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Abstract

Can governments use real bonds such as Treasury Inflation-Protected Securities

(TIPS) to tame inflation? We propose a novel framework of optimal debt manage-

ment with sticky prices and a government issuing nominal and real state-uncontingent

bonds. A debt portfolio with both nominal and real bonds helps completing markets

unless the monetary policy stance renders them perfect substitutes. Under Full Com-

mitment, the government borrows with nominal debt and accumulates real assets, to

be able to use inflation to smooth taxes. With No Commitment, the government

portfolio favors real bonds to strategically prevent future governments from monetiz-

ing debt ex-post. Quantitatively, our model with No Commitment is consistent with

the small and persistent TIPS share in U.S. data. A higher TIPS share mitigates the

commitment friction, and effectively curbs inflation.
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1 Introduction

Economic policymakers in the U.S. face unprecedented challenges. For one, inflation has

returned.1 Indeed, after edging up to close to a 40-year high of around 8 percent in 2022,

the current annual inflation rate in the U.S. is still over 3 percent, substantially above

the Federal Reserve’s target, and with core inflation on the rise. At the same time, U.S.

government debt has reached record levels, and is projected to reach around 175 percent of

GDP in 2050, according to recent estimates from the Congressional Budget Office (CBO).

In situations with such elevated debt levels, governments and central banks may be tempted

to restore budget balance by monetizing debt, thereby exacerbating and creating persistent

inflationary pressure.

In this paper, we examine how indebted governments can optimally manage their debt

portfolios in the presence of inflation concerns. In particular, we ask: Can governments use

inflation-indexed, real bonds to stabilize inflation? Starting from the simple observation

that real or indexed debt cannot be inflated away ex-post, we examine the government’s

optimal debt portfolio when it can issue both nominal and real state-uncontingent bonds in

a novel framework of optimal debt management in the presence of sticky prices. Nominal

bonds can be inflated away ex-post, but are more expensive as their prices reflect elevated

inflation expectations. Real bonds, on the other hand, are cheaper but constitute a com-

mitment ex-post for the government. As a benchmark, we first consider a government that

can commit to future policies under Full Commitment (FC), and then characterize the

policies of a government that responds strategically to the actions of future governments

under No Commitment (NC). We thus solve for both the Ramsey equilibrium and the

optimal time-consistent policy. We provide both analytical and quantitative results that

help us interpret the recent U.S. macroeconomic experience, where the share of real bonds,

namely Treasury Inflation-Protected Securities (TIPS), has been low and stable at around

10 percent of the government debt portfolio since they were first issued at the end of the

1990s.

Specifically, we first solve for the Ramsey equilibrium under Full Commitment in a

setting in which the government has to finance exogenous stochastic expenditures either

by levying distortionary labor taxes or by issuing debt, much in the spirit of the literature

started in the seminal work of Lucas and Stokey (1983) on optimal fiscal and monetary pol-

icy. By considering an optimal mix of fiscal and monetary policy under incomplete markets,

1The Economist ’s issue of December 12, 2020, was titled “Will inflation return?”
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we build on Siu (2004), Schmitt-Grohe and Uribe (2004), Faraglia, Marcet, Oikonomou,

and Scott (2013), and Lustig, Sleet, and Yeltekin (2008). Our contribution is to allow the

government to simultaneously issue real and nominal state-uncontingent debt. Inflation

has real costs because of nominal rigidities through sticky prices and is affected by the

monetary authority, which sets the nominal short-term interest rate by responding to infla-

tionary pressure following a Taylor rule. We then relax the assumption of full commitment,

and consider a government that cannot commit to future policies in our setting with No

Commitment. More precisely, we assume that the government can commit to repaying

debt but not to future taxes, inflation and debt policies.2

Our main result is that, intriguingly, our model with a government that cannot commit

to fiscal policy describes the current U.S. macroeconomic experience qualitatively and quan-

titatively well, with a moderate but positive allocation to real bonds and stable inflation,

consistent with the data. In sharp contrast, the benchmark economy under Full Commit-

ment prescribes a large leveraged and volatile portfolio and volatile inflation in which the

government sells nominal bonds to finance the purchase of real bonds. Our quantitative

results thus suggest that fiscal policy frameworks with No Commitment realistically cap-

ture the relevant constraints governments face and thus provide a natural starting point

for policy analysis. In this quantitatively realistic specification with No Commitment, rais-

ing the real share in the government’s debt portfolio effectively helps curb inflation as it

reduces future governments’ incentives to inflate away outstanding debt. Raising the real

debt share thus helps governments to commit to low and stable inflation rates, so that

indexed debt arises as an effective tool to mitigate the commitment friction.

Intuitively, the government can exploit a debt portfolio consisting of both nominal and

real bonds to smooth fiscal distortions to the extent that inflation is sufficiently volatile,

so that these securities are not perfect substitutes. Indeed, a key force that emerges in

our environment is that reducing the substitutability between real and nominal bonds by

means of inflation effectively helps the government complete the markets, and thus allows

to hedge fiscal shocks better. Accordingly, a key trade-off arises in that the government

needs to balance the costs of inflation with those of fiscal distortions. Quantitatively, under

Full Commitment, we find that the policy uses debt to smooth fiscal policy distortions in

such a way that the market value of outstanding government liabilities declines and the

2Effectively, we rule out the possibility of defaulting on debt since, as pointed in Gennaioli, Martin,
and Rossi (2014), sovereign defaults entail disproportionately larger real costs than not committing to
other policy tools and, therefore, they are infrequent in financially developed economies. Instead, we view
inflation as means to achieve “partial default” in such economies.
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value of government assets rises when expenditures rise and inflation spikes up. In this

manner, borrowing by issuing nominal bonds and saving by purchasing real bonds in large

positions provides optimal insurance against fiscal shocks. In an inflationary world, nom-

inal bonds provide an effective hedging instrument, and the government takes advantage

of the optimally volatile inflation to insure against expenditure shocks. With No Commit-

ment, in contrast, future governments have incentives to monetize previously accumulated

nominal debt ex-post. However, households purchasing government bonds ex-ante inter-

nalize the fact that the government will pursue such policies ex-post, and they therefore

require compensation through higher interest rates to lend to the government the easier

it is to monetize debt. The current government can thus reduce its borrowing costs by

borrowing using real bonds, which act as a device to commit future governments to stable

inflation rates. Reducing future governments’ temptation to create inflation provides a

novel mechanism that renders both inflation and debt endogenously more sticky. There-

fore, the realistic optimal portfolio emerges as a trade-off between insurance and incentives

in a quantitatively relevant way.

When the government cannot issue TIPS, the Ramsey planner faces a trade-off between

responding to shocks using distortionary taxes versus inflation. On the one hand, by

inflating away the nominal liability, the government can relax its budget constraint without

increasing labor taxes. In a setting where the government has access to state-uncontingent

bonds only, it can thus take advantage of inflation to render these bonds’ real payoffs

state-contingent ex-post. On the other hand, elevated inflation expectations lower nominal

bond prices as well. The addition of inflation-protected securities in the government debt

portfolio qualitatively changes the use of inflation. Indeed, we show that when inflation

and both bonds are chosen jointly, inflation is used to create a wedge between the two bond

prices, thereby reducing substitutability between the two bonds and allowing to complete

markets. While this allows to insure against fiscal shocks more effectively, it requires a

trade-off between stabilization of inflation and the output gap. We find that in equilibrium,

the Ramsey planner uses both types of bonds and that the optimal government portfolio

prescribes a substantial role to real bonds. We derive analytical results that the investment

position in real and nominal bonds depends on the type of shock considered. In particular,

the position in real bonds is negative as long as shocks are inflationary, that is, positive

expenditure shocks create upward pressure on inflation. Intuitively, nominal bonds help

smooth taxes across states and real bonds over time. Indeed, in our rich quantitative model

with endogenously inflationary government expenditure shocks, we robustly find that the
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government finds it optimal to borrow by issuing nominal bonds and holding a negative

position in real bonds, or in other words, saving by investing in real bonds, in sharp contrast

to the recent U.S. macroeconomic experience. Moreover, the government creates volatile

inflation to hedge fiscal shocks and actively rebalances its debt portfolio in response, leading

to an excessively volatile real debt share. When we prevent the government from saving,

or, in other words, from investing in bonds issued privately by households, the real debt

share falls to zero. In this case, which is routinely entertained in the literature (Lustig,

Sleet, and Yeltekin, 2008), there is no more role for real bonds and the hedging role of

nominal bonds dominates.

Critically, we find that the composition of governments’ debt portfolios with respect

to real and nominal bonds is sensitive to the assumption that the government can fully

commit to fiscal policy. Indeed, we show that the commitment friction drives the difference

between the observed debt portfolios in the data and the optimal allocations under Full

Commitment. We show analytically that the optimal policy with No Commitment is strate-

gically biased, designed not only to smooth fiscal policy but also to best respond to future

governments in order to reduce borrowing costs. A hedging portfolio with levered positions

constitutes an expensive financial choice ex-ante and exacerbates the tension posed by the

lack of commitment ex-post. Future governments have incentives to monetize debt ex-post

to which households respond by raising the current government’s borrowing costs ex-ante.

In this situation, the current government finds it optimal to borrow using real debt so as to

lower borrowing costs and mitigate future governments’ incentive to inflate nominal debt

away. Notably, the tension is resolved by an optimal debt management policy that matches

the data.

In our quantitative analysis, focusing on symmetric Markov-perfect equilibria, we find

that with No Commitment, the inclusion of indexed bonds in the government’s debt port-

folio robustly and significantly lowers inflation. By reducing future governments’ incentives

to monetize debt, real debt thus acts as a commitment device to keep inflation stable.

While under Full Commitment, insurance motives push real bond holdings into negative

territories, the incentive issues in the setup with No Commitment push them to be increas-

ingly positive and large, as we show in our sensitivity analysis. The realistic debt portfolio

in our benchmark economy with No Commitment, with moderate, but positive and stable

real bond holdings, thus emerges as a natural trade-off between insurance and incentives.

Notably, mitigating future governments’ temptation to monetize debt renders inflation and

debt endogenously sticky, thereby reducing debt portfolio rebalancing. A stable real debt
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share thus emerges naturally with a stable inflation rate. Moreover, we show that monetary

and fiscal policy interact in important ways with the commitment friction. In particular,

we find that both higher nominal rigidities as well as a stronger commitment of the mone-

tary authority to price stability mitigate the commitment friction, and thereby reduce the

allocation to TIPS. Intuitively, both forces make it more costly for the next government

to use inflation. Accordingly, in presence of a flatter New Keynesian Phillips curve, less

TIPS are needed. Intriguingly, both forces come with a cost as it is harder to complete the

market when inflation volatility becomes more costly, as in the first case, and the monetary

authority is commited to price stability, as in the second case.

Solving for the optimal policy under Full Commitment and incomplete markets poses

significant computational challenges. First, the number of state variables grows non linearly

with the number of available securities and maturities. Although our baseline model fea-

tures one-period nominal and real bond, we also test the robustness of our findings against

longer finite maturities (see appendix A.1.1). Second, Full Commitment problems encom-

pass sequences of forward-looking constraints (i.e., implementability constraints) and they

can be made recursive at the expense of introducing additional state variables. Echoing

the approach of Marcet and Marimon (2019), we formulate the recursive Lagrangian to

solve for the time-inconsistent optimal policy. In scenarios where markets are incomplete,

the Ramsey planner is tasked with monitoring all commitments made in preceding peri-

ods.3 Third, a significant number of these state variables exhibit multicollinearity when

the model undergoes stochastic simulation. Fourth, this type of problem lacks a stochastic

steady state, as pointed by Aiyagari, Marcet, Sargent, and Sappala (2002), and it often

encounters borrowing and lending limits. These characteristics make the model exception-

ally challenging to solve using perturbation techniques around a specific point. We tackle

this computational challenge by exploiting a machine learning algorithm, based on artificial

neural networks, as proposed in Valaitis and Villa (2024). More specifically, we build on

a version of the parameterized expectations algorithm (den Haan and Marcet, 1990) that

uses neural networks combined with stochastic simulation. A detailed description of the

solution algorithm and its accuracy can be found in appendix B.1.

Solving for the optimal policy under No Commitment and incomplete markets is also

challenging since, not only we need to take into account inter-temporal strategic interactions

among governments and private sector given numerous policy tools (e.g., nominal debt, real

3For example, the recursified optimal debt management problem with five-period nominal and real debt,
involves 26 state variables and 10 policy functions.
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debt, taxes, and inflation), but also account for the possibility that the policy functions

may not be differentiable, as pointed out by e.g. Krusell, Martin, and Rios-Rull (2006).

We solve for the Markov-perfect equilibrium by building on a methodology that does not

require differentiabiliy, introduced by Clymo and Lanteri (2020). A detailed description of

the solution algorithm under No Commitment can be found in appendix B.2.

1.1 Related Literature

The paper builds on the literature that considers optimal fiscal policy with state-uncontingent

government debt under Full Commitment (Barro, 1979; Aiyagari, Marcet, Sargent, and

Sappala, 2002; Angeletos, 2002; Buera and Nicolini, 2004) and optimal fiscal policy under

No Commitment (Klein, Krusell, and Rios-Rull, 2008; Debortoli, Nunes, and Yared, 2017).

Optimal fiscal policy under Full Commitment dictates that the planner’s tax smoothing

concerns pin down the value of state-uncontingent debt over time (Barro, 1979). When the

planner can choose among multiple maturities, then the planner manipulates the maturity

structure in order to achieve the same tax-smoothing objectives. In particular, Angeletos

(2002) proves that the manipulation of maturity structure allows the planner to replicate

the complete markets allocations. Such a policy prescribes issuing long-term debt and accu-

mulate assets in short maturities. Quantitatively, Buera and Nicolini (2004) and Faraglia,

Marcet, Oikonomou, and Scott (2019) find that such a portfolio would require highly lever-

aged and volatile bond positions. de Lannoy, Bhandari, Evans, Golosov, and Sargent (2022)

develop a general framework that allows the characterization of the main forces that shape

an optimal government portfolio in terms of statistics that are functions of macro and finan-

cial market data only. This literature studies the optimal portfolio allocation among real

bonds of different maturity. We contribute by characterizing an optimal portfolio of real

and nominal bonds of the same maturity, together with an endogenous choice for inflation

and taxes both under Full Commitment and No Commitment. In our paper, monetary-

fiscal policy interactions also highlight a new role for inflation, whose volatility is used to

make nominal and real bonds imperfect substitutes, allowing to minimize tax distortions.

The paper contributes more closely to the literature on the optimal mix of monetary and

fiscal policy with nominal state-uncontingent debt (Bohn, 1988; Chari and Kehoe, 1999; Siu,

2004; Schmitt-Grohe and Uribe, 2004; Lustig, Sleet, and Yeltekin, 2008; Faraglia, Marcet,

Oikonomou, and Scott, 2013; Leeper and Zhou, 2021). Bohn (1988) makes the case for

the use of nominal debt in a Full Commitment setting, arguing that it can be inflated

6



away when negative shocks realize, thus allowing the planner to relax the implementability

constraint. These benefits are weighted against the negative effect on nominal debt price

and the real costs of inflation. In a more quantitative setting, Chari and Kehoe (1999)

show that the planner makes heavy use of inflation when the issued debt is nominal and

inflation has no real costs. When inflation has real costs, as is typically the case in New-

Keynesian models, the cost of the active use of inflation coming from nominal rigidities

outweighs the benefits described in Bohn (1988) and the planner makes only a limited

use of inflation for tax-smoothing purposes (Siu, 2004; Schmitt-Grohe and Uribe, 2004;

Faraglia, Marcet, Oikonomou, and Scott, 2013). Other papers elaborate on this point.

Lustig, Sleet, and Yeltekin (2008) show that when the planner can choose among multiple

maturities of nominal bonds, it is optimal to issue nominal debt of the longest maturity

available as the long maturity insulates the bond prices from the contemporaneous increase

in inflation and allows for better hedging of fiscal shocks. Lustig, Berndt, and Yeltekin

(2012) show empirically that governments only engage in fiscal hedging to a limited degree.

Hilscher, Raviv, and Reis (2022), on the other hand, show empirically that the scope for

monetizing government debt is limited. Others papers study how optimal inflation depends

on the starting level of government debt (Leeper and Zhou, 2021) or whether the monetary

authority follows the Taylor rule (Faraglia, Marcet, Oikonomou, and Scott, 2013). Our

paper adds to this literature by studying the joint choice of inflation, real, and nominal

bonds of the same maturity showing that, when both bonds are available, inflation is used

to actively reduce the substitutability between nominal and real bonds, hence enanching

the ability of the government to smooth taxes. In this respect, our paper highlights a new

role for monetary policy and, therefore, contributes to the recent quantitative literature

investigating fiscal policy and fiscal-monetary interactions in New Keynesian models, such

as Bianchi and Melosi (2019); Leeper, Leith, and Liu (2021); Corhay, Kind, Kung, and

Morales (2023); Elenev, Landvoigt, Shultz, and Nieuwerburgh (2022).

The paper also contributes to the literature on optimal fiscal policy under No Commit-

ment. We characterize and solve for the Markov-Perfect equilibrium introduced in Klein,

Krusell, and Rios-Rull (2008), who consider an economy without government debt and in-

stead study the optimal capital and labor taxes. Debortoli, Nunes, and Yared (2017) show

that commitment frictions change the implications for the optimal maturity structure of

real debt. Additionally, Athey, Atkeson, and Kehoe (2005) study the optimal degree of

discretion in monetary policy to resolve the time inconsistency problem when monetary

authority has private information. In our setting, commitment frictions create incentives
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for future governments to monetize debt, which increases borrowing costs for the current

government. We study analytically and quantitatively how the optimal real and nominal

portfolio and inflation are affected by the commitment friction.

