate and the female estimate, respectively. All other parameters are held at their gender-specific estimated value.

The results in Table 8 are suggestive of there being more potential for over-diagnosis in

males and more potential for under-diagnosis in females, at least according to the DSM-V

formal criteria. However, while these clinical guidelines denote that diagnostic thresholds

be the same for males and females, the discretion in physician thresholds may be warranted

(and even clinically appropriate). For example, one reason why physicians may use lower

diagnostic thresholds for male patients is because there is more diagnostic uncertainty (ρm <

ρf ) in their symptom signals. This could rationalize different diagnostic thresholds even if

the perceived cost of misdiagnosis (or benefits of guideline deviation) is the same for boys

and girls.

However, in the specific case of ADHD, it is also possible that there are indeed differences

in the relative cost of over/under diagnosis or strict guidelines adherence across gender. For

example, clinical research shows that male patients are relatively more likely to exhibit the

hyperactive/impulsive (Type II) ADHD symptoms whereas females are relatively more likely

to exhibit the inattention (Type I) ADHD symptoms (Hinshaw et al., 2022). Notably, the

hyperactive/impulsive symptoms are typically more salient and behaviorally disruptive, thus

potentially associated with negative externalities such as spillovers to classroom peers (Aizer,

2008). Physicians may internalize these external costs (or be influenced by parent/teacher
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demands) when evaluating their patients, and in turn apply lower thresholds to avoid under-

diagnosing more visibly disruptive boys.

To examine whether this mechanism helps explain the diagnostic threshold differences,

I re-estimate the model allowing thresholds to vary not only by gender but also by ADHD

symptom sub-type. Specifically, I determine whether the patient’s ADHD symptom signal,

xi, is larger for the match with inattentive symptoms (Type I in Table 1) or for hyperac-

tive/impulsive symptoms (Type II in Table 1). I then adjust the diagnosis rule from equation

(5) as follows, where xi1 and xi2 are the extracted signals from Type I ADHD symptom list

and Type II ADHD symptom list, respectively:

Di | xi, θ = 1
[
vi | xi ≥ τ1θ1(xi1>xi2) + τ2θ1(xi2>xi1)

]
(12)

Here, τ1θ corresponds to the diagnostic threshold used for patients whose symptoms are

predominately inattentive, and τ2θ corresponds to the diagnostic threshold used for patients

whose symptoms are predominately hyperactive and impulsive. The results from this alter-

native model are presented in Table 9.

Table 9: Model Parameter Estimates- Type Specific Thresholds

Male Female Difference

Pop. Mean Risk µθ 0.208 0.162
0.047

(0.031) (0.041)
Pop. Risk Dispersion σθ 0.334 0.309

0.025
(0.112) (0.071)

Utilization Costs cθ 0.453 0.441
0.012

(0.073) (0.049)
Signal Quality ρθ 0.266 0.333

-0.067
(0.056) (0.072)

Diagnostic Threshold, Type 1 τ1θ 0.449 0.487
-0.038

(0.092) (0.069)
Diagnostic Threshold, Type 2 τ2θ 0.394 0.497

-0.103
(0.042) (0.050)

Note: This table presents the model parameter estimates along with the difference between the male point estimate and female
point estimate. Row 1 parameters come from the estimation procedure described in Section 5.1. Other parameters based on
the estimation procedure described in Section 5.2, allowing thresholds to vary according to equation (12). Standard errors (in
parenthesis) based on replicating the procedures for 100 bootstrapped patient samples.

Reassuringly, the non-threshold parameter estimates are similar to those from the baseline
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model in Table 6, indicating robustness. The type-specific diagnostic threshold estimates,

however, reveal important new patterns.

First, among male patients, physicians apply substantially lower thresholds for Type

II symptoms than for Type I symptoms (0.394 vs 0.449). This suggests they view male

hyperactive/impulsive symptoms as costlier than inattentive symptoms, and deviate from

clinical guidelines accordingly. This aligns with the notion that disruptive behaviors are

more costly to leave untreated. I note, however, that among female patients, thresholds are

slightly higher for Type II than Type I (0.497 vs. 0.487), though the difference is small and

not statistically significant. This asymmetry suggests that while physicians adjust thresholds

downward for boys with more salient/disruptive symptoms, they do not necessarily exhibit

the same behavior for girls.31

Further, although diagnostic thresholds for males are lower than females for both ADHD

symptom sub-types, the gender difference is especially pronounced for Type II symptoms.

The female threshold for hyperactive/impulsive symptoms is 26% higher than that for the

male threshold, while for inattentive symptoms the diagnostic threshold gap is only 8%. This

confirms that the diagnostic threshold disparity observed in the baseline model is largely

driven by the use of significantly lower thresholds for hyperactive/impulsive symptoms in

boys.

Taken together, these results suggest that physician diagnostic thresholds vary not only

by gender, but also by symptom sub-type. The fact that the most pronounced threshold

differences are observed among male patients with hyperactive/impulsive symptoms is con-

sistent with the idea that physicians are especially responsive to more salient and potentially

disruptive symptoms that may impose negative spillovers to classroom peers or caregivers.

This pattern supports the hypothesis that diagnostic threshold variation reflects asymmetric

externalities associated with ADHD-related symptoms by gender.

31One possible explanation is that even within the same ADHD subtype, symptom expression may differ
by gender. Hyperactivity in boys may be perceived as more disruptive than in girls, either due to behavioral
norms or contextual expectations, leading physicians to treat similar symptoms differently across gender
(Mowlem et al., 2019).
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Finally, another potential mechanism behind these threshold differences is the presence of

co-existing mental health conditions and the associated spillovers from treatment decisions.

For example, female patients are more likely than males to be diagnosed with internaliz-

ing conditions such as anxiety and depression.32 These co-existing conditions may “crowd

out” ADHD diagnosis, even for patients who meet the DSM-V criteria. Higher diagnostic

thresholds for females could be optimal if treatment for the comorbid condition (e.g., behav-

ioral therapy) also mitigates ADHD-related symptoms, thus reducing the marginal benefit

of ADHD diagnosis. In fact, there may even be added marginal costs of diagnosis if stim-

ulant medications used to treat ADHD exacerbate internalizing symptoms, consistent with

findings in Currie et al. (2014).

Collectively, the results show that physician diagnostic thresholds vary systematically

by patient gender and symptom subtype, and that these differences explain a substantial

share of the observed ADHD diagnostic disparity. While these threshold differences represent

deviations from clinical guidelines, they may reflect rational responses to the mechanisms

discussed above. The welfare implications of this behavior, however, are nuanced and depend

on the goals of health, education, and/or economic policy-makers.

For example, I find that the differences in diagnostic thresholds might be driven by

negative symptoms externalities, specifically hyperactive boys. While this would rationalize

observed physician behavior, it may also reinforce disparities. If boys are over-diagnosed

because their symptoms are more socially disruptive, and girls are under-diagnosed because

their symptoms are less visible, this could exacerbate inequalities in treatment, access to

beneficial educational accommodations, and long-term outcomes.

From a purely healthcare perspective, the goal may be to eliminate disparities caused by

deviations from clinical guidelines. In this case, the results above suggest that policies aimed

at physician diagnostic compliance can reduce the ADHD gender disparity by limiting over-

diagnosis of male patients and under-diagnosis of female patients. Alternatively, it may be

32See Appendix Table A8 for the in-sample diagnosis rates for other internalizing and other externalizing
mental health conditions by gender.
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that physicians are responding to information not fully captured by these DSM-V guidelines,

in which case the more appropriate response would be to update clinical guidelines in a way

that reflects how ADHD manifests differently in male and female children. In fact, it is

a common consensus among psychologists that because the DSM-V definition of ADHD

is outdated and/or too terse, physician discretion and variation from clinical guidelines is

medically warranted (Cheyette and Cheyette, 2020).

Ultimately, the findings raise important questions about the adequacy of uniform di-

agnostic criteria in contexts where the costs (whether clinical or social) of deviating from

guidelines differ across patient groups. If male and female patients experience different con-

sequences from misdiagnosis or missed diagnosis, then heterogeneous thresholds may be

economically—and potentially medically—warranted. Future research is needed to quan-

tify these differential costs and benefits to assess the value of clinical guidelines and expert

discretion in the case of ADHD, and in and mental health diagnosis more broadly.

7 Conclusion

Mental health disparities are a national concern, yet quantifying these disparities and isolat-

ing their contributing mechanisms— while essential for effective policy design— is challenging

in practice due to the subjective nature of mental health diagnosis. This paper presents a new

theoretical framework and empirical approach which helps contribute to our understanding

of the magnitude and sources of mental health diagnostic disparities.

