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Abstract

While the presence of disparities in mental healthcare is well documented,
the mechanisms of such disparities are less understood. In this paper, I develop
and estimate a structural model of diagnosis for a prevalent child mental health
condition, Attention Deficit Hyperactivity Disorder (ADHD). The model incor-
porates both patient and physician influences to highlight various mechanisms
of mental health diagnosis and sources of disparities. Using electronic health
record data and novel natural language processing techniques applied to doc-
tor note text, I estimate gender-specific model parameters and decompose the
male:female ADHD diagnostic difference of 2.5:1 observed in the data. Coun-
terfactual simulations show that only 33% of this diagnostic difference can be
explained by underlying symptom prevalence, with the remainder driven by
differences in diagnostic thresholds. I find that physicians view missed diagno-
sis to be costlier than misdiagnosis, especially for their male patients, and I
discuss reasons why this may be economically warranted.
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1 Introduction

Healthcare disparities are traditionally defined as differences in health treatment and

outcomes across population groups in ways that cannot be explained by underlying

health status or preference differences.1 While overall health disparities have de-

clined, mental health disparities show the opposite trend (AHRQ, 2019). Determining

whether differences in mental health diagnosis rates across groups is an unwarranted

disparity, however, requires knowledge of true prevalence rates. This is especially dif-

ficult to isolate in the mental health context due to the subjective nature of diagnosis

along with concerns of social stigma and selection into reporting and/or treatment.

In this paper, I develop a model of mental health diagnosis that depends on

both underlying health status, patient preferences, and physician decision-making

under uncertainty. I restrict my focus to a common child mental health diagnosis,

Attention Deficit Hyperactivity Disorder (ADHD), which has a particularly salient

diagnosis rate difference by gender. I then use electronic health record data to esti-

mate gender-specific model parameters, which allows me to quantify the male/female

ADHD diagnostic disparity and isolate mechanisms contributing to differences in di-

agnosis rates.2

Approximately 10% of children are diagnosed with ADHD, and males are di-

agnosed and treated 2 to 3 times more frequently than females. The psychology

literature suggests that this clinical diagnostic difference is larger than what can be

explained by true underlying prevalence rates, with evidence showing over-diagnosis

of males and under-diagnosis of females on average. Both missed and mis-diagnoses

1See the annual National Healthcare Quality and Disparities Reports, mandated by U.S. Congress
in accordance with the Healthcare Research and Quality Act of 1999.

2Within the medical community, it remains an open question as to whether the difference in
ADHD prevalence stems from biological (sex) or social/cultural (gender) factors. In reference to
ADHD prevalence differences in general, Hinshaw (2018) writes: “All-biological or all-cultural per-
spectives are therefore reductionist and short-sighted.” To be consistent within this paper, I refer
to differences in male and female model parameters and outcomes as gender-specific rather than
sex-specific differences.
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are costly, including lower productivity and human capital accumulation for untreated

ADHD and harmful side-effects from over-treatment.3

My model has three distinct stages to reflect how the mental health diagnosis de-

cision is made. In the first stage, patients (or rather their caregivers) decide whether

or not to schedule a behavioral assessment with a diagnosing physician. This is a

function of underlying unobserved symptom severity in addition to mental healthcare

utilization costs. Second, physicians conduct a behavioral assessment for this sub-

set of patients and record/document the patient responses in a clinical doctor note.

The physicians use this information to update their belief as to whether the patient

matches national guidelines for ADHD diagnosis via a Bayesian learning process. In

the final stage, physicians decide whether or not to diagnose the patient with ADHD.

They do so if the patient-specific posterior belief of ADHD symptom match is above

a gender-specific diagnostic threshold. This threshold is set by the physician ex-ante

and is a function of the costs they bear from potential diagnostic errors.

Taken as a whole, the model highlights four key mechanisms of mental health

diagnosis that can potentially vary by patient gender and therefore contribute defer-

entially to observed diagnostic differences. These key mechanisms are: (1) underlying

differences in the true prevalence of ADHD symptoms between male and female chil-

dren, (2) patient preferences/costs of seeking mental health care, (3) varying rates of

diagnostic uncertainty, and (4) heterogeneous physician preferences/costs for ADHD

diagnosis.

I estimate the model parameters and empirically analyze the male/female ADHD

diagnostic gap using data derived from electronic health records from 2014 to 2017

provided by a large healthcare system in Arizona. The dataset includes over 35,000

pediatric visits for approximately 11,000 patients. In the raw data, 7% of males

3Diagnosed ADHD is often managed with stimulant medications that fall under the CDC schedule
IIN controlled substance category associated with “high potential for abuse which may lead to severe
psychological or physical dependence.” Further, (Doshi et al., 2012) estimate the annual economic
impact of ADHD diagnosis at 168-312 billion U.S. dollars (inflated to 2019 $ with CPI).
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and 3% of females are diagnosed with ADHD, implying a male-to-female ADHD

diagnostic difference of roughly 2.5:1. This gap persists even after controlling for

a variety of patient observables, supporting the need for a structural model and

estimation approach.

I first apply novel natural language processing and machine learning techniques

to clinical doctor note text as a way to construct mental health related variables

necessary for model estimation. Specifically, I determine whether patients receive

a behavioral assessment using a machine learning prediction approach based on a

training set of appointments in which this label is readily observed in the electronic

health record. For the set of patients that seek mental health care, I also use the

information provided in the clinical doctor note to construct an observable proxy for

the ADHD match signal that physicians receive during the behavioral assessment.

To do this, I use natural language processing techniques to measure how closely

the encounter summary provided in the doctor note matches the national diagnostic

guidelines for ADHD.

I then use the constructed mental health variables and clinical diagnoses to esti-

mate the underlying parameters of the structural model. My first stage presents a

selection problem in which the ADHD match signal is only observed if the patient

first chooses to schedule a behavioral assessment with a diagnosing physician. While

this diagnosing physician may be chosen endogenously, I assume that the patients’

choice of original primary care physician is orthogonal to behavioral symptom devel-

opment. I show that these base primary care physicians have different risk-adjusted

referral rates, providing an exclusion restriction that allows identification of patient

costs from scheduling a behavioral assessment (mental health utilization costs). This

also allows me to obtain selection-adjusted estimates of the population mean ADHD

risk for males and females via extrapolations of the observed ADHD-match signals

on quasi-exogenous behavioral assessment propensity. This exogenous extrapolation

approach is similar to the methods proposed by Arnold et al. (2022), who measure

racial discrimination in judge bail decisions.
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Finally, I recover the remaining model parameters with a method of moments

approach that leverages variation in the patients’ clinical diagnosis, assigned by the

physician and observed in the electronic health record. I estimate the components of

diagnostic uncertainty and physician preferences by analyzing differences in diagnosis

rates by patient gender conditional on the constructed ADHD match signal. The

weight that the physician places on this signal identifies varying levels of diagnostic

uncertainty, with higher weights corresponding to stronger signal quality. I then show

that conditional on diagnostic uncertainty and patient selection, the mean diagnosis

rates for each gender is a function of physician prior beliefs and physician disutil-

ity from diagnostic errors. I am able to separately identify these two values using

estimates of mean gender-specific ADHD risk obtained in the initial selection stage.

Counterfactual diagnostic simulations using model parameter estimates show that

only one-third of the observed ADHD diagnostic difference between male and female

patients can be attributed to differences in the underlying ADHD risk distribution,

with the rest explained by variation in physician decision-making across patient gen-

der. In particular, I find that physicians perceive female ADHD signals to be more

informative of true health states and thus place more weight on female patient symp-

toms when making a diagnosis decision. I also find that physicians view missed diag-

nosis to be more costly than misdiagnosis for male patients, denoted by lower male

diagnostic thresholds. This difference in diagnostic thresholds explains two-thirds of

the gap in male/female diagnosis rates, though I argue that this may be warranted

as males are more likely to express the externally costlier symptoms of ADHD.

These results add to the existing literature exploring the potential for ADHD di-

agnostic errors. For example, in the health economic literature, multiple papers show

where a child’s birth-date falls in relation to the school entry cut-off date is a strong

predictor of ADHD diagnosis, implying that teachers are subjectively comparing the

younger students in the class to older students and mistaking immaturity for ADHD

(e.g., Elder, 2010; Layton et al., 2018; Persson et al., 2021). Understanding ADHD

diagnosis is also explored in the medical and public health literature, including meta
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analyses on diagnostic differences (e.g., Sciutto and Eisenberg, 2007; Hinshaw, 2018),

physician and patient surveys (e.g., Visser et al., 2015; Chan et al., 2005), and vi-

gnette studies exploring variation in ADHD diagnosis decisions by patient groups

(e.g., Bruchmüller et al., 2012). My paper adds to this existing literature by estimat-

ing a structural model needed to decompose the underlying sources that contribute

to the male/female diagnostic difference and quantify how much of this diagnostic

gap aligns with medical guidelines. Results from the model simulation exercises can

also help guide where policies might best focus efforts to reduce sources of medically-

unwarranted diagnostic differences.

My paper more broadly contributes to the vast literature on explaining variation

and disparities in healthcare. This includes papers estimating physician practice style

(e.g., Epstein and Nicholson, 2009; Currie et al., 2016; Gowrisankaran et al., 2022),

structural models of physician decision-making under uncertainty (e.g., Abaluck et al.,

2016; Currie and MacLeod, 2017; Chan et al., 2022), and identification of physician

prejudice (e.g., Balsa et al., 2005; Chandra and Staiger, 2010; Anwar and Fang, 2012).

Importantly, this extant literature typically focuses on physical health applica-

tions and thus relies on two assumptions that do not hold in mental health settings.

The first is that patient preferences play a small role in explaining variation in health

care (Cutler et al., 2019). While this assumption of insignificant demand-side in-

fluences might be supported in physical health applications, it is not the case with

mental health in which stigma plays a potentially large role in determining mental

healthcare utilization. My paper develops a novel model of mental health diagnosis,

taking insights from this literature, and adding a patient selection stage in order to ex-

plore how both demand-side and supply-side factors can lead to disparities in mental

health diagnosis. Second, this literature assumes that health states or true diagnoses

are observed on some level, which is not the case in mental health applications as

diagnosis is based on the presence of behavioral symptoms and cannot be confirmed

via traditional medical testing. My paper innovates to address this challenge by using

clinical doctor note data and text analysis techniques to construct a proxy for ADHD
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symptom match based on clinical diagnostic guidelines.

Finally, the methods I use in this paper also add to the more recent literature on

using text analysis, machine learning, and natural language processing in economic

research (see Currie et al., 2020, and citations therein). In this paper, I combine

machine learning methods outlined in Clemens and Rogers (2020) with text analysis

methods proposed in Marquardt (2021) to construct key mental health variables which

I then use in a structural model to estimate variation in both patient and physician

decision-making. While I focus on ADHD in particular, the methods I propose can

be used in a variety of settings where researchers have access to interview notes that

inform agent decision-making, especially those in which true outcomes cannot be

observed directly.

The remainder of this paper is structured as follows. Section 2 provides medical

details on ADHD diagnosis to help motivate the theoretical model, which is then

outlined in Section 3. In Section 4, I summarize the electronic health record data

with a reduced form analysis and observational comparisons. I also describe the

the machine learning and natural language processing techniques used to extract

important variables from clinical doctor notes. In Section 5, I outline the empirical

strategy and parameter identification. Section 6 presents the model estimates and

results from model simulations used to isolate and quantify mechanisms of disparities.

I interpret these results and discuss both medical and economic implications in Section

7. Finally, Section 8 concludes.

2 Background and Medical Details

I study the physician decision to diagnose Attention Deficit Hyperactivity Disorder

in children and young adolescents. ADHD is a chronic mental disorder associated

with symptoms of inattention, hyperactivity, and impulsivity. These symptoms are

associated with lower educational attainment (Currie and Stabile, 2006) in addition

to long term effects on earnings and employment opportunities (Fletcher, 2014). Im-

portantly, treatment through stimulant medication and/or behavioral therapy has
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been shown to reduce the symptoms and associated costs related with this condition

(Jensen et al., 2001), making accurate ADHD diagnosis and subsequent treatment

essential for human capital development.