The literature on the optimal choice between nominal and real bonds is scarce. Alvarez,

Kehoe, and Neumeyer (2004) and Persson, Persson, and Svensson (2006) look for the

maturity structure of the real and nominal bond portfolio that limits the use of surprise

inflation in a setting with lack of commitment. Alvarez, Kehoe, and Neumeyer (2004) do it

in an extension of the Lucas and Stokey (1983) setting without price rigidities and find that

in order to minimize incentives to use surprise inflation, the planner should only issue real

bonds. Persson, Persson, and Svensson (2006) characterize the optimal real and nominal

bonds portfolio that makes the Ramsey policy time-consistent in a richer monetary setting.

Both Alvarez, Kehoe, and Neumeyer (2004) and Persson, Persson, and Svensson (2006) do

it analytically in models without uncertainty. This is a key difference from our paper, where

the time-consistent Markov-perfect solution for the bond portfolio is a result of commitment

friction and the hedging motive in the presence of uncertainty. Dı́az-Giménez, Giovannetti,

Marimon, and Teles (2008) study welfare implications and the properties of debt over time

in an economy with either real or nominal debt. Like us, these papers provide a rationale

for why issuing real debt can be preferred to issuing nominal debt and, in doing so, confirm

the results by Barro (2003). Fleckenstein, Lustig, and Longstaff (2014) explore the relative

pricing of nominal and real bonds, while Pflueger and Viceira (2011) discuss the pricing of

real bonds.

Lastly, the portfolio choice problem in our paper has similarities with the literature on

the sovereign debt literature that focuses on the portfolio problem between foreign and

local currency debt (e.g., Bassetto and Galli, 2019; Ottonello and Perez, 2019; Bocola and

Lorenzoni, 2020; Engel and Park, 2022). In those models, local currency debt allows to

hedge shocks because it can be inflated away or reduced through currency devaluations,

while its price reflects such considerations. This literature views hedging benefits as the

ex-post use of inflation (or currency devaluations) in response to shocks. We, in contrast,

study the optimal use of real and nominal bonds for tax smoothing purposes in a closed

New-Keynesian economy with risk-averse lenders. Therefore, inflation is used to make

nominal and real bonds imperfect substitutes, which then allows to create a portfolio mix

that minimizes tax distortions.

The paper is organized as follows. Section 2 presents stylized facts that motivate our

analysis. Section 3 describes our model, while section 4 presents our analysis of the Ramsey
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benchmark under the assumption of Full Commitment. Section 5 describes and character-

izes the optimal time-consistent policy (with No Commitment). Section 6 concludes.

2 Motivating Evidence

We start by collecting and documenting some stylized facts regarding the composition of the

U.S. government debt portfolio and its evolution over time, and link it to the macroeconomic

environment. Figure 1 illustrates the evolution of the share of Treasury inflation-protected

securities (TIPS) in the U.S. government debt portfolio. The U.S. Treasury started issuing

TIPS in 1997 as a way of reducing its borrowing costs by taking on inflation risk and avoid-

ing paying an inflation risk premium, offering investors a security that would allow them to

hedge inflation, and providing access to a market-based measure of inflation expectations.4

After an initial expansion, the TIPS share stabilized at around 7% to 8% of the overall debt

outstanding. Moreover, since the initial expansion, the TIPS share has been remarkably

stable and persistent. Indeed, as we document in Table 1 below, the share displays an

autocorrelation close to one.

4See e.g. Fleming and Krishnan (2012) for a review of the history and the miscrostructure of the TIPS
market.
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Figure 1: U.S. TIPS Share

Notes: The figure shows the treasury-inflation protected securities (TIPS) as a share of total government
marketable debt. Data comes from the U.S. Department of the Treasury and can be accessed through
the following link: https://fiscaldata.treasury.gov/datasets/monthly-statement-public-debt/summary-of-
treasury-securities-outstanding.

In this paper, we are interested in understanding what determines this composition

and evolution of the government debt portfolio. More specifically, we ask, how should

governments optimally manage nominal and real bonds? Should governments issue more

real bonds or less? And finally, and importantly, does it matter, and how? We examine

these questions in the context of the U.S. macroeconomic environment that we illustrate

in Figure 2.
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Figure 2: U.S. Macroeconomic Environment

Notes: The figure shows the evolution of the U.S. macroeconomic environment from 1929 to 2021.
The time series for labor tax, debt held by public, inflation (from output price deflator), real GDP,
and government spending are constructed from the National Accounts (NIPA) tables provided by the
Bureau of Economic Analysis (BEA). A detailed explanation about data construction can be found
in Clymo, Lanteri, and Villa (2023). In the top-right panel, the continuous line represents nomi-
nal yields whereas the dashed line reports real yields. Both nominal and real yields are annualized
and calculated using 5-year maturity bonds, reported by the US Department of Treasury, which can
be accessed at the following link: https://home.treasury.gov/resource-center/data-chart-center/interest-
rates/TextView?type=daily treasury yield curve&field tdr date value month=202312.

In figure 2, we illustrate the evolution of inflation, government expenditures, taxes,

nominal and real debt, nominal and real yields, macroeconomic growth, and the connection

of the TIPS share, that is, the share of indexed debt in the government debt portfolio, with

the macroeconomic experience in the U.S. For robustness, we consider a long sample from

1929-2021 and complement that with data on TIPS that became available in 1997 only.

In the top right panel, labor taxes have gone up rather steadily in our sample, and have

stabilized at around 25 percent in the more recent experience, although they have exhibited

some movements around that trend as well. The top middle panel shows a well-known and

widely discussed pattern for the government debt held by the public expressed as a fraction

of GDP, undergoing long and large swings over the past hundred years. Historically, the
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debt-to-GDP ratio had peaked at around 100 percent during World War II and hovered

between around 40 and 60 percent of GDP before the financial crisis. In response to fiscal

stimulus packages around the financial crisis and then the pandemic, the debt burden has

recently reached World War II levels for the first time. Moreover, according to the CBO,

under current policies it is projected to reach 200 percent of GDP by around 2050.5 The

rightmost top panel shows the evolution of the yields on 5-year nominal and real Treasury

notes, and illustrates that these yields tend to move in parallel, with a difference that

tends to be rather stable. That difference, sometimes referred to as breakeven inflation, is

often interpreted as a market-based measure of inflation expectations, although differential

liquidity premia and risk premia on these securities complicate this identification.

The leftmost lower panel documents the changing nature of inflation over our sample.

While inflation had stayed low and stable since the early eighties, inflationary pressure has

recently picked up again to levels not seen since the persistently high inflation rates in the

1970s. Indeed, after edging up to a 40-year high of 8.6 percent in 2022, the current annual

inflation rate in the U.S. is still over 3 percent, substantially above the Federal Reserve’s

target, while notably core inflation has recently been rising.6 The rightmost lower panel

shows that government spending as a fraction of GDP has hovered around 20 percent ever

since a peak in World War II, exhibiting little volatility in the recent U.S. macroeconomic

environment.

Table 1 presents portfolio statistics, as well as business cycle moments for some key vari-

ables. Since 1997, the real debt share in the U.S. government debt portfolio has amounted

to 7 percent on average, leaving about 93 percent nominal debt. In line with the pattern

displayed in Figure 1, the real debt share is rather stable and persistent. The business cycle

statistics in the lower panel show that government spending, taxes, as well as inflation all

exhibited procyclical dynamics, although the latter only modestly so. Indeed, the condi-

tional correlation between inflation and GDP has flipped sign repeatedly over time, leaving

the unconditional correlation only mildly positive. While real debt has been quite evidently

positively correlated with inflation since the inception of the TIPS market, nominal debt

has exhibited a mildly negative correlation with inflation over the longer sample.

5See https://www.cbo.gov/publication/58848.
6See https://www.bls.gov/cpi/.
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Table 1: Relevant U.S. Data Moments

Description Moments Data

Avg. Inflation [%] E(π)− 1 2.87

Avg. Tax [%] E(τ) 22.8

Real Portfolio Weight E[b/(b+B)] 0.07

Nominal Portfolio Weight E[B/(b+B)] 0.93

Autocorr. Real Portfolio Weight ρ1(b/(b+B)) 0.94

Corr. Gov. Spending and GDP ρ(g, Y ) 0.23

Corr. Tax and GDP ρ(τ, Y ) 0.35

Corr. Inflation and GDP ρ(π, Y ) 0.06

Corr. Inflation and Real ρ(π, b) 0.47

Corr. Inflation and Nominal ρ(π,B) -0.07

Notes: The table reports the portfolio weights of real and nominal bonds and the salient correlations
among monetary and fiscal policy instruments. As shown in figure 2, the real debt share in the U.S.
government debt portfolio increased steadily before stabilizing at around 7 percent, leaving about 93
percent nominal debt. The table reports average taxes starting from the 1970, since when they have
started to stabilize. All the correlations are computed using the entire available sample presented in
figure 2. Hence, all correlations, with the exception of ρ(π, b), are computed from 1929 to 2021. ρ(π, b)
is computed starting from 1997, given the apparent recently adoption of TIPS. We detrend each variable
(where necessary) before computing the correlations.

In this paper, we ask if, and under what conditions, these patterns can be understood

from the perspective of an optimal fiscal policy design. Surprisingly, the extant literature

provides little guidance in this regard. This prompts us to develop a general equilibrium

model that informs us about the optimal composition of government debt portfolios in the

presence of a high fiscal burden and inflationary pressure. We take the moments reported

in Table 1 as targets in our quantitative analysis.

3 Model

In this section, we describe an infinite-horizon model with state-uncontingent nominal and

real bonds. The key friction in this environment is the lack of state-contingent bonds. That

is, the value of outstanding debt at time t is independent of the realization of the shock

at time t but, instead, measurable with respect to t − 1. If state-contingent bonds were

available, i.e. bond markets were complete, the trade-off between nominal and real bonds

would not be meaningful. We embed this friction into a New Keynesian model with sticky

prices a la Rotemberg (1982).
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3.1 Environment

We consider a stochastic production economy populated by a continuum of identical house-

holds, a continuum of identical firms, a central bank, and a government. Time is discrete

and infinite, t = 0, 1, 2, ...

Preferences. Households rank streams of consumption ct and leisure lt according to the

following utility function

E0

∞∑
t=0

βt [u(ct) + v(lt)] , (1)

where β ∈ (0, 1) is the discount factor, and u(.) and v(.) are differentiable functions such

that uc > 0, ucc < 0, vl > 0, vll < 0.

Technology. A continuum of perfectly competitive intermediate firms, indexed by i ∈
[0, 1], produces output through a linear production function F (hi), where hours worked

are the only input. Intermediate goods are sold at a price Pi,t to the final good producer.

Aggregate output is given by Yt = A · ht.

Resources. The resource constraint of the economy is given by

ct + Φt + gt = Yt, (2)

where ht = 1− lt is labor, and gt is an exogenous stochastic stream of government expen-

ditures. Furthermore, we follow Rotemberg (1982) and assume each firm can set prices Pi,t

incurring the following convex quadratic reduced-form adjustment cost

Φt =
ϕ

2
· (πt − π)2 ,

where πt ≡ Pi,t/Pi,t−1 denotes inflation, and π is the inflation target of the central bank.

Shocks. We assume that gt follows an AR(1) process in logs. We denote by gt ≡
{g0, g1, ..., gt} a history of realizations of government spending. To simplify notation, we

avoid explicitly denoting allocations as functions of histories gt, but it is understood that

ct, and lt are measurable with respect to gt.

Households demand consumption goods, supply labor, and trade: (i) claims Si,t to

the firm’s i dividend di,t, (ii) nominal and (iii) real state-uncontingent government bonds
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denoted as Bt and bt, respectively. To simplify notation, we avoid explicitly denoting

bonds as functions of histories gt−1, but it is understood that Bt, and bt are measurable

with respect to gt−1. The household budget constraint reads

ct +QtBt+1 + qtbt+1 +

∫
pi,tSi,t+1di = (1− τt)wtht +

Bt

πt
+ bt +

∫
(pi,t + di,t)Si,tdi, (3)

where Qt is the price of nominal bonds, qt is the price of real bonds, πt denotes inflation,

and pi,t is the price of the firm’s claim to dividends.7 In equilibrium Si,t = 1, since all

households are identical.

3.2 Household and Firm Optimality

Households maximize utility (1) subject to their budget constraint (3). The intratemporal

labor-consumption margin and the Euler equations for all savings instruments are

(1− τt) · uc(ct) · wt = vl(lt), (4)

uc(ct) ·Qt = βEtuc(ct+1) · π−1
t+1, (5)

uc(ct) · qt = βEtuc(ct+1) · 1, (6)

uc(ct) · pi,t = βEtuc(ct+1) · [pi,t+1 + di,t+1] . (7)

Intermediate firms set prices Pi,t and hire labor to maximize the expected net present

value of real dividends

E0

∞∑
t=0

βt
u(ct)

u(c0)
· di,t, with di,t =

Pi,t
Pt
Yi,t − wthi,t − Φt,

where the demand for the intermediate good is given by static profit maximization of

the final good producer Yi,t =
(
Pi,t
Pt

)− 1
ν
Yt. In a symmetric equilibrium (Pi,t = Pt), the

intermediate firm’s profit maximization problem yields the New-Keynesian Phillips Curve

(NKPC)

Yt ·
(
ν − 1

ν
+
wt
Aν

)
− Φπ(πt)πt + Et

[
β
uc(ct+1)

uc(ct)
· Φπ(πt+1)πt+1

]
= 0. (8)

7Notice that we did not allow households to trade risk-free bonds among themselves, since they are
identical. In equilibrium these bonds would be in zero-net supply, rendering these bonds immaterial for
equilibrium allocations.
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3.3 Government

The government needs to finance spending gt using labor income taxes and bonds, subject

to the following budget constraint:

qtbt+1 +QtBt+1 + τtwtht = gt + bt +
Bt

πt
. (9)

At date t, the government chooses current tax rate τt, and current bonds bt+1 and Bt+1,

which are measurable with respect to gt.

Given initial conditions b−1, B−1, the benevolent government chooses stochastic se-

quences of current tax rates τt and bonds Bt, bt to maximize household utility (1).

3.4 Central Bank

We assume the central bank seeks to achieve an inflation target π by setting the nominal

rate according to the following Taylor Rule:

Q−1
t =

1

β
π
(πt
π

)φπ
. (10)

Subsection 4.1.1 discusses the choice of having a separate monetary authority in detail.

3.5 Implementability Constraint

We now derive the implementability constraint of the government problem and follow Lucas

and Stokey (1983) by taking the primal approach to the characterization of competitive

equilibria, since this allows us to abstract away from bond prices and taxes.

The government budget constraint (9) can be combined with the private sector’s first

order conditions (4)-(6) to obtain a single implementability constraint for t = 0, 1, ... that

reads: (
Bt

πt
+ bt

)
= st + Et

[
β
uc(ct+1)

uc(ct)
·
(
Bt+1

πt+1

+ bt+1

)]
, (11)

where st ≡
(

1− vl(lt)
uc(ct)wt

)
· wt · ht − gt denotes the government’s surplus, and wage wt can

be obtained from the New-Keynesian Phillips Curve (8). Moreover, we substitute leisure

and labor lt = 1 − ht everywhere using the resource constraint (2). The implementability

constraint (11) prices the government’s liabilities Bt
πt

+ bt as an expected net present value
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of surpluses. In line with the literature on fiscal policy design under market incompleteness

(e.g., Aiyagari, Marcet, Sargent, and Sappala, 2002; Faraglia, Marcet, Oikonomou, and

Scott, 2019), we assume that there exist debts limits to prevent Ponzi schemes:

Bt ∈ [B,B], bt ∈ [b, b].

In our calibration, we let the bounds (B, b) be sufficiently low and (B, b) be sufficiently high

so that they never bind in equilibrium. Note that we allow for B < 0 and b < 0, so that

the government can lend to households, or, in other words, invest in private bonds. Such

purchases can be ruled out by imposing B = 0 or b = 0. Forward substitution into equation

(11) combined with a transversality condition then implies the following implementability

condition:

Bt

πt
+ bt = Et

[
∞∑
j=0

βj
uc(ct+j)

uc(ct)
· st+j

]
.

4 Optimal Policy with Full Commitment

To provide a benchmark, we first consider optimal debt management and fiscal policy under

the assumption that the government has Full Commitment, in the spirit of the literature

started in the seminal work of Lucas and Stokey (1983). The government chooses stochas-

tic sequences of allocations and prices {c(gt), w(gt), π(gt)}∞t=0 and stochastic sequences of

nominal and real state-uncontingent bonds {B(gt−1), b(gt−1)}∞t=0 to maximize the house-

hold’s utility (1), subject to the implementability constraint (11), with multiplier µt, the

New-Keynesian Phillips Curve (8), with multiplier λπ, the Taylor Rule (10), with multiplier

λT , and the bounds (B, B, b, b), with multipliers (Λ, Λ, λ, λ).

The first order conditions with respect to nominal bonds Bt and real bonds bt are

µt · Et
[
π−1
t+1 · uc(ct+1)

]
= Et

[
µt+1 · uc(ct+1) · π−1

t+1

]
+ β−1

(
Λt − Λt

)
, (12)

µt · Et [uc(ct+1)] = Et [µt+1 · uc(ct+1)] + β−1
(
λt − λt

)
. (13)

Note that equations (12) and (13) pin down dynamics for the recursive multiplier µt on

the implementability constraint, similar in spirit to those in Aiyagari, Marcet, Sargent, and

Sappala (2002), reflecting market incompleteness. The multipliers µt capture the shadow

value of relaxing the implementability constraint, as the government may have to resort to
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distortionary taxation to balance the budget.