The model and empirical analysis are motivated by the large gender-specific difference in

diagnosis rates for childhood Attention Deficit Hyperactivity Disorder. Male children are 2.3

times more likely to be diagnosed with ADHD than female children, a diagnostic disparity

that cannot be explained by prevalence rates alone. I develop a model of ADHD diagnosis,

composed of three distinct stages, to demonstrate how both patient and physician factors

contribute to the ADHD diagnosis rate. Importantly, each stage of the model depends on

an unobservable patient ADHD risk value, coming from a gender-specific risk distribution,

which accounts for variation in true ADHD prevalence between male and female children.

I use electronic health record data to estimate the gender-specific model parameters.
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First, I construct the necessary variables by applying machine learning and a novel natural

language processing algorithm to clinical doctor note text. I then estimate male and female

population mean ADHD risk using regression-adjusted primary care provider referral rates.

The remaining model parameters are recovered using a method of moments approach leverag-

ing variation in behavioral assessment rates and gender-specific conditional ADHD diagnosis

probit. I find that males have higher ADHD prevalence, higher diagnostic uncertainty, and

lower diagnostic thresholds than their female counterparts.

Model estimates reveal that while approximately half of the observed male/female diag-

nostic gap can be attributed to underlying prevalence differences, the remainder is driven by

differences in physician decision-making, particularly the use of lower diagnostic thresholds

for male patients. Paired with an underlying utility framework, these threshold estimates im-

ply that physicians diagnose as if a missed diagnosis is relatively costlier than a misdiagnosis,

especially for their male patients.

While the ADHD clinical guidelines are uniform with respect to patient gender, I present

supplementary analysis and discussion of mechanisms that explain why physicians deviate

from these clinical guidelines. Specifically, when I allow thresholds to vary by symptom sub-

type, I find that the use of low diagnostic thresholds for male patients is driven by those with

hyperactive/impulsive symptoms, which are typically those associated with more salient and

disruptive behaviors, and hence carry social externalities, making it marginally costlier to

under- diagnose. Further, I note that female patients are more likely to exhibit internaliz-

ing mental health conditions (e.g., anxiety or depression) that may already be treated or

would otherwise be exacerbated by ADHD pharmacological treatment, hence making them

relatively costlier to over-diagnose. Thus, given diagnostic uncertainty, physicians may ratio-

nally incorporate these asymmetric tradeoffs of diagnosis, and deviate from uniform clinical

guidelines accordingly.

However, even if rational, its possible that these physician deviations from guidelines

may in fact reinforce disparities. For example, if physicians are more likely to under-diagnose

female patients simply because their symptoms are less salient or not associated with negative

social externalities, this could exacerbate the diagnostic disparity and disadvantage female
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patients in access to beneficial treatment and/or school-based support. Physicians diagnose

under uncertainty, and when heuristics are present or externalities are asymmetric, they

may deviate from guidelines in ways that are rational but not necessarily clinically (or even

socially) optimal. The clinical foundations underlying the mechanisms discussed in this

paper should be explored further, and perhaps even call for a re-evaluation of how ADHD

is defined in the DSM-V, noting its associated effects on male and female clinical diagnoses

and subsequent treatment.

Mental health conditions are costly to both the individual and society. Identifying the

mechanisms underlying mental health disparities is an essential first step in designing effective

policies to address them. While this paper focuses on the male/female diagnostic difference

for ADHD, the general framework can be applied to other mental health conditions and/or

population-groups, motivating an importation direction for future research.
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Appendix

Mis(sed) Diagnosis: Physician Decision Making and ADHD

Marquardt (2025)

A Additional Tables and Figures

Table A1: Male/Female Difference in Observables

Male Female Difference

Full Sample
Age 10.167 10.470 -0.304***
Non-Hispanic White 0.348 0.347 0
Non-White Hispanic 0.281 0.281 -0.001
Medicaid 0.527 0.544 -0.017*
Private Ins. 0.426 0.416 0.01
N 5624 5446
Behavioral Assessment Sample
Age 10.312 11.690 -1.378***
Non-Hispanic White 0.413 0.429 -0.016
Non-White Hispanic 0.238 0.231 0.007
Medicaid 0.525 0.526 -0.001
Private Ins. 0.431 0.445 -0.014
N 1305 997

Note: This table presents gender-specific means and difference in means for full sample and Behavioral Assessment subsample
(Qi = 1). Significance based on two-sample T-test with * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A1: Initial Primary Care Provider (IPCP) Referral Rate Distribution

Note: This figure plots the gender-specific histograms of IPCP leave-one-out referral rates. Referral rate residuals are determined
by first regressing behavioral assessment indicator on patient controls, Wi, to ensure measure captures referral rate relative to
IPCP with the same patient mix. Leave-one-out IPCP referral rates calculated using the average residual of all other same-
gender patients of the individual’s IPCP.
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Table A2: Test of IPCP Relevance and Independence

Total Male Female
(1) (2) (3)

Panel A: Actual Behavioral Assessment Indicator

Male IPCP Referral Rate 0.654 0.649 -
(0.048) (0.049)

Female IPCP Referral Rate 0.767 - 0.777
(0.056) (0.058)

Panel B: Predicted Behavioral Assessment Indicator

Male IPCP Referral Rate 0.000 -0.005 -
(0.008) (0.008)

Female IPCP Referral Rate 0.009 - 0.012
(0.009) (0.009)

Patient Demographics Y Y Y
Healthcare Utilization Y Y Y
Observations 9118 4634 4484

Note: This table presents results from tests of IPCP referral rate relevance (Panel A) and independence (Panel B). The
outcome variable in Panel A is the actual behavioral assessment indicator, Qi. The outcome variable in Panel B is the
predicted behavioral assessment probability from an initial regression of Qi on patient controls, Wi. In both panels, the main
regressor is the leave-one-out average regression-adjusted rate residual among all other patients of the given patients’ IPCP.
Referral rates are regression-adjusted to ensure measure captures referral rate relative to IPCPs with the same patient mix.
Patient demographics include: mean age and age-squared, indicators for insurance type, race, and ethnicity, and birth year
fixed effects. Healthcare utilization controls include indicators for ever having a wellness-related appointment descriptor, a
behavior-related appointment descriptor, and visit with a psychiatrist, number of appointments total and by year, and number
of unique physicians seen. Robust standard errors in parenthesis.
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Table A3: IPCP Characteristics, by Referral Rate Tercile

For Male Patients For Female Patients

Top Middle Bottom Top Middle Bottom
Tercile Tercile Tercile Tercile Tercile Tercile

Referral Rate: γ̂θj 0.37 0.18 0.03 0.33 0.17 0.02

ADHD Match Average: δ̂θj 0.32 0.33 0.39 0.32 0.31 0.40

ADHD Match Precision: se(δ̂θj ) 0.07 0.05 0.08 0.08 0.06 0.10

# of Patients 47.21 80.55 11.24 29.32 97.36 8.30
# of Patients (Qi = 1) 12.18 16.06 2.82 6.82 16.85 1.79

Credentials
MD/DO 1.00 0.97 0.97 1.00 0.94 1.00
Other 0.00 0.03 0.03 0.00 0.06 0.00

Specialty
Psych 0.00 0.03 0.00 0.00 0.03 0.00
General Medicine 0.97 0.94 1.00 1.00 0.94 0.97

Experience
≤ 5 Years 0.29 0.03 0.03 0.29 0.06 0.00
> 15 Years 0.41 0.79 0.73 0.50 0.64 0.79

Education
US Medical School 0.88 0.85 0.85 0.88 0.94 0.76

N 34 33 33 34 33 33

Note: This table presents the average characteristics of initial primary care providers by tercile of their male and female
risk-adjusted referral rate (Figure 4). Referral Rate corresponds to the value on the male or female x-axis of Figure 4 and
ADHD Match- Average corresponds to the associated y-axis value. ADHD Match Precision is used to inverse weight the
IPCP estimate in the extrapolation described in Section 5.1. Credentials, Specialty, Experience, and Education based on hand-
collected information using physician name. See Appendix B.1 for additional details.

