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1 Introduction

This paper revisits Heckman’s classical sample selection model (Heckman (1976, 1979))

y∗i = x′iβ + εi, (1)

where yi = y∗i is observed if

di ≡ 1 {w′iγ + νi > 0} = 1. (2)

The variables wi and di are assumed to be observed for everybody, while it is only necessary

to observe xi when di = 1. The parameter vector, β, is the object of interest. The intercepts

in (1) and (2) are implicitly captured in εi and νi, respectively.

In his seminal papers, Heckman (1976, 1979) considered estimation of this model un-

der the assumption that (εi, νi) are distributed according to a bivariate normal distribution

independently of (xi, wi). Later research, such as Powell (1987), was able to relax the nor-

mality assumption provided that there are elements in wi that are excluded from xi. See

Powell (1994) for a survey of this literature. Unfortunately, such exclusion restrictions can

sometimes be difficult to find.1 In Honoré and Hu (2020), we therefore investigated what

one can learn about β in the model defined by equations (1) and (2) if there are no exclusion

restrictions, so wi = xi, and the only distributional assumption on the pair of errors, (εi, νi),

is that it is independent of xi. The parameter vector, β, is generally2 not point identified

in that case, but it turns out that provided that γ is identified up to scale, the identified

region for β is a line segment in Rk, where k is the dimensionality of β. The empirical

example in Honoré and Hu (2020) suggests that this identified region can be small enough

to be empirically useful.

In a series of papers, James Heckman has emphasized the importance of allowing for

individual-specific heterogeneity in econometric models (see, for example, Heckman (2001)).

In this paper, we consider generalizations of the classical sample selection model that allow for

1For example, Krueger and Whitmore (2001) estimated a sample selection model assuming normality “as
there is no exclusion restriction.”

2Chamberlain (1986) shows that one can identify β if xi has unbounded support.
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heterogeneity in the main parameter of interest, as well as for conditional heteroskedasticity.

Since the standard sample selection model is generally not point identified without exclusion

restrictions, the models considered here will also only be partially identified.

Our aim is to provide identified sets that can be empirically useful, although we do not

claim that they are sharp. We illustrate the usefulness of the identified sets by constructing

identified regions in a simple wage regression with sample selection. In our application, the

coefficient on a dummy variable for being white will be the parameter of interest.

Lee (2009) also considered a sample selection model without exclusion restrictions. He

focused on the effect of a binary explanatory variable, “treatment”, in a sample selection

model. Lee’s setup is much less parametric than the Heckman sample selection model, and he

was able to derive tight bounds for the mean effect of treatment for the subset of individuals

who would have been selected into the sample whether or not they are treated. Lee (2009)’s

bounds have been used in a number of different contexts, but some papers have pointed out

that the Lee bounds can be too wide to be useful in practice. For example, Barrow and

Rouse (2018) wrote “Unfortunately, Lee Bounds estimates (Lee, 2009) are quite wide and

largely uninformative.” Since Lee’s bounds are the tightest possible under his assumptions,

this suggests that in those cases, either one should give up on estimating sample selection

models, or one should maintain more structure. In addition, the parameter that Lee considers

is the mean effect of treatment for the subset of individuals who would have been selected

into the sample whether or not they are treated. It is not entirely clear why one should be

interested in this particular average effect if there is parameter heterogeneity.

The potential for parameter heterogeneity in the outcome equation of a sample selection

model is the main motivation for this paper. We also briefly discuss a number of other

extensions to the general framework displayed in equations (1) and (2). Specifically, we

consider the implications of heteroskedasticity in (1), the potential for identification through

nonlinearities in (2), and panel data versions of the basic model. Finally, we briefly consider

a potential outcomes version of the sample selection model.

Our approach builds on the insights in Honoré and Hu (2020). We review the basic idea

of that paper in Section 2. In Section 3, we consider a model in which the parameter of

interest is allowed to be heterogeneous, and Section 4 provides an empirical illustration of
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the ideas in Section 3. Section 5 allows for heteroskedasticity in (1). The ideas here are

illustrated in the empirical Subsection 5.3. Section 6 investigates various generalizations and

Section 7 writes the model in terms of potential outcomes. Section 8 concludes.

Throughout the paper, we focus on the parameter on a binary (0/1) explanatory variable

(the “treatment”), but we allow for additional continuous “controls.” In most of the paper,

we also maintain the assumption that the heterogeneous parameter is independent of the

random errors in the model.

2 Identification Strategy in the Simplest Case

Honoré and Hu (2020) discuss identification without exclusion restrictions in the classical

sample selection model

y∗i = x′iβ + εi, (3)

where yi = y∗i is observed if di ≡ 1 {x′iγ + νi > 0} = 1, and (εi, νi) is independent of xi. The

main insight in that paper is based on the simpler model where there is a single explanatory

variable, which is binary taking each of the values 0 and 1 with positive probability. In that

case, there is no loss of generality in assuming that γ = 1.