The first-order condition with respect to the wage wt is

Aν · µt · uc(ct) + λπt = 0. (14)

This condition captures the trade-off between the marginal effect that wage has on the

implementability constraint (11) through the government’s surplus and the New-Keynesian

Phillips Curve (8). The first-order condition with respect to inflation πt is8

vl(lt)

uc(ct)

Φπ(πt)

A
− λπtHt −

λπt−1Kt
uc(ct−1)

= µt
∂st
∂πt

+Bt
µt − µt−1

π2
t

+
(πt
π

)−φπ−1 λTt φπ
π2
−
λTt−1

βπ2
t

.

(15)

The terms on the left-hand side of equation (15) capture the marginal effects of the nominal

rigidities. In particular, the first term captures the marginal increase in labor due to a

marginal increase in inflation through the resource constraint. The additional two terms

that contain λπt and λπt−1 captures the inter-temporal effects of the nominal rigidities on

the NKPC. On the right-hand side, the first term captures the marginal effect of inflation

on primary surplus and the second term of relaxing the implementability constraint inter-

temporally. Finally, the remaining two terms on the right-hand side, that contain λTt and

λTt−1, capture the constraints imposed by the Taylor rule.

The remaining first-order condition with respect to consumption ct is reported in ap-

pendix B.1, and is given by equation (64).

Special Case We consider a special case with risk-neutral households u(ct) = ct and no

lending limits, λt = Λt = 0. In this case, equation (13) becomes

µt = Et [µt+1] + β−1λt.

Since the Lagrange multiplier on the borrowing limit is non-negative λt ≥ 0, then µt ≥
Et[µt+1]. We can use the submartingale convergence theorem: µt converges almost surely.

This last condition and result are equivalent to Aiyagari, Marcet, Sargent, and Sappala

(2002): in the long-run the government accumulates enough real assets that it never needs

to tax again. Differently from Aiyagari, Marcet, Sargent, and Sappala (2002), the si-

multaneous presence of both nominal and real bonds requires an extra condition to be

8Define Ht ≡
(
ν−1
ν + wt

Aν

)
Φπ(πt)−Kt and Kt ≡ ϕ(2πt − π).
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satisfied. This is given by the optimal policy for nominal government debt (12). If, for

illustration purposes, we further assume there are no lending and borrowing limits - i.e.,

λt = Λt = λt = Λt = 0 - we can combine (12) and (13) to get

Covt(π
−1
t+1, µt+1) = 0. (16)

Formally, in this special case, this condition states that under risk neutrality and in the

absence of lending and borrowing limits, it is ex-ante optimal for the government to create

policies such that, averaging over all future states, it does not have to resort to infla-

tion to relax the implementability constraint. In contrast, in an environment such that

Covt(π
−1
t+1, µt+1) > 0, the marginal cost paid tomorrow of issuing one unit of nominal debt

today would exceed the marginal benefit of relaxing the current implementability con-

straint by borrowing with that same unit of nominal debt, as suggested by (12). In our

environemnt, the government has the outside option to use real debt. This outside option

provides the government with the opportunity to relax the implementability constraint

today, with marginal benefit µt, by just paying a marginal cost tomorrow that does not

depend on inflation Et [µt+1], so the government would rather relax the implementability

constraint today by using real debt. The government thus finds it optimal to relax the

current implementability constraint by issuing real debt until it is left indifferent between

using either real or nominal.

Condition (16) then suggests a new role for inflation due to the fact that both real

and nominal bonds are simultaneously available to the government. As we show below,

it implies that in such a case, inflation is optimally used to reduce the substitutability

between real and nominal bonds as this effectively helps the government complete the

markets, which in turn helps smoothing fiscal shocks. In our model, a key trade-off thus

emerges in that the government needs to balance the costs of inflation with those of fiscal

distortions. This can be contrasted to the idea that the benefit of issuing nominal debt

arises from the possibility of inflating it away, which was first proposed in Bohn (1988). In

Bohn (1988), inflation is used to relax the government’s budget constraint in times when

it binds more. Such use of inflation is optimal because the covariance term, analogous to

(16) is typically positive.9 Our framework thus identifies a novel force driving inflation and

9Unlike in our paper, in Bohn (1988) nominal and real bonds are not chosen simultaneously and inflation
is not chosen optimally. These differences result in a positive covariance between inflation and the shadow
value of reducing government debt (see equation (15) in Bohn 1988). In this sense, in our framework the
planner issues nominal debt and actively uses inflation, but for different purposes.
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another reason why governments should issue nominal debt. We note that in a calibrated

version of our full model, the government may also want to relax the fiscal burden by issuing

nominal bonds in bad times, due to risk aversion, for example. Before delving into this

quantitative exercise, however, we explain the mechanism in greater detail in a two-date

one-period model in the next section.

4.1 Inspecting the Mechanism: One-Period Model

The Ramsey problem we lay out can be thought of as a dynamic portfolio choice prob-

lem with incomplete markets in which the planner looks for the optimal government debt

allocations to two securities, namely state-uncontingent nominal and real bonds together

with inflation. Intuitively, optimal monetary-fiscal policy interactions highlight a new role

for inflation to make nominal and real bonds imperfect substitutes, which then allows to

create a portfolio mix that minimizes tax distortions.

To provide intuition about the economic forces that drive these allocations, we now

examine stylized examples in which the objective of the planner is most transparent, namely

specifications in which the economy is hit by a low and a high government expenditure

shock. In such an environment, the planner’s objective is to choose a portfolio of state-

uncontingent bonds that replicates Arrow-Debreu securities. That is, the planner aims at

implementing the complete markets allocation. We thus ask, how can the government use

inflation fluctuations to replicate a portfolio of Arrow-Debreu securities?

Consider a one-period, two-date t = 0, 1 version of the model, where u(c) = c and the

disutility for labor is v(h) = h2/4. Moreover, to begin with, we assume that at time 1

there are two realizations of the exogenous shocks, i.e. a low state (πL1 , g
L
1 ) and a high

state (πH1 , g
H
1 ), with πH1 6= πL1 . Assume each realization realizes with a joint conditional

probability f(π1, g1|π0, g0). Note that in subsection 4.1.1, we further extend this example

and analyze the problem with endogenous optimal inflation. We start with the exogenous

inflation case for simplicity. Under the aforementioned conditions, the household optimality

conditions imply Q0 = βE0

[
π−1

1

]
, q0 = β, and ht = 2(1− τt)w. Firms take the exogenous

sequence of prices as given and choose labor such that w = A, which we further assume

is normalized to a unitary value.10 The resource constraint of the economy ct = ht − gt −
ϕ
2
(πt−π)2 yields expressions for consumption. We follow the primal approach and substitute

Q0, q0, and τt in the government budget constraints to get the following implementability

10In the spirit of the New-Keynesian Phillips Curve, this is equivalent to w = A(1− ν)/ν with ν = 1/2.
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constraints

B0

π0

+ b0 + g0 = h0

(
1− h0

2

)
+ βE0

[
π−1

1

]
B1 + βb1, (17)

B1

π1

+ b1 + g1 = h1

(
1− h1

2

)
. (18)

The optimal policy under full commitment requires {h0(g0), h1(g0, g1), B1(g0), b1(g0), µ0(g0), µ1(g0, g1)},
such that welfare,

c0 −
h2

0

4
+ βE0

[
c1 −

h2
1

4

]
,

is maximized (where consumption is given by the resource constraints), subject to the

implementability constraints (17) and (18). The first-order conditions with respect to

nominal and real debt are

µ0E0[1/π1] = E0[µ1/π1], (19)

µ0 = E0[µ1]. (20)

The first-order condition with respect to labor is

1− ht/2− µt(ht − 1) = 0. (21)

Proposition 1 formalizes the meaning behind equations (19) and (20), which are essentially

tax smoothing conditions across states and time, as the shadow costs of tax distortions, µ,

are “equalized” on average. In this simple example, the planner reaches complete markets

as an equilibrium outcome.

Proposition 1 (State-Smoothing with Nominal and Time-Smoothing with Real).

Given initial conditions B0, b0, g0, π0, optimal nominal and real debt management and tax

management are such that smoothing of taxes and leisure is achieved across states with

nominal debt

τH1 = τL1 and lH1 = lL1 , (22)

where lL1 and lH1 denote leisure at time 1 in the low and high state, respectively. Moreover,
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smoothing of taxes and leisure is achieved across time with real debt

τx1 = τ0 and lx1 = l0, (23)

where x ∈ {L,H}.

Proof. Result (22) follows from equation (19), combined with a formula for µt(ht), which can
be derived directly from equation (21). Apply the definition of expectation to get lH1 = lL1 κ, with

κ = fH

fL
·
E0

1
π1
− 1

πH1
1

πL1

−E0
1
π1

= 1, given that fL + fH = 1. Similarly, result (23) follows from equation

(20), combined with the formula for µ. Apply the definition of expectation to get lL1 = l0η, with
η = fL + fH 1

κ = 1. �

Results (22) and (23) reveal that nominal debt is used for smoothing taxes across states,

while real debt is used for smoothing taxes over time, to allow for full fiscal hedging with con-

stant tax rates across states and time. In order to unpack this, we use the implementabiliy

constraints (17) and (18) to express labor as a function of the portfolio choices:11

h0 = 1±

√
1− 2

(
B0

π0

+ b0 + g0 − βE0

[
π−1

1

]
B1 − βb1

)
, (24)

h1 = 1±

√
1− 2

(
B1

π1

+ b1 + g1

)
. (25)

First, we substitute equation (25) in (22) to obtain the following cross-states smoothing

condition

B1

πL1
+ gL1 =

B1

πH1
+ gH1 , (26)

which does not contain real debt. Second, we substitute equations (24)-(25) in equation

(23) to obtain the following inter-temporal smoothing condition

B0

π0

+ b0 + g0 − βE0

[
π−1

1

]
B1 − βb1 =

B1

πx1
+ b1 + gx1 , (27)

where x = {L,H}. Note that since equation (27) needs to hold for both x = {L,H}, one

11Note that each implementability constraint yields two solutions for labor, one on each side of the Laffer
Curve. Note that, although in principle one should check which one is optimal to determine the correct
equilibrium allocations for consumption and leisure, it is immaterial for the bond optimal portfolio (i.e.,
both ht solutions yield the exact same formulas for nominal and real bonds as in proposition 2).
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can arbitrarily, and without loss of generality, choose the x that matches the realization of

the shock at time 0, to further simplify

B0 −B1

π0

+ b0 − βE0

[
π−1

1

]
B1 = (1 + β)b1. (28)

These considerations lead us to formulate the following proposition, which pins down the

optimal level of nominal and real debt.

Proposition 2 (Optimal Nominal and Real Debt Management). Given initial

conditions B0, b0, g0, π0, optimal nominal debt management is such that

B1 = B∗1 ≡
gH1 − gL1
πH1 − πL1

· πL1 πH1 , (29)

satisfies the intra-temporal (cross-states) smoothing condition (22). Given equation (29),

optimal real debt management is such that

b1 = b∗1 ≡
1

1 + β

[
B0

π0

+ b0 −
(

1

π0

+ βE0

[
1

π1

])
B∗1

]
, (30)

satisfies the inter-temporal smoothing condition (23).

Proof. Result (29) follows directly from equation (26). Result (30) follows directly from equation
(28). �

Note that if government expenditure shocks are inflationary, i.e. πH1 > πL1 and gH1 > gL1 ,

then B∗1 is positive. Vice versa, if shocks are deflationary, i.e. πH1 < πL1 and gH1 > gL1 ,

then B∗1 is negative. The sign for real debt depends on the initial amount of outstanding

liabilities B0π
−1
0 + b0. In order to gain intuition, we assume the government has zero net

holdings of initial real liabilities, i.e. B0π
−1
0 + b0 = 0. Under this condition, equation (30)

reveals that b∗1 is negative with inflationary shocks and positive with deflationary shocks.

The intuition is simple. Holding a leveraged portfolio position enables the planner to

achieve insurance without re-adjusting the debt structure. Under inflationary shocks, it

is optimal to have positive nominal debt, as then inflation increases when a positive gov-

ernment expenditure shock hits, inducing the government liability to fall. This mechanism

insures the government with an economic force that tends to relax the implementability

constraint when it is most needed, by counterbalancing the high government expenditure

shock with a falling liability. Moreover, with inflationary shocks, the position of real debt

b∗1 should be negative, i.e. the government should accumulate real assets to smooth labor
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and taxes through time in high government expenditure inflationary times. While empiri-

cally, government expenditures tend to be inflationary (Bohn, 1988), the opposite applies

with deflationary expenditure shocks. For example, in this case, the government chooses

to optimally hold nominal assets that appreciate in periods of high government expendi-

tures, helping to relax the implementability constraint. We call such leveraged used of

government portfolio a risk management motive.

4.1.1 Endogenous Inflation

In this section we further enrich the previous example by allowing the government to choose

not only the debt portfolio, but also inflation. Accordingly, we consider a government that

serves as an integrated fiscal and monetary authority. Assume, thus, that at date 1 there

are two realizations of the exogenous government expenditure shock, i.e. a low state gL1 and

a high state gH1 . Assume each realization realizes with a conditional probability f(g1|g0).

The problem is otherwise identical to the previous subsection, except that the Ramsey

planner also chooses a state contingent plan for inflation in the second period. Hence, the

optimal policy under full commitment requires to find

{h0(g0), h1(g0, g1), B1(g0), b1(g0), µ0(g0), µ1(g0, g1), π1(g0, g1)},

such that welfare

c0 −
h2

0

4
+ βE0

[
c1 −

h2
1

4

]
(31)

is maximized.

First, we note that {h0(g0), h1(g0, g1), B1(g0), b1(g0), µ0(g0), µ1(g0, g1)} are still optimally

pinned down by expressions (21), (29), (30), (17), and (18), respectively. In particular,

equations (29) and (30) continue to hold as long as π1(g0, g
L
1 ) 6= π1(g0, g

H
1 ).

Second, when it comes to optimal inflation, we note that the objective function is

continuous everywhere except when π1(g0, g
L
1 ) = π1(g0, g

H
1 ), i.e. when there is zero-inflation

volatility, since in that case nominal and real bonds become perfect substitutes. Hence, the

objective function is not differentiable when π1(g0, g
L
1 ) equals π1(g0, g

H
1 ). For this reason a

first-order condition approach cannot be used to pin down the optimal inflation. Intuitively,

the planner faces the following trade-off:

� If the planner chooses π1(g0, g
L
1 ) = π1(g0, g

H
1 ) = π, then it pays zero cost Φ(π1) = 0
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but it needs to renounce the perfect tax smoothing benefits. In fact, in this case, it

cannot achieve a complete markets equilibrium, since nominal and real bonds become

perfect substitutes.

� If the planner chooses π1(g0, g
L
1 ) 6= π1(g0, g

H
1 ), then the planner needs to pay a non-

zero cost (either in the high state, low state, or both) but, in equilibrium, it can

complete the markets and achieve perfect tax smoothing, as shown previously.

Figure 3 illustrates this trade-off by plotting the welfare function in function of all possible

combinations of π1(g0, g
L
1 ) and π1(g0, g

H
1 ). On the diagonal of the welfare function, when

π1(g0, g
L
1 ) = π1(g0, g

H
1 ), we see that welfare suddenly drops because the planner is unable to

complete the market (at this point the welfare is computed using the one-bond solution).

Such a choice therefore is not optimal. Accordingly, we note that (i) some level of inflation

volatility is optimal in this setting, while costly, because it allows the Ramsey planner

to complete the market, and (ii) there are two equivalent welfare-optimal combinations

of inflation with symmetric deflationary and inflationary shocks, as indicated by the red

dots. Intuitively, the planner finds it optimal to have minimal inflation volatility, either

with inflationary or deflationary shocks, in order to simultaneously pay a minimal cost of

nominal rigidities and complete the market by using leveraged positions of nominal and

real bonds according to equations (29) and (30), provided that all debt limits are satisfied.
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Figure 3: Welfare Function

Notes: The figure shows welfare, i.e. equation (31), on a Cartesian grid for several combinations of

π1(g0, g
L
1 ) and π1(g0, g

H
1 ) under the parameterization of subsection 4.1 and with π = 1. Red dots indicate

the optimal inflation policy.

These considerations lead us to formulate the following preposition, in the spirit of the

divine coincidence (Blanchard and Gaĺı, 2007). Proposition 3 synthesizes the idea that,

under incomplete markets and in presence of nominal and real debt, optimal fiscal and

monetary policy requires a trade-off between the stabilization of inflation and the welfare-

relevant output gap.

Proposition 3 (Optimal Inflation and Stabilization of Output Gap). Given ini-

tial conditions B0, b0, g0, π0, optimal monetary and fiscal policy is such that

πL1 = πH1 =⇒ yL1 − y∗1 6= 0 ∨ yH1 − y∗1 6= 0, (32)

where y∗1 is the natural output and y1−y∗1 is the welfare-relevant output gap. Natural output

y∗1 is the output the planner can achieve under complete markets, i.e. the first-best when

households and the government trade a full set of Arrow–Debreu securities.