While the exact cause of ADHD is unknown, the medical literature agrees there

is a strong heritability component. However, genetics alone do not indicate a diagno-

sis, and there is less consensus regarding other environmental and structural factors

(Hinshaw, 2018).4 There is no biological or medical test to determine the presence

of ADHD in a given patient. Instead, an ADHD diagnosis is defined by a list of

behavioral symptoms outlined in The Diagnostic and Statistical Manual of Mental

Disorders, currently in its fifth edition (DSM-V).5

Table 1: DSM-V Symptoms for ADHD

Type I- Inattention
1. Often fails to give close attention to details or makes careless mistakes.
2. Often has difficulty sustaining attention in tasks or play activities.
3. Often does not seem to listen when spoken to directly.
4. Often does not follow through on instructions.
5. Often has difficulty organizing tasks and activities.
6. Often is reluctant to engage in tasks that require sustained mental effort.
7. Often loses things necessary for tasks or activities.
8. Is often easily distracted by extraneous stimuli.
9. Is often forgetful in daily activities.
Type II- Hyperactive/Impulsive
1. Often fidgets with or taps hands or feet or squirms in seat.
2. Often leaves seat in situations when remaining seated is expected.
3. Often runs about or climbs in situations where it is inappropriate.
4. Often unable to play or engage in leisure activities quietly.
5. Is often “on the go,” acting as if “driven by a motor.”
6. Often talks excessively.
7. Often blurts out an answer before a question has been completed.
8. Often has difficulty waiting his or her turn.
9. Often interrupts or intrudes on others.

Note: This table reflects an abbreviated list of DSM-V symptoms by ADHD type. The full version
is published in American Psychiatric Association (2013).

4Common risk factors mentioned in the medical literature include: low birth-weight, prenatal
toxins, and exposure to lead. A list of more debated causes include: food additives/diet, in-utero
cellphone radiation, and excess exposure to television/video games.

5The 5th edition of the DSM was released in May 2013; however, guidelines for ADHD in par-
ticular did not change significantly from the DSM-IV edition(Epstein and Loren, 2013).
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There are three possible types or presentations of ADHD: inattentive, hyperactive-

impulsive, and combined type. Male children with ADHD are more likely to have the

Hyperactive or Combined type, and female children with ADHD are more likely to

have the Inattentive type (Hinshaw et al., 2022). However, the clinical requirements

for diagnosis are the same regardless of type; A child meets the clinical definition

of ADHD if they experience 6 or more behavioral symptoms of a given sub-type

presented in Table 1. In addition, these symptoms should be present in two or more

settings (e.g., home and school) and experienced before age 12.

Figure 1: National Trends in ADHD Diagnosis

Note: This figure plots the ADHD diagnosis rates for male and female children aged 5-17, based on data from the
National Health Interview Survey (NHIS), 2000-2021. Yearly rates are weighted by the NHIS person sample weights,
and figure plots the 3-year moving average.

Figure 1 displays the national trend in ADHD diagnosis rates for male and female

children. These average diagnosis rates have increased over time, but the male/female

diagnostic difference has remained relatively constant around 2.3:1. It is important

to reiterate that while male and female children differ in which sub-type of ADHD

they are most likely to experience, the DSM-V does not have different clinical re-

quirements for these sub-types or conditional on patient gender. For both conceptual

modeling and estimation purposes, this fact explicitly restricts differences in overall

ADHD prevalence to come only from differences in number and severity of symptoms

between male and female children. Bruchmüller et al. (2012) discuss the medical and
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epidemiological literature on ADHD presentation and diagnosis, and conclude it is

“unlikely that gender differences in the expression of ADHD can fully account for the

fact that boys with ADHD receive treatment two to three times more often than girls

with ADHD.” This motivates the question: what other factors contribute to the large

difference in ADHD diagnosis rates between boys and girls? To answer this question

I first outline how an ADHD diagnosis is made.

In order to receive a clinical diagnosis, a patient must schedule and receive a

behavioral assessment from a diagnosing physician. Scheduling this assessment is not

required for all children, but may be encouraged based on feedback from teachers,

guidance counselors, or primary care physicians during annual wellness checks.

According to pediatric best-care practices outlined in American Academy of Pe-

diatrics (2011), a behavioral assessment should include an interview with the patient,

the parent, and a teacher or alternative care-giver. Physicians may use published

ADHD rating-scales along with open-ended questions, but should consult the DSM-

V and document the presence of relevant symptoms. Based on this assessment, the

physician should diagnose ADHD if they believe the patient meets the minimum

requirements for diagnosis outlined in the DSM-V.

While American Academy of Pediatrics (2011) outlines best-practices for ADHD

diagnosis, they also admit that these guidelines are often difficult for pediatricians

and primary care physicians to follow in practice “because of the limited payment

provided for what requires more time than most of the other conditions they typically

address.” Due to time, payment, or a variety of other constraints, it is unlikely that

physicians are able to strictly follow these best-practice guidelines. In fact, surveys

suggest that only about 60% of physicians incorporate these guidelines into their

practice (Rushton et al., 2004; Chan et al., 2005). This finding, along with the

institutional features of non-mandatory mental health screening, motivates the need

for a structural model of ADHD diagnosis that incorporates these various elements

of diagnosis in order to separately identify the key mechanisms leading to diagnostic

differences.
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3 Conceptual Framework

In traditional models of decision-making under uncertainty, deciding agents receive a

noisy signal of the true state of the world, use the signal to update their prior beliefs,

and make a decision to maximize utility. These types of models have been empirically

estimated in healthcare settings (e.g., Anwar and Fang, 2012; Chan et al., 2022) in

addition to other applications such as the judicial system (e.g., Arnold et al., 2022).

What is missing from these models, however, is individual selection, which I show

is an important mechanisms to understanding disparities in outcomes across patient

groups, specifically in relation to mental health. In what follows, I present a model

of ADHD diagnosis that pairs a physician decision-making under uncertainty model

with a first-stage selection component that endogenizes the patient decision to seek

mental health care (selection). I allow, but do not enforce, key model parameters

to vary based on patient gender. I then discuss comparative statics to highlight the

four potential mechanisms underlying ADHD diagnostic differences between boys and

girls: true symptom prevalence, patient utilization costs, diagnostic uncertainty, and

physician preferences.

3.1 Diagnosis Model with Endogenous Selection

The model is composed of three stages: patient selection, physician learning, and

clinical diagnosis. In the first stage, patients choose to schedule a behavioral assess-

ment if their ADHD symptoms outweigh any costs associated with mental healthcare

utilization. Conditional on selecting into care, the patient enters the second stage of

the model in which the physician conducts a behavioral assessment, learns about the

relevant symptoms, and develops a posterior probability of ADHD likelihood. In the

final stage, the physician will choose a diagnosis decision based on ADHD posterior

risk and the costs they bear from making a diagnostic error. Underlying the model

is a gender-specific ADHD risk distribution that captures differences in true preva-

lence rates. The model allows patient mental health utilization, physician preference
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thresholds, and physician learning rates to vary by patient gender as a way to capture

the varying components of mental health diagnostic disparities.

ADHD Prevalence

Each child has some unobserved latent ADHD risk, vi, which measures the extent of

ADHD related symptoms. This comes from a continuous distribution Fθ(v), where θ

indicates whether patient gender is male or female: θ ∈ {m, f}. For computational

simplicity, I assume Fθ(v) is a Normal CDF, though this assumption is not essential

for identification, further discussed in Section 5.

vi ∼ N(µθ, σ
2
θ) (1)

This continuous mental health risk is in line with the medical literature that

suggests ADHD symptoms present on a continuum (AHRQ, 2011). Despite this fact,

ADHD clinical diagnosis is binary by definition. Following the diagnostic guidelines

in defining ADHD, a child has ADHD if and only if they meet all the requirements for

diagnosis outlined in the DSM-V. Therefore, letting Si ∈ {0, 1} denote the true ADHD

status, we have Si = 1(vi > v) where v is the DSM-V defined minimum requirement

for diagnosis, which by definition does not vary by patient gender.6 Thus, differences

in true ADHD prevalence between boys and girls depend only on differences in ADHD

risk distribution parameters, with prevalence increasing in population mean risk, µθ.

Stage 1: Patient Choice to Schedule Behavioral Assessment

In the first selection stage of the model, the patient/parent must decide whether or not

to schedule a behavioral assessment.7 Parents will schedule a behavioral assessment

if the child’s behavioral symptoms outweigh any mental healthcare utilization costs,

6In the 2013 DSM-V release, guidelines were updated to reflect varying levels of symptoms sever-
ity. While these are associated with different CPT codes in how a physician is reimbursed, ICD-9
and ICD-10 codes were not adjusted and still reflect binary indicators, validating the assumption to
use a single-valued cut-off. In the main estimation section of this paper, I do not assume a v value,
but rather test if doctors use different thresholds based on patient gender, a practice that implies
deviation from the official DSM guidelines.

7Because I focus on children as patients, I assume the parent and child make joint decisions and
thus simply refer to “patient” throughout the model.
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ci, which includes a mean component, cθ, and an idiosyncratic cost, εi | vi ∼ N(0, 1).

Because health insurance typically covers behavioral assessments with little to no out

of pocket expenditures, ci includes non-monetary constraints (or conversely nudges)

impacting the decision to schedule a behavioral assessment. This can include parent

time constraints, distance to the nearest health center, recommendations from school

teachers, or information obtained from primary care physicians during annual wellness

visits. It may also include any stigma surrounding potential mental health diagnosis.

In other words, ci captures everything that impacts the decision to seek mental health

care net of child symptom level, vi. I allow for differences in the gender-specific mean

utilization cost, cθ, but do not enforce a difference empirically.

I assume the patient observes their costs, ci, and their symptoms, vi, but does

not have enough medical information to know v, thus motivating them to seek a

professional opinion. Denoting Qi as an indicator for behavioral assessment, I define

Qi = 1(vi > ci). Equation (2) defines the gender-specific behavioral assessment rate,

which follows from (1) and the assumption that ci = cθ + εi ⊥⊥ vi.

Pr (Qi = 1 | θ) = Φ

(
µθ − cθ√
1 + σ2

θ

)
(2)

Stage 2: Physician Learning via Behavioral Assessment

I assume that the physician knows the gender-specific ADHD risk distribution, but

does not know patient specific ADHD risk, vi, nor the patient specific mental health

utilization costs, ci. Thus, the physician prior can be defined by (1) and is a function

of ADHD risk distribution parameters µθ and σθ.
8

If a patient chooses to schedule a behavioral assessment, the physician will learn

about the patient specific ADHD risk, vi. Through this process, the physician receives

a noisy signal, xi, of the true ADHD risk vi, defined by equation (3). The signal is

8This assumption allows me to interpret the diagnostic threshold parameter τθ as physician
preferences over diagnostic errors. In Appendix C.2, I discuss the benefits of this assumption and
implications if it fails.
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unbiased and correlated with the true state through ρθ ∈ (0, 1). I allow correlation to

vary by patient gender as a way to capture variation in diagnostic uncertainty coming

from signal quality.9

 vi
θ

xi

 ∼ N

µθ

µθ

 ,

 σ2
θ ρθσ

2
θ

ρθσ
2
θ σ2

θ

 (3)

The physician then uses this information to update their belief of ADHD risk via

a Bayesian updating process. After observing xi the physician updates their prior,

resulting in the posterior ADHD risk distribution defined in (4). Notice that the

updated risk posterior mean is a weighted average of patient observed signal, xi, and

the physician prior risk mean, µθ, where the weight placed on the signal depends on

the signal quality ρθ.

vi | xi ∼ N
(
(ρθxi + (1− ρθ)µθ) , σ

2
θ(1− ρ2θ)

)
(4)

Stage 3: Physician Diagnosis Decision

Finally, the physician makes a binary diagnosis decision, Di ∈ {0, 1}. I follow the

literature in assuming the goal of the physician is to match the diagnosis decision to

the true health state, and thus minimize diagnostic errors. This can be modeled as

a a risk-threshold decision rule where physicians diagnose ADHD to patients whose

posterior risk of ADHD is above a diagnostic threshold, τθ.

Di | xi, θ = 1(vi | xi ≥ τθ) (5)

In Appendix C.1, I present a physician utility framework and derive this risk-

threshold decision rule to show how τθ can be interpreted as physician preferences

over diagnostic errors. Intuitively, if physicians view misdiagnosis as costly, they are

worried about diagnosing children on the margin of ADHD according to risk and

will thus apply a higher diagnostic threshold. On the other hand, if physicians view

9This health signaling structure is very similar to that defined in Chan et al. (2022), but assumes
that signal strength varies across patient types as opposed to physician types.
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missed diagnoses as costly, they would prefer to diagnose children on the margin of

ADHD and will thus apply a lower diagnostic threshold. I allow these thresholds to

differ by patient gender to capture potential differences in physician perceived cost of

diagnostic errors.10

Using the physician posterior in equation (4), the probability a patient is diag-

nosed, conditional on behavioral assessment and received signal, is:

Pr (Di = 1 | Qi = 1, xi, θ) = Φ

(
1

σθ

√
1− ρ2θ

(ρθxi + (1− ρθ)µθ − τθ)

)
(6)

3.2 Mechanisms of Diagnosis and Diagnostic Disparities

Combining equations (2) and (6) yields the following gender-specific diagnosis rate:

Pr (Di = 1 | θ) = Pr (Di = 1 | Qi = 1, xi, θ)× Pr (Qi = 1 | θ)

= Φ

(
1

σθ

√
1− ρ2θ

(ρθxi + (1− ρθ)µθ − τθ)

)
︸ ︷︷ ︸

Physician Diagnosis Rate

× Φ

(
µθ − cθ√
1 + σ2

θ

)
︸ ︷︷ ︸

Patient Assessment Rate

(7)

Diagnosis rates are a function of underlying prevalence, mental healthcare utiliza-

tion costs, diagnostic uncertainty, and physician preferences/diagnostic thresholds.