Table A4: Linear Extrapolation

Male Female
(1) (2)

α̂0 0.376 0.369
(0.014) (0.018)

α̂1 -0.187 -0.224
(0.056) (0.080)

Fitted µθ 0.189 0.145

Note: This table shows coefficients from weighted OLS regression with linear functional form: Y = α0 + α1X where Y is the
average observed ADHD risk signal among referred patients of the IPCP (δ̂θj ), and X is regression-adjusted IPCP referral rate

(γ̂θ
j ). All regressions weighted by the inverse variance of observed ADHD match signals among the IPCPs referred patient set.

Fitted µθ denotes the intercept at X=1. Standard errors in parenthesis.
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Table A5: Empirical and Theoretical Moment Descriptions- by Gender

Description Empirical Value Theoretical Value

Behavioral assessment

rate: Q̂i|θ

1
Nθ

∑
i∈θ Qi Φ

(
µθ−cθ√
1+σ2

θ

)

Match coefficient in
conditional diagnosis probit:
Di|Qi=1,θ = Φ(α+ βXi)

β̂ =

∑
i∈θ,Qi=1((xi−x)(Φ−1(Di)−Φ−1(D)))∑

i∈θ,Qi=1((xi−x)2)
ρθ

σθ

√
1−ρθ

2

Constant term in conditional
diagnosis probit:
Di|Qi=1,θ = Φ(α+ βXi)

α̂ =

∑
i∈θ,Qi=1 Φ

−1(Di)−β̂
∑

i∈θ,Qi=1 xi

NQi=1,θ

(1−ρθ)µθ−τθ√
1−ρ2θ

Observed ADHD signal
mean: xobs|θ

1
NQi=1,θ

∑
i∈θ,Qi=1 xi µθ + ρθσθ

ϕ
(
Φ−1(1−Q̂i|θ)

)
Q̂i|θ

Note: This table describes the four gender-specific moments (eight in total) used to identify model parameters: cθ, ρθ, τθ, andσθ

for θ = m, f . Theoretical Values come directly from the structural model described in Section 3.1 and Empirical Values are
functions of data only.

Table A6: Observed verses Simulated Rates

Observed Simulated

Total Male Female Total Male Female

ADHD Dx. (D) 0.052 0.072 0.031 0.053 0.074 0.032
Behavioral Appt. (Q) 0.208 0.232 0.183 0.206 0.231 0.182
ADHD match (x|Q) 0.319 0.326 0.311 0.319 0.324 0.312
Cond. Dx. (D|Q) 0.248 0.310 0.168 0.258 0.320 0.178

Note: This table presents average values across patients of ADHD diagnosis, behavioral assessment, ADHD risk signals, and
conditional diagnosis. Means are calculated for full set, and subset of male/female patients. Those in the Observed columns are
based on the EHR data and those in the Simulated columns based on diagnostic simulations using model parameters in Table
6 and model outlined in Section 3.1.
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Table A7: Independent Simulated Mechanism Effects

Diagnosis Rates Diagnostic
Male Female Difference

Baseline Difference 0.074 0.032 2.28

Prevalence Contribution
ADHD Risk Distribution: µθ and σθ

at Male estimates 0.074 0.055 1.34
at Female estimates 0.046 0.032 1.43

Patient Contribution
Utilization Costs: cθ

at Male estimates 0.074 0.032 2.34
at Female estimates 0.076 0.032 2.33

Physician Contribution
Signal Quality: ρθ

at Male estimates 0.074 0.030 2.45
at Female estimates 0.078 0.032 2.40

Diagnostic Thresholds: τθ
at Male estimates 0.074 0.051 1.46
at Female estimates 0.051 0.032 1.57

Note: This table reflects diagnosis rates from a model simulation exercise that restricts variation in only one set of model
parameters. The simulated gender-specific diagnosis rates are reported in columns 1 and 2 with the ratio in column 3. For
reference, Prevalence Contribution Panel presents simulations that restrict ADHD risk distribution parameters to be equal for
male and female patients and all other parameters allowed to vary and equal their estimated values in text Table 6. I include
diagnosis rates when equalization is based on either the male estimate or the female estimate. Patient Contribution Panel
restricts variation in patient utilization costs, and Physician Contribution Panel restricts variation in physician parameters,
signal quality and diagnostic thresholds, respectively.
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Table A8: Other Mental Health Diagnosis- Externalizing and Internalizing

Total Male Female

Full Sample
ADHD 0.052 0.072 0.031
Other External 0.006 0.008 0.003
Other Internal 0.045 0.035 0.055

Behavioral Assessment Subsample (Qi = 1)
ADHD 0.248 0.310 0.168
Other External 0.026 0.032 0.018
Other Internal 0.215 0.150 0.301

Note: This table presents diagnosis rates of ADHD, Other External mental health conditions (conduct disorder), and Other
Internal mental health conditions (anxiety and/or depression). Rates are presented for the Full Sample and the Subsample with
Qi = 1, overall and by patient gender.

B Data Appendix

B.1 Sample Construction & Inclusion Criteria

In this appendix, I describe the sample inclusion criteria and the potential implications

of sample selection on model estimates. I also note the various physician types and the

definitions based on how they are determined by the data. While I only use the identity

of the patient’s initial primary care provider in the empirical analysis, I provide additional

details here on other physician types as they relate to sample construction and assumptions

for identification.

The data are derived from de-identified electronic health records provided by a large

healthcare system in Arizona. Sample inclusion follows a multi-step procedure described

below.

First, I identify the visit provider ID attached to all pediatric patient encounters (those

under 18 years of age) that are associated with either a primary or secondary ADHD diagnosis

code during the sample period (January 2014 to September 2017). The list of these visit

provider IDs determine the set of “sample inclusion physicians” (SIP). By construction, these

are all providers who issued at least one primary or secondary ADHD diagnosis to a pediatric

patient during the sample period. There are 227 sample inclusion physicians (see Table B1
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for summary statistics).

Next, I identify all patient encounters in which the visit provider is one of the sample

inclusion physicians, regardless of whether the patient was ever diagnosed with ADHD or

not. I extract all encounters that meet this criteria from January 2014 to September 2017.

Finally, I restrict the sample further by dropping encounters where the patient is under 5

years of age or over 18. I also drop visits that were canceled/patient no-show, along with

visits with missing patient demographic information. The remaining data encompass 36,193

unique patient encounters for 11,070 unique patients.

Encounter characteristics include: appointment date, age of the patient, associated pri-

mary and secondary diagnosis codes (if any), name and ID of the visit provider, and name

and ID of the patient’s primary care provider at the time of the visit. The data also include

over 100 unique appointment type descriptors, though these vary in consistency. The most

common descriptors are “return/office” or “urgent/acute.” Where possible, I hand-classify

descriptors into either wellness-related (e.g., “well child care,” “peds family visit,” “physical”)

or behavior-related (e.g., “return child psych,” “behavioral visit,” “child psych”). However,

many descriptors are idiosyncratic and cannot be reliably categorized. Importantly, each

encounter also includes a de-identified free-text clinical doctor note summarizing the visit.

Finally, I also observe at the patient level: gender, year of birth, race, ethnicity, and

health insurance coverage (Medicaid, Commercial, or other).

Physician Type Definitions

Given the nuances of both the sample inclusion criteria and the source of identifying variation

in step 1 of the estimation procedure (see Section 5.1), this section is devoted to defining

the various physician types referenced in the analysis.

First, I note that there are two providers that are listed in the raw data for a given patient

encounter. One is the visit provider ID, corresponding to the provider the patient met with

for that specific visit. The other in the primary care provider (PCP) ID, which denotes the

patient’s primary care provider listed at the time of the visit.
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Notably, only a subset of visits in the data are with the patient’s listed primary care

provider (i.e., where visit provider ID is the same as the PCP provider ID). While all PCPs

practice general pediatric or family medicine, not all physicians practicing in those areas

are recorded as a patient’s designated PCP. In many cases, patients are scheduled with

pediatricians other than their PCP, even for general wellness, potentially due to availability

constraints of the listed PCP or scheduling constraints on the part of the patient or parent.

The list below provides the definition of the physician types that I reference in the

analysis. The two most relevant are the selection inclusion physicians (as they are used to

build the full sample) and the initial primary care provider (as they are used as identifying

variation in the first stage). The diagnosing physicians are a subset of sample inclusion

physicians. These are included for comparison but are not used for model estimation or

identification purposes.

• Sample Inclusion Physician (SIP): Visit providers who issued either a primary or sec-

ondary ADHD diagnosis to any pediatric patient during the sample period.

• Initial Primary Care Provider (IPCP): The primary care provider listed by the patient

at their first visit in the sample.

• Diagnosing Physician (DP): For patients diagnosed with ADHD, the visit provider

most frequently associated with the patient’s ADHD-related encounters.