Proof. When πL1 = πH1 , the planner cannot achieve smoothing of the Lagrange multiplier across
states µH1 = µL1 , since nominal and real debt become perfect substitutes. To see this, use the
first-order conditions with respect to nominal and real debt, i.e. equations (19) and (20). When
πL1 = πH1 , equations (19) and (20) effectively collapse to the same equation, i.e. µ0 = E0[µ1], as
the two bonds become perfect substitutes. This is confirmed by expression (29) for B1, which
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yields a singularity when πL1 = πH1 . Hence, πL1 = πH1 =⇒ µH1 6= µL1 . Since, there is a one-
to-one mapping between µ1 and h1, given by equation (21), and since y1 = Ah1, it follows that
πL1 = πH1 =⇒ yH1 6= yL1 . Since y∗1 is defined as the output under complete markets, perfect
smoothing commands y∗1 = y∗H1 = y∗L1 . Hence, it must be the case that either yL1 − y∗1 6= 0 or
yH1 − y∗1 6= 0.�

Taylor Rule These findings suggest that the optimal policy with integrated fiscal and

monetary authorities features not only multiple equilibria, but also very large and opposite

positions of real and nominal bonds with minimal inflation volatility. In order to allow

for a more realistic setting reflecting policymakers’ institutional arrangements, we enrich

the quantitative model with an independent central bank that follows a Taylor rule. In

this setting, inflation is still a choice variable for the planner, but subject to an additional

constraint.12 The Taylor rule constraint implies a positive correlation between inflation and

the nominal rate, in line not only with the data, but common to a wide range of economic

settings, as noted by Bohn (1988).13 In this sense, we view the addition of the Taylor

rule constraint as one of the many possible equilibrium selection criteria and extensions

that break the indifference between inflationary and deflationary responses to shocks from

the perspective of the planner, which appears plausibly supported in the data. Indeed,

in terms of realistic institutional arrangements, it is worth noting that evidence from the

Federal Reserve Board of Governors Tealbook highlights that central banks indeed follow

pre-determined interest rate rules.14

4.2 Calibration and Solution Method

While the examples in the previous section provide qualitative guidance regarding optimal

policies in the Full Commitment case, we next calibrate our full dynamic model and discuss

our quantitative results. We start by describing the calibration strategy and then present

the dynamics of the baseline model, comparing it to a counterfactual without TIPS. We

12In other words, the government can engineer fiscal policies to shape a consumption growth profile such
that it induces a desired inflation. Equivalently, since we are in general equilibrium, the government can
choose inflation to engineer a consumption growth profile consistent with the Taylor rule and fiscal policies.

13When the Taylor rule only responds to inflation, the consumption growth rate and inflation are likely to
be positively correlated. That is, current consumption is low when inflation is high. Current consumption
tends to fall when the realization of government expenditure is high. In that sense, under the Taylor rule,
government expenditure shocks tend to be inflationary.

14For instance, see page 5 in the “Report to the FOMC on
Economic Conditions and Monetary Policy” at the following link:
https://www.federalreserve.gov/monetarypolicy/files/FOMC20170201tealbooka20170123.pdf.
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then present several robustness results to various model assumptions.

We parameterize the utility function as follows: u(c) ≡ c1−ηc

1−ηc and v(l) ≡ χ l
1−ηl
1−ηl

, with ηl =

1.8 to match a unitary Frisch elasticity of labor supply and χ = 4.3276 to normalize average

labor to 1/3 of the time endowment in the stochastic simulation of the Full Commitment

model. The production function is linear F (h) ≡ Ah, where A is normalized to a unit

value.

We calibrate fiscal parameters using data from Fernández-Villaverde, Guerrón-Quintana,

Kuester, and Rubio-Ramı́rez (2015). In particular, we use measures of government expen-

ditures and labor tax rates for the period 1971-2013.15 We also use this data to compute the

average ratio of government spending to GDP, which is around 20 percent. We calibrate the

exogenous process for gt as an AR(1) in logs, formally log gt+1 = (1−ρg) log µg+ρg log gt+εt,

with εt normally distributed with mean zero and standard deviation σg. We then match

the average ratio of government spending to GDP, as well as the standard deviation and

autocorrelation of linearly detrended (log) government spending, using the data described

above.

We set the price elasticity of demand 1/ν to 10, which is a standard value used in the

literature. The Taylor rule responds only to deviations from the steady state inflation rate.

We set the steady state inflation rate to 2 percent, which is the Fed target level. The

parameter ϕ, which governs the strength of the nominal rigidity, is set to 20 to render

the slope of the New-Keynesian Phillips Curve 0.0413 in line with the range of values in

Clarida, Gali, and Gertler (1999). All parameter values are summarized in table 2.

We solve the optimal policy under Full Commitment using an algorithm similar in spirit

to the Parameterized Expectations Algorithm (den Haan and Marcet, 1990). We provide

extensive details on the solution method in appendix B, which has been proposed by Valaitis

and Villa (2024). This method relies on a neural network to approximate forward-looking

terms in the optimality conditions as functions of the state vector.

15We convert the data from a quarterly to an annual frequency, obtained as average values in each year.
The data can be found at the following link:
https://www.openicpsr.org/openicpsr/project/112890/version/V1/view.
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Table 2: Parameter Values

Parameter Value

Preferences Discount factor β 0.96

Risk aversion ηc 2

Labor disutility χ 4.3276

Labor elasticity ηl 1.8

Firm Price elasticity 1/ν 10

Adjustment cost ϕ 20

Monetary Policy Response to inflation φπ 1.2

Government Average g µg 0.068

Volatility of log(g) σg 0.016

Autocorr. of log(g) ρg 0.977

Notes: The table reports the parameter values used in the quantitative part of the paper. The same
calibration is used in the Full Commitment model without TIPS bonds and in all extensions in section
4.4 and in the No Commitment model in section 5.2.

4.3 Quantitative Results

We begin by comparing our calibrated model to a counterfactual scenario where the govern-

ment can only issue nominal bonds. When the government cannot issue TIPS, the Ramsey

planner faces a trade-off between responding to shocks using distortionary taxes versus in-

flation. On the one hand, by inflating away the nominal liability, the government can relax

its budget constraint without increasing labor taxes. In a setting where the government has

access to state-uncontingent bonds only, it can thus take advantage of inflation to render

these bonds’ real payoffs state-contingent ex-post. On the other hand, elevated inflation

expectations lower nominal bond prices as well. The addition of inflation-protected secu-

rities in the government debt portfolio qualitatively changes the use of inflation, as shown

in equation (16). As we show below, this force is highly relevant in the quantitative model

with risk-averse agents.

Table 3 compares the unconditional moments of the main policy variables in the two

models. In the two bonds model, inflation is volatile, allowing the planner to approximate

the complete markets allocation. In line with the results from a one-period model, optimal

policy prescribes borrowing in nominal bonds and accumulating real assets. This occurs

because, as in the one-period model, such a leveraged position allows hedging spending

shocks, thus allowing to reduce the tax distortions as long as the expenditure shocks are
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inflationary. This can be seen from the baseline model having less volatile taxes than

the No TIPS model. Importantly, and differently from the one-period setting, in the full,

dynamic model with TIPS, government expenditure shocks are endogenously inflationary,

as determined by the Taylor rule. Indeed, intuitively, government expenditure shocks

raise taxes and depress consumption, thereby raising interest rates. By the Taylor rule,

then, this creates upward pressure on inflation. At the same time, expenditure shocks are

expansionary, as households increase their labor supply in response, raising output.

The result on the composition of the government debt portfolio thus resembles the

policy prescription from the optimal maturity literature to borrow in the maturity with the

most volatile price and to accumulate assets in the maturity with the least volatile price

(Angeletos, 2002). In our case, nominal bond prices are more volatile because they include

an inflation premium. Inflation plays a key role in hedging. The planner finds it optimal to

have volatile and procyclical inflation because such a policy means that nominal and real

bond prices become less and less correlated, allowing the planner to achieve better hedging.

In fact, the more volatile and procyclical the inflation, the lower the leverage that is needed

to hedge shocks. Indeed, once TIPS bonds become available, inflation volatility increases

five times in this Full-Commitment setting. In the end, the planner chooses inflation by

balancing the benefits of hedging against the costs incurred due to nominal rigidities. While

most of the literature has found that the cost of nominal rigidities typically outweighs the

benefits of inflating away nominal debt in models without TIPS bonds (Siu, 2004; Faraglia,

Marcet, Oikonomou, and Scott, 2013), inflation is used actively for hedging purposes in

our full model. We note that high inflation volatility goes in hand with a very volatile

real debt share with minimal persistence, in sharp contrast to the empirical evidence. As

we illustrate below by means of a simulated path of the key variables in the full model,

the government finds it optimal to rebalance the composition of its debt portfolio actively

and frequently to take advantage of movements in inflation. While in the FC baseline

case volatile inflation plays the role of the shock absorber, in the FC No TIPS case the

total amount of debt outstanding does so when TIPS are not available. Indeed, total debt

volatility goes up by a factor of four relative to the benchmark in the specification without

TIPS. This is in sharp contrast to the setting with No Commitment that we examine below,

in which total debt is endogenously stable.

While in the specification without TIPS in this calibration, the optimal average allo-

cation to nominal bonds is negative, so that the government lends in nominal terms in

equilibrium, we illustrate below that nominal debt rises with government expenditures.
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Similarly, the correlation between inflation and government expenditures is positive, so

that the government indeed uses inflation to relax its budget constraint when its financing

needs are high.

Overall, thus, the government uses inflation actively to affect its financial position,

mainly by creating opportunities for hedging. Accordingly, the monetary authority’s com-

mitment to a Taylor rule is not sufficient to eliminate inflationary bias in our model where

fiscal and monetary forces interact. This is in contrast to previous work (e.g., Gali, 2016),

where, commonly, committing to the Taylor rule means that deviations of inflation from

the target affect the interest rate and are understood to be costly. In our setting, however,

the planner optimally chooses inflation below the target because it leads to a lower nominal

rate and endogenously reduces the cost of issuing nominal debt. In this sense, we find that

commitment to the Taylor rule is not sufficient to eliminate inflationary bias, both in terms

of levels and in terms of volatility.

Table 3: Summary of Moments: Policy Variables

Description Moments FC No TIPS FC Baseline

Avg. Inflation [%] E(π)− 1 2.0 1.8

Avg. Tax [%] E(τ) 22.0 23.2

Avg. Real to GDP E(b/Y ) - -0.2

Avg. Nominal to GDP E(B/Y ) -0.2 0.3

Autocorr. Real Share ρ1(b/(b+B)) - 0.046

Corr. Gov. Spending and GDP ρ(g, Y ) 0.587 0.822

Corr. Tax and GDP ρ(τ, Y ) -0.434 0.441

Corr. Inflation and GDP ρ(π, Y ) -0.245 0.667

Corr. Inflation and Real ρ(π, b) - 0.455

Corr. Inflation and Nominal ρ(π,B) 0.74 -0.588

Std. Inflation 100σ(log(π)) 0.033 0.164

Autocorr Inflation ρ1(π) 0.6268 0.8981

Std. Debt 100σ(log(b+B)) 16.3840 4.2275

Autocorr Debt ρ1(b+B) 0.9999 0.9984

Notes: The table reports sample moments from simulating the equilibrium dynamics of the Full Commit-
ment model with and without TIPS bonds using the same realization of government expenditure shocks.
The simulation is initialized at b = B = 0 and we drop the first 100 periods before calculating moments.
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Example: Simulation With Prolonged Period of Increasing Gov-

ernment Expenditures

We further highlight the differences between the two specifications using an excerpt from a

stochastic simulation, shown in figure 4. The figure displays a period of rising expenditures

followed by a decrease, which is useful to highlight the difference in optimal policy over

the expenditure cycle. The top left panel shows the exogenous process for government

expenditures, which initially increase and reach a higher level at around period 60 and

start to decline after period 100. The other five panels show policy variables in the baseline

model (solid blue line) and the model without TIPS bonds (dashed red line). In the

beginning when government expenditures are low, the planner starts with a leveraged

portfolio position. As expenditures increase, the government responds by deleveraging and,

in fact, temporarily issuing real bonds and accumulating nominal assets, thereby actively

rebalancing its portfolio. This is because the planner also optimally responds to increasing

expenditures by engineering a persistent increase in inflation. Given the leveraged portfolio

position, persistent inflation allows to relax the budget constraint and reduces the need to

increase labor taxes as much as in the one-bond model. However, this comes at a cost.

Due to persistently higher inflation, the nominal bond price falls by more than in the

one-bond model. In light of such falling prices, the planner finds it cheaper to substitute

to borrowing in real bonds. Once expenditures begin to fall, the planner chooses lower

inflation and rebalances the portfolio back to nominal liabilities and real assets. This

stands in contrast to the one-bond model. Here a rise in expected inflation increases the

cost of new debt issuance. Therefore, the planner optimally keeps inflation stable and

responds to rising government expenditure by further issuing nominal bonds. The baseline

model thus prescribes an active role for policy across the business cycle, whereby in periods

of high inflation it is optimal to rebalance the portfolio to include more real debt. Such

active rebalancing in the face of movements in inflation render the real debt share volatile

with minimal persistence, in sharp contrast to the U.S. experience.

Such active portfolio management and use of inflation are associated with welfare gains

that are achieved through higher consumption and less volatile leisure. Allocations also

become less correlated with expenditure shocks, indicating better hedging against aggregate

risks. Compared to the model without TIPS, consumption increases by an average 0.8

percent and leisure volatility falls by 10.84 percent. In fact, in the baseline model taxes

are on average lower and households tend to work more. At the same time, labor supply
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is less elastic and it does not fluctuate as much, even in the presence of a more volatile

labor tax rate in the baseline model. Overall, compared to the model without TIPS, the

higher consumption level and lower leisure volatility leads to a consumption equivalent

welfare gain of 0.23 percent. The relevant unconditional moments of outcome variables are

summarized in table 4.

Figure 4: Simulation: Policy Variables

(a) Gvt. Exp. gt [% GDP]

20 40 60 80 100 120

20%

20.5%

21%

21.5%

22%

22.5%

23%

23.5%

24%

24.5%

25%

(b) Nominal Bonds Bt [% GDP]

20 40 60 80 100 120

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

%
 G

D
P

(c) Real Bonds bt [% GDP]
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(d) Inflation πt − 1 [%]
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(e) Tax Rate τt [%]
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Notes: The figure shows an excerpt from the simulation of the Full Commitment model equilibrium
dynamics. X-axes report time t. Solid blue line: baseline model. Dashed red line: benchmark model
without TIPS bonds. Both models are simulated with the same realization of government expenditure
shocks. The same simulation was used to calculate moments in table 3.

Table 4: Summary of Moments: Allocations

Description Moments FC No TIPS FC Baseline

Avg. Consumption E(c) 0.275 0.273

Avg. Leisure E(l) 0.654 0.655

Std. Consumption σ(log(c)) 0.016 0.013

Std. Leisure σ(log(l)) 0.006 0.003

Corr. Consumption and Gvt. Exp. ρ(log(c), log(g)) -0.695 -0.945

Corr. Leisure and Gvt. Exp. ρ(log(l), log(g)) -0.599 -0.818

Notes: The table reports sample moments from simulating the equilibrium dynamics of the Full Commit-
ment model with and without TIPS bonds using the same realization of government expenditure shocks.
The simulation is initialized at b = B = 0 and we drop the first 100 periods before calculating moments.
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Overall, the baseline results from the dynamic model under Full Commitment confirm

the intuition obtained from the one-period setting, in that with inflationary government

expenditure shocks, the government finds it optimal to borrow with nominal bonds, and

to save through real bonds. Moreover, the dynamic model shows that the government

finds it optimal to effectively use inflation to relax its budget constraint, thereby actively

rebalancing its debt portfolio. Importantly, in the dynamic model, government expenditure

shocks are endogenously inflationary, whereby inflation is determined through the Taylor

rule. In the next section, we examine a number of extensions of the model to show that

the baseline result of a positive allocation to nominal bonds and a negative allocation to

real bonds is remarkably robust across specifications.

4.4 Robustness of the Optimal Portfolio

We confirm that the main baseline results regarding the optimal portfolio of nominal and

real bonds and the use of inflation under Full Commitment are robust to multiple exten-

sions, which we present in details in appendix A. Specifically, we show that the policy

prescription to borrow in nominal bonds and accumulate real assets remains optimal when

(i) the degree of nominal rigidity is increased, (ii) the bonds’ maturity is extended, (iii) TFP

shocks are introduced in the economy, and (iv) the strength of the interest rate response to

inflation is changed. Each extension offers interesting economic insights. In appendix A.1.1

we show that a longer debt maturity allows the planner to spread inflation distortions over

time, leading to a lower inflation volatility and even more leveraged bond positions. In

appendix A.1.2 we find that the degree of nominal rigidity, as controlled by ϕ, matters for

inflation volatility both in the baseline model and in the model with only nominal bonds.

However, its effect is much greater in the model with only nominal bonds. In appendix

A.1.3 we consider a model where the driving force is the total factor productivity shock

and argue that it is optimal to issue nominal debt and accumulate real assets as long as

inflation and discounted net present value of future government surpluses are negatively

correlated. Lastly, in appendix A.1.4 we show that when monetary policy becomes more

responsive to inflation, i.e. φπ increases, inflation volatility falls and, like in extension (i),

an even more leveraged bond position becomes optimal.
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5 Optimal Policy with No Commitment

We now turn our attention to a different assumption on the commitment technology. In

particular, we view the public sector as a succession of decision makers—one government at

each time t—with No Commitment to future realized policies. The government in power

at t determines the current level of the labor tax rate and inflation, together with the

issuance of nominal and real non-contingent bonds that will be inherited by the future

government. Consistent with our assumptions in the previous sections, these bonds are

non-contingent with respect to future shocks. In this setting, the government thus faces

two frictions, namely an incentive friction with regards to future government policies on top

of the incompleteness friction considered in the full commitment case. Naturally therefore,

the optimal policy emerges from a trade-off between incentives and insurance.