My structural model captures each of these elements via µθ, cθ, ρθ, and τθ, respec-

tively.

The comparative statics of population-group diagnosis rates are quite intuitive.

Groups with higher prevalence, captured by mean risk, µθ, are associated with higher

10In analogous models coming from the physician bias literature, this threshold is often referred to
as taste-based discrimination as it captures the difference in diagnosis rates for identical patients in
terms of risk. However, it may be that the true cost of diagnostic errors differ by patient gender, in
which case the heterogeneous thresholds are justified and should not be considered “discrimination.”
In this paper, I refer to differences in τθ as differences in perceived cost of errors, and I discuss whether
this is economically and even medically warranted in Section 7.
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diagnosis rates.11 This increase can be attributed to both the patient selection channel

(∂Pr(Qi)
∂µθ

> 0) and the physician conditional diagnosis channel (∂Pr(Di|Qi)
∂µθ

> 0), where

the latter is due to higher physician prior beliefs. On the other hand, high values

of patient utilization costs imply lower diagnosis rates because fewer patients choose

to seek mental health care (∂Pr(Qi)
∂cθ

< 0). In terms of physician preferences, high di-

agnostic thresholds, corresponding to large cost of misdiagnosis, are associated with

lower diagnosis rates (∂Pr(Di|Qi)
∂τθ

< 0). Finally, groups with lower diagnostic uncer-

tainty (i.e., higher ρθ) will have higher population diagnosis rates ( ∂P (Di=1|Qi=1)
∂ρθ

> 0

in the selected sample).12

These population-group comparative statics map directly into mechanisms ex-

plaining diagnostic differences between males and females: ∆ = P (D|θ=m)
P (D|θ=f)

. Diagnosis

rates increase with population prevalence and signal quality and decrease with utiliza-

tion costs and diagnostic thresholds. Therefore, the ADHD diagnostic difference seen

between males and females may be attributed to some combination of the following:

• higher male prevalence (µm > µf )

• higher signal strength for male patients (ρm > ρf )

• lower utilization costs for male children (cm < cf )

• lower diagnostic thresholds applied to male patients (τm < τf )

From a health care policy standpoint, it is essential to identify whether true preva-

lence is the driving factor of differing diagnosis rates, or if these other mechanisms

contribute to diagnostic disparities. The direction and relative contribution of each

mechanism is an empirical question which I explore in the remainder of this paper.

11Prevalence rates are technically defined as P (S = 1|θ) = P (vi > v|θ) where v is the DSM-V
specified cut-off rule. Provided v is not too large, it follows from vi ∼ N(µθ, σ

2
θ) that there is a

one-to-one monotonic correspondence between prevalence and mean risk.
12 ∂P (Di=1|Qi=1)

∂ρ = ϕ(ρ(x−µ)+µ−τ
σ(1−ρ2)(1/2)

)(x−µ+ρ(µ−τ)
σ(1−ρ2)(3/2)

). By contradiction, assume this partial derivative

is negative. As σ > 0 and ρ ∈ (0, 1), this implies that ρ(x − µ) + (µ − τ) and x − µ + ρ(µ − τ)
have opposite signs. For the selected sample with Qi = 1, symptoms are on average higher than
underlying risk implying x > µ. Additionally, assuming physicians would diagnose less than 50% of
population, τ > µ. Therefore, this partial derivative is negative if and only if ρ > τ−µ

x−µ and ρ > x−µ
τ−µ

which violates the requirement that ρ ∈ (0, 1). Thus, it must be that ∂P (Di=1|Qi=1)
∂ρθ

> 0 for selected
sample.
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3.3 Empirical Approach Outline

To identify the mechanisms leading to different male/female diagnosis rates, I sepa-

rately estimate the model parameters for both male and female patients: (µθ, σθ, cθ, ρθ, τθ)

for θ ∈ {m, f}. I use electronic health record data and estimate equation (7) sepa-

rately for male and female sub-samples.

The variables required to estimate gender-specific diagnosis rates (7) are clinical

diagnosis decision, Di, behavioral assessment indicator, Qi, ADHD match signal, xi,

and patient gender, θi. However, the only variables directly observed in the electronic

health record are Di (via associated ICD-10 codes) and patient gender, θi. Even

though behavioral assessment, Qi, and ADHD match signals, xi, are not directly

imputed into electronic health record systems, I show how both variables can be

recovered from clinical doctor note text.

I then use these observed and constructed variables to estimate the structural

model parameters. I break this down into two steps where the first recovers the

gender-specific population mean ADHD risk parameter, µθ. Because ADHD match

signals are only observed for an endogenously selected sample, I recover this parame-

ter using quasi-exogenous variation in scheduling costs following an approach outlined

in Arnold et al. (2022). Once male and female population mean risk are estimated,

the remaining parameters are identified and estimated from moments defined by be-

havioral assessment rates and the conditional diagnosis probit following equation (7).

I discuss this process in detail in Section 5.

4 Data and Variable Construction

The data come from de-identified electronic health records provided by a large health-

care center in Arizona. I obtain encounter level data for all pediatric patients (age<18)

who had a health appointment with a diagnosing physician at some point during the
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sample period of January 2014 to September 2017.13 I first exclude children younger

than 5 years old, whose rates of ADHD diagnosis and treatment are very low and

whose medical care requires peer-to-peer review and prior authorization. I then drop

erroneous encounters, encounters with insufficient documentation, and patients with

missing demographic information. The remaining data encompass 35,793 unique pa-

tient encounters, for 10,950 unique patients. Patient characteristics include: age, gen-

der, race/ethnicity, original primary care physician, and insurance status. Encounter

characteristics include: appointment date, physician seen, associated diagnoses (if

any), and most importantly, the clinical doctor note summarizing the encounter.

As ADHD is a chronic condition, the unit of observation in the model is at the

patient level. I label a patient as clinically diagnosed with ADHD (Di = 1) if the

patient has an encounter during the sample period in which the main associated ICD-

9 or ICD-10 code corresponds to an ADHD diagnosis.14 While the specific symptoms

differ by sub-type of ADHD, the clinical requirements for diagnosis are the same

(e.g. ≥ 6 symptoms). Therefore, I group together the different types of ADHD

into a single diagnosis category, but appropriately adjust for the different symptom

presentations when constructing the patient ADHD match signal, detailed in Section

4.2. Patient-level summary statistics are presented in Table 2.

Of the roughly 11,000 patients seen from 2014 to 2017, 5% have a clinical ADHD

diagnosis. The in-sample ADHD diagnosis rate is slightly lower than the national

average during this time period, but the male/female diagnostic difference is repre-

sentative of national values.15 Males are diagnosed with ADHD significantly more

than females. The raw diagnostic difference is 2.56:1, with 7.13% of males receiving

13A diagnosing physician is identified as one who diagnosed ADHD at least once during the sample
period. There are 151 diagnosing physicians in the dataset.

14The ICD-9 codes include 314.00 and 314.01, and the ICD-10 codes include F90.0, F90.1, F90.2.
15This lower-than-average diagnosis rate is likely due to the fact that a large portion of the sample

population is of Hispanic ethnicity (49.5%), and research shows a significantly lower diagnosis rate
for this population (see Morgan et al., 2013). I discuss the generalizability and implications of this
sample bias in Section 7.
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Table 2: Summary Statistics

Mean Std. Dev. Min. Max.

ADHD Dx. 0.050 0.218 0 1
Male Dx. 0.071 0.257 0 1
Female Dx. 0.028 0.164 0 1

Male 0.507 0.500 0 1
Age 10.318 3.562 5 18
White 0.559 0.496 0 1
Hispanic 0.495 0.500 0 1
Medicaid 0.538 0.499 0 1

# of Physicians 1.937 1.507 1 15
# of Appt. 3.269 4.116 2 92
# of Appt. (not PCP) 1.386 1.266 1 21
# Yrs. in Sample 1.695 0.895 1 4

N Patients 10,950
N Diagnosing Physicians 151
N Primary Care Physicians 303

Note: This table presents summary statistics for the full set of patients in estimation sample. # of physicians indicates
the number of unique physicians the patient sees over sample period. # of Appt. (not PCP) denotes the total number
of completed appointments where the designated provider was not the child’s original primary care physician.

a clinical diagnosis but only 2.78% of females. On average, patients will be seen by

two different physicians over an average of 3.3 appointments, and will have at least

one appointment with someone other than their original primary care physician. In

total, there are 303 primary care physicians and only 151 diagnosing physicians, who

are mainly classified as being pediatricians or family medicine doctors.16

Table 3 presents reduced-form ADHD diagnostic regressions that control for any

gender-specific differences in demographics and other healthcare utilization variables.17

In all instances, male patients are significantly more likely to be diagnosed with ADHD

than female patients. This analysis highlights the inability to explain the male-female

16The original primary care physician is defined as the specified PCP during the patient’s first
visit. This is binding for only a few patients that switch PCP’s during the sample period. Only
7% of the diagnosing physicians are psychiatrists, psychologists, and/or behavioral specialists. This
small percentage may be specific to the case of childhood ADHD where clinical diagnosis does not
require psychiatric specialization.

17Appendix Table A1 shows that male patients are on average 4 months younger than female
patients, though similar across all other observed demographics.
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diagnostic difference using only directly observable information in electronic health

record (or claims-based) datasets.

Table 3: Reduced Form ADHD Diagnostic Regressions

(1) (2) (3)

Male 0.046*** 0.046*** 0.040***
(0.004) (0.004) (0.004)

Added Patient Observables:
Demographic Variables N Y Y
Healthcare Utilization Variables N N Y

Adj. R-squared 0.0292 0.0318 0.1131
N 10,950 10,950 10,950

Note: This table presents the estimated coefficient on patient gender from a OLS regression of ADHD clinical diagnosis
on patient controls. Demographic Variables: age, insurance status, race/ethnicity. Health Care Utilization Variables:
# of doctors seen, # of appointments, appointment year fixed effects, and indicators for other mental health diagnosis,
wellness visit, visit with psychiatrist. All controls based on average (or max) across patient appointments. Robust
standard errors in parenthesis. * p < 0.10, ** p < 0.05, *** p < 0.01

However, as discussed in Section 3.3, there are two key mental health variables that

are unobserved to the econometrician yet play a central role in the physician diagnosis

decision. These are (1) Qi, which is an indicator for whether a patient receives a

behavioral assessment, and (2) xi, which is the patient specific ADHD match signal

observed conditional on behavioral assessment. In the next two sections I discuss

how both of these variables are defined and constructed using clinical doctor note

data combined with machine learning and natural language processing techniques,

respectively.

4.1 Behavioral Assessment: Qi

The electronic health record does not specifically indicate whether a behavioral assess-

ment was conducted during the visit. Therefore, I manually construct this variable

from the data by applying machine learning techniques to clinical doctor notes as a

way to predict whether a behavioral assessment was conducted during an appoint-

ment using the content of the doctor note. I give a general outline of the procedure

here and provide additional details in Appendix B.1.
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I first take a subset of appointments in which the behavioral assessment indicator

variable is known with almost certainty. This subset is constructed by assuming that

a behavioral assessment was conducted if the encounter is associated with an ADHD

diagnosis, a differential mental health diagnosis (e.g., bipolar disorder), or a comorbid

condition (e.g., generalized anxiety disorder) as noted by the DSM-V. The negative

labeled appointments are those with an associated diagnosis that is never co-diagnosed

with a mental health condition. These include conditions such as strep throat, skin

rashes, and sinus infections. The remaining appointments are considered ‘unlabeled’

due to either no associated diagnoses or appointments with ambiguous ICD-9 codes

that could be related to either mental or physical health concerns (e.g., abdominal

pain can be associated with anxiety or a virus). The purpose of this machine learning

approach is to determine whether behavioral symptoms were discussed and ADHD

diagnosis considered by the physician during these unlabeled set of appointments.

Using information from the clinical doctor notes in the labeled dataset, I next

determine a set of machine learning model features. I consider 41 features: note

length, the relative frequency of the top 20 ‘positive’ label words, and the relative

frequency of the top 20 ‘negative’ label words. Figure 2 provides a visual of these

features with a word cloud representation for both negative and positive behavioral

assessment labels. As expected, the positive behavioral assessment label includes

words related to behavioral symptoms such as: school, social, behavior, family, and

feel. The negative behavioral assessment label includes words more related to physical

rather than mental health concerns. These include words such as: pain, fever, cough,

and rash.