Table B1 shows the counts and cross comparisons of these various physician types. This

table also includes physician characteristics. Physician credentials, specialty, experience,

and education are based on hand-collected information using physician name (and practice

location where necessary) and coded as “Unknown” when not identifiable.
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Table B1: Physician Types

Sample Inclusion Initial Primary Diagnosing
Physician (SIP) Care Provider (IPCP) Physician (DP)

SIP 1.00 0.32 1.00
IPCP 0.14 1.00 0.18
DP 0.70 0.28 1.00

Any PCP 0.52 1.00 0.55

Credentials
MD/DO 0.767 0.980 0.811
Other 0.145 0.020 0.151
Unknown 0.088 0.000 0.038

Specialty
Psych 0.238 0.010 0.270
General Medicine 0.652 0.970 0.717
Other/Unknown 0.110 0.020 0.013

Experience
≤ 5 Years 0.568 0.120 0.623
> 15 Years 0.145 0.640 0.145
Unknown 0.141 0.010 0.094

Education
US Medical School 0.736 0.860 0.767
Unknown 0.106 0.000 0.050

N 227 100 159

Note: This table presents summary statistics for the various physician types described in Appendix B.1. The first three rows
show the percentage of each physician type that is also included one of the other physician types. Any PCP indicates whether
the physician was ever listed as the primary care provider for any patient-visit in the sample (not necessarily the initial primary
care provider). Remaining characteristics are based on hand-collected information using physician name. Experience is based
on years since medical school graduation when available.

B.2 Generalizability and Robustness

One potential concern is that because all Sample Inclusion Physicians (SIPs) have issued

an ADHD diagnosis at some point, the patient sample may be selected toward individuals

who had a visit with a physician specializing in ADHD or mental health more broadly.

However, as Table B1 shows, a substantial share of SIPs practice general medicine rather

than specialize in psychiatric care, and over half were listed as a primary care provider (“Any

PCP”) at some point in the sample. This alleviates some of the concern that the sample is

selected to include only those that see a behavioral specialist.

Nonetheless, approximately 24% of SIPs have a psychiatry specialty, and it is possible
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that their patients differ systematically in a way that might bias the key results. To assess

robustness to this concern, I re-estimate the model using a restricted sample of patients

who were included in the data based on having a visit with a SIP who is also a primary

care provider (though not necessarily the patient’s own PCP), and thus are likely to be

more representative of the general pediatric population. This subsample represents 52%

of the SIPs identified in Table B1, though notably includes almost 90% of the full sample

of patients. This suggests that while a quarter of the SIPs are psychiatric specialty, their

patient set is not a large fraction of the overall sample.

I re-estimate both stages of the model using this more general patient subsample. Results

are presented in Table B2. The parameter estimates are similar in magnitude and direction

to the baseline (in text Table 6). While the male and female difference for risk dispersion

flips sign, the difference is not statistically significant in either sample. Thus, the relative

differences between male and female patients remain largely robust to this sample inclusion

criteria.

Table B2: Model Parameter Estimates - Robust Subsample

Male Female Difference

Pop. Mean Risk µθ 0.220 0.127
0.093

(0.037) (0.053)
Pop. Risk Dispersion σθ 0.327 0.348

-0.021
(0.133) (0.137)

Utilization Costs cθ 0.469 0.448
0.021

(0.081) (0.112)
Signal Quality ρθ 0.215 0.349

-0.133
(0.066) (0.083)

Diagnostic Threshold τθ 0.395 0.506
-0.111

(0.045) (0.110)

Note: This table presents the full model parameter estimates using the subset of patients included in sample based on a visit
with one of the Sample Inclusion Physician (SIP) that are also primary care provider (52% of 227 SIP in Table B1). See Table
6 and Appendix B.1 for additional details. Standard errors (in parenthesis) based on replicating the estimation procedure for
100 bootstrapped patient samples.

In addition to the sample inclusion criteria discussed above, there are two other potential

sources of sample selection that warrant consideration.

First, a child will be missing from my sample if they do not have any visits in the health

system during the sample period. The direction of potential selection bias in this case is
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unclear. On one hand, children who do not seek care may be generally healthy and less likely

to need behavioral assessment, suggesting the assessment rate and diagnosis rate observed

in my sample are an upper bound relative to the general population. On the other hand,

if barriers to seeking health care in general are high (and correlated with ADHD-risk), this

would impact the estimates in the other direction. However, the main concern with this

sample selection bias is whether it varies by patient gender. Statistics from the National

Health Interview Survey (NHIS) suggest that this is unlikely the case. As shown in the

left-side panel of Table B3, 95% of children have some sort of general health care visit per

year, 99.8% report having healthcare visit at least once in the last 4 years (the length of my

sample), and these rates do not statistically differ based on gender.

Second, a child will a child will be missing from my sample if they are in the health

system but never had an appointment with one of the 227 visit providers mentioned above.

By definition of sample inclusion, these children will not be diagnosed with ADHD. Further,

it is also likely that these children do not receive a behavioral assessment, thus suggesting

that the behavioral assessment rate that I observe in the sample is an upper bound on

the population behavioral assessment rate. While this would impact the level of parameter

estimates, I note that the primary focus of the analysis is on relative differences between

male and female patients. Therefore, the concern is whether this sample selection differs

by gender. However, as I show in Table A1, there are a similar number of boys and girls

in the full sample and they do not meaningfully differ in other observable demographic

characteristics.

To further assess generalizability, I compare overall rates and male/female ratios from

my empirical sample to analogous measures from a nationally representative dataset. Specif-

ically, I analyze responses from the National Health Interview Survey (NHIS), focusing on

children aged 5–17 interviewed between 2014 and 2017. While the NHIS questions do not

map directly to the measures I consider for the empirical analysis, the overall rates and

male/female ratios provide a useful benchmark for evaluating the representativeness of the

sample and text analysis methods discussed in Section 4.1, 4.2 and Appendix C.

The left-side panel of Table B3 presents the NHIS Sample statistics, and the right-side
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panel represents the analogous statistics constructed from the electronic health record sample

used for empirical analysis in this paper.

Table B3: Sample Comparisons- National Health Interview Survey

Overall Male:Female Overall Male:Female
NHIS Sample Ratio EHR Sample Ratio

Visit in 4 Years 0.998 0.999 - - -
Annual Visit 0.950 0.998 - - -
Behavioral Visit | Annual 0.124 1.29 Qi = 1 0.208 1.27

ADHD (ever) 0.106 2.22 Di = 1 0.052 2.32
ADHD (ever) | Behavioral Visit 0.471 1.68 Di = 1|Qi = 1 0.248 1.84

Note: This table compares behavioral assessment and diagnosis rates from the empirical sample to similar rates from The
National Health Interview Survey. Survey questions used for NHIS variable comparison described in Appendix B.2. NHIS
Sample based on children aged 5-17 whereas the EHR Sample includes children 5-18. Both samples cover years 2014-2017.

In the left-panel of Table B3, Visit in 4 Years is an indicator based on responses to

the question: “Interval since last doctor visit.” Annual Visit is based on responses to a

combination of survey questions, including: “Saw or talked to a general doctor in the past

12 months,” “Total office visits in the past 12 months,” and “Had a checkup in the past 12

months.” Behavioral Visit is based on the responses to the following: “Saw/talked to mental

health professional, past 12 months” and “Saw/talked to doctor for emotional/behavioral

problem” which is only asked of those that responded in the positive to “Saw/talked to

general doctor, past 12 months”. Finally, ADHD (ever) is an indicator for whether the

child was “ever told [they] had ADHD or ADD by a medical professional” by the interview

date. The NHIS sample includes children ages 5-17 for survey years 2014-2017, and all values

are weighted means using the NHIS sample person weights.

There are two important differences between the variables defined in the NHIS and those

constructed from the electronic health record sample for my empirical analysis. First, the

indicator for a behavioral visit in the NHIS is defined at the yearly level whereas Qi = 1 in

the empirical sample reflects a behavioral assessment at any point over the four-year sample

period. Moreover, the NHIS behavioral visit measure is limited to respondents who reported

either speaking with a mental health professional or discussing emotional or behavioral prob-

lems with a general doctor. This likely omits other pathways through which children may
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receive behavioral assessments in clinical settings. Therefore, the NHIS average behavioral

visit rate of 12.4% is likely a lower bound on what the true behavioral assessment rate is

nationwide. Indeed, according to another national survey (Child and Adolescent Health

Measurement Initiative, 2022), over 25% of children aged 3-17 have “a mental, emotional,

developmental or behavioral problem” which presumably follow a behavior-related clinical

visit. Further, a (now outdated) pediatric clinical guideline report states “Primary care

pediatricians and family physicians recognize behavior problems that may affect academic

achievement in 18 percent of the school-aged children seen in their offices and clinics” (Herre-

rias et al., 2001), likely a lower bound on the rate assessed today given the overall increasing

trends in mental health diagnoses among children and adolescence since the early 2000s.