We consider a private sector with utility identical to (1)

E0

∞∑
t=0

βt [u(ct) + v(lt)] , (33)

as under Full Commitment. We focus on a symmetric Markov-perfect equilibrium and

denote the state of the economy at time t by xt ≡ (Bt, bt, gt). In this environment, let

all future governments set their policy according to functions c̃(x), h̃(x), w̃(x), B̃(x), b̃(x),

and π̃(x). The current government takes these policies of future governments as given,

and understands that it can only influence future governments’ actions through its current

policies. As these functions are unknown, we are looking for the solutions of a fixed-point

problem. By construction then, as the policies are time-invariant functions of the current

state xt, these policies are time-consistent.

In this context, let W̃ (x) be the present discounted value of government utility (33)

as associated with the policy functions introduced above, given the state of the economy

x. With this notation at hand, the government in power at time t chooses allocations and

wage (c, h, w), with h = 1− l, as well as policies (B′, b′, π) to maximize

u(c) + v(l) + βE
[
W̃ (x′)|x

]
, (34)

subject to the resource constraint

Ah− c− g − Φ(π) = 0, (35)
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with associated multiplier λ, and the implementability constraint

uc(c) · s+ E
[
βuc(c̃(x

′)) ·
(

B′

π̃(x′)
+ b(x′)

)
|x
]
− uc(c)

(
B

π
+ b

)
= 0, (36)

with multiplier µ and where s denotes the government’s surplus as specified in equation

(11), the New-Keynesian Phillips Curve (8)

N (x) ≡ uc(c)

(
Y ·
(
ν − 1

ν
+

w

Aν

)
− Φπ(π)π

)
+ E [uc(c̃(x

′)) · Φπ(π̃(x′))π̃(x′)|x] = 0,

(37)

with multiplier λπ and the Taylor Rule (10)

T (x) ≡ π1−φππφπE
[
uc(c̃(x

′)) · π̃(x′)−1|x
]
− uc(c) = 0, (38)

with multiplier λT .16 In this setting, we assume that the planner can commit to repaying

debt but not to future taxes, inflation and debt policies, as is common in the literature

on fiscal policy under no commitment (e.g., Klein, Krusell, and Rı́os-Rull, 2008; Debortoli

and Nunes, 2013; Debortoli, Nunes, and Yared, 2017; Martin, 2009). Effectively, we rule

out the possibility of defaulting on debt since, as pointed in Gennaioli, Martin, and Rossi

(2014), sovereign defaults entail disproportionately larger real costs than not committing

to other policy tools and, therefore, they are infrequent in financially developed economies.

Instead, we view inflation as means to achieve “partial default” in such economies.

Next, for illustrative purposes only, we derive and interpret Generalized Euler Equations

(GEE) that characterize the optimal time-consistent policy as they reveal key distinctive

features of this problem with respect to the Full Commitment case. We do so under the

assumption that the policies under consideration exhibit sufficient differentiability proper-

ties. Note that in our numerical work we do not assume differentiability and use a global

solution method that tackles problem (34) directly. A detailed description of the solution

algorithm can be found in appendix B.2. Indeed, as pointed out, e.g. in Klein, Krusell,

and Ŕıos-Rull (2008), the associated policy functions may contain jumps and be nondif-

ferentiable. The associated optimality conditions are Generalized Euler Equations as they

feature derivatives of future policies, that the current government takes as given, with re-

spect to the current policy. Here, to illustrate the key economic trade-offs, we follow the

16Note that since we dropped the subscript t from inflation and in order to avoid confusion we denote
the inflation target as π, instead of π.
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literature on Markov-perfect fiscal policy (e.g., Klein, Krusell, and Rı́os-Rull, 2008; De-

bortoli and Nunes, 2013; Debortoli, Nunes, and Yared, 2017) and focus our attention on

policies that are differentiable functions of the “natural” state space x. Under the assump-

tion of differentiability, it is possible to derive and interpret Generalized Euler Equations

that characterize the optimal time-consistent policy.

The first-order conditions with respect to consumption, labor, and wage are

λ = uc(c)− µucc(c)
(
B

π
+ b

)
+ µucc(c)s+ µuc(c)

∂s

∂c
+ λπNc + λTTc, (39)

vl(l) = λA+ µuc(c) ·
∂s

∂h
+ λπuc(c)A ·

(
ν − 1

ν
+
wt
A

)
, (40)

0 = µuc(c)
∂s

∂w
+ λπuc(c)h. (41)

In equation (39), the government equalizes the marginal effect on the resource constraint

today (λ) with the marginal utility gain of an additional unit of consumption today plus

the impact of that additional unit of consumption through s in the implementability con-

straint today, plus the marginal impacts on the Philllips Curve and Taylor Rule, plus the

second order effects of an additional unit of consumption on the future government’s imple-

mentability constraint. In equation (40), the government offsets the marginal disutility of

labor with the marginal increase in production, the marginal effects on the implementabil-

ity constraint through s, plus the marginal impact of h on the Phillips Curve. Finally, in

equation (41) the government sets the wage by equating the marginal effect of the wage on

the implementability constraint (through government surplus s) with the marginal effect

on the New-Keynesian Phillips Curve.

The first-order conditions with respect to nominal bonds, real bonds, and inflation are

0 = βE
[
W̃B(x′)|x

]
+ µβE [SB′(x

′)|x] + λπNB′ + λTTB′ , (42)

0 = βE
[
W̃b(x

′)|x
]

+ µβE [Sb′(x
′)|x] + λπNb′ + λTTb′ , (43)

0 = −λΦπ + µuc(c)
B

π2
+ λπNπ + λTTπ, (44)

where S(x′) ≡ uc(c̃(x
′)) · (B′π̃(x′)−1 + b(x′)). To set the nominal and real bonds, the social

planner balances the expected present discounted value of an additional unit of B or b on the

future government’s continuation value with the marginal impacts on the Taylor Rule and

New-Keynesian Phillips Curve plus the expected marginal effect on the consumer’s Euler
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equation (S). Inflation is optimally chosen by equating the marginal effects on the Taylor

Rule and New-Keynesian Phillips Curve with the marginal effect on the implementability

constraint (through the marginal utility of consumption and the amount of nominal bonds).

An important difference between these optimality conditions and their counterparts

in the Full Commitment problem of the previous subsection is that past multipliers on

the implementability constraint (11) are absent here, because the government disregards

the effects of current policy on past decisions of the private sector, and in particular past

bonds. Moreover, the derivatives of the future policy functions appear inside the terms

E [SB′(x
′)|x], E [Sb′(x

′)|x], Nb′(x), Tb′(x), rendering these optimality conditions Generalized

Euler Equations.

The envelope conditions are

W̃B(x) = µ · ucc(c) · π−1, (45)

W̃b(x) = µ · ucc(c). (46)

The envelope conditions on the government’s continuation function W̃ for B and b synthe-

size the second order effects on consumption ucc(c) expressed in real terms by dividing by

inflation (in the case of nominal bonds). Imposing a symmetric Markov-perfect equilibrium,

we can use the envelope conditions to back out the Generalized Euler Equations

0 = βEµ(x′)ucc(c̃(x
′))π′

−1
+ µβEtSB′ + λπNB′ + λTTB′ , (47)

0 = βEµ′ucc(c̃(x′)) + µβEtSb′ + λπNb′ + λTTb′ . (48)

Markov-Perfect Equilibrium We focus on a symmetric Markov-perfect equilibrium

(MPE). More formally, a symmetric MPE consists of a set of policy functions for allocations

and wage c(x) = c̃(x), h(x) = h̃(x), w(x) = w̃(x), for bonds and inflation B′(x) = B̃′(x),

b′(x) = b̃′(x), π(x) = π̃(x) that maximize (34) taking equations (35)-(41) as constraints.

Note that our definition of equilibrium does not use the Generalized Euler Equations (GEE)

and does not assume differentiability of policy functions. Indeed, as pointed out, e.g. in

Klein, Krusell, and Ŕıos-Rull (2008), the associated policy functions may contain jumps

and be nondifferentiable. We want to emphasize that the analysis above with GEEs is done

for illustrative purposes only. In our numerical work we do not assume differentiability and

use a global solution method that tackles problem (34) directly. In particular, we follow a

computational methodology similar in spirit to the one introduced by Clymo and Lanteri
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(2020).17

5.1 Inspecting the Mechanism: One-Period Model

To provide intuition on the determinants of the debt portfolio, we first examine a simple one-

period, two-date setting, much along the lines of the simple version of the Full Commitment

case. Indeed, consider the same one-period model of section 4.1 under Full Commitment,

except that we assume the same utility as in the infinite-horizon model, i.e. utility for

consumption u(c) = c1−ηc

1−ηc , utility for leisure v(l) = χl1−ηl/(1 − ηl), and a quadratic cost

Φ(πt) = ϕ
2
(πt−π)2. Differently from the one-period model of section 4.1, in this section, we

assume that there are two different governments in power at date 0 and 1. In particular, the

government in power at date 1 can choose inflation optimally. Formally, the government

at date 1 solves the following problem

W̃ (B1, b1, g1) = max
π1,h1

u(c1) + v(1− h1)

subject to the implementability constraint (18) and the resource constraint c1 = h1−g1−Φ1.

Hence, the first-order condition with respect to π1 of the government at date 1 is given by:

−uc(c1)Φπ(π1) + µ1

(
B1

π2
1

+ h1
∂τ1

∂π1

)
= 0. (49)

This has an intuitive interpretation. On the one hand, the government at date 1 faces

the marginal cost of nominal rigidities which, through the resource constraint, tends to

lower consumption. On the other hand, the government internalizes the marginal benefit of

inflating away nominal debt B1, which is inherited by the government in power at t = 1 and

is a choice of the government in power at t = 0. Additionally, the government internalizes

the effect of inflation on labor taxes. Figure 5 illustrates the inflation policy as a function

of real and nominal debt for low and high realizations of government expenditure.18 The

inflation policy is increasing in nominal debt and is more sensitive to the level of nominal

debt when government expenditures at date 1 are high. Inflation also depends on the level

17A detailed description of the solution algorithm can be found in appendix B.2. While we cannot prove
that the Markov-Perfect Equilibrium is unique, we verify that our solution method always converges to the
same policy from a large grid of initial guesses.

18We solve the two-date No Commitment model using the following parameters: ηc = 2, ηl = 1.8, ϕ =

0.1, β = 0.96, g ∈ {0.1080, 0.1754} with transition probability matrix P =

(
0.55 0.45

0.45 0.55

)
and π = 1,

χ = 4.3276.
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of real debt. Holding everything else fixed, a higher level of real debt means that the

implementability constraint binds more, and the benefits of using inflation are larger. As a

consequence, the sensitivity of inflation to nominal debt increases with the amount of real

debt.

Figure 5: Date Two Inflation Policy Functions
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Notes: The figure shows the date two inflation policy function in terms of nominal and real debt. The
left panel shows the policy at the low realization of g1 and the right panel show the policy at the high
realization of g1. X-axis denotes the nominal debt. Solid blue, dashed red and dot-dashed black lines
show the policy function for different values of real debt.

Now we turn our attention to the government in power at date 0. This government

chooses b1 and B1 in order to best respond to the government at date 1, taking the latter’s

policy as given. Formally, the government at date 0 solves the following problem

max
c0,h0,B1,b1

u(c0) + v(1− h0) + βE0W̃ (B1, b1, g1)

subject to the implementability constraint (17) and the resource constraint c0 = h0−g0−Φ0.

In order to isolate the planner’s trade-offs and to highlight the differences from the

Full Commitment case, we derive the Generalized Euler Equations that neatly summarize

the role of strategic interactions.19 The first-order conditions with respect to B1 and b1,

19Krusell, Martin, and Rios-Rull (2006) show that the value function under Markov-Perfect policy can
contain jumps and consequently, may not be differentiable. We want to emphasize that we only use the first-
order conditions to illustrate the economic trade-offs, but we do not use the Generalized Euler Equations
to solve the problem numerically. Instead, we solve the model by directly maximizing the planner’s value
function.
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together with the envelope conditions, yield the following Generalized Euler Equations

µ0

(
Q+

∂Q

∂B1

B1 +
∂q

∂B1

b1

)
= βE0

[
µ1

π1

]
, (50)

µ0

(
q +

∂Q

∂b1

B1 +
∂q

∂b1

b1

)
= βE0[µ1], (51)

which capture the intertemporal strategic interactions among governments and allow us

to compare the policy trade-offs under No Commitment with the one-period model under

Full Commitment in section 4.1. Note that each government’s first-order conditions with

respect to h0 and h1 yield expressions for µ0 and µ1, equivalently to equation (21) in the

Full Commitment case.

Expressions (50) and (51) reveal critical differences from their counterparts under Full

Commitment (19) and (20), since they contain the strategic terms ∂Q
∂B1

B1 and ∂Q
∂b1
B1, ∂q

∂B1
b1

and ∂q
∂b1
b1, in addition to the “tax smoothing” terms involving µ. Through these additional

terms, the government at date 0 internalizes the effects that its debt choice has on date 0

nominal and real rates. Consider, for example, the effect of nominal debt on the nominal

bond price, ∂Q
∂B1

. Expanding the ∂Q
∂B1

term, we have

∂Q

∂B1

=
β

uc(c0)
E0

[
ucc(c1)

π1

− uc(c1)

π2
1

∂π1

∂B1

]
, (52)

which shows that the sensitivity of nominal bond prices to the date-0 government’s debt

choice is, ceteris paribus, negatively related with the sensitivity of the date-1 government’s

inflation choice to the nominal debt outstanding. In other words, whenever households

anticipate that the government at date 1 will resort to higher inflation, nominal bond

prices tend to decline with rising nominal debt choices. Figure 5 shows that generally, ∂π1
∂B1

is positive and higher nominal debt choice lowers nominal bond prices.

We now illustrate the trade-off between market incompleteness and the lack of commit-

ment by solving the model by increasing the degree of nominal rigidity, controlled by the

parameter ϕ. Intuitively, a higher degree of nominal rigidity should reduces the incentive

to inflate away debt at date 1 and lowers the strategic bias terms in the Generalized Euler

Equation, in this way altering the trade-off between the two frictions.
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Figure 6: Date One Optimal Portfolio and Corresponding Inflationary Bias
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Notes: The figure shows equilibrium bond choices and strategic bias terms for different values of ϕ. The
left panel reports the equilibrium bond choices B1 and b1 as a share of total debt portfolio. The right
panel reports the strategic biases

∂π1,L

∂B1
and

∂π1,H

∂b1
at the equilibrium values of B1 and b1.

Figure 6 shows the optimal date 1 debt issuance and the associated bias terms for

different values of ϕ. Note that the optimal policy under Full Commitment in section

4.1 prescribes issuing a leveraged portfolio position and, when the shocks are inflationary,

the portfolio consists of nominal debt and real assets. The left panel of figure 6 shows

that the optimal portfolio under No Commitment mainly consists of real bonds, while

the nominal bond amount is positive, but close to zero. Essentially, the government at

date 0 anticipates that the government at date 1 will resort to inflation if the outstanding

level of nominal debt is high, as illustrated in figure 5. The right panel of figure 6 shows

the strategic bias terms at the equilibrium values of debt for high and low realizations of

government expenditures at date 1. The figure suggests that the strategic bias terms in

the Generalized Euler Equations are large and relevant, which is why the planner at date

0 optimally chooses a debt portfolio that minimizes the commitment rather than market

incompleteness friction. The degree of nominal rigidity plays an important role in how

tempting it is for the date 1 government to resort to inflation, which is seen from the fact

that the strategic bias terms decrease in the value of ϕ.

These strategic interactions have implications for taxation. Indeed, equations (50) and

(51) suggest that, under No Commitment, the government does not reach perfect fiscal

hedging across states and time, even with just two realizations of shocks as in subsection

4.1. In fact, given the assumptions of subsection 4.1, equations (50) and (51) imply that

µ0 6= µL1 6= µH1 whereas, under Full Commitment, the planner was explicitly seeking to

achieve µ0 = µH1 = µL1 as implied by equation (22) of proposition 2. Indeed, the right panel

of figure 7 shows two rather different values of taxes for the low and the high realization of
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g in date 1.

Again, this is a manifestation that the government at date 0 internalizes the effects that

its nominal debt choice has on date 0 nominal rates, while internalizing the sensitivity of its

choices on the future government’s policy functions. In summary, the date 0 government

is facing a trade-off between: (i) diminishing its nominal borrowing costs and (ii) smooth-

ing fiscal policy. This tension drives the optimal portfolio allocations under the optimal

time-consistent policy: the hedging portfolio achievable with levered positions under Full

Commitment is typically a sub-optimal choice under No Commitment. In fact, it would

be an expensive financial choice ex-ante and would accentuate the tension posed by the

lack of commitment ex-post. That is, it would give an incentive to the future government

to use inflation excessively ex-post. This can be seen in the left panel of figure 7. The

government at date 1 responds to shocks by resorting to inflation, the more so in high

expenditure states and when nominal rigidities are low. However, in equilibrium, such use

of inflation is limited. For example, inflation increases by 0.25% in high expenditure states

for the value of ϕ = 0.1. Indeed, at time 0, the government issues minimal nominal debt

as a result of internalizing such use of inflation. In this sense, the commitment friction

provides a rationale for the results in Barro (2003) that governments should mostly issue

real debt.

Figure 7: Date Two Inflation, and Taxes
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Notes: The figure shows equilibrium inflation and taxes, solved for different values of ϕ. The solid blue
line corresponds to the NC equilibrium value in the low realization of the g shock. The dashed red line
corresponds to the NC equilibrium value in the high realization of the g shock.