Finally, I use the labeled data and selected features to train a random forest ma-

chine learning algorithm, which I then apply to the unlabeled set of appointments

in order to predict whether behavioral symptoms were discussed during the appoint-

ment based on the information in the clinical doctor note. I take the maximum of this

prediction across patient encounters to obtain the patient-level behavioral assessment

indicator Qi used in model estimation.
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Figure 2: Behavioral Assessment Indicator Word Clouds

Non-Behavioral Words Behavioral Words
Note: Word clouds based on relative frequency of word-stems in labeled appointments used for machine learning
model training, shown separately for Non-Behavioral (Qij = 0) and Behavioral (Qij = 1) labeled appointments,
respectively. This figure presents full words, whereas actual stems used for prediction are listed in Appendix B.1.

The machine learning algorithm predicts that approximately 18% of children re-

ceive a behavioral assessment. This average estimate is in line with the American

Academy of Pediatrics Clinical Guidelines for ADHD which states: “Primary care

pediatricians and family physicians recognize behavior problems that may affect aca-

demic achievement in 18 percent of the school-aged children seen in their offices and

clinics” (Herrerias et al., 2001). Table 4, presented in in the following section, com-

pares behavioral assessment rate predictions by patient gender. Males are significantly

more likely than females to schedule and receive a behavioral assessment, at 20.8%

and 15.4% respectively.

4.2 ADHD Match Signal: xi

Recall that vi is the (unobserved) true health state and represents a measure of

ADHD risk based on behavioral symptoms. The ADHD match signal, xi, is an

unbiased yet noisy signal of vi that physicians observe during patient behavioral

assessment. Because ADHD diagnosis is defined by a list of behavioral symptoms

(see Table 1), I interpret vi as a composite measure summarizing number and severity

of symptoms experienced by patient i. Following this logic, xi is then a composite

measure summarizing number and severity of symptoms discussed with a physician

during behavioral assessment.
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Even detailed electronic health records do not report readily observable patient

behavioral symptoms. Instead, this information is collected during an interview and

documented in the clinical doctor note. With access to these clinical doctor notes,

I construct a proxy for xi using a natural language processing algorithm originally

proposed in Marquardt (2021). Essentially, I calculate the overlap between symptoms

in the DSM-V symptom criteria list (see Table 1) and symptoms in the collective doc-

tor notes for a given patient, making necessary adjustments to account for semantic

content. This text-constructed value is a proxy for the signal observed by the physi-

cian assuming they follow clinical guidelines in documenting all “relevant behaviors

of inattention, hyperactivity, and impulsivity from the DSM” (American Academy of

Pediatrics, 2011).18

As xi is defined on the patient level, I first combine patient notes across encounters

into a single document, keeping only those identified as behavioral assessments and

occurring before or during initial ADHD diagnosis. I then calculate ADHD match

signal, xi, following the natural language processing algorithm proposed in Marquardt

(2021), in which patient documents and DSM-V symptom requirements are compared

using an Adjusted Bag-of-Words Model. I give a general outline of the procedure here

and provide additional details in Appendix B.2.

I first pre-process the clinical texts following standard medical text cleaning pro-

cedures (e.g., spell check, abbreviation replacement, and size reductions). I next

group words according to contextual meaning which requires part-of-speech tagging

and synonym replacement. Each document is then broken into uni-gram and bi-gram

tokens, where the latter is included to preserve meaning from negation. Using these

tokenized documents, I build the adjusted Bag-of-Words (BOW) matrix where rows

(i) represent documents, columns (k) represent bi-grams of word groups, and matrix

elements (i,k) are the “tf-idf” values indicating the relative frequency and importance

18In Appendix C.2, I discuss the implications of this full documentation assumption. I argue that
if the assumption fails equally for male and female patients, the diagnostic disparities and mechanism
decomposition analysis remain unaffected.
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of bi-gram k in document i.19

I then calculate the patient overall ADHD match signal by taking the cosine

similarity measure between the patient document vector and the document vector

constructed using official ADHD symptoms listed within The Diagnostic and Statis-

tical Manual of Mental Disorders, (DSM-V). I do this for each sub-type of ADHD

and define patient-level xi as the similarity measure maximum across all three ADHD

sub-types.

Figure 3: Observed ADHD Match Signal by Patient gender

Note: This figure shows gender-specific distribution of constructed ADHD match signals xi based on NLP techniques
described in Section 4.2. This implicitly covers the set of patients with behavioral assessment, Qi = 1, thus shows
only a truncated distribution of the true population ADHD risk.

In total, the average signal match is is 0.318 with a standard deviation of 0.138. For

reference, a value of xi = 1 indicates that the note for patient i references all symptoms

in either the Inattentive list, the Hyperactive/Impulsive List, or the Combined List,

and a value of xi = 0 indicates no reference to any symptoms.20 The signal for

19The “tf-idf” value is defined as fki

Fi
× log( D

Dk
) where fki is frequency of bi-gram k in document i,

Fi is length of document i, D is number of documents, and Dk is number of documents with bi-gram
k.

20Recall that only a sub-set of symptoms are necessary for appropriate diagnosis, which implies
there is some threshold x of which xi > x implies ADHD. I remain agnostic about the this threshold
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males is slightly larger than for females; however, the difference is only significant

at the 10% level (see Table 4). Figure 3 presents a visual for the ADHD match

signal distribution by patient gender. This provides only suggestive evidence of true

prevalence differences as the plot represents the match for the (endogenous) set of

patients that receive a behavioral assessment.

Table 4: Mental Health Observational Comparisons

Total Male Female Difference

Full Sample

ADHD Dx. 0.0499 0.0713 0.0278
0.0435***

(0.218) (0.257) (0.164)
Behav. Appt. (Qi) 0.181 0.208 0.154

0.0538***
(0.385) (0.406) (0.361)

N 10950 5554 5396

Behavioral Assessment Subsample (Qi = 1)

ADHD Dx. 0.275 0.343 0.180
0.1626***

(0.447) (0.475) (0.385)
ADHD Match Signal (xi) 0.318 0.322 0.314

0.0078*
(0.138) (0.136) (0.141)

N 1987 1155 832

Note: ADHD Dx. (Di) based on ICD codes in EHR. Behavioral Assessment rates (Qi) and ADHD Match Signal
measures (xi) are constructed using machine learning and natural language processing techniques outlined in Sections
4.1 and 4.2, respectively. Differences calculated as female means subtracted from male means, and significance based
on two-sample T-test difference in means. * p < 0.10, ** p < 0.05, *** p < 0.01

Table 4 presents summary statistics for the key variables needed to estimate the

diagnosis model parameters. The top panel of Table 4 shows ADHD diagnosis rates

and behavioral assessment rates for the full sample. While males do receive behavioral

assessments significantly more than females, this selection does not explain the entire

diagnostic disparity as seen by the lower panel of Table 4. For those that receive a

behavioral assessment, 34.3% of males will be diagnosed with ADHD and only 18% of

females will be diagnosed. It is also unlikely that differences in symptom presentation

fully explain the diagnostic gap as the difference in ADHD symptom match is only

value in estimation of the general model and look only at differences between male and female
patients.
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significant at the 10% level. This table provides suggestive evidence that the ADHD

diagnostic difference is a function of selection, prevalence, and physician decision-

making biases. I next outline the structural estimation approach which allows me to

separate out the magnitude and direction of these underlying mechanisms.

5 Model Parameter Estimation and Identification

With data on ADHD diagnosis Di, behavioral assessment Qi, patient gender θi, and

conditional ADHD match signal xi, I estimate parameters of the structural model:

(µθ, σθ, cθ, ρθ, τθ) for θ ∈ {m, f}. As discussed in Section 3.3, the parameter estimation

procedure involves two steps where the first recovers the gender-specific population

mean ADHD risk parameter, µθ. The remaining parameters are obtained by matching

a set of moments defined by behavioral assessment rates and components of condi-

tional diagnosis probabilities following equation (7), estimated separately for male

and female patient groups.

5.1 First Stage: ADHD Population Risk

The reason for a first stage estimation of population mean ADHD risk µθ is shown

mathematically in equation (7) but also intuitively following the comparative statics

discussion in Section 3.2. Behavioral assessment rates are increasing in mean risk, µθ,

and decreasing in patient utilization costs, cθ. At the same time, conditional diagnosis

rates are increasing in mean risk, µθ, and decreasing in diagnostic thresholds, τθ. This

makes it difficult to separately identify the three components even with information

on Qi, xi, and Di. In an ideal setting in which ADHD match signals are observed

for all patients, one could estimate µθ using gender-specific sample average of ADHD

match signals, 1
Nθ

∑
i∈Nθ

xi. However, xi is only observed for the subset of patients that

receive a behavioral assessment. Because patients endogenously select into behavioral

assessment according to unobserved ADHD risk, the average value of observed signals

will over-estimate the population risk mean, as shown by equation (8).
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E[xi|Qi = 1] = E[xi|vi > ci] = µθ + ρθσθ

ϕ( ci−µθ

σθ
)

1− Φ( ci−µθ

σθ
)︸ ︷︷ ︸

upward bias

(8)

To recover unbiased estimates of mean population risk for males and females, I

leverage quasi-exogenous variation in the otherwise unobserved utilization costs (ci).

To build intuition for this approach, consider a set of patients who, regardless of

symptom levels, do not have any constraints (and may even be nudged) to scheduling

a behavioral assessment. For low enough levels of ci, the probability of behavioral

assessment is approximately 1, so the patient will schedule a behavioral assessment

and thus ADHD match signals, xi, will be observed. Further, the bias term in (8) for

these patients with low ci goes to 0, and thus sample mean of xi for patients with low

utilization costs (or conditionally high probability of behavioral assessment) provides

an unbiased estimation of population mean risk, µθ.

As ci is unobserved in application, I instead estimate individual propensity to

schedule a behavioral assessment using quasi-exogenous “cost-shifters”. An individual

factor, Zi, is a valid cost-shifter under the following two conditions:

(a) Zi is correlated with behavioral assessment propensity through the unobserved

patient utilization costs, ci.

(b) Zi is independent of patient ADHD risk, vi.

I use selection-adjusted referral rates of primary care physicians as the source of

quasi-exogenous behavioral assessment propensity in this application. The electronic

health record includes both the diagnosing physician as well as the patients’ original

primary care physician (PCP) where the former denotes who the patient meets with

during a given appointment, and the latter is the PCP originally seen when the

patient first entered the health system. Because diagnosing physicians may be chosen

endogenously, I instead focus on the original primary care physician and define Zi as
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a vector of size p, where Zip = 1 if child i is a patient of PCP p.21

To see how the original PCP identifier is correlated with behavioral assessment

scheduling costs, it is relevant to recall Section 2 where I discuss the institutional de-

tails of behavioral assessment scheduling. Parents may schedule these appointments

independently based on their own concerns or suggestions from teachers. However, it

is likely that they first bring up these concerns with their child’s primary care physi-

cian who is trained to ask about patient school performance and behavioral concerns

during annual wellness visits (American Academy of Pediatrics, 2011). If warranted

by the response, PCPs may encourage the parent to schedule a follow-up appoint-

ment (either with themselves, with another pediatrician, or with a psychiatrist) so

that a full behavioral assessment can be conducted. This discussion and subsequent

recommendation from the child’s original primary care physician can reduce the cost

of scheduling a full behavioral assessment through increased mental health awareness,

help with internal scheduling, comfortability with health system personnel, etc., thus

satisfying the relevance condition (a).

Importantly, PCPs have discretion over what to address during routine check-ups

and whether or not to suggest the patient seek follow-up mental health care. Some

may be more thorough during these wellness checks in regard to questions about child

behavior, and thus differ in the rates at which they suggest their patients seek follow-

up care and schedule behavioral assessments (referral rates).22 To empirically verify

that the PCP identifier meaningfully influences the patient probability of scheduling

a behavioral assessment, I regress patient behavioral assessment indicator, Qi, on

patient controls and original PCP fixed effects, interacted with patient gender. I

test for and find strong joint significance of PCP fixed-effects, results presented in

21I use the original primary care physician as opposed to the diagnosing physician as the latter
is likely chosen endogenously. Patients with behavioral concerns may specifically schedule appoint-
ments with physicians who specialize in mental health. This would suggest a positive relationship
between the diagnosing physician and vi which violates requirement (b).

22Appendix Figure A1 shows the variation across primary care physicians, with a histogram of
the unadjusted leave-one-out PCP referral rates.
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Appendix Table A2.

Condition (b) is satisfied if original PCPs are chosen or assigned independently

of true ADHD risk, vi. As vi is unobserved, I cannot test for this directly, though

a list of observations and institutional details provide support for its validity. First,

primary care physicians are typically selected by patients before age 5, which is the age

at which behavioral symptoms may develop. This timing of symptom development

means that parents do not selectively chose primary care physicians after observing

vi. Second, there are approximately 300 original primary care physicians covering

the patients in my sample, but only 24 of these ever diagnose ADHD.23 So while

PCPs may differ in the number of patients they refer or encourage to seek follow-up

mental health care, they generally do not diagnose ADHD themselves, suggesting that

patients set up behavioral assessments with alternative physicians, again implying no

relation between the original PCP and patient vi.