These differences may explain why the average behavioral assessment rate is higher in my

empirical sample (20.8%) than in the NHIS sample (12.4%). Reassuringly, however, the

male-to-female ratio of behavioral assessment rates is nearly identical across samples (1.29

in the NHIS and 1.27 in my empirical sample), suggesting that any measurement or sam-

ple selection bias is unlikely to differ meaningfully by gender in ways that impact the main

implications and interpretation of the results in this paper.

Second, the indicator for ADHD diagnosis in the NHIS is based on ever being diagnosed

with ADHD whereas the Di = 1 in my sample is based on being diagnosed during the four-

year sample period. As before, this likely explains why the level of diagnosis rates vary across

the two samples. Another explanation for the difference in levels stems from the fact that

my EHR-based sample has a higher than national-average proportion of patients of Hispanic

ethnicity, and pediatric medical research documents a significantly lower ADHD diagnosis

rate for this population group, potentially coming from cultural biases (Morgan et al., 2013).

However, the male-to-female diagnosis ratio is again highly similar, both overall (2.22 in the

NHIS and 2.32 in my empirical sample) and conditional on those that have a behavioral visit

(1.68 in the NHIS and 1.84 in my empirical sample).
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C Text Analysis Appendix

C.1 Behavioral Assessment: Qi

In this appendix, I present the Machine Learning (ML) algorithm used to construct a proxy

for the behavioral assessment indicator, Qi, introduced in text Section 4.1. This closely

follows the Text Analysis Appendix in Clemens and Rogers (2020).

I first separate the appointment level data into a labeled and unlabeled subsets, where

i denotes patient and j denotes appointment. The labeled set is determined by ICD-9 or

ICD-10 diagnosis codes where an appointment receives a positive label (Qij = 1) if it is

associated with one of the following mental health diagnosis codes: ICD9 codes 209-320, or

ICD10 codes F01-F99. An appointment receives a negative label (Qij = 0) if the associated

diagnosis code is not among the mental health codes listed above and the patient never

received a mental health diagnosis at any during the sample period. The most common

diagnosis code groupings associated with a negative label include disorder of the eye (ICD10

H00-H60) and diseases of respiratory system (ICD10 J00-J99).

The resulting unlabeled set then contains all remaining appointments. This includes

those with no reported diagnosis code, or visits for which a diagnosis code is present but

cannot be definitively ruled out as mental health related as the patient receives a mental

health diagnosis elsewhere in the record.

Using the labeled dataset, I next prepare the doctor notes for feature extraction. This

includes traditional text pre-processing procedures: replace contractions, remove special

characters and stop words, conversion to lowercase and stemming. For both computational

and prediction purposes, I consider only 41 features: note length, relative frequency of top

20 predictive words in the positive labeled set, and relative frequency of top 20 predictive

words in the negative labeled set. I determine these top predictive words by their “tf-idf”

value in a constructed document term matrix.33

33A document term matrix consists of documents d as rows, words w as columns, and matrix elements
tdw representing frequency of word w in document d. The tf-idf value is defined as twd

Td
log( D

Dw
) where Td
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• Positive-label word stems: school, mother, parent, behavior, report, famili, anxieti,

current, treatment, disord, social, adhd, psychotherapi, sleep, feel, activ, therapi, issu,

appear, mood

• Negative-label word stems: pain, eye, blood, list, fever, fl, cough, rang, exam , access,

question, left, address, return, skin, hour, ml, bilater, vaccin, rash

For cross-validation, I split the labeled data into a training and test set using 90-10

split. With the training set, I define a random forest learner and tune hyperparameters

using random grid search with hold-out re-sampling. I use false discovery rate (FDR) as the

objective measure for hyperparameter tuning. The main hyperparameters and their tuned

values are: number of trees to grow (ntree=314), number of variables at node split (mtry=3),

and maximum number of observations in terminal nodes (nodesize=10).

Using the tuned hyperparameters, I then train the model on the training set, again

specifying false discovery rate as the objective measure. The confusion matrix applied to the

test set is presented below, with false discovery rate of 0.0345.

Predicted-0 Predicted-1
True-0 2813 28
True-1 135 783

Before analyzing the final model predictions, I look for issues with context specificity, or

“limitations on a model’s validity outside of its training set” (Clemens and Rogers, 2020). To

do so, I take a random sample of 96 notes from the unlabeled dataset, read the unprocessed

de-identified notes, and determine the appropriate hand label for behavioral assessment based

on my own judgment. I then apply the trained random forest algorithm to this sample,

specifying a prediction threshold of 0.5. The resulting confusion matrix is reported in the

table below. Of the 96 notes, 88 were correctly classified by the random forest algorithm.

Seven notes were incorrectly specified, with only one non-mental health related appointment

receiving a positive label.

denotes the number of terms in document d, D denotes the total number of documents, and Dw denotes the
number of documents with term w.
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Predicted-0 Predicted-1
True-0 70 1
True-1 6 18

For a second validation exercise, I classify appointments as behavior-related using two

elements of the electronic health record that are not directly used in the machine learning

procedure: the reported specialty of the visit provider and the appointment type descriptor. I

do not use these elements in the machine learning algorithm as they exhibit greater variation

and less consistency than the ICD-based diagnosis codes. Nevertheless, these elements can

serve as a useful basis for an external validation exercise.

Of the 19 unique provider specialties noted in the health record, I hand-classify three as

behavioral in nature: “child and adolescent psychiatry,” “developmental and behavioral pe-

diatrics,” and “psychiatry.” Of the 117 unique appointment type descriptors, I hand-classify

15 as behavior-related based on keywords such as “psy” or “behavioral.”34 For this exercise,

I classify a visit j as behav.valj = 1 if either the provider specialty or the appointment

descriptor is mapped to a behavioral category, and behav.valj = 0 otherwise. Since the sub-

set behav.valj = 1 reflects appointments that are behavior-related with certainty, I expect

the ML algorithm described above to produce higher predicted probability of behavioral

assessments for this group than for those with behav.valj = 0 which may or may not include

behavioral symptom discussion.

Figure C1 presents the results of this validation exercise. Specifically, for those with

behav.val = 1 and behav.val = 0 , I plot the distribution of the predicted behavioral assess-

ment probabilities produced by the trained ML algorithm described above. Reassuringly, the

ML-based predictions of behavioral assessment are very high (mean of 0.950) for notes as-

sociated with either a psychiatric-specialty visit provider or a behavior-related appointment

34There are other appointment type descriptors that may also include behavior related visits, but these
tend to be vague and could also include non-behavioral visits as well. For example, the three most common
appointment type descriptors are “return/ office”, “urgent/acute” and “return peds” which likely include
both behavioral and non-behavioral encounters. In fact, among encounters with an associated ADHD diag-
nosis, only 48% are behavior-related appointment type descriptors with the remainder being more general
(e.g. “office visit”).
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descriptor (behav.val = 1). Conversely, the ML-based predictions of behavioral assessment

are very low (mean of 0.101) for those that are not (behav.val = 0).

Figure C1: Q̂ij- Validation Exercise

Note: This figure presents results from the validation exercise described in Appendix C.1. The distribution of ML algorithm
predicted probability of behavioral assessment is shown for both the set of appointments with beahv.val = 1 (green) and for
the set of appointments with beahv.val = 0 (purple).

Given the strong performance of the algorithm in both internal, cross, and external vali-

dation exercises, I consider the model sufficiently reliable for application to the full unlabeled

set of appointments. Thus, I apply the trained random forest algorithm to generate predicted

behavioral assessment indicators for all encounters. Using a prediction threshold of 0.5, I de-

fine an indicator for behavioral assessment accordingly. Approximately 9% of appointments

in the unlabeled set receive a positive predicted label (Q̂ij = 1). Aggregated results at the

patient level are shown in text Table 4.