We now turn our attention to the infinite-horizon model described in section 5, which we

calibrate to examine how the forces at work in the one-period model play out quantitatively

in a richer setting, in which more realistically inflation is determined endogenously through

a Taylor rule, and the Markov-perfect equilibrium is symmetric.

43



5.2 Quantitative Results

We now turn to a calibration of the full dynamic model with No Commitment to examine

the quantitative implications of the lack of commitment. To start and to benchmark our

results against the Ramsey equilibrium, we use the identical parameterization as in that

case, as summarized in table 2. The results for the main policy variables are reported in

table 5. We report results for the baseline case with real and nominal bonds, as well as the

case with nominal bonds only.

Table 5: Summary of Moments: Policy Variables

Description Moments NC No TIPS NC Baseline

Avg. Inflation [%] E(π)− 1 1.6 1.9

Avg. Tax [%] E(τ) 23.7 21.5

Avg. Real to GDP E(b/Y ) - 0.6

Avg. Nominal to GDP E(B/Y ) 0.1 -1.1

Autocorr. Real Portfolio Weight ρ1(b/(b+B)) - 0.997

Corr. Gov. Spending and GDP ρ(g, Y ) 0.99 0.995

Corr. Tax and GDP ρ(τ, Y ) 0.948 0.967

Corr. Inflation and GDP ρ(π, Y ) 0.639 0.086

Corr. Inflation and Real ρ(π, b) - 0.362

Corr. Inflation and Nominal ρ(π,B) -0.452 0.157

Std. Inflation 100σ(log(π)) 0.146 0.1

Autocorr Inflation ρ1(π) 0.8218 0.8454

Std. Debt 100σ(log(b+B)) 1.0794 0.7671

Autocorr Debt ρ1(b+B) 0.9958 0.9952

Notes: The table reports sample moments of the No Commitment model with and without TIPS bonds
from simulating model equilibrium dynamics using the same realization of government expenditure shocks.
The simulation is initialized at b = B = 0, and we drop the first 100 periods before calculating moments.

As the table shows, the government finds it optimal to issue a significant amount of

real debt, in line with the example examined in the one-period case. Naturally, this is

because with No Commitment, real debt emerges as an effective commitment device to

prevent future governments from monetizing debt ex-post. At the same time, to provide

insurance, the government finds it optimal to use nominal bonds. In fact, the optimal

allocation is negative, in that the government saves using nominal bonds. In equilibrium,

thus, households borrow in nominal terms, but less so when inflation is high. Therefore,

governments save less when the value of their assets is eroded more by inflation. When
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we restrict our policy instrument to nominal bonds, we find a small positive nominal bond

position, since holding a large nominal debt position would be costly given the future

government temptation to use inflation. Intriguingly, average inflation is lower in the

absence of real bonds. In this case, in equilibrium, large nominal bond positions would

be costly with No Commitment, so that smaller positions reduce the temptation to resort

to high inflation. In contrast, once real bonds are available as a commitment device, the

government can sustain somewhat higher inflation, as a negative allocation to nominal

bonds curbs its temptation to use inflation excessively ex-post. In view of this, inflation is

also substantially less volatile than in the benchmark with Full Commitment. We note that

total debt as well as the real debt share are much more stable than in the Full Commitment

case, so that they no longer take up the important role of shock absorbers that they played

in the latter case. Intuitively, this is because large movements in debt would raise the

temptation to monetize it, reflected in movements in inflation expectations and nominal

bond prices. The availability of TIPS in the baseline specification with No Commitment

alleviates that temptation as we discuss next.

Figure 8 illustrates these dynamics by plotting the responses of the model’s endogenous

variables to an exogenous increase in government spending in the Baseline and in the No

TIPS model. Responses to an expenditure shock in period 0 highlight that real bonds act

as a commitment device. In the Baseline model, the government holds the portfolio of real

debt and nominal assets, which limits its incentives to resort to inflation when the shock

hits. As the second panel shows, the inflation’s response is dampened compared to the

No TIPS model, where the shock is absorbed by inflating away the nominal debt.20 As

a consequence, the government in the Baseline model can mitigate the effect of the shock

on nominal prices (bottom right panel) and does not need to increase labor taxation by as

much as in the No TIPS model. In this sense, the presence of TIPS bonds limits the use of

inflation in response to expenditure shocks. This is the exact opposite of what happens in

the Full Commitment setting of section 4.3, where the hedging motives lead the Ramsey

planner to engineer more inflation volatility compared to the No TIPS benchmark. In this

sense, reducing future governments’ temptation to monetize debt endogenously stabilizes

inflation.

20Unconditional inflation volatility, measured as 100σ(log(π)), also decreases in the No Commitment
model to 0.1 compared to 0.164 in the Full Commitment.
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Figure 8: No Commitment: Conditional Dynamics After an Expenditure
Shock
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Notes: The figure displays the dynamics of fiscal variables around a shock that increases government
spending, at t = 0. X-axes report time t. Solid blue line: baseline model. Dashed red line: benchmark
model without TIPS bonds.

Naturally, access to real bonds as a commitment device should be welfare enhancing

when the government chooses to use them. Table 6 summarizes the real allocations implied

by the government’s policies. Indeed, consumption in levels is higher in the case with real

bonds, and its volatility is comparable, reflected in quantitatively modest welfare gains.

Table 6: Summary of Moments: Allocations

Description Moments NC No TIPS NC Baseline

Avg. Consumption E(c) 0.272 0.275

Avg. Leisure E(l) 0.655 0.653

Std. Consumption σ(log(c)) 0.012 0.012

Std. Leisure σ(log(l)) 0.003 0.003

Corr. Consumption and Gvt. Exp. ρ(log(c), log(g)) -0.996 -0.998

Corr. Leisure and Gvt. Exp. ρ(log(l), log(g)) -0.990 -0.992

Notes: The table reports sample moments from simulating the equilibrium dynamics of the No Commit-
ment model with and without TIPS bonds using the same realization of government expenditure shocks.
The simulation is initialized at b = B = 0 and we drop the first 100 periods before calculating moments.

Under the baseline calibration, the optimal policies under Full Commitment and No
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Commitment both exhibit rather stark implications for the composition of government debt

portfolios that seem to contrast rather sharply with the U.S. macroeconomic experience, in

that they both feature significant negative allocations to one type of bonds. In the case of

Full Commitment, the government chooses to save by means of real bonds, whereas in the

case with No Commitment, the government chooses to save by lending through nominal

bonds. Realistically, perhaps, governments do not lend through the bond market, neither

by means of nominal or real bonds, and neither do households borrow from the government

at a large scale. To capture this added element of realism, we next solve a version of our

models in which we impose a no-lending constraint, by restricting the government’s bond

allocations to be non-negative and preventing the government from investing in private

bonds, while we do not model and are agnostic about the exact source of this friction. We

implement these constraints by setting the lower bounds on debt B = b = 0. We report the

results in table 7 and present the baseline results without no-lending constraints alongside

to facilitate comparison.

Table 7: Summary of Moments: Policy Variables

Description Moments FC FC No Lend NC NC No Lend

Avg. Inflation [%] E(π)− 1 1.8 2 1.9 1.89

Avg. Tax [%] E(τ) 23.2 25.3 21.5 24.1

Avg. Real Share E(b/(B + b)) -0.5 0.0 -1.5 0.18

Avg. Nominal Share E(B/(B + b)) 1.5 1.0 2.5 0.82

Autocorr. Real Share ρ1(b/(b+B)) 0.046 0.957 0.996 0.948

Corr. Gov. Spending and GDP ρ(g, Y ) 0.822 0.777 0.995 0.999

Corr. Tax and GDP ρ(τ, Y ) 0.441 0.366 0.967 0.999

Corr. Inflation and GDP ρ(π, Y ) 0.667 0.545 0.086 0.943

Corr. Inflation and Real ρ(π, b) 0.455 -0.071 0.362 -0.412

Corr. Inflation and Nominal ρ(π,B) -0.588 0.644 0.157 0.412

Notes: The table reports sample moments from simulating model equilibrium dynamics using the same
realization of government expenditure shocks. The columns report moments from the baseline Full
Commitment and No Commitment models and alternative models with no lending constraints for both
Full and No Commitment. The simulation is initialized at b = B = 0 and we drop the first 100 periods
before calculating moments.

The relevant results are presented in the columns labeled “No Lend.” With such no-

lending constraints, the Full Commitment case now prescribes a government debt portfolio

consisting exclusively of nominal bonds, with no role for real bonds. This finding highlights

the quantitative relevance of nominal bonds for fiscal hedging in that the state-contingent

flavor of nominal bonds plays the dominant role in the government’s debt policy. On the

other hand, notably, in the case of No Commitment with a no-lending constraint, the
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government’s debt portfolio now features a sizable share of real bonds (18%), reflecting

the relevance of the commitment friction in this setting. Importantly, in the case with No

Commitment, the real debt share now qualitatively resembles that in the data, although

quantitatively the commitment friction is overstated in our benchmark calibration. We

note, however, that for robustness purposes our benchmark calibration is based on the long

data sample ranging from 1929 to 2021, substantially longer than the TIPS period.

In the next section, we take the No Commitment model with no-lending constraint as

a starting point and examine quantitatively how the slope of the New Keynesian Phillips

curve and the strength of the monetary policy’s response to inflation affect the relevance of

the commitment friction and the real debt portfolio share. In this analysis, we investigate

the TIPS share with parameter choices that are less precisely measured, but perhaps more

relevant to the recent U.S. macroeconomic experience in which the government issued TIPS.

Both cases reveal key mechanisms to understand the TIPS share observed in the U.S. data.

5.3 The TIPS Share and Interactions Between Monetary and

Fiscal Policies

In this section, we ask two questions aimed at exploring the interaction between fiscal and

monetary policy. We note that we examine these interactions in a setting in which the

fiscal authority operates under no commitment, while the monetary authority commits to

a Taylor rule. As discussed in section 4.1.1 and shown in table 7, commitment to a Taylor

rule is not sufficient to eliminate the tendency of future governments to inflate away debt

ex-post, as demonstrated by a significant portfolio share of TIPS bonds.21 With that in

view, we first examine how changing the real costs of inflation affects the degree to which

the commitment friction matters under No Commitment and thereby impacts the real

debt portfolio share. We vary the strength of the monetary policy’s response to inflation,

controlled by φπ. Second, we vary the real costs of inflation by changing the slope of the

New Keynesian Phillips curve controlled by parameter ϕ. We think that these are relevant

cases in view of ongoing discussions revolving around the changing slope of the Phillips

curve and Federal Reserve’s response to inflation in recent years.

Table 8 shows the results. Column (a) shows the no-lending specification with the

baseline parameters, and columns (b) and (c) show the specification where monetary policy

reacts to inflation more aggressively. Intuitively, the more hawkish the central bank is in

21We note that this finding may appear surprising in view of the more static analysis in the literature,
such as in, e.g., Falcetti and Missale (2002).
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responding to inflation, the more costly it becomes to manipulate inflation ex-post, as this

has a larger effect on the nominal rates. We see that the portfolio share in column (a)

is 18%, suggesting that the commitment friction is relevant in the baseline case. As the

monetary policy becomes more hawkish, the portfolio share of real bonds goes down to

5% and 4% in columns (b) and (c), respectively, in line with the average TIPS portfolio

share of 7% observed in the data. Next, in columns (d) and (e) we make the slope of

the New Keynesian Phillips Curve flatter by increasing parameter ϕ. Intuitively, this also

makes it more costly to use inflation ex-post as prices are more sticky and inflation more

costly, making the commitment friction less relevant. Columns (d) and (e) show that

quantitatively, this is relevant as the real debt portfolio shares go down to 9% and 2%,

respectively. Together, these results lead to two important conclusions. First, the state of

the economy, as summarized by the slope of the New Keynesian Phillips curve, and the

conduct of monetary policy shape the relevance of the commitment friction and thus the

optimal level of real debt. Second, within the reasonable range of parameter values, the

real debt share takes values close to that observed in the U.S. data.

Table 8: No Commitment and Portfolio Shares

Description Moments Model

φπ = 1.2 φπ = 1.22 φπ = 1.25 φπ = 1.2 φπ = 1.2

ϕ = 20 ϕ = 20 ϕ = 20 ϕ = 22.5 ϕ = 25

(a) (b) (c) (d) (e)

Avg. Inflation [%] E(π)− 1 1.89 1.89 1.88 1.9 1.9

Avg. Tax [%] E(τ) 24.1 24.2 24.1 24.1 24.1

Avg. Real Share E(b/(b+B)) 0.18 0.05 0.04 0.09 0.02

Avg. Nominal Share E(B/(b+B)) 0.82 0.95 0.96 0.91 0.98

Autocorr. Real Share ρ1(b/(b+B)) 0.948 0.944 0.855 0.939 0.878

Corr. Gov. Spending and GDP ρ(g, Y ) 0.999 0.996 0.963 0.997 0.99

Corr. Tax and GDP ρ(τ, Y ) 0.999 0.979 0.814 0.981 0.939

Corr. Inflation and GDP ρ(π, Y ) 0.943 0.719 0.314 0.765 0.492

Corr. Inflation and Real ρ(π, b) -0.412 -0.384 -0.776 -0.422 -0.475

Corr. Inflation and Nominal ρ(π,B) 0.412 0.444 0.863 0.458 0.584

Notes: The table reports the average inflation, taxes, portfolio weights of real and nominal bonds, and
salient correlations among monetary and fiscal policy instruments. All moments are calculated in a
simulation with T = 10000 periods.

In appendix A.2.1 we explore an additional margin that alleviates the commitment fric-

tion. Namely, we consider a variant of the model where the driving process is represented

by the household’s preference shock. In this setting, government expenditures are endoge-

nous in a manner similar to Debortoli and Nunes (2013). In this setting, the government

can choose to adjust expenditures, besides inflation, to respond to shocks. We show that

in that case, inflation becomes less correlated with output and nominal debt, in a way

consistent with the relevant U.S. data, while featuring a portfolio share of TIPS broadly in

49



line with table 8.

The TIPS Share and Inflation Intuitively, real bonds in the No Commitment frame-

work emerge as a commitment device that curbs future governments’ incentives to inflate

debt ex-post. We now examine to what extent real bonds are effective in taming inflation

by exploring the systematic relation between the share of TIPS bonds in the portfolio and

inflation. Doing so, we ask, does issuing more real debt help reduce current inflation?

To start, in figure 9 we illustrate the impact of tilting the portfolio towards real debt on

the inflation level, holding the amount of total debt fixed, starting from a model in column

(b) in table 8, where the real debt portfolio share is the closest to the data.

We achieve this by calculating the derivative of the equilibrium policy functions of inflation

with respect to real and nominal debt, denoted as ∂π
∂b

and ∂π
∂B

, respectively.22 Specifically,

we examine the derivatives of inflation with respect to current debt choices. Intuitively,

in a symmetric Markov-perfect equilibrium, these derivatives measure the cross-sensitivity

between contemporaneous policy functions. We assess the impact of debt composition on

inflation through the following expression:

∆πt =
∂πt
∂bt+1

·∆bt+1 +
∂πt
∂Bt+1

·∆Bt+1, (53)

where we alter the bond positions, keeping the total amount of debt constant, i.e. ∆bt+1 =

−∆Bt+1.

22Note that these same terms appear inside the Generalized Euler equations and are internalized by each
government’s best response to the future governments.
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Figure 9: Inflation and Nominal-Real Portfolio Rebalancing
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Notes: The figure shows the change in inflation derived from rebalancing the portfolio towards real
bonds, starting from the portfolio shares that replicate the U.S. data and using the calibrated model (b)
reported in table 8. The change in inflation on the y-axis is reported in ratio to the equilibrium standard
deviation. Hence, the standard deviation of inflation is calculated from the simulation of the model
equilibrium dynamics, using the model (b) reported in table 8. The x-axis reports the debt-to-GDP
ratio, whereas the three lines report the amount of portfolio rebalancing toward real debt, expressed in
percentage of GDP. For example, the solid blue line shows the change in inflation derived using equation
(53) when the real debt is increased (and nominal debt simultaneously decreased) by 100% of GDP.

In figure 9, we inspect the inflationary effect of a shift towards real debt in the amount

of ∆bt+1 up to 100% of GDP. The horizontal axis shows the relevant amount of exoge-

nous government expenditures relative to GDP, and the vertical axis shows the change in

the same period inflation in terms of standard deviations after recomposing the portfolio

towards real debt. The results show that the higher is the portfolio share of real debt is

associated with lower inflation. For example, in terms of magnitudes, if real debt increased,

and thus nominal debt decreased, by 100% of GDP and the spending needs were around

20% of GDP, inflation would be around one standard deviation lower than in the current

equilibrium. Moreover, the effects of portfolio rebalancing increase in the size of the spend-

ing needs. This suggests that, through the lens of the model, higher TIPS shares emerge

as an effective device to curb inflation.

6 Conclusion

In the wake of elevated inflation in the aftermath of unprecedented debt-financed stimulus

packages, controlling inflation has again moved to the forefront of policymakers’ attention.
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In this paper, we examine optimal government debt management in the presence of infla-

tion concerns in a setting where (i) the government can issue long-term nominal and real

(TIPS) non state-contingent bonds, (ii) the monetary authority sets short-term interest

rates according to a Taylor rule, and (iii) inflation has real costs as prices are sticky. Nom-

inal debt can be inflated away, but bond prices reflect elevated inflation expectations. Real

bond prices are higher, but such debt constitutes a real commitment ex-post. Critically,

the government can exploit a debt portfolio consisting of both nominal and real bonds to

smooth fiscal distortions to the extent that inflation is sufficiently volatile, so that these

securities are not perfect substitutes, thereby rendering markets more complete. We an-

alyze the optimal policy under Full Commitment and the optimal time-consistent policy

with No Commitment.