Finally, while patients may not select PCP based on vi directly, condition (b)

would still be violated if PCP selection is based on other factors, Wi, that are corre-

lated with ADHD risk. I test for this by analyzing an ordinary least squares regression

of PCP referral rate on various patient demographics and healthcare utilization con-

trols. I define PCP referral rate as the leave-one-out average behavioral assessment

rate among all other patients of the given PCP. Appendix Table A3 presents the

coefficients from this regression, and the associated tests for joint significance. Be-

cause some patient demographics and healthcare utilization measures are predictive

of these leave-one-out PCP referral rates, I appropriately risk-adjust these rates given

selection on observables. Importantly, however, I fail to reject the null hypotheses of

gender-specific PCP selection, thus providing support to condition (b).24

23In majority of cases, PCPs will instead refer patients to other pediatricians in the health system.
24There may still be concern that patients choose PCPs based on unobserved factors that are

correlated with ADHD risk, leading to biased estimates of µθ. However, so long as these unobserved
factors are independent of patient gender, the relative difference between male and female ADHD
risk is unaffected. I further discuss the implications of this assumption in Appendix C.2.

29



Under conditions (a) and (b), I can recover population ADHD risk estimates for

male and female patients by taking the vertical intercept at one from the fitted rela-

tionship between observed ADHD match signals and exogenous behavioral assessment

propensity. Empirically, I first conduct a probit regression of behavioral assessment,

Qi, according to equation (9) where Wi includes a set of demeaned patient controls

needed for selection-adjustment (as per Appendix Table A3) and Zi denotes original

PCP identifiers.
P (Qi = 1) = Φ (Wiβ + γ1Zi + γ2MaleiZi) (9)

Next, I obtain exogenous behavioral assessment propensity, ̂Pθ(Qi|Zi), by predict-

ing behavioral assessment for each patient, holding Wi at sample means. With Wi

demeaned, ̂Pθ(Qi|Zi) is the selection-adjusted gender-specific PCP referral rate.

While there is significant variation in these adjusted referral rates, the maximum

value is only about 0.75. In the absence of a PCP with adjusted referral rates near

1, values of µθ can be estimated via extrapolations of observed ADHD match signals

on exogenous behavioral assessment propensity. Specifically, I fit a model of observed

ADHD match signals, xi, on ̂Pθ(Qi|Zi) for both male and female patients, and obtain

selection-adjusted values of µm and µf by evaluating the fitted model at ̂Pθ(Qi|Zi) = 1

for θ ∈ {m, f}, respectively. This exogenous extrapolation approach is similar to

the methods proposed in Arnold et al. (2022) and in line with the literature on

identification in selection models (see Chamberlain, 1986; Heckman, 1990).

Figure 4 provides a visualization of the identification for mean ADHD risk by

patient gender. The vertical axis plots patient ADHD match signal, xi, for the set

of patients in which it is observed (Qi = 1), paired with their selection-adjusted

behavioral assessment propensity on the horizontal axis.
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Figure 4: Behavioral Assessment Rates and Observed ADHD Risk

Note: This figure plots gender-specific observed ADHDmatch signals on selection-adjusted PCP referral rates obtained
from predicted behavioral assessment probabilities from equation (9), with demeaned patient controls set to 0, for the
set of patients with Qi = 1. The exponential and linear fits are represented by the solid and dashed line, respectively.

Consistent with the theory, observed ADHD match signals, xi, are decreasing in

exogenous behavioral assessment propensity, ̂Pθ(Qi|Zi). A low value of ̂Pθ(Qi|Zi)

implies that child i is a patient of a PCP with generally low referral rates. Thus,

these patients are ex-ante unlikely to schedule a behavioral assessment appointment.

Despite this, the patient appears in the data as receiving a behavioral assessment

anyway, which means that they must have high ADHD risk, vi, consistent with high

observed match signal, xi. On the other hand, a large value of ̂Pθ(Qi|Zi) implies the

child is a patient of a PCP with conditionally high referral rates. These patients are

more likely to schedule behavioral assessments regardless of true symptom risk, and

thus have lower observed match signals on average.

The solid lines in Figure 4 represent the gender-specific lines of best fit through

the data. These are obtained via non-linear least squares estimation, specifying an

exponential functional form to ensure estimates above 0, and inverse weighting by the

variance of the gender-specific PCP fixed effect from estimating equation (9). Table

5 presents the estimated model fit coefficients for both males and females. This table
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also presents the vertical intercept at ̂Pθ(Qi|Zi) = 1 of the gender-specific curves,

corresponding to the unbiased estimates of male and female population mean ADHD

risk, µθ. Figure 4 also includes the linear fit (dashed lines), with coefficients and

extrapolation in Appendix Table A4.

Table 5: Male/Female Extrapolation

Male Female
(1) (2)

α̂0 0.350 0.387
(0.015) (0.023)

α̂1 -0.423 -0.933
(0.175) (0.305)

Fitted µθ 0.230 0.152

Note: This table shows coefficients from non-linear least squares regression with exponential functional form: Y =
α0exp(α1X) where Y is the mean observed ADHD risk signal for patients who receive behavioral assessment and X
is risk-adjusted PCP referral rate. All regressions weighted by the inverse variance of PCP-gender fixed-effects from
estimating equation (9). Fitted µθ denotes the intercept at X=1. Standard errors in parenthesis.

5.2 Second Stage: Recovering Remaining Parameters

I estimate the remaining model parameters by matching moments defined by behav-

ioral assessment rates and coefficients from a conditional diagnosis probit obtained

via maximum likelihood estimation, separately for male and female patient groups.

Appendix Table A5 further details these moments with their empirical and theoretical

counterparts.

With µθ estimated in the first stage, it is clear how remaining parameters are

identified up to ADHD risk dispersion, σθ. Gender-specific mean utilization cost, cθ,

is identified through variation in behavioral assessment rates conditional on mean

ADHD risk parameter µθ (see equation 2). Both diagnostic uncertainty, ρθ, and

diagnostic thresholds, τθ, are identified in the conditional physician diagnosis prob-

ability equation (see equation 6). The correlation between physician diagnosis, Di,

and patient ADHD match signal, xi, identifies the signal strength, ρθ. The diagnos-

tic threshold, τθ, is identified by mean diagnosis rates conditional on ADHD match

signals, xi, and mean risk, µθ.
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Up to this point, the parameter identification has not relied on any functional

form assumptions, and thus would follow through if instead ADHD risk and signals

were modeled using alternative distributions (e.g., the Beta distribution). However,

estimation of the final parameter, ADHD risk dispersion (σ2
θ), requires an additional

moment that depends on this parametric form. Specifically, I estimate σθ using

the moment defined by equation (10) which follows from the truncated normality of

selected ADHD match signals. Thus σθ is identified by the difference between ob-

served match signals and population mean risk, adjusting for selection due to different

healthcare utilization costs and signal strength by patient gender.

xobs|θ = E[xi|vi > ci] = µθ + ρθσθ

ϕ
(
Φ−1(1− Q̂|θ)

)
Q̂|θ

(10)

6 Estimates and Simulations

Table 6 presents the full set of results for male and female patients, with standard

errors and 95% confidence intervals for male/female parameter differences based on

bootstrapped patient samples. The sign of each parameter differences in Table 6

can be informative about which mechanisms contribute to the male/female ADHD

diagnostic gap and in what direction. As discussed in Section 3.2, diagnostic differ-

ences between male and female patients can be attributed to variation in prevalence,

mental healthcare utilization, diagnostic uncertainty, and diagnostic thresholds. The

results in Table 6 suggest that both underlying ADHD prevalence and physician-set

diagnostic thresholds play an important role explaining diagnosis rate differences.

First, the population mean risk for males is higher than that for females, with

a difference of 0.077 statistically different from 0 at the 10% level. This higher

male ADHD prevalence will increase the ADHD diagnostic difference through both

the patient selection channel (behavioral assessment scheduling) and through higher

physician posterior beliefs. This result is directionally consistent with the medical

literature which notes higher ADHD symptom prevalence in boys than girls (AHRQ,
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Table 6: Model Parameter Estimates

Male Female Difference

Pop. Mean Risk µθ 0.230 0.152 0.077
(0.034) (0.047) [-0.016, 0.147]

Pop. Risk Dispersion σθ 0.303 0.340 -0.037
(0.142) (0.143) [-0.266, 0.177]

Utilization Costs cθ 0.477 0.499 -0.022
(0.108) (0.134) [-0.205, 0.065]

Signal Quality ρθ 0.220 0.308 -0.088
(0.064) (0.076) [-0.228, 0.102]

Diagnostic Threshold τθ 0.370 0.500 -0.130
(0.052) (0.121) [-0.266, -0.038]

Note: 1000 bootstrapped patient samples used to obtain gender-specific model parameter standard errors (in paren-
thesis) and 95% confidence interval for the difference between male and female parameter estimates.

2011). Second, males and females have similar mental health utilization costs sug-

gesting patient preferences do not drive differences in ADHD diagnosis rates. I find

some suggestive evidence that physicians put more weight on female ADHD match

signals (ρf > ρm), which by construction measures the overlap between patient symp-

toms and DSM-V defined symptoms. This finding is consistent with the results in

Bruchmüller et al. (2012), who show that physicians are more likely to follow DSM-V

criteria when diagnosing female patients and rely more on heuristics for male patients.

Most striking is the large and significant difference in diagnostic thresholds be-

tween male and female patients. Physicians use significantly lower diagnostic thresh-

old for male patients (τm < τf ), meaning that they are more likely to diagnose a

male patient than a female patient with identical posterior ADHD risk. Because the

DSM-V does not specify gender specific diagnostic requirements, this finding suggests

that physicians deviate from clinical guidelines when making the diagnosis decision

in ways that contribute to an ADHD diagnostic disparity by gender. Paired with the

utility model that defines these diagnostic thresholds, this key result suggests that

physicians deviate from clinical guidelines because their perceived cost of missed -

diagnosis relative to mis-diagnosis is higher for male patients than female patients.

I discuss the interpretation and implications of these diagnostic threshold differences

in Section 7.
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6.1 Simulated Mechanisms Contribution

How do these gender-differences in ADHD diagnosis parameters contribute to the

overall differences in diagnosis rates between male and female patients? In this sec-

tion, I use the structural model and estimates in Table 6 to run ADHD diagnosis

simulations, which allows me to isolate and quantify the role of each mechanism as

motivated by the model and discussion in Section 3.2.25

To show how the various mechanisms contribute to the ADHD diagnostic dif-

ference measure, I analyze simulated diagnosis rates under counterfactual scenarios

that place restrictions on the source of gender-specific variation. The results of this

analysis are presented numerically in Table 7 and visually in Figure 5.

The first row of Table 7 corresponds to no diagnostic difference (1.00:1), in which

parameters are restricted to be identical for both boys and girls. The second panel

shows what happens when only ADHD risk distribution parameters µθ and σθ are

allowed to vary. The remaining parameters are held constant at either the male

or female estimates. When only underlying true ADHD symptom risk varies by

patient gender, the simulated diagnostic difference increases from 1.00:1 to 1.49:1 or

1.45:1 depending on at which estimates the remaining parameters are held. This

represents 33% or 30% of the observed difference in male and female diagnosis rates,

suggesting that at most one-third of the male/female ADHD diagnostic difference can

be attributed to differences in the underlying ADHD symptom prevalence.

When patient mental healthcare utilization costs are also allowed to vary by pa-

tient gender, diagnostic differences increase only slightly, suggesting that very little

of the male/female disparity can be attributed to differences in selection into men-

tal health care (net of true prevalence differences). Finally, to analyze the physician

25Appendix Table A6 shows how well the simulated model matches key moments of the observed
data, both overall and for male and female subsets of patients. The simulated model does extremely
well at matching average diagnosis rates (D), behavioral assessment rates (Q), and mean ADHD
match signals (x|Q). It slightly underestimates conditional diagnosis rates (D|Q), more-so for female
patients than male patients.