C.2 ADHD Match Signal: xi

In this appendix, I present the Natural Language Processing (NLP) algorithm used to con-

struct the ADHD match signal, xi, introduced in text Section 4.2. This variable quantifies
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relative similarity between the patient’s expressed symptoms and the ADHD-specific symp-

toms defined by the The Diagnostic and Statistical Manual of Mental Disorders, (DSM-V).

See appendix in Marquardt (2022) for a simplified example.

I first construct reference vector documents for each subtype of ADHD by processing the

ADHD sub-type symptom text taken directly from The Diagnostic and Statistical Manual

of Mental Disorders, (DSM-V). That is, I combine the DSM-V ADHD diagnosis text into

two documents corresponding to either Inattention (Type I) or Hyperactive/Impulsive (Type

2).35

To ensure that similar words all map to the same meaning, I run each document through

a Part-of-Speech tagger and use WordNet to replace each word with it’s most common

synonym. To further allow for variation in natural language, I also obtain each word’s

“closest” relative word using pre-trained word embeddings from GloVe (Global Vectors for

Word Embeddings). Finally, I remove all stop words that are not negation-based, stem all

remaining words, and tokenize each document into a vector of uni-grams (single words) and

bi-grams (grouping of two words next to each other in the document).

I then conduct a similar process to create vectors for each patient document, after first

combining encounter notes into a single document for each patient. I combine only en-

counters that were labeled as Qij = 1 by the machine learning prediction described in the

previous section. For patients with an eventual ADHD diagnosis code, I include the en-

counter associated with the first appearance of ADHD diagnosis and behavioral notes from

earlier encounters. I also include encounter notes that occur within 60 days after the initial

diagnosis to account for the fact that behavioral assessments may expand over multiple visits

and physicians are not always consistent on when diagnosis codes are assigned during this

process.36 However, I show that ADHD match values are robust to alternative visit inclusion

35DSM-V also denotes a “combined” type which is the combination of both Type 1 and Type 2 symptoms.
By construction, the similarity between the patient note and the combined type vector will be a convex
combination of the similarity between the Type I and Type II vectors. Therefore, I do not use the combined
type in the NLP algorithm as it does not provide additional empirical information.

36Of the children that are diagnosed with ADHD in my sample, 33% have a behavioral assessment within
30 days of the initial diagnosis and 42% have a behavioral assessment appointment within 60 days of the
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windows (see Table C2).

With the behavioral assessment notes combined into one document per patient, I then

pre-process the text using the standard text cleaning procedures in addition to spell check

and abbreviation replacement using a medical dictionary. As with the DSM-V symptom

text, I remove stop words (net negation terms), I stem each word, and tokenize documents

using uni-grams and bi-grams. To allow for semantic mapping (rather than direct word

match), I also replace each stem with its most common synonym and/or word embeddings

from the DSM-V processed vectors.

Using these tokenized documents, I build the adjusted Bag-of-Words (BOW) matrix

where rows (i) represent patient documents, columns (k) represent uni-gram or bi-gram, and

matrix elements (i,k) are the “tf-idf” values indicating the relative frequency and importance

of uni/bi-gram k in document i.37

Next, patient-by-type specific match values, xis, are calculated by taking the cosine

similarity measure between the BOW row vector for patient i and the reference vector

for ADHD Type s = {1, 2}. The cosine similarity measures the overlap between patient

symptom words and ADHD defined symptom lists, weighting both by tf-idf (which down-

weights highly common words) and by note length (so that longer notes do not artificially

receive higher similarity due to chance word overlap).

Finally, for interpretability purposes, I rescale the resulting match values by subtracting

the minimum and dividing by the range, normalizing values to be between 0 and 1. A value

of 1(0) denotes the patient has the highest(lowest) similarity between their noted symptoms

and the DSM-V defined symptom lists. I define the overall patient ADHD match signal

as the maximum relative similarity across types: xi = max{xi1, xi2}. The gender-specific

distribution of these constructed values are plotted in text, Figure 3, with mean values

initial diagnosis. This suggests that physicians may be breaking up behavioral assessments into multiple
visits and assigning ADHD diagnosis codes slightly before the assessment is fully complete.

37The “tf-idf” value is defined as fki

Fi
× [1 + log( D

Dk
)] where fki is frequency of uni-gram or bi-gram k in

document i, Fi is length of document i, D is number of documents, and Dk is number of documents with
uni-gram or bi-gram k.
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in text Table 4. I note that while I use xi in the main model estimation and results, I

also incorporate the type-specific match values xi1 and xi2 in the supplementary analysis in

Section 6.2.

Figure C2 highlights the similarity in note length for male and female patients who receive

a behavioral assessment, both overall and by ADHD diagnosis. While behavioral assessment

notes associated with an ADHD diagnosis are shorter than those without an ADHD diagnosis

on average, the distribution for males and females in each category are similar.

Figure C2: Behavioral Assessment Note Length Distributions

Note: This figure presents the distribution of note length for patients with behavioral assessments (i.e., those with Qi = 1),
separately for those with an ADHD diagnosis (Di = 1) and for those without an ADHD diagnosis (Di = 0). Note length
is determined after notes are pre-processed and words replaced with most common synonym. Male and female distributions
denoted by blue and orange colors, respectively. Dashed vertical lines correspond to the mean note length for that gender-
diagnosis category.

Table C1 shows that notes are also similar in content. This table includes lists of “predic-

tive words” to give a sense of how well the NLP algorithm does at identifying ADHD-related

words and insights into why boys and girls may be diagnosed differently. For reference, the

most common words in behavioral assessment notes are: plan, patient, assess, conversation,

normal. Words specific to male notes are: fine, routine, game, sport, task , and those specific
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to female notes are: stressor, girl, period, worry, hair.

Table C1: Outcome-Specific Predictive Words

Patients with ADHD Diagnosis
Overall inattention, distract, insight, judgment, impulsive
Male inattention, homework, distract, interfere, impulsive
Female inattention, homework, task, interfere, distract

Patients with High ADHD Match
Overall task, impulsive, perception, interview, attitude
Male task, impulsive, irritable, opposition, relax
Female insight, peer, distract, impulsive, task

Note: This table shows examples of the most frequent occurring words that are specific to given outcome but are not in the
top 5% of most frequent words in all other notes. For example, task is the most common word in notes that belong to patients
with high xi value, but it is not in the top 5% of words that are used in notes of patients that have a low xi value. Words are
extracted after text processing described in text and conditional on identified as behavioral assessment (i.e., those with Qi = 1).
High ADHD match correspond to values in the top tercile of ADHD match signals, xi.

To assess the robustness to alternative encounter inclusion windows, I also construct

ADHD match values for each patient based on: (i) all notes with Qij = 1 up to and including

the initial ADHD diagnosis, (ii) all notes with Qij = 1 up to and including 30 days post

the initial diagnosis, (iii) all notes with Qij = 1 up to and including 60 days post the initial

diagnosis (the baseline), and (iv) all notes with Qij = 1 regardless of ADHD diagnosis

or timing of visit. Table C2 displays the within-patient correlation across these different

measures. Correlations are uniformly high, indicting that the ADHD match signal measure

is robust to these alternative note inclusion widows.

Table C2: Patient ADHD Match Correlations

<= Initial Dx <= 30 days post <= 60 days post All Visits

<= Initial Dx 1.000
<= 30 days post 0.994 1.000
<= 60 days post 0.986 0.993 1.000
All Visits 0.910 0.923 0.934 1.000

Note: This table shows the correlation across patient ADHD match values extracted from their behavioral assessment notes
(or specified subset of notes). Measures include match values based on all Qij = 1 visits up to and including initial ADHD
diagnosis (if diagnosed), up to 30 days post initial diagnosis (if diagnosed), up to 60 days post initial diagnosis (if diagnosed),
and all visits with Qij = 1.

As a complementary validation exercise, I determine whether patients receive multiple

assessments from different physicians, and if so, whether the match values are consistent

across those assessments. To conduct this exercise, I first subset to patients with an ADHD
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diagnosis and select visits with Qij = 1 within three months prior to and two most post the

initial visit with an ADHD diagnosis code. I then identify whether the patient had multiple

assessments during this period, and if so, whether there were multiple visit providers in the

record.

Among diagnosed patients, the median number physician assessments is 1. In fact, there

are only 95 patients in the sample with an ADHD diagnosis that had more than one physician

provide as assessment. Table C3 shows that, even in this more limited sample, ADHD match

values are highly correlated across inclusion windows (and thus across assessments conducted

by different physicians). As expected, the correlations are smaller than those in Table C2 as

the vast majority of those in the full sample include only a single physician per assessment.