Intriguingly, our model specification with No Commitment provides a remarkably ac-

curate quantitative description of U.S. data, quite in contrast to the specification with Full

Commitment. In our quantitatively realistic specification with No Commitment, raising

the real share in the government’s debt portfolio effectively helps curb inflation, as it re-

duces future governments’ incentives to inflate away outstanding debt. Raising the real

debt share thus helps governments to commit to low and stable inflation rates.

Our results suggest that a framework with No Commitment captures the relevant con-

straints actual governments face reasonably well. We thus view accounting for limited

government commitment as a useful and natural starting point for relevant policy design.

A more realistic setting would account for richer asset price dynamics (e.g., Karantounias,

2018; de Lannoy, Bhandari, Evans, Golosov, and Sargent, 2022) and maturity structures

(e.g., Angeletos, 2002; Lustig, Sleet, and Yeltekin, 2008; Debortoli, Nunes, and Yared,

2017; Faraglia, Marcet, Oikonomou, and Scott, 2019) than we consider. We leave these

challenging extensions for further research.
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Appendix: For Online Publication

A Extensions

In this appendix, we report a series of extensions and additional exercises. In particular,

A.1 reports the additional material for the Full Commitment case, whereas A.2 reports it

for the No Commitment case.

A.1 Full Commitment

In this appendix we show that the main results from a Full Commitment model are robust to

the maturity of government bonds, the degree of nominal rigidity, introduction of alternative

shocks, the strength of interest rate response to inflation, and the absence of a Taylor rule.

We analyze these extensions one-by-one and show that, in all cases, it remains optimal

to issue nominal bonds and to accumulate real assets and that the planner builds such

leverage in good times, and then uses it to absorb negative shocks.

A.1.1 Role of Maturity

In the main text, we introduced the model with short-term bonds. In this appendix, we

augment the model by introducing long-term nominal and real bonds when both instru-

ments exhibit a generic, but same, maturity N .23 We then proceed to formulate the Ramsey

problem and characterize the optimal policy.

Environment The model is identical to section (3) except that the representative house-

hold saves through: (i) a N -period non-contingent nominal debt BN
t traded at a price QN

t

and (ii) a N -period non-contingent inflation-protected debt bNt traded at a price qNt . The

government issues both types of debt, collects revenues in the current period and repays

debt at maturity. In particular, the government repays nominal maturing debt at a unitary

23Note that the model with long-term bonds collapses to the short-term formulation when N = 1.
Alternatively, we could have introduced maturities through long-term perpetuities with decreasing coupon
rates. With our approach with N = 5 the problem requires to keep track of 26 state variables and solve
for 10 policy functions. With perpetuities it would have required 8 state variables and 14 policy functions.
With perpetuities, the additional 4 policy functions for bonds prices and associated Lagrange multipliers
are required, since nominal and real bonds prices are expressed recursively and would not be substitutable
directly in the implementability constraint. We chose our methodology since the stochastic simulation
approach we adopted is scalable in function of the state variables but less effective and stable the more
policies need to be solved jointly at each time step. Note also that with 8 state variables a stochastic
simulation approach would still be needed.
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price and real maturing debt at a price ΠN
j=1πt−j+1. As before, the government levies a

distortionary labor tax τt on labor income. The representative household, conjointly with

government financial needs, make savings decisions in long-term nominal and real debts.

In every period t, the representative household receives labor and investment income

according to the following budget constraint

ct +QN
t B

N
t + qNt b

N
t + ptSt+1 = (1− τt)wtht +

BN
t−N

ΠN
j=1πt−j+1

+ bNt−N + (pt + dt)St. (54)

Household Optimality Households maximize utility (1) subject to their budget con-

straint (54). The intratemporal labor-consumption margin and the firm’s stock pricing

equation are identical to those of section (3). The Euler equations that price long-terms

bonds are

uc(ct) ·QN
t = βEtuc(ct+N) ·

(
ΠN
j=1πt+j

)−1
, (55)

uc(ct) · qNt = βEtuc(ct+N). (56)

Government The government needs to finance exogenous spending gt using labor income

taxes and bonds, subject to the following budget constraint:24

QN−1
t

BN
t−1

πt
+ qN−1

t bNt−1 = τtAhtwt − gt +QN
t B

N
t + qNt b

N
t . (57)

Implementability Substitute τ , QN
t , and qNt in equation (57) using equations (4), (55),

and (56) to get sequences of implementability constraints

Et

[
uc(ct+N−1)

ΠN−1
j=1 πt+j

]
BN
t−1

πt
+ bNt−1Et [uc(ct+N−1)] = uc(ct)st +BN

t Et
[
uc(ct+N)

ΠN
j=1πt+j

]
+ bNt Et [uc(ct+N)] ,

(58)

where st is surplus as defined in subsection 3.5.

Optimal Policy with Full Commitment We now consider optimal debt management

and fiscal policy under the assumption that the government has Full Commitment and issue

24We implicitly assume that the government can buy back both nominal and real bonds from the private
sector. As documented in the OECD report by Blommestein and Hubig (2012), more than 80 percent of
countries engage in some forms of debt buyback and some of them they do so on a regular basis.
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long-term nominal and real bonds. The government chooses stochastic sequences of allo-

cations {c(gt), h(gt)}∞t=0 and prices {w(gt), π(gt)}∞t=0, and stochastic sequences of nominal

and real non state-contingent bonds {BN(gt−1), bN(gt−1)}∞t=0 to maximize the household’s

utility (1) subject to the resource constraint (2), with associated Lagrange multiplier λt,

the implementability constraint (58), with multiplier µt, the New-Keynesian Phillips Curve

(8), with multiplier λπ, the Taylor Rule (10), with multiplier λT , the bounds (B, B, b, b),

with multipliers (Λ, Λ, λ, λ).

The first order conditions with respect to nominal bond Bt and real bond bt are

µt · Et
[
ΠN
j=1π

−1
t+j · uc(ct+N)

]
= Et

[
µt+1 · uc(ct+N) · ΠN

j=1π
−1
t+j

]
+ β−1

(
Λt − Λt

)
, (59)

µt · Et [uc(ct+N)] = Et [µt+1 · uc(ct+N)] + β−1
(
λt − λt

)
. (60)

Note that equations (59) and (60) collapse to (12) and (13) when N = 1. The first

order condition with respect to wage is identical to equation (14). The remaining first-

order conditions with respect to consumption ct and inflation πt, together with further

details about the computational methodology, can be found in appendix B.

Next, we analyze the role of maturity on optimal inflation, taxes and debt portfolio.

In general, longer maturity brings greater benefits of using inflation. As the maturity

increases, both inflation and taxes become less volatile, as shown in the left panel of figure

A.1. Intuitively, with longer available maturity the planner can inflate the nominal liability

by increasing inflation by less but during a longer time horizon and in this way to minimize

the cost of inflation coming from the nominal rigidity. As a consequence, both inflation and

taxes become less volatile but more responsive to shocks as the available maturity increases

from 5 to 8 years. This is associated with the consumption equivalent welfare gain of 0.16

percent.25 Less volatile inflation makes the nominal and real bonds more substitutable as

their prices become more positively correlated. This means that an even more leveraged

position is optimal, as shown in bottom left panel of figure A.1.

25We set N equal to 5 years for both nominal and real bonds and use it as a benchmark. This is close
to the average maturity of U.S. federal debt, which is 5.5 years.
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Figure A.1: Role of Maturity
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Notes: The figure shows comparative statics when the bond maturity is exogenously increased from five to
eight years in our baseline model. Each panel describes the relative values of respective moments relative
to the counterpart in the model where maturity is five years. The top left panel shows the volatility
of inflation (dashed blue line) and the volatility of taxes (dotted-dashed red line). The top right panel
shows the correlation of inflation with government expenditures (dashed blue line) and the correlation
between taxes and government expenditures (dotted-dashed red line). The bottom left panel shows the
average position of real and nominal bonds. The bottom right panel shows the welfare increase relative
to the model, where the bond maturity is five years.

A.1.2 Role of Nominal Rigidities

Next, we study the role of nominal rigidities for bonds positions and inflation volatility.

Chari and Kehoe (1999) show that in the model with flexible prices the planner relies

heavily on inflation to absorb the expenditure shocks. But, as shown in Siu (2004), if the

model is calibrated to match the empirically realistic degree of price rigidity, the real cost of

inflation on firms pricing decisions begins to outweight the benefits of relaxing the budget

constraint and there is little incentive to use inflation in a model, where only nominal bonds

are available. Our results are consistent with Siu (2004). In Figure A.2 we compare the
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bond positions and inflation in our baseline model and the model with only nominal bonds.

In addition to that, we analyze a counterfactual where we resolve both models with a much

higher degree of nominal rigidity, controlled by the parameter ϕ. We find that, indeed,

the size of nominal rigidity affects inflation volatility in both models but its’ role is much

more pronounced in the one-bond model. Compared to the baseline calibration, in the

counterfactual with high inflation adjustment costs, inflation volatility falls by 44 percent

in the baseline model and by 73 percent in the one-bond model. One the other hand, the

degree of nominal rigidity has little effect on the optimal portfolio allocation.

Figure A.2: Role of Nominal Rigidities
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(c) Inflation πt [%]
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Notes: The figure shows an excerpt from the simulation of model equilibrium dynamics. X-axes report

time t. Solid blue line: baseline model. Dashed red line: benchmark model without TIPS bonds. Both

models are simulated with the same realization of government expenditure shocks. The same simulation

was used to calculate moments in table 3.
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A.1.3 Alternative Shocks

In this subsection, we analyze how the findings depend on the type of shock driving the

economy. As discussed, the government expenditure shocks analyzed in the previous sub-

sections are inflationary. That is, periods a high government expenditure are associated

with high inflation. We consider an alternative model where the only source of stochas-

ticity is given by total factor productivity shocks At, which are typically deflationary. We

assume that At follows an AR(1) process in logs. Table A.1 shows the relevant moments

of the alternative model together with the baseline model with government expenditure

shocks. Columns 4 and 5 in table A.1 reveal a similar pattern. In the model with TFP

shocks, average real bond to GDP ratio is still negative and nominal bond to GDP ratio is

still positive. Moreover, the two bonds remain negatively correlated and inflation follows

a similar pattern as in the baseline model in terms of how it co-moves with nominal and

real bonds. Another way to understand the logic behind such pattern is to think in terms

of the correlation of inflation with the net present value of government future surpluses

as in Angeletos (2002).26 In the spirit of Angeletos (2002), the positions of nominal and

real bonds that would achieve perfect insurance depends on the correlation of inflation and

the net present values of discounted future government surpluses. In the baseline model

with exogenous government expenditure shocks, inflation typically increases in response to

positive shocks. High expenditure also implies lower private consumption, which increases

the current marginal utility and the discounts. Increasing discounts mean that net present

values of future surpluses need to fall. As a consequence, in the model with exogenous gov-

ernment expenditure shocks net present values and inflation are negatively correlated. Now

consider an economy where the only shock is the TFP shock. A negative TFP shock leads to

lower current consumption and consequently, rising discounts and falling net present value

of future surpluses. In order for the Taylor rule constraint to be satisfied, equation (10),

nominal interest rate and inflation need to increase. From this analysis we can conclude

that inflation and net present values are also negatively correlated in an economy with TFP

shocks, which helps to understand why it is optimal to hold a qualitatively similar portfolio

of nominal and real bonds with both inflationary and deflationary shocks.

26Angeletos (2002) shows that portfolio that achieves perfect insurance against aggregate shocks in a
model without state-contingent debt is the one that equates the net present value of future government sur-
pluses state by state to the model with state-contingent debt. In our model the source of state-contingency
is inflation and the position of nominal and real bonds depends on the correlation of inflation with the net
present value of future surpluses.
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Table A.1: g and TFP shocks

Description Moments No TIPS Baseline Baseline

g shocks g shocks TFP shocks

Avg. Real to GDP E(bN/Y ) - -0.28 -0.37

Avg. Nominal to GDP E(BN/Y ) 0.40 0.24 0.40

Corr. Tax and GDP ρ(τ, Y ) 0.54 0.3 -0.84

Corr. Inflation and GDP ρ(π, Y ) 0.39 0.39 -0.66

Corr. Tax and Inflation ρ(τ, π) 0.84 0.96 0.81

Corr. Inflation and Real ρ(π, bN) - 0.93 0.45

Corr. Inflation and Nominal ρ(π,BN) 0.68 -0.69 -0.22

Corr. Real and Nominal ρ(bN , BN) - -0.84 -0.70

Notes: The table shows the relevant moments from the model with TFP shocks only compared with
two models with government expenditure shocks only. The third column (No TIPS ) corresponds to the
model with government expenditures shocks when nominal bonds are not available. The fourth column
corresponds to the baseline model with both types of bonds and government expenditures shocks. The
fifth column corresponds to the baseline model with both types of bonds and TFP shocks.

A.1.4 Monetary Policy Tightness

In the main body of the paper we impose a functional form for Taylor rule and a specific

value for the coefficient controlling the central banks’ response to inflation (φπ = 1.2). In

this section we explore how different values of φπ affect our main findings. Specifically,

we solve the model with increasingly stronger central banks’ response to inflation. Results

presented in table A.2 indicate that the main finding of negatively correlated and leveraged

position of real and nominal bonds holds. In addition to this, we observe that inflation

volatility falls with higher φπ, which is intuitive. With higher φπ the same variation in

expected consumption growth rate is related to smaller changes in inflation.

Table A.2: Role of φπ

ρ(bNt , B
N
t ) ρ(BN

t − bNt , gt) E(BN
t /Yt) E(bNt /Yt) σ(πt)

φπ = 1.2 -0.8545 -0.8046 0.0912 -0.3054 0.0040

φπ = 1.25 -0.9171 -0.8332 0.4972 -0.2780 0.0032

Notes: Table shows unconditional moments from model solution for different values of Taylor rule’s
coefficient on inflation φπ. Moments are calculated using the same realization of government expenditure
process.
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A.1.5 Additional Robustness Checks

Additionally, we check the sensitivity of Full Commitment results to the properties of the

exogenous process. In this subsection we show that results do not depend on the specific

realization of gt and that the variance of shocks could matter but results are robust for the

reasonable levels the variance of expenditure shocks.

Realization of Expenditure Shocks To see how our results depend on the specific

realization of the gt process we solve the model with 20 different seeds using the same staring

point as in the main body of the paper. Overall, the main result is robust. Correlation

between real and nominal bonds is on average -0.7904 and is negative for all realizations

of gt. Correlation between the difference of BN and bN is also negative on average and

is only positive in two realizations. We also find that government issues nominal debt

and holds real assets most of the time. The mean difference between BN and bN is 34.01

percent of GDP and has been on average negative for only one realizations. The results

are summarized in table A.3.

Table A.3: Average Moments across Multiple Realizations of gt

ρ(bNt , B
N
t ) ρ(BN

t − bNt , gt) E(bNt /Yt) E(BN
t /Yt) E((BN

t − bNt )/Yt)

Mean -0.7904 -0.3733 -0.1465 0.1936 0.3401

Minimum -0.9698 -0.8164 -0.3433 -0.2153 -0.0667

Maximum -0.1315 0.5964 -0.0275 0.6289 0.697

Notes: Table shows the mean, minimum and maximum of selected moments when the model is solved
with using different realizations of gt.

Variance of gt Process In this subsection we analyze how the results depend on the

variance of government expenditure. Specifically, we solve the model with the same seed

but changing the variance of the shock process. We mainly find that the main result of

accumulating nominal debt and real assets in good times is stronger when the government

expenditure is more volatile. As shown in figure A.3, the correlation between nominal

bonds and gt and the correlation between real bonds and gt increases in absolute value as

gt becomes more volatile. Also, the government debt position becomes more levaraged as

shown in the right panel.
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Figure A.3: Role of Variance of gt
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Notes: The figure shows correlation of real and nominal bonds of gt and average values of real and
nominal bonds in function of the variance of gt.

A.2 No Commitment

In this section, we introduce an endogenous government expenditure into the No Commit-

ment model and compare it to the baseline model with exogenous government expenditure.

A.2.1 Time-Consistent Optimal Policy with Endogenous Government Expen-

diture

In the problems we have analyzed so far, the government mainly faces two frictions, namely

firstly, the market incompleteness friction considered in the Full Commitment case and, sec-

ondly, the lack of commitment considered in the No Commitment case. Naturally therefore,

the optimal policy emerges from a trade-off between incentives and insurance. Realistically,

however, governments can use reductions of expenditures as an effective device to relax its

budget constraint as well just as much as resorting to inflation. We now take a further

step and combine the optimal time-consistent policy with endogenous government expen-

ditures, similarly to Debortoli and Nunes (2013), not only because governments can opt

to change expenditures levels, but also to capture disagreements among consecutive gov-

ernments about public expenditure. As a consequence, we consider a private sector with

utility identical to (1), except for an additional public expenditure component, namely

E0

∞∑
t=0

βt [u(ct) + v(lt) + θt · vg(gt)] , (61)
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where θt are preference shocks, and vg(.) is a differentiable function such that vgg(.) > 0 and

vggg(.) < 0. Note that θt is low (high) when public expenditures are less (more) valuable

to the private sector. In this setting, we focus on a symmetric Markov-perfect equilibrium

and denote the state of the economy at time t by xt ≡ (Bt, bt, θt). In this environment, let

all future governments set their policy according to functions c̃(x), h̃(x), w̃(x), B̃(x), b̃(x),

g̃(x), and π̃(x).