35



Table 7: Simulated Mechanism Contribution

Diagnostic Added Relative
Difference Effect Contribution

No Difference 1.00 - -

Prevalence Contribution
ADHD Risk Distribution: µθ and σθ

at Male estimates 1.49 +0.49 33%
at Female estimates 1.45 +0.45 30%

Patient Contribution
Utilization Costs: cθ

at Male estimates 1.65 +0.16 11%
at Female estimates 1.59 +0.14 10%

Physician Contribution
Signal Quality: ρθ

at Male estimates 1.52 -0.13 -9%
at Female estimates 1.46 -0.13 -9%

Diagnostic Thresholds: τθ
at Male estimates 2.49 +0.98 65%
at Female estimates 2.49 +1.03 69%

Overall Difference 2.49 +1.49 100%

Note: This table presents results from diagnostic simulations with sequential restrictions on the model parameters.
Rows show which parameters are varied, starting with no variation, and adding variation until all parameters are
at estimated value. Diagnostic Difference is calculated as simulated male diagnosis rate divided by simulated female
diagnosis rate. Added Effect calculates the added net diagnostic difference from the previous simulation. Relative
Contribution calculated as added effect divided by total effect of 1.49.

decision-making contribution, I relax the restrictions on signal quality and physi-

cian thresholds sequentially. The differences in signal quality actually reduces the

male/female diagnostic gap, but this is more than made up for by different diag-

nostic thresholds which explains between 65% to 69% of the observed diagnosis rate

difference between male and female patients.

Figure 5 presents the mechanism decomposition visually. The first bar, which cor-

responds to true underlying ADHD risk, fills about one-third of the overall male/female

ADHD diagnostic difference, meaning that at least some of the difference in diagno-

sis rates between male and female patients can be attributed to differences in true

underlying prevalence rates. However, this suggests that the remaining two-thirds of

the diagnostic difference is an unwarranted disparity, at least according to the DSM-
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Figure 5: Cumulative Simulated Mechanism Effect

Note: This figure shows the cumulative effect of each mechanism in explaining the ADHD male/female diagnostic
difference. Values come from Column 2 of Table 7, where parameter restrictions in simulations are set at male
parameter values.

V guidelines. The final bar in Figure 5 shows that the ADHD diagnostic disparity

primarily stems from physicians using different thresholds based on patient gender, a

practice that suggests deviations from clinical guidelines. In the following section, I

discuss implications of this deviation and whether or not this disparity is medically

and even economically unwarranted.

7 Discussion and Implications

The results presented above show that male children are more likely to match ADHD

diagnostic guidelines, both in the selected sample and the population more broadly.

However, I also show that conditional on the true prevalence difference between boys

and girls, there is still a significant diagnostic disparity, that is mostly explained by

differences in physician thresholds for diagnosis. Specifically, I show that physicians

use lower thresholds to diagnose their male patients, which is in contrast to the DSM-

V guidelines that require the same number and severity of symptoms regardless of

patient gender. The implication of these results, however, are nuanced and depend

on the goals of health, education, and/or economic policy-makers.
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From a purely healthcare perspective, the goal may to eliminate disparities caused

by deviations from clinical guidelines. In this case, the results above suggest that poli-

cies aimed at physician diagnostic compliance can reduce the ADHD gender disparity

to the estimated true prevalence difference of 1.5:1. Alternatively, it may be that

physicians know more than what these DSM-V guidelines convey, in which case the

goal would be to update clinical guidelines in a way that reflects how ADHD mani-

fests differently in male and female children. In fact, it is a common consensus among

psychologists that because the DSM-V definition of ADHD is outdated and/or too

terse, physician discretion and variation from clinical guidelines is medically war-

ranted (Cheyette and Cheyette, 2020).

Another argument is that the disparity caused by physician diagnostic thresholds

can be attributed to non-monetary social and/or educational costs of under-diagnosis.

Recall that a utility model defines gender-specific diagnostic thresholds, and the lower

male threshold estimate implies that physicians diagnose as if it is costlier to under-

diagnose male patients relative to female patients (conversely, physicians prefer to

over-diagnose male patients relative to female patients with identical ADHD risk).

This may be warranted given the way in which ADHD presents differently in male and

female children. Males more likely to experience the Hyperactive/Impulsive subtype

(Type II) which is associated with externalizing behaviors whereas females are more

likely to have the Inattentive subtype (Type I) with internalized behaviors (Hinshaw

et al., 2022; Quinn and Madhoo, 2014). While all symptoms can hinder learning

and child development, it is clear that Type II symptoms are more likely to cause

external disruptions and spillover ‘costs’ to other students, siblings, or caregivers.

Physicians may consider these external costs (or be influenced by parent/teacher

demands) when setting these gender-specific diagnostic thresholds. The implication

of this argument is that even if male and female patients had the same number and

severity of ADHD symptoms, because male symptoms are externally costlier, it may

be economically warranted to apply lower thresholds and therefore higher diagnosis

rates to male patients. Future research is needed to quantify these external costs of
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over-diagnosis on the margin and whether cost differences by gender can justify the

estimated diagnostic threshold differences presented in this paper.

7.1 Mis(sed) Diagnosis?

The results and discussion so far have focused on differences in diagnosis rates between

male and female children. I show that at least two-thirds of the difference in diagnosis

rates cannot be explained by underlying ADHD symptom prevalence. Thus far, I have

remained agnostic about whether this is due to over-diagnosis of male patients, under-

diagnosis of female patients, or a combination of both. As a final exercise, I make an

additional assumption about what defines true ADHD prevalence, and show how my

model can be used to simulate and examine variation in ADHD diagnostic errors.

For purposes of classifying ADHD diagnostic inaccuracies, I refer back to the

DSM-V guidelines for ADHD. These clinical guidelines state that regardless of sub-

type, a patient must experience 6 (or more) of the 9 specified ADHD symptoms (see

Table 1), implying a guideline-defined threshold of v = 6
9
= 0.66. Using v = 0.66

along with population risk distribution parameters, µθ and σθ, I can simulate DSM-

V defined ADHD prevalence rates by patient gender. Combining this with the full

diagnosis model allows me to simulate the extent of over/under diagnosis for both

boys and girls.

This simulation exercise results in a male ADHD prevalence rate of 7.8% and a

female ADHD prevalence rate of 6.8%. Comparing these to diagnosis rates observed

in the data, it would appear that both males and females are under-diagnosed. How-

ever, this does not account for the heterogeneity coming from risk dispersion, patient

selection into care, or diagnostic uncertainty. With v = 0.66, the diagnostic simula-

tion finds that 2.3% of males and 0.6% of females are over-diagnosed, and 2.6% of

males and 3.1% of females are under-diagnosed.

It is important to note here that the results of this simulation exercise are likely

sample-dependent. Compared to the national average, the empirical sample has a

lower ADHD diagnosis rate of 5%. This may be explained by the higher than national-
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average proportion of patients of Hispanic ethnicity, and pediatric medical research

documents a significantly lower ADHD diagnosis rate for this population group com-

ing from cultural biases (Morgan et al., 2013). This might bias the parameter estimate

levels, leading to higher rates of under-diagnosis than what would be expected from a

more nationally represented sample. However, given the similar ethnicity composition

across male and female sub-samples, the male/female parameter estimate differences

and corresponding decomposition analysis in Section 6.1 remain unbiased.

This final simulation exercise is limited in that it is sample-dependent and makes

a strong assumption about how the DSM-V definition of ADHD maps to v = 0.66

in the structural model. However, it does help illustrate two key points. First,

comparing observed diagnosis rates to (perhaps arbitrarily known) prevalence rates

masks important heterogeneity of both missed and mis-diagnoses. Second, without

relying too much of exact quantities, there is still suggestive evidence that male

patients are more likely than female patients to be misdiagnosed, and females are

more likely to be missed.

8 Conclusion

Reducing mental health disparities is a national priority, yet quantifying these dis-

parities and isolating their contributing mechanisms is difficult in practice given the

subjective nature of mental health diagnosis. This paper presents a new theoretical

framework and empirical approach which helps contribute to our understanding of

the magnitude and sources of mental health diagnostic disparities.

The model and empirical analysis are motivated by the large gender-specific differ-

ence in diagnosis rates for childhood Attention Deficit Hyperactivity Disorder. Male

children are 2.5 times more likely to be diagnosed with ADHD than female children,

a diagnostic disparity that cannot be explained by prevalence rates alone. I develop

a model of ADHD diagnosis, composed of three distinct stages, to demonstrate how

both patient and physician factors contribute to the ADHD diagnosis rate. Impor-

tantly, each stage of the model depends on an unobservable patient ADHD risk value,
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coming from a gender-specific risk distribution, which accounts for variation in true

ADHD prevalence between male and female children.

I use electronic health record data to estimate the gender-specific model param-

eters. First, I construct the necessary variables by applying machine learning and

a novel natural language processing algorithm to clinical doctor note text. I then

estimate male and female population mean ADHD risk using selection-adjusted pri-

mary care physician referral rates. The remaining model parameters are recovered

using a method of moments approach leveraging variation in behavioral assessment

rates and gender-specific conditional ADHD diagnosis probit. I find that males have

higher ADHD prevalence, higher diagnostic uncertainty, and lower diagnostic thresh-

olds than their female counterparts.

The overall ADHD male-to-female diagnostic difference is 2.5:1. A model simula-

tion exercise using parameter estimates show that about one-third of this diagnostic

difference can be explained by differences in true underlying ADHD symptom preva-

lence. The remaining difference is largely driven by variation in physician decision-

making based on patient gender, specifically lower diagnostic thresholds used for male

patients. Paired with an underlying utility framework, these threshold estimates im-

ply that physicians diagnose as if a missed diagnosis is costlier than a misdiagnosis,

especially for their male patients. I discuss the implications of this disparity source

in detail, and argue that while these different thresholds suggest non-compliance to

medical guidelines, they may be economically and even medically warranted. The

clinical support for these heterogeneous costs should be explored further, and per-

haps even call for a re-evaluation of how ADHD is defined in the DSM-V, noting its

associated effects on male and female clinical diagnoses and subsequent treatment.

While this paper addresses the male/female diagnostic difference for ADHD,

the general framework can be applied to other mental health conditions and/or

population-groups. Mental health conditions are costly to both the individual and so-

ciety. Thus, identifying disparities and associated mechanisms across socioeconomic

status, age, race/ethnicity, residence, etc., is an important goal for future research.
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Online Appendix

Mis(sed) Diagnosis: Physician Decision Making and ADHD

Marquardt (2022)

A Additional Tables and Figures

Table A1: Male/Female Difference in Observables

Male Female Difference

Full Sample
Age 10.57 10.92 -0.343***
Medicaid 0.530 0.546 -0.015
Private Ins. 0.425 0.415 0.011
White-Non Hispanic 0.347 0.347 0.001
Non-White Hispanic 0.282 0.283 -0.001
N 5,554 5,396
Behavioral Assessment Sample
Age 10.83 12.53 -1.701***
Medicaid 0.514 0.499 0.016
Private Ins. 0.444 0.472 -0.028
White-Non Hispanic 0.420 0.444 -0.024
Non-White Hispanic 0.237 0.233 0.004
N 1,155 832

Note: This table presents gender-specific means and difference in means for full sample and Behavioral Assessment
subsample (Qi = 1). Significance based on two-sample T-test with * p < 0.10, ** p < 0.05, *** p < 0.01.
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Figure A1: Original PCP Referral Rate Distribution

Note: This figure plots the histogram of original primary care physicians leave-one-out referral rates. Leave-one-out
PCP referral rates determined using data from all other patients of the patient’s PCP and calculated as the percent
of other patients from each PCP that eventually receive behavioral assessment in the data (i.e., percent with Qi = 1).

Table A2: Test of First Stage PCP Relevance

Wald Test for PCP Fixed-Effect Significance
Total Male Female
(1) (2) (3)

Wald Chi-Squared Test Statistic 2484*** 1118*** 1227***
Degrees of Freedom 184 92 92
Patients 5400 2734 2666
Mean Behavioral Assessment Rates 0.197 0.223 0.171

Note: This table shows results from Wald Chi-squared joint test of significance on original PCP fixed effects in a
probit regression of patient behavioral assessment indicator on set of patient controls and PCP fixed effects. Patient
controls include: Age, Psych Referral, Medicaid, Private Ins., Hispanic, White, Appt. Type, # of Physicians, #of
Appts., Year FE. Results shown for three separate regressions based on total sample, male sample, and female sample,
respectively. * p < 0.10, ** p < 0.05, *** p < 0.01
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Table A3: Test of PCP Selection

(1) (2) (3)

Male 0.002 0.003 -0.000
(0.004) (0.004) (0.004)

Age 0.000 0.001
(0.000) (0.000)

Medicaid -0.014 -0.011
(0.009) (0.008)

Private Ins. -0.007 -0.012
(0.011) (0.009)

Hispanic 0.003 0.004
(0.006) (0.005)

White 0.012 0.010
(0.004) (0.004)

Behavioral Appt. -0.007
(0.013)

Wellness Appt. -0.014
(0.006)

# of Phys. -0.014
(0.004)

# of Appt. 0.005
(0.002)

Psych Referral 0.084
(0.017)

Year FE Y Y Y
Patient Demographics N Y Y
Healthcare Utilization N N Y

Observations 5400 5400 5400
Male Significance? (p-value) 0.596 0.553 0.963
Joint Significance? (p-value) 0.020 0.034 0.001

Note: This table presents results from patient level regression of leave-one-out PCP referral rates on demeaned patient
demographics. Leave-one-out PCP referral rates determined using data from all other patients of the patient’s PCP
and calculated as the percent of other patients from each PCP that eventually receive behavioral assessment in the
data (i.e., percent with Qi = 1). Robust standard errors in parenthesis, clustered at the PCP level. The table also
reports the p-value associated with a test of significance on the male coefficient and a joint test of significance on all
other variables including year fixed-effects.
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Table A4: Linear Extrapolation

Male Female
(1) (2)

α̂0 0.348 0.374
(0.136) (0.018)

α̂1 -0.128 -0.254
(0.053) (0.086)

Fitted µθ 0.220 0.120

Note: This table shows coefficients from weighted OLS regression with linear functional form: Y = α0 + α1X where
Y is the mean observed ADHD risk signal for patients who receive behavioral assessment and X is risk-adjusted PCP
referral rate. All regressions weighted by the inverse variance of PCP-gender fixed-effects from estimating equation
(9). Fitted µθ denotes the intercept at X=1. Standard errors in parenthesis.