That said, the correlations are still very high, ranging from 0.921 to 0.962, despite the

fact that they reflect multiple assessments by different providers. This provides further

evidence that the match signal consistently captures ADHD symptom match, and is not

overly sensitive to variation in who conducts the assessment or the number of assessments

included in the match.

Table C3: Patient ADHD Match Correlations | Multiple Assessments

<= Initial Dx <= 30 days post <= 60 days post

<= Initial Dx 1.000
<= 30 days post 0.950 1.000
<= 60 days post 0.921 0.962 1.00

Note: This table shows the correlation across patient ADHD match values extracted from their behavioral assessment notes
(or specified subset of notes) for the set of patients with multiple assessments and multiple providers. Measures include match
values based on all Qij = 1 visits up to and including initial ADHD diagnosis, up to 30 days post initial diagnosis, and up to
60 days post initial diagnosis, where the later two measures include, by construction, assessments done by different physicians.

D Econometric Appendix

D.1 Physician Diagnostic Threshold

In this appendix, I present a physician utility framework that results in a risk-threshold

diagnosis decision rule, where the threshold is a function of the physician’s perceived tradeoff
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between the costs/benefits of over- and under-diagnosis (or, alternatively, the costs/benefits

of deviating from uniform clinical guidelines).38

Let physician utility be defined by equation (D1), where Si denotes the true ADHD

health state as defined by the DSM-V criteria. Throughout, I refer to both missed diagnosis

(Di = 0, Si = 1) andmisdiagnosis (Di = 1, Si = 0) as “deviations from diagnostic guidelines”

rather than “diagnostic errors,” as the latter implies physician mistakes, whereas the former

allows for the possibility of rational deviations.

ui|θ =


−1 if Di = 0, Si = 1

−βθ if Di = 1, Si = 0

0 otherwise

(D1)

The utility of “correct” diagnoses (i.e., in compliance with DSM-V guidelines) is nor-

malized to 0 so that the model focuses on measuring factors that influence deviations from

diagnostic guidelines. With the utility of missed diagnoses (Di = 0, Si = 1) standardized

to -1, βθ captures the physician’s perceived (dis)utility from misdiagnosis relative to missed

diagnosis. Importantly, this decision is made at the point of assessment, and therefore βθ

may also capture perceived dis(utility) from reversing a diagnosis down the road relative to

waiting to diagnose later. This parameter is allowed to vary by patient gender, reflecting

heterogeneity in these perceived diagnostic tradeoffs.

The physician chooses Di = 0 or Di = 1 in order to maximize their expected utility,

where expectation is based on the posterior probability of Si = 1. Let p(x, θ) denote this

probability. p(x, θ) is expressed in equation (D2), and follows from posterior ADHD risk in

equation (4) and the DSM-V defined minimum diagnostic requirement, v .

p(x, θ) = Pr(vi|x > v) = Φ

(
ρθx+ (1− ρθ)µθ − v

σθ

√
1− ρ2θ

)
(D2)

38This is similar to the utility in Chan et al. (2022), but with variation in cost across patient gender as
opposed to variation across physicians.
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The doctor will choose to diagnose a patient with ADHD if the expected utility of Di = 1

is larger than the expected utility of Di = 0. Based on the utility function (D1), E[ui|Di =

1, θ] = −βθ(1− p(x, θ)) + 0(p(x, θ)) and E[ui|Di = 0, θ] = −1(p(x, θ)) + 0(1− p(x, θ)).

Assuming misdiagnoses are costly (i.e., βθ > 0), the doctor will choose Di = 1 iff

E[ui|Di = 1, θ] ≥ E[ui|Di = 0, θ]

=⇒ −βθ + βθp(x, θ) ≥ −p(x, θ)

=⇒ p(x, θ) ≥ βθ

1 + βθ

Plugging in equation (D2) for p(x, θ), a physician will diagnose if Φ

(
ρθx+(1−ρθ)µθ−v

σθ

√
1−ρ2θ

)
≥

βθ

1+βθ
. Re-writing with posterior ADHD risk mean on the right-hand side results in the

following gender-specific threshold value:

τθ = v + σθ

√
1− ρ2θΦ

−1

(
βθ

1 + βθ

)

For βθ ∈ (0, 1), Φ−1
(

βθ

1+βθ

)
< 0 which implies τθ < v. In words, physicians will use

thresholds lower than that defined by the DSM-V so that they diagnose patients on the

margin of meeting ADHD diagnostic criteria. Intuitively, this suggests that physicians per-

ceive that the cost of a missed diagnosis (or waiting to diagnose) is higher than the cost of

a misdiagnosis, which is consistent with βθ ∈ (0, 1) in (D1).

On the other hand, βθ > 1 implies τθ > v. In this case, physicians will use higher

thresholds that that defined by the DSM-V and will not diagnose patients on the margin

of meeting ADHD diagnostic criteria. This suggests that physicians view misdiagnosis as

costlier than missed diagnosis, which is consistent with βθ > 1 in (D1).

D.2 Modeling Assumptions and Implications

In this appendix, I discuss, the key assumptions made throughout the main text. While I

cannot empirically test for the validity of each assumption, I discuss what would happen if

the assumption fails, and in most cases determine the direction of the resulting estimation
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bias. Throughout, I emphasize that while violations of these assumptions may bias the

level of the model parameter estimates, so long as the violations are not gender-specific,

the estimated relative differences in model parameters remain unaffected. As a result, the

mechanism decomposition analysis in Section 6.1 and the implications of the Supplementary

Analysis in Section 6.2 are not meaningfully impacted.

Full Documentation Assumption

In Section 4.2, I show how ADHD match signal, xi, can be constructed using clinical doctor

note text. This relies on the assumption that physicians accurately document behavioral

symptoms in their notes. There are two situations in which this assumption might fail. First,

it may be the case that physicians do not conduct a thorough behavioral assessment and thus

do not learn about all the symptoms that the patient is experiencing. Alternatively, it may

be the case that the physician does learn about the patient symptoms, but does not write

these down in the note. In both cases, xi is a downward biased proxy of individual symptoms

such that xtrue
i = xobs

i + ζi where ζi > 0. While ζi is unobserved to only the physician in the

first case but to the econometrician in both, the implications of the assumption are similar.

Without full documentation, xtrue
i > xobs

i and therefore µtrue
θ > µ̂θ. In other words, I

underestimate mean ADHD risk in the first stage of estimation. As a result, I also underes-

timate mental healthcare utilization costs. However, in Appendix Figure C2 and Table C1,

I show that male and female patients have similar doctor notes in terms of both note length

and words predictive of high ADHD match. Therefore, it is reasonable to assume that if the

full documentation assumption fails, then it fails for both male and female patients. In this

case, µ̂θ < µθ and ĉθ < cθ for both θ ∈ {m, f}.

The other model parameters are unlikely to be impacted by this assumption as they are

identified in the second estimation stage using data on physician diagnosis decisions. In the

first case, physicians do not know ζi and therefore use xobs
i and µ̂θ in the decision-making

process, which means ρ̂θ = ρθ and τ̂θ = τθ. In the second case, physicians know ζi and will

use xtrue
i = xobs

i + ζi in their decision-making process instead of xobs
i . The ADHD diagnosis

probit slope, which identifies ρθ, remains unchanged with respect to xobs
i , therefore ρ̂θ = ρθ.
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The diagnostic threshold estimate becomes, τ̂θ = (1 − ρθ)µ̂θ + ρθζ − kθ for known gender-

specific constant kθ. Because physicians know ζi, it is reasonable to assume that they will

replace µ̂θ with µθ = µ̂θ + ζ as their prior belief, thus canceling out the unobserved mean ζ

and leaving τ̂θ = τθ.

In sum, if the full documentation assumption fails for both boys and girls, then I under-

estimate mean ADHD risk and mean utilization costs, with no effect on the other parameter

estimates. If the full documentation assumption fails equally for both male and female pa-

tients, then the gender parameter differences (column 3 in Table 6) are unaffected, and the

mechanism decomposition analysis in Section 6.1 along with implications of the Supplemen-

tary Analysis results in Section 6.2 are not meaningfully impacted.

Physician Prior Assumption

In Section 3, I present a model of ADHD diagnosis that incorporates both patient selection

and physician decision-making under uncertainty. In the second stage, physicians learn

about patient ADHD risk and update their prior beliefs. The key assumption here is that

physicians have unbiased and normally distributed prior beliefs for both males and females:

vi ∼ N(µθ, σ
2
θ).