We now let W̃ (x) be the present value of government utility (61) as associated with the

policy functions introduced above, given the state of the economy x. Using this notation,

the government in power at time t chooses allocations and wage (c, h, w), as well as policies

(B′, b′, g, π) to maximize

u(c) + v(l) + θ · vg(g) + βEW̃ (x′), (62)

subject to constraints (35)-(38). The government now chooses government expenditures

according to the first-order condition

θvgg(g) = λ+ µuc(c). (63)

Equation (63) is intuitive. It equates the marginal utility gain of higher government ex-

penditures on the left-hand side to the marginal loss, consisting of two parts. First, higher

government expenditures require additional resources, rendering the resource constraint

tighter and more likely to bind (higher λ). Second, higher expenditures require collecting

more revenue, making the implementability constraint in marginal utility units bind more

(higher µ).

We calibrate the Markov process θt as an AR(1) in logs, formally: log θt+1 = ρθ log θt+εθ,

with ρθ = ρg, and εθ normally distributed with mean µθ = −.005 and standard deviation

σθ = 0.03. This calibration allows us to match an average ratio of government spending

to GDP, as well as the standard deviation and autocorrelation of linearly detrended (log)

government spending, in agreement with the data described in section 4, also used to

solve for the optimal policy under Full Commitment.27 More details can be found in the

computational appendix B.2. For simplicity, we choose vg(g) = log g.

We compare the results to the benchmark in column (a) from table 8. Starting from

that benchmark, we extend the No Commitment model to have endogenous government

27In particular, with the calibration reported in table 2 we get an average ratio of government spending
to GDP of ∼23% and an implied σg = 0.0167, which is aligned with 0.016 we used in section 4.
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expenditures. The intuition behind why this has critical effects on debt management can

be understood from equation (63). It ties the marginal utility of government expenditures

to the marginal utility of consumption and shows that endogenizing gt thus rendering

private and government consumption endogenously less substitutable. The effects on the

temptation to use inflation are ex-ante not obvious. On the one hand, the government does

not want to let consumption fall as much when government expenditures are high, which

effectively put upward pressure on inflation. On the other hand, endogenous government

expenditures can be understood as an additional degree of freedom to react to shocks.

The presence of an additional margin to react to shocks may reduce the temptation to use

inflation ex post. Quantitatively, we find that first effect dominates. In column (b) real debt

portfolio share increases, suggesting that the commitment friction becomes more relevant.

Additionally, we find that inflation is used differently. It becomes less contemporaneously

correlated with nominal debt and with GDP, making the model more aligned with the U.S

data.

Table A.4: No Commitment and Portfolio Shares

Description Moments Model Data/Target

Exo. g Endo. g

(a) (b)

Avg. Inflation [%] E(π)− 1 1.89 1.61 2

Avg. Tax [%] E(τ) 24.14 26.38 22.8

Real Portfolio Weight E[b/(b+B)] 0.18 0.36 0.07

Nominal Portfolio Weight E[B/(b+B)] 0.82 0.64 0.93

Autocorr. Real Portfolio Weight ρ1(b/(b+B)) 0.948 0.949 0.94

Corr. Gov. Spending and GDP ρ(g, Y ) 0.999 0.95 0.23

Corr. Tax and GDP ρ(τ, Y ) 0.999 0.738 0.35

Corr. Inflation and GDP ρ(π, Y ) 0.943 0.348 0.06

Corr. Inflation and Real ρ(π, b) -0.412 -0.082 0.47

Corr. Inflation and Nominal ρ(π,B) 0.412 0.022 -0.07

Notes: The table reports the average inflation, taxes, portfolio weights of real and nominal bonds, and
salient correlations among monetary and fiscal policy instruments. All moments are calculated in a
simulation with T = 10000 periods. Both models refer to the baseline No Commitment calibration with
φπ = 1.2 and ϕ = 20. The first column refers to the NC model with exogenous g; the second column
refers to the NC model with endogenous g.

B Computational Appendix

In this appendix we describe the computational procedure we used to solve the model under

Full Commitment and No Commitment.
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B.1 Algorithm under Full Commitment

We solve the model under Full Commitment using a generalization of the Parameter-

ized Expectations Algorithm (den Haan and Marcet, 1990) proposed by Valaitis and Villa

(2024). In this appendix, we describe how to adapt the methodology introduced by

Valaitis and Villa (2024) in this context. At every instant t the information set is It =

{gt, {BN
t−k}N−1

k=0 , {bNt−k}
N−1
k=0 , {µt−k}Nk=1, {λTt−k}Nk=1, {λπt−k}Nk=1}.28 Consider projections of the

forward looking terms in the model onto It. We model these relationships using a single

hidden-layer artificial neural network ANN (It) with 9 neurons in the hidden layer and as

many neurons as many inputs and outputs in the input and output layers, respectively.

Moreover, the activation functions we use are hyperbolic tangent sigmoid and the training

algorithm is Adaptive Gradient Descent.

Before proceeding, we calculate the remaining first-order conditions with respect to

consumption and inflation under Full Commitment, which were omitted in the main text.

The first-order condition with respect to consumption ct is

ucc(ct)− vl(l)A−1 + µt

(
ucc(ct)st +

∂st
∂ct

uc(ct)

)
+ b̃tucc(ct)(µt−1 − µt)

+ λπt

(
ν − 1

ν
+
wt
Aν
− ucc(ct)

uc(ct)2
βEt [uc(ct+1)Φπ(πt+1)πt+1]

)
+

λπt−1

ucc(ct)

uc(ct−1)
Φπ(πt)πt − λTt

1

π

(πt
π

)−φπ
ucc(ct) + λTt−1ucc(ct)

1

βπt
= 0. (64)

The first-order condition with respect to inflation πt is29

vl(lt)

uc(ct)

Φπ(πt)

A
= µt

∂st
∂πt

+Bt
µt − µt−1

π2
t

+ λπtHt +
λπt−1Kt
uc(ct−1)

+
(πt
π

)−φπ−1 λTt φπ
π2
−
λTt−1

βπ2
t

.

(65)

We describe the procedure for a generic maturity N . In particular, when maturity

28For example, with N = 5 the problem requires to keep track of 26 state variables and solve for 10
policy functions.

29Define Ht ≡
(
ν−1
ν + wt

Aν

)
Φπ(πt)−Kt and Kt ≡ ϕ(2πt − π).
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N ≥ 2, then we approximate all the following terms:

ANN 1 = Et
[ uc(ct+N)

ΠN
j=1πt+j

]
,

ANN 2 = Et
[µt+1uc(ct+N)

ΠN
j=1πt+j

]
,

ANN 3 = Et[uc(ct+N)],

ANN 4 = Et[µt+1uc(ct+N)],

ANN 5 = Et[ϕ(πt+1 − π)πt+1],

ANN 6 = Et[uc(ct+N−1)],

ANN 7 = Et
[uc(ct+N−1)

ΠN−1
j=1 πt+j

]
,

ANN k
8 = Et

[
uc(ct+N−k)

(
ΠN−1
j=1 πt−k+j+1

)−1]
, for k ∈ {1, 2, . . . , N − 1},

ANN 9 = Et
[
uc(ct+1)

1

πt+1

]
,

The solution procedure is summarized by the following algorithm. Given starting values

I0 = {g0, {BN
−k}N−1

k=0 , {bN−k}
N−1
k=0 , {µ−k}Nk=1, {λπ−k}Nk=1, {λT−k}Nk=1} and initial weights for the

ANN , perform a stochastic simulation {ct, µt, BN
t , b

N
t , πt, λ

T
t , λ

π
t , wt}Tt=1 as follows.30

1. Impose the Maliar moving bounds, see Maliar and Maliar (2003), on debt, These

bounds are particularly important and need to be tight and open slowly since the

ANN at the beginning can only make accurate predictions around zero debt - that

is our initialization point. Proper penalty functions are used to approximate the

behavior of the Lagrange Multipliers (Λ, λ) which avoid out of bound solutions while

the Maliar moving bounds are opening, see Faraglia, Marcet, Oikonomou, and Scott

(2014) for more details.31

2. At every instant t, given the information set It and the prediction ANN (It), solve

for ct, µt, B
N
t , b

N
t , πt, λ

T
t , λ

π
t , and wt such that all the following equations are satisfied:

the resource constraint (2), the implementability constraint (58), the New-Keynesian

Phillips Curve (8), the Taylor Rule (10), the planner first-order condition with respect

to nominal debt (59), the planner-first order condition with respect to real debt (60),

30The network can be initially trained imposing {bt} = 0.
31We also find that including Λ and λ terms explicitly in the training set improves prediction accuracy.

69



the planner-first order condition with respect to wage (14), the planner-first order

condition with respect to consumption (64), and the planner-first order condition

with respect to inflation (65). Note that simply substituting predictions of the neural

network in equations (59) and (60) such as

µt = ANN 1(It)−1

[
ANN 2(It) +

Λt

β
− Λt

β

]
,

µt = ANN 3(It)−1

[
ANN 4(It) +

λt
β
− λt
β

]
,

render the system over-identified. We tackle this problem by using a Forward-States

approach, as described in Faraglia, Marcet, Oikonomou, and Scott (2014). This

involves approximating the expected value terms with the state variables that are

relevant at period t+ 1 and invoking the law of iterated expectations.32 For example,

equations (59) and (60) using the Forward-States approach are:

µt = [EtANN 1(It+1)]−1

[
EtANN 2(It+1) +

Λt

β
− Λt

β

]
,

µt = [EtANN 3(It+1)]−1

[
EtANN 4(It+1) +

λt
β
− λt
β

]
.

3. If the solution error is large, or a reliable solution could not be found, the algorithm

automatically restores the previous period ANN and tries to proceed with a reduced

Maliar bound.33

4. If the solution calculated shrinking the bound at iteration i − 1 is not satisfactory,

the algorithm does not go back another iteration but uses the same ANN and tries to

lower the Boundi−1 again towards Boundi−2. Once a reliable solution is found, the

algorithm proceeds to calculate the solution for iteration i again, but with Boundi =

Boundi−1 +(Boundi−1−Boundi−2). In this way, if an error is detected multiple times

we guarantee that both Boundi and Boundi−1 keep shrinking toward Boundi−2 and

there must exist a point close enough to Boundi−2 such that the system can be reliably

solved with both Boundi−1 and Boundi.

32For a detailed description of the procedure using polynomial regressions see Faraglia, Marcet,
Oikonomou, and Scott (2019) or Faraglia, Marcet, Oikonomou, and Scott (2014). Here we follow the
same logic using the neural network.

33If the unreliable solution has been detected in iteration i the algorithm restore the i− 1 environment
and tries to proceed with Boundi−1 = αBoundi−1 + (1− α)Boundi−2.
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5. If the solution found at iteration i is satisfactory, the ANN enters the learning phase

supervised by the implied model dynamics, the Maliar bounds are increased and a

new iteration starts again.

Keep repeating until the ANN prediction errors converge below a certain small threshold

and the simulated sequences for ct, µt, B
N
t , b

N
t , πt, λ

T
t , λ

π
t , and wt converge among iterations

and the difference between predicted and forecasted series is small. 34

B.1.1 Implementation

Here we describe the implementation details of the baseline model with N = 1. Long

maturity extensions with N > 1 are implemented very similarly.

Information Set: Although formally Λ̄t, Λt, λ̄t, λt are not relevant state variables, we

find that it helps to achieve smaller forecast errors if they are included in the information set

It that the neural network is using. Then the information set It = {gt, Bt−1bt−1, µt−1, λ
T
t−1, λ

π
t−1 Λ̄t−1,

Λt−1, λ̄t−1, λt−1}.

Neural Network: We use a single-layer a single hidden-layer artificial neural network

ANN (It) with 9 neurons in the hidden layer and as many neurons as many inputs and

outputs in the input and output layers, respectively. We use the hyperbolic tangent sigmoid

activation function. To initialize the network, we first train it using Lebenberg-Marquardt

Backpropagation and during the simulation we train it using Adaptive Gradient Descent

algorithm. The reason is that the Adaptive Gradient Descent is more stable and prevents

the algorithm from diverging.

Simulation: We set T=5000 and drop initial 150 periods in the training set. We stop

the algorithm when the simulated sequences and the neural network weights stabilize. If

prediction errors are small enough, we conclude that the model is solved.

Prediction Errors: When N=1, the neural network needs to approximate 5 expecta-

34Note that the under uncertainty, the forecast errors will never go to 0. It is important that there are
not systematic under or over prediction.
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tions, namely:

ANN 1 = Et
[uc(ct+1)

πt+1

]
,

ANN 2 = Et
[µt+1uc(ct+1)

πt+1

]
,

ANN 3 = Et[uc(ct+1)],

ANN 4 = Et[µt+1uc(ct+1)],

ANN 5 = Et[ϕ(πt+1 − π)πt+1],

Figure A.4 shows a sample of predicted and simulated sequences
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Figure A.4: Predicted and Realized Sequences.
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Notes: The figure shows the realized and the predicted sequences for the relevant terms in the model with
N = 1. Solid red line shows the realized sequences and dashed black line shows the predicted sequences.

B.2 Algorithm under No Commitment

We now describe the key steps of the algorithm we use to compute the NC equilibrium of

the model with endogenous g of section A.2.1. We view this as a more generic algorithm,

the algorithm for the model with exogenous g follows the same set of instructions except
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that g is given by an exogenous shock instead of being an endogenous choice. We solve the

model using global methods and, specifically, an algorithm similar in spirit to Clymo and

Lanteri (2020). Recall that the state space is x ≡ (B, b, θ).

1. We discretize the sets of B and b with 15 nodes (linearly distributed) each. Moreover,

we discretize the AR(1) process for θ with Rouwenhorst with 11 nodes.

2. We guess the future government policy functions g(x), B′(x), and b′(x) as three-

dimensional tensors with 13×13×11 nodes and piece-wise linear interpolation. That

is, g(x) ' g̃(Bi, bj, θw), B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw), with 1 ≤ i ≤ 13,

1 ≤ j ≤ 13, 1 ≤ w ≤ 11. Evaluations of the policies outside of the specified indices

are obtained through 3-D linear interpolation.

3. We define policy functions for inflation π(x, xg) and labor h(x, xg) on an augmented

state space that includes both x and the additional space xg ≡ (B′, b′, g), that we use

to evaluate all possible strategic interactions between current and future government.

Note that given π(x, xg) and h(x, xg), it is possible to back-out the associated policy

for consumption

c(x, xg) = Ah(x, xg)− g(x, xg)− Φ(π(x, xg)), (66)

from the resource constraint equation (2), for wage

w(x, xg) = Φπ(π(x, xg))
π(x, xg)

h(x, xg)
− 1

h(x, xg)
E
[
β
uc(c(x

′, xg
′
))

uc(c(x, xg))
· Φπ(π(x′, xg

′
))π(x′)

]
− A ·

(
ν − 1

ν

)
,

(67)

through the NKPC equation (8), and for labor tax

τ(x, xg) = 1− c(x, xg)ηc

(1− h(x, xg))ηlw(x, xg)
, (68)

from the intra-temporal consumption-labor substitution margin equation (4).

4. Given the guesses for the linearly-interpolated future government policy functions

g(x) ' g̃(Bi, bj, θw), B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw) and expressions (66),

(67), and (68); we solve with projection the implementability constraint, equation

(36), and the Taylor Rule, equation (38) in order to find augmented policy functions
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for inflation π(x, xg) and labor h(x, xg) approximated using the following polynomial

P (x, xg;φ) ≡φ(1) + φ(2) ·B + φ(3) · b+ φ(4) ·B′ + φ(5) · b′ + φ(6) · θ+

+ φ(7) ·B2 + φ(8) · b2 + φ(9) ·B′2 + φ(10) · b′2 + φ(11) · θ2+

+ φ(12) ·B · θ + φ(13) · b · θ + φ(14) ·B′ · θ + φ(15) · b′ · θ + φ(16) ·B · b+ φ(17) ·B′ · b′+

+ φ(18) ·B ·B′ + φ(19) ·B · b′ + φ(20) · b ·B′ + φ(21) · b · b′+

+ φ(22) · g + φ(23) · g2 + φ(24) · g ·B · b+ φ(25) · g ·B′ · b′ + φ(26) · g · θ,

with different sets of parameters φπ and φh, respectively.

5. Given updated guess for π(x, xg) = P (x, xg;φπ), h(x, xg) = P (x, xg;φh), and an initial

guess for the value function W̃ (x′), and given all the other policies given by expressions

(66), (67), and (68), solve the government problem described in equation (34) using

one iteration of Value Function Iteration in order to find updated best responses for all

government policies g(x) ' g̃(Bi, bj, θw), B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw).

Note that multiple iterations on the Value Function can be done, since we look for

a symmetric MPE where all best responses and value functions converge to a fixed

point, i.e. all governments are symmetric.

6. Use the updated best responses for all government policies g(x) ' g̃(Bi, bj, θw),

B′(x) ' B̃(Bi, bj, θw), b′(x) ' b̃(Bi, bj, θw), to restart from point 4. Iterate till

convergence. At this step we use all policies to simulate an equilibrium sequence

of T=10.000 periods. We declare the algorithm has converged when the maximum

absolute errors of the simulated sequences for consumption, labor, bonds, and gov-

ernment expenditures between two consecutive iterations is in the order of 10−4 or

lower.

7. At convergence, the augmented policy functions for π(x, xg) = P (x, xg;φπ), h(x, xg) =

P (x, xg;φh) can be reduced to standard policy functions just in function of the state

space x by plugging the converged government optimal policies: π(x) = P (x, (B̃(x), b̃(x), g̃(x));φπ)

and h(x) = P (x, (B̃(x), b̃(x), g̃(x));φh).
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