Table A5: Empirical and Theoretical Moment Descriptions- by Gender

Description Empirical Value Theoretical Value

Behavioral assessment

rate: Q̂i|θ

1
Nθ

∑
i∈θ Qi Φ

(
µθ−cθ√
1+σ2

θ

)

Match coefficient in
conditional diagnosis probit:
Di|Qi=1,θ = Φ(α+ βXi)

β̂ =

∑
i∈θ,Qi=1((xi−x)(Φ−1(Di)−Φ−1(D)))∑

i∈θ,Qi=1((xi−x)2)
ρθ

σθ

√
1−ρθ

2

Constant term in conditional
diagnosis probit:
Di|Qi=1,θ = Φ(α+ βXi)

α̂ =

∑
i∈θ,Qi=1 Φ

−1(Di)−β̂
∑

i∈θ,Qi=1 xi

NQi=1,θ

(1−ρθ)µθ−τθ√
1−ρ2θ

Observed ADHD signal
mean: xobs|θ

1
NQi=1,θ

∑
i∈θ,Qi=1 xi µθ + ρθσθ

ϕ
(
Φ−1(1−Q̂i|θ)

)
Q̂i|θ

Note: This table describes the four gender-specific moments (eight in total) used to identify model parameters:
cθ, ρθ, τθ, andσθ for θ = m, f . Theoretical Values come directly from the structural model described in Section 3.1
and Empirical Values are functions of data only.
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Table A6: Observed verses Simulated Rates

Observed Simulated

Total Male Female Total Male Female

ADHD Dx. (D) 0.050 0.071 0.028 0.050 0.071 0.029
Behavioral Appt. (Q) 0.181 0.208 0.154 0.178 0.206 0.153
ADHD match (x|Q) 0.318 0.322 0.314 0.318 0.322 0.314
Cond. Dx. (D|Q) 0.275 0.343 0.180 0.266 0.345 0.187

Note: This table presents average values across patients of ADHD diagnosis, behavioral assessment, ADHD risk
signals, and conditional diagnosis. Means are calculated for full set, and subset of male/female patients. Those in the
Observed columns are based on the EHR data and those in the Simulated columns based on diagnostic simulations
using model parameters in Table 6 and model outlined in Section 3.1.

Table A7: Independent Simulated Mechanism Effects

Diagnosis Rates Diagnostic
Male Female Difference

Baseline Differences 0.071 0.029 2.49

Panel A: Prevalence
ADHD Risk Distribution: µθ and σθ

at Male estimates 0.071 0.041 1.72
at Female estimates 0.48 0.029 1.67

Panel B: Patient Contribution
Utilization Costs: cθ

at Male estimates 0.071 0.031 2.28
at Female estimates 0.065 0.029 2.26

Panel c: Physician Contribution
Signal Quality: ρθ

at Male estimates 0.071 0.026 2.73
at Female estimates 0.076 0.029 2.62

Diagnostic Thresholds: τθ
at Male estimates 0.071 0.047 1.52
at Female estimates 0.042 0.029 1.46

Note: This table reflects diagnosis rates from a model simulation exercise that restricts variation in only one set of
model parameters. The simulated gender-specific diagnosis rates are reported in columns 1 and 2 with the ratio in
column 3. For reference, Panel A presents simulations that restrict ADHD risk distribution parameters to be equal for
male and female patients and all other parameters allowed to vary and equal their estimated values in text Table 6. I
include diagnosis rates when equalization is based on male estimate and female estimate. Panel B restricts variation
in patient utilization costs, and Panel C restricts variation in physician parameters, signal quality and diagnostic
thresholds, respectively.
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B Variable Construction using Clinical Texts

B.1 Behavioral Assessment: Qi

In this appendix, I present the Machine Learning Algorithm used to construct a proxy

for the behavioral assessment indicator, Qi. This closely follows the Text Analysis

Appendix in Clemens and Rogers (2020).

I first break the appointment level data into a labeled and un-labeled subsets,

where i denotes patient and j denotes appointment. The labeled set is determined by

icd9 codes where an appointments receive a positive label (Qij = 1) if the appointment

is associated with an icd9 diagnosis related to mental health (Q1 Codes in table B8).

An appointment receives a negative label (Qij = 0) if the appointment is associated

with an idc9 diagnosis related to physical ailments (Q0 Codes in table B8). To

ensure that there is no overlap with patients in both groups, I restrict the negative

labeled set to only those patients that never receive a mental health diagnosis during

the sample period. The un-labeled set contains all appointments in which there is

no associated diagnoses or appointments with ambiguous icd9 codes that could be

related to either mental or physical health concerns (e.g., abdominal pain can be

associated with anxiety or a virus). This hand-coded separation procedure results

in 40,917 appointments and 14,092 patients in the labeled set (31,716 appointments

with Qij = 0 and 9,200 with Qij = 1) and 105,054 appointments of 28,403 patients

in the un-labled set.26

Q0 Codes Q1 Codes
034, 055, 058, 078, 079, 080, 111, 113, 171, 192, 204, 293-319, 331, V11, V15, V40
250, 251, 273, 277, 278, 283, 287, 288, 289, 363-383, V41, V61, V62, V71, V79
389, 390, 462, 463, 466 473, 474, 478, 486, 488, 493,
494, 529, 537, 599, 600, 608, 612, 682, 683, 693, 697,
703, 707, 709, 710, 715, 719, 720, 725, 728, 729, 730,
733, 734, 744, 760, 781-791, 849, 907, 919, 920, 960

Table B8: ICD-9 Labeled Dataset Codes

26These sample sizes are larger than the main estimation sample as I do not to make any sample
restrictions in building the machine learning algorithm.
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I next prepare the doctor notes for feature extraction. This includes traditional

text pre-processing procedures: replace contractions, remove special characters and

stop words, conversion to lowercase and stemming. For both computational and

prediction purposes, I consider only 41 features: note length, relative frequency of

top 20 predictive words in the positive labeled set, and relative frequency of top 20

predictive words in the negative labeled set. I determine these top predictive words

by their “tf-idf” value in a constructed document term matrix.27

• Positive-label word stems: school, mother, behavior, parent, report, current,

social, disord, anxieti, famili, examin, activ, treatment, therapi, sleep, adhd,

psychotherpi, tablet, feel, diagnosi

• Negative-label word stems: pain, fever, list, care, cough, blood, exam, address,

rash, skin, return, vaccin, left, rang, bilater, ml, resid, hour, puls, record

For cross-validation, I split the labeled data into a training and test set using

90-10 split. Using the training set, I define a random forest learner and tune hyper-

parameters using random grid search with hold-out re-sampling. I use false discovery

rate (FDR) as the objective measure for hyperparameter tuning. The main hyperpa-

rameters and their tuned values are: number of trees to grow (ntree=348), number of

variables at node split (mtry=2), and maximum number of observations in terminal

nodes (nodesize=6).

Using the tuned hyperparameters, I then train the model on the training set,

again specifying false discovery rate as the objective measure. The confusion matrix

applied to the test set is presented below, with false discovery rate of 0.02801.

Predicted-0 Predicted-1
True-0 3,153 28
True-1 129 775

27A document term matrix consists of documents i as rows, words j as columns, and matrix
elements tij representing frequency of word j in document i. The tf-idf value is defined as

tij
Ti
ln( D

Dj
)

where Ti denotes the number of terms in document i, D denotes the total number of documents,
and Dj denotes the number of documents with term j.
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Before analyzing the final model predictions, I look for issues with context speci-

ficity, or “limitations on a model’s validity outside of its training set” (Clemens and

Rogers, 2020). I take a random sample of 96 notes from the unlabeled dataset, read

the unprocessed notes, and determine the appropriate hand label for behavioral as-

sessment using own discretion. Then, using the training random forest algorithm, I

obtain the model’s predictions for these notes. I specify a probability threshold of 0.5.

The confusion matrix is presented in the table below. 88 of the notes were correctly

determined via the random forest algorithm. 7 notes were incorrectly specified, with

only 1 non-mental health related appointment receiving a positive label.

Predicted-0 Predicted-1
True-0 70 1
True-1 6 18

I consider this performance and validity to be satisfactory, and thus apply the

trained random forest algorithm to the full un-labeled set of appointments to obtain

the complete set of predictions for behavioral assessment. Approximately 9% of ap-

pointments receive a positive predicted label. Results at the patient level are shown

in text Table 4.

B.2 ADHD Match Signal: xi

I next construct the ADHD match signal, xi, by calculating the “closeness” between

the patient’s expressed symptoms and the ADHD-specific symptoms defined by the

The Diagnostic and Statistical Manual of Mental Disorders, (DSM-V). In this ap-

pendix, I present the Natural Language Processing Algorithm I use to construct xi

for all patients with Qi = 1. See appendix in Marquardt (2021) for a simplified

example.

I first construct vectors to represent each subtype of ADHD by processing the

ADHD-type symptom text taken directly from The Diagnostic and Statistical Manual

of Mental Disorders, (DSM-V). That is, I combine the DSM-V ADHD diagnosis text
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into three documents corresponding to Inattention (type 1), hyperactive/impulsive

(type 2), and all symptoms combined together for the Combined sub-type (type 3).

To ensure that similar words all map to the same meaning, I run each document

through a Part-of-Speech tagger and use WordNet to replace each word with it’s

most common synonym. To further allow for variation in natural language, I aslo

obtain each word’s “closest” relative word using pre-trained word embeddings from

GloVe (Global Vectors for Word Embeddings). I then remove all stop words that

are not negation-based, stem all remaining words, and tokenize each document using

bi-grams (grouping of two words next to each other in the document).

I then conduct a similar process to create vectors for each patient document, after

first combining encounter notes into a single document for each patient. I combine

only encounters that were labeled as Qij = 1 by the machine learning prediction

described in the previous section. For patients with an eventual ADHD diagnosis

code, I include the encounter associated with the first appearance of ADHD diagnosis

and behavioral notes from earlier encounters. I also include encounter notes that

occur within 60 days after the initial diagnosis to account for the fact that behavioral

assessments may expand over multiple visits and physicians are not always consistent

on when diagnosis codes are assigned during this process.28

With the behavioral assessment notes combined into one document per patient,

I then pre-process the text using the standard text cleaning procedures in addition

to spell check and abbreviation replacement using a medical dictionary. As with

the DSM-V text, I remove stop words (net negation terms), I stem each word, and

tokenize documents using bi-grams. To allow for semantic mapping (rather than

direct word match), I also replace each stem with its most common synonym and/or

28Of the children that are diagnosed with ADHD in my sample, 33% have a behavioral assessment
within 30 days of the initial diagnosis and 42% have a behavioral assessment appointment within
60 days of the initial diagnosis. This suggests that physicians may be breaking up behavioral
assessments into multiple visits and assigning ADHD diagnosis codes slightly before the assessment
is fully complete.
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word embeddings from the DSM-V processed vectors.

Using these tokenized documents, I build the adjusted Bag-of-Words (BOW) ma-

trix where rows (i) represent documents, columns (k) represent bi-grams of word

groups, and matrix elements (i,k) are the “tf-idf” values indicating the relative fre-

quency and importance of bi-gram k in document i.29 In this application, I consider

N+3 documents. The first N correspond to the patient doctor notes for the N patients

that receive behavioral assessments. The latter 3 documents correspond to (1) the list

of Inattentive symptoms (Type I in Table 1), (2) the list of Hyperactive/Impulsive

symptoms (Type II in Table 1), and (3) the combined list of Type I and Type II

symptoms.

Finally, patient-type specific match values, xis are calculated by taking the cosine

similarity measure between the BOW row vector for patient i and the BOW row

vector for ADHD Type s. Since I do not distinguish between the different diagnosis

types when defining a clinical diagnosis in the data, I construct the patient overall

ADHD match signal as the maximum of the patient match value across types. In

other words, I calculate xi = max{xi1, xi2, xi3}.