I make this assumption for two reasons. First, the normality of the prior allows for

computational ease and clearer interpretation of the model parameters. One could argue

that a more mathematically complete theoretical model would have physicians update their

beliefs twice: once after patient selection but before behavioral assessment, and then again

after patient assessment. This complicates estimation as it would now require twice-updating

where the second prior has a truncated normal distribution, with an unknown truncation

point for each patient ci. It is still possible to recover the model parameters via simulated

maximum likelihood estimation, but it would require another assumption that physicians

know the distribution of patient mental healthcare utilization costs for males and females, cθ,

which likely fails in practice. Therefore, I argue that a normally distributed prior belief with

single updating is well suited for this application, and the computation and interpretation

benefits outweigh the costs of a more multifaceted physician learning model.
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Second, the accuracy of the prior mean is necessary for parameter identification. As is

common with these types of decision-making under uncertainty models, it is not possible to

separately identify both the agent’s prior beliefs and the agent’s preferences without having

additional survey data. Therefore, I assume that physicians know the gender-specific ADHD

risk parameter µθ (which is identified and estimated in the selection first stage) in order to

separate out the diagnostic threshold parameter, τθ, in the conditional diagnosis equation

(6).

While the accuracy of the prior distribution is a common assumption, it is likely not

satisfied in practice. In what follows, I show that if physicians have inaccurate (albeit

normally distributed) prior beliefs, this will only impact the bias of one model parameter,

τθ, which measures the perceived cost of misdiagnosis relative to missed diagnosis. The

estimated diagnostic threshold will now contain both physician perceived cost of diagnostic

guideline discretion and/or their inaccurate priors. Policy implications will depend on this

distinction, but the main results presented in the paper are unaffected.

Suppose physician prior beliefs follow the distributed defined by equation (D3), where ξ

determines the deviation from accurate prior mean.

vi ∼ N(µ+ ξ, σ2) (D3)

If ξ > 0, physicians overestimate population mean ADHD risk, and ξ < 0 implies physi-

cians underestimate population mean ADHD risk. I drop the θ subscript without loss as

parameters are estimated separately for both males and females, so the thought experiment

holds for both samples.

Recall that the true ADHD risk distribution parameters, µ and σ, and patient mental

health utilization costs, c, are estimated in a first stage patient selection model (see Section

5.1), which does not depend on the physician decision-making process or their prior beliefs.

Therefore, these parameters are accurately identified regardless of the physician prior as-

sumption. If physicians have inaccurate priors (i.e., ξ ̸= 0), this can only impact parameters

that are identified in the conditional ADHD diagnosis, in text equation (6).
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After receiving the signal xi, physicians update beliefs resulting in posterior distribution:

vi | xi ∼ N
(
(ρxi + (1− ρ) (µ+ ξ)) , σ2(1− ρ2)

)
Using the same utility framework, and letting k = 1

σ
√

1−ρ2
, the new conditional diagnosis

rate is defined by equation (D4), where τ̃ = τ − (1− ρ)ξ.

P (Di = 1 | Qi = 1, xi) = Φ(kρxi + k(1− ρ)(µ+ ξ)− kτ)

= Φ(kρxi + k(1− ρ)µ− kτ̃)
(D4)

The diagnostic uncertainty parameter, ρ, is also unaffected by ξ as it is identified by

the slope coefficient measuring correlation between diagnosis decision and patient signal,

xi. Therefore, the only parameter that is impacted by inaccurate physician priors is the

diagnostic threshold, τ , and the bias of the estimate depends on whether physicians over or

under-estimate mean ADHD risk in their priors. If physicians over-estimate mean ADHD

risk with ξ > 0, then τ̃ < τ , meaning that my estimates of the perceived relative costs

associated with misdiagnosis are biased downwards. On the other hand, if physicians behave

as if ADHD risk is lower than true risk, then τ̃ > τ , and I over-estimate the perceived cost

of a misdiagnosis.

Because the model parameters are identified and estimated separately for boys and girls,

it is possible for the direction of the bias on τ to differ by sub-group. However, regardless of

the inaccuracy in physician prior beliefs, it is still the case that estimated diagnostic thresh-

olds for male patients are lower than diagnostic thresholds for female patients, i.e., τ̃m < τ̃f .

The only implication is how to interpret these diagnostic thresholds, as they now contain

both physicians’ inaccurate priors and their perceived cost of diagnostic errors/guideline dis-

cretion. Distinguishing between the two is outside the scope of this paper.

PCP Selection Assumption

The mean ADHD risk parameters, µθ, are estimated using a selection model approach de-
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scribed in Section 5.1. Identification relies on the independence between patient risk, vi, and

their chosen or assigned initial primary care provider (IPCP), conditional on observables.

The main text argues for this assumption and provides empirical tests showing that once

referral rates are adjusted for selection-on-observables, there is no evidence of male/female

differences in IPCP referral rate propensity.

There may still be concern that patients choose IPCPs based on unobserved factors that

are correlated with ADHD risk.39 This will only impact the parameters estimated in the first

selection stage (µθ and cθ) as this assumption does not change the decision-making process

of the diagnosing physician, who is usually not the IPCP (as noted in the main text).

The direction of the bias depends on the direction of unobserved correlation, which can

theoretically be either positive or negative. If patients with high ADHD risk select into

high referring IPCPs such that Cov(vi, γ
θ
j ) > 0, then my estimates of mean ADHD risk,

µθ, are biased upwards. This can be seen visually in Figure 4. Under positive risk-referring

selection, the patients who see high referring IPCPs (high x-axis value) have higher than

average ADHD risk (high y-axis value), leading to a biased upwards extrapolation point at

γ̂θ
j = 1. Because utilization costs are identified off of mean risk, then estimates of cθ are

also biased upwards. Alternatively, if patients with high ADHD risk select into low referring

IPCP such that Cov(vi, γ
θ
j ) < 0, then my estimates of mean ADHD risk and utilization costs

are biased downwards.

Similar to the full documentation assumption, if the IPCP selection assumption fails

equally for both male patients and female patients such that Cov(vi, γ
m
j ) = Cov(vi, γ

f
j ),

then the gender parameter differences (column 3 in Table 6) still hold, and the mechanism

decomposition analysis in Section 6.1 along with implications of the Supplementary Analysis

results in Section 6.2 remain unaffected.

However, if there is a gender difference in the correlation between vi and IPCP selection

that cannot be controlled for with observables, then both parameter estimate levels and

39For example, those with familial history of ADHD might choose the same IPCP for their children/sibling.
See ADHD Heritability discussion in the following section.
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differences will be impacted. The direction of this bias depends on the sign and magnitude

of this unobserved gender-specific selection, which is theoretically ambiguous and empirically

untestable. Primary care provider choice and how it relates to the mental health referral

process and child mental healthcare utilization are outside the scope of this paper, but are

important topics for future research.

ADHD Heritability

Twin studies (which compare trait similarity between identical and fraternal twins) esti-

mate the heritability of ADHD to be about 75% (Levy et al., 1997; Nikolas and Burt, 2010).

This does not mean, however, that 75% of an individual’s ADHD is caused by genetics and

the remainder explained by environmental factors. Rather, heritability describes population

level variability within a given environment. In other words, the results from twin studies

imply that about 75% of the variation in ADHD prevalence observed across individuals can

be explained by genetic variations, assuming environment fixed.

The exact genetic variations that are associated with ADHD are not fully determined.

While genome-wide association studies (GWAS) have made progress in identifying genetic

loci and single nucleotide polymorphisms (SNPs) commonly associated with ADHD, these

only account for a fraction of ADHD heritability, suggesting rare variants and/or gene-

environment interactions also play an important role in ADHD development (Grimm et al.,

2020; Demontis et al., 2023).40 Further, these studies also find that a large fraction of the

genetic variants associated with ADHD are also shared with other psychiatric disorders,

making it more difficult to isolate those associated with a single mental health diagnosis

(Demontis et al., 2023).

Importantly, current evidence suggests that the heritability and genetic component of

ADHD are very similar for males and females, indicating no substantial gender differences

in the variability across individuals or the within-individual type of genetic influences con-

tributing to ADHD risk (Nikolas and Burt, 2010). Therefore, if familial history of ADHD

40See also Thapar et al. (2013) and Kim et al. (2020) for overviews of this literature.
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influences decisions of patients (or physicians) in the model described in Section 3, it likely

does so equally for both male and females. Consequently, this does not alter the interpre-

tation of the results in Section 6, which examine mechanisms underlying relative differences

in ADHD diagnosis across gender.
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