The gender-specific distribution of these constructed values are plotted in text,

Figure 3, with mean values in text Table 4.

C Econometric Appendix

C.1 Physician Diagnostic Threshold

In this appendix, I present a physician utility framework that results in a risk-

threshold diagnosis decision rule, where the threshold is a function of physician per-

ceived cost of diagnostic errors.30

29The “tf-idf” value is defined as fki

Fi
× log( D

Dk
) where fki is frequency of bi-gram k in document i,

Fi is length of document i, D is number of documents, and Dk is number of documents with bi-gram
k.

30This is similar to the utility in Chan et al. (2022), but with variation in cost across patient
gender as opposed to variation across physicians.
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Let physician utility be defined by:

ui|θ =


−1 if Di = 0, Si = 1

−βθ if Di = 1, Si = 0

0 otherwise

(C1)

The utility of correct diagnoses are normalized to 0 so that physicians receive

disutility from errors. With utility of missed diagnoses (Di = 0, Si = 1) standardized

to -1, βθ captures the potentially gender-specific disutility of misdiagnosis relative to

missed diagnoses.

The physician choosesDi = 0 orDi = 1 in order to maximize their expected utility,

where expectation is based on the posterior probability of Si = 1. Let p(x, θ) denote

this probability. p(x, θ) is expressed in equation (C2), and follows from posterior

ADHD risk in (4) and the DSM-V defined minimum diagnostic requirement, v .

p(x, θ) = Pr(vi|x > v) = Φ

(
ρθx+ (1− ρθ)µθ − v

σθ

√
1− ρ2θ

)
(C2)

The doctor will choose to diagnose a patient with ADHD if the expected util-

ity of Di = 1 is larger than the expected utility of Di = 0. Based on the utility

function (C1), E[ui|Di = 1, θ] = −βθ(1 − p(x, θ)) + 0(p(x, θ)) and E[ui|Di = 0, θ] =

−1(p(x, θ)) + 0(1− p(x, θ)).

Assuming misdiagnoses are costly (i.e., βθ > 0), the doctor will choose Di = 1 iff

E[ui|Di = 1, θ] ≥ E[ui|Di = 0, θ]

=⇒ −βθ + βθp(x, θ) ≥ −p(x, θ)

=⇒ p(x, θ) ≥ βθ

1 + βθ

Plugging in equation (C2) for p(x, θ), a physician will diagnose if Φ

(
ρθx+(1−ρθ)µθ−v

σθ

√
1−ρ2θ

)
≥

βθ

1+βθ
. Re-writing with posterior ADHD risk mean on the right-hand side results in
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the following gender-specific threshold value:

τθ = v + σθ

√
1− ρ2θΦ

−1

(
βθ

1 + βθ

)

For βθ ∈ (0, 1), Φ−1
(

βθ

1+βθ

)
< 0 which implies τθ < v. In words, physicians will use

thresholds lower than the DSM-V defined definition so that they diagnose patients on

the margin of meeting ADHD criteria. Intuitively, this suggests that physicians view

missed diagnoses as costlier than misdiagnosis, which is consistent with βθ ∈ (0, 1) in

(C1).

On the other hand, βθ > 1 implies τθ > v. In this case, physicians will use higher

thresholds and will not diagnose patients on the margin of meeting ADHD criteria.

This suggests that physicians view misdiagnosis as costlier than missed diagnosis,

which is consistent with βθ > 1 in (C1).

C.2 Modeling Assumptions and Implications

In this appendix, I discuss, the key assumptions made throughout the main text.

While I cannot empirically test for the validity of each assumption, I discuss what

would happen if the assumption fails, and in most cases determine the direction of

the resulting estimation bias.

Full Documentation Assumption

In Section 4.2, I show how ADHD match signal xi can be constructed using clinical

doctor note text. This relies on the assumption that physicians accurately document

behavioral symptoms in their notes. There are two situations in which this assump-

tion might fail. First, it may be the case physicians do not conduct a thorough

behavioral assessment and thus do not learn about all the symptoms that the patient

is experiencing. Alternatively, it may be the case that the physician does learn about

the patient symptoms, but does not write these down in the note. In both cases,

xi is a downward biased proxy of individual symptoms such that xtrue
i = xobs

i + ζi

where ζi > 0. While ζi is unobserved to only the physician in the first case but to the
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econometrician in both, the implications of the assumption are similar.

Without full documentation, xtrue
i > xobs

i and therefore µtrue
θ > µ̂θ. In other

words, I underestimate mean ADHD risk in the first stage of estimation. As a result,

I also underestimate mental healthcare utilization costs. However, it is reasonable to

assume that if the full documentation assumption fails, then it fails for both male

and female patients. In this case, µ̂θ < µθ and ĉθ < cθ for θ ∈ {m, f}.

The other model parameters are unlikely to be impacted by this assumption as

they are identified in the second estimation stage using data on physician diagnosis

decisions. In the first case, physicians do not know ζi and therefore use xobs
i and

µ̂θ in the decision-making process, which means ρ̂θ = ρθ and τ̂θ = τθ. In the sec-

ond case, physicians know ζi and will use xtrue
i = xobs

i + ζi in their decision-making

process instead of xobs
i . The ADHD diagnosis probit slope, which identifies ρθ, re-

mains unchanged with respect to xobs
i , therefore ρ̂θ = ρθ. The diagnostic threshold

estimate becomes, τ̂θ = (1− ρθ)µ̂θ + ρθζ − kθ for known gender-specific constant kθ.

Because physicians know ζi, it is reasonable to assume that they will replace µ̂θ with

µθ = µ̂θ + ζ as their prior belief, thus cancelling out the unobserved mean ζ and

leaving τ̂θ = τθ.

In sum, if the full documentation assumption fails for both boys and girls, then

I underestimate mean ADHD risk and mean utilization costs, with no effect on the

other parameter estimates. If the full documentation assumption fails equally for

both male and female patients, then the gender parameter differences (column 3 in

Table 6) are unaffected, and the mechanism decomposition analysis in Section 6.1

remains unbiased.

Physician Prior Assumption

In Section 3, I present a model of ADHD diagnosis that incorporates both patient

selection and physician decision-making under uncertainty. In the second stage, physi-

cians learn about patient ADHD risk and update their prior beliefs. The key assump-

tion here is that physicians have unbiased and normally distributed prior beliefs for
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both males and females: vi ∼ N(µθ, σ
2
θ).

I make this assumption for two reasons. First, the normality of the prior allows

for computational ease and clearer interpretation of the model parameters. One could

argue that a more mathematically complete theoretical model would have physicians

update their beliefs twice: once after patient selection but before behavioral assess-

ment, and then again after patient assessment. This complicates estimation as it

would now require twice-updating where the second prior has a truncated normal

distribution, with an unknown truncation point for each patient ci. It is still possible

to recover the model parameters via simulated maximum likelihood estimation, but

it would require another assumption that physicians know the distribution of patient

mental healthcare utilization costs for males and females, cθ, which is likely fails

in practice. Therefore, I argue that a normally distributed prior belief with single

updating is well suited for this application, and the computation and interpretation

benefits outweigh the costs of a more complicated physician learning model.

Second, the accuracy of the prior mean is necessary for parameter identification.

As is common with these types of decision-making under uncertainty models, it is

not possible to separately identify both the agent’s prior beliefs and the agent’s pref-

erences without having additional survey data. Therefore, I assume that physicians

know the gender-specific ADHD risk parameter µθ (which is identified and estimated

in the selection first stage) in order to separate out the diagnostic threshold parame-

ter, τθ, in the conditional diagnosis equation (6).

While the accuracy of the prior distribution is a common assumption, it is likely

not satisfied in practice. In what follows, I show that if physicians have inaccurate

(albeit normally distributed) prior beliefs, this will only impact the bias of one model

parameter, τθ, which measures the perceived cost of misdiagnosis relative to missed

diagnosis. The estimated diagnostic threshold will now contain both physician per-

ceived cost of diagnostic errors and/or their inaccurate priors. Policy implications will

depend on this distinction, but the main results presented in the paper are unaffected.

Suppose physician prior beliefs follow the distributed defined by equation (C3),
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where γ determines the deviation from accurate prior mean.

vi ∼ N(µ+ γ, σ2) (C3)

If γ > 0, physicians overestimate population mean ADHD risk, and γ < 0 implies

physicians underestimate population mean ADHD. I drop the θ subscript without loss

as parameters are estimated separately for both males and females, so the thought

experiment holds for both samples.

Recall that the true ADHD risk distribution parameters, µ and σ, and patient

mental health utilization costs, c, are estimated in a first stage patient selection model

(see Section 5.1), which does not depend on the physician decision-making process or

their prior beliefs. Therefore, these parameters are accurately identified regardless of

the physician prior assumption. If physicians have inaccurate priors (i.e., γ ̸= 0), this

can only impact parameters that are identified in the conditional ADHD diagnosis,

in text equation (6).

After receiving the signal xi, physicians update beliefs resulting in posterior dis-

tribution:

vi | xi ∼ N
(
(ρxi + (1− ρ) (µ+ γ)) , σ2(1− ρ2)

)
Using the same utility framework, and letting k = 1

σ
√

1−ρ2
, the new conditional

diagnosis rate is defined by equation (C4), where τ̃ = τ − (1− ρ)γ.

P (Di = 1 | Qi = 1, xi) = Φ(kρxi + k(1− ρ)(µ+ γ)− kτ)

= Φ(kρxi + k(1− ρ)µ− kτ̃)
(C4)

The diagnostic uncertainty parameter, ρ, is also unaffected by γ as it is identified

by the slope coefficient measuring correlation between diagnosis decision and patient

signal, xi. Therefore, the only parameter that is impacted by inaccurate physician

priors is the diagnostic threshold τ , and the bias of the estimate depends on whether

physicians over or under-estimate mean ADHD risk in their priors. If physicians over-
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estimate mean ADHD risk with γ > 0, then τ̃ < τ , meaning that my estimates of

the perceived costs associated with misdiagnosis are biased downwards. On the other

hand, if physicians behave as if ADHD risk is lower than true risk, then τ̃ > τ , and I

over-estimate the perceived cost of a misdiagnosis.

Because the model parameters are identified and estimated separately for boys

and girls, it is possible for the direction of the bias on τ to differ by sub-group. How-

ever, regardless of the inaccuracy in physician prior beliefs, it is still the case that

estimated diagnostic thresholds for male patients are lower than diagnostic thresholds

for female patients, i.e., τ̃m < τ̃f . The only implication is how to interpret these di-

agnostic thresholds, as they now contain both physician perceived cost of diagnostic

errors and/or their inaccurate priors. Distinguishing between the two is outside the

scope of this paper.

PCP Selection Assumption

The mean ADHD risk parameters, µθ, are estimated using a selection model approach

described in Section 5.1. Identification relies on the independence between patient

risk, vi, and their chosen or assigned primary care physician. The main text argues

for this assumption and provides empirical tests showing that once referral rates are

adjusted for selection-on-observables, there is no evidence of male/female differences

in PCP selection.

There may still be concern that patients choose PCPs based on unobserved factors

that are correlated with ADHD risk. This will only impact the parameters estimated

in the first selection stage (µθ and cθ) as this assumption does not change the decision-

making process of the diagnosing physician, who is usually not the original PCP (as

noted in the main text).

The direction of the bias depends on the direction of unobserved correlation,

which can theoretically be either positive or negative. If patients with high ADHD

risk select into high referring PCPs, then my estimates of mean ADHD risk, µθ,

are biased upwards. This can be seen visually in Figure 4. Under positive risk-
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referring selection, the patients who see high referring physicians (high x-axis value)

have higher than average ADHD risk (high y-axis value), leading to a biased upwards

extrapolation point at ̂Pθ(Qi|Zi) = 1. Because utilization costs are identified off of

mean risk, then estimates of cθ are also biased upwards. Alternatively, if patients with

high ADHD risk select into low referring PCPs, then my estimates of mean ADHD

risk and utilization costs are biased downwards.

Similar to the full documentation assumption, if the PCP selection assumption

fails equally for both male patients and female patients, then the gender parameter

differences (column 3 in Table 6) are unaffected, and the mechanism decomposition

analysis in Section 6.1 remains unbiased. However, if there is a gender difference

in the correlation between vi and PCP selection that cannot be controlled for with

observables, then both parameter estimate levels and differences will be impacted,

which in turn will bias the mechanism decomposition analysis. The direction of

this bias depends on sign and magnitude of this unobserved gender-specific selection,

which is theoretically ambiguous and empirically untestable. Primary care physician

choice and how it relates to the mental health referral process and child mental

healthcare are outside the scope of this paper, but are important topics for future

research.
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