The left hand panel of Figure 1 displays the joint distribution of (εi, νi) and the two

horizontal lines depict the fact that one only observes yi when νi > 0 (when xi = 0) or when

νi > −1 (when xi = 1). The right hand panel of Figure 1 shows the marginal density of εi

before selection, as well as the density times the probability of selection conditional on εi for

xi = 0 and xi = 1. The interpretation of the latter two graphs is that the sample selection

puts some probability mass at “εi is unobserved”; the remaining mass is then distributed

with density given by the two graphs (depending on xi = 0 or xi = 1). Below, we refer to

those two graphs as “sub-densities” because they integrate to the probability of selection (as

opposed to integrating to 1).

The key assumption in the selection model is that the selection is monotone in xi, meaning

that an individual with a particular draw of (εi, νi) who is selected into the sample when

xi = 0, would also be selected with xi = 1. This implies that the sub-density of εi when xi is
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Figure 1: Distribution of ε Before and After Selection

(a) Joint Distribution of (ε, ν) (b) Distribution of ε

1 in Figure 1 is above the sub-density when xi is 0. This in turn implies that the sub-density

of yi−β for xi = 1 is above the sub-density of yi for xi = 0. Honoré and Hu (2020) show that

this characterizes the sharp identified region for β. The paper then uses the same insight to

construct a sharp identified set for β in the case xi is multidimensional and not necessarily

binary. Finally, Honoré and Hu (2020) propose estimation of a non-sharp identified region

for β by considering interval probabilities rather than densities.

The sample selection equation (2) is essential for the approach in Honoré and Hu (2020).

This equation implies that the sample selection is monotone in w′iγ for a given draw of the

errors (εi, νi), and it is this monotonicity that leads to comparisons like the one in the right

hand side of Figure 1.

3 Parameter Heterogeneity

Heckman (2001) and others have emphasized the importance of heterogeneity. This is also

implicit in the analysis in Lee (2009), who derived bounds for the average parameter value

in a certain subset of the population.

One way to introduce heterogeneity in the sample selection model is by allowing a subset

of the parameters to vary across individuals. For example, if xi1 is the variable of interest,
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then one might specify the model

y∗i = x1iβ1i + x′2iβ2 + εi,

where yi = y∗i is observed if di = 1, where di = 1 {x′iγ + νi > 0}, and where xi = (x1i, x2i).

Without a scale normalization of νi, γ is at best identified up to scale, and the sign of each

element of γ is identified. We assume the first element3 of γ is not 0, and we normalize γ so

that |γ1| = 1.

Except where we explicitly state otherwise, we will assume that β1i, (εi, νi), and xi are

independent. For identification of the distribution of β1i, this can be relaxed somewhat by

conditioning on x2i. We do not pursue this because it is unlikely to be useful in practice when

x2i is multidimensional and contains continuously distributed variables. The assumption that

β1i is independent of (εi, νi) is strong; however, it is clear that some assumption of this type

is necessary in order to make statements about, say, the population mean of β1i.
4 The

assumptions that νi is independent of xi and that γ is constant again imply that the sample

selection is monotone in x′iγ.

3.1 Binary Regressor

We first consider the case with only one explanatory variable, xi, which is binary. We assume

that γ1 = 1, so that the sample selection is more severe when xi is 0 than when it is 1. We

observe

yi = xiβi + εi if xi + νi > 0.

The key observation again is that the selection is monotone in xi. Individuals who are

selected with xi = 0 would also be selected with xi = 1 and with the same (εi, νi). For any

3If all elements of γ are 0, then this is known from the population distribution of the data, and in that
case there is no sample selection bias.

4For example, while Lee (2009) does not make such an assumption, the bounds derived in that paper are for
the average treatment effect for the individuals who would have been selected into the sample whether or not
they were treated. Conditional expectations like that can only be turned into population-wide expectations
by making additional assumptions.
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set A, we therefore have

P (εi ∈ A, νi > −1) = P (εi ∈ A, νi > 0) + P (εi ∈ A, 0 ≥ νi > −1)

≥ P (εi ∈ A, νi > 0) .

It therefore follows that

P (εi + b ∈ A, νi > −1) ≥ P (εi + b ∈ A, νi > 0) for any b. (4)

In this special case, βi only matters when xi = 1. As a result, we do not need to assume

that βi and xi are independent. Instead we assume that (εi, νi) is independent of xi and

that βi is independent of (εi, νi) conditional on xi = 1. The distribution of βi conditional

on xi = 1, Fβ, belongs to some class of distributions Fβ. The class of distributions could be

a parametric family of distributions, or Fβ could be left nonparametric. Typically, the class

of distributions for βi will include degenerate distributions, in which case the model with

parameter homogeneity becomes a special case of the model considered here. With this, (4)

implies

∫
P (εi + b ∈ A, νi > −1) dFβ (b) ≥

∫
P (εi + b ∈ A, νi > 0) dFβ (b) . (5)

Recalling that yi = βi + εi when xi = 1 and yi = εi when xi = 0, equation (5) becomes

P (yi ∈ A, di = 1|xi = 1) ≥
∫
P (yi + b ∈ A, di = 1|xi = 0) dFβ (b) ,

so one identified set for Fβ is

{
F ∈ Fβ : P (yi ∈ A, di = 1|xi = 1) ≥

∫
P (yi + b ∈ A, di = 1|xi = 0) dF (b)

}
. (6)

For example, if we restrict β to be discrete, taking on K values with probabilities πk, then
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the distribution of β must belong to

{(
K, {βk, πk}

K
k=1

)
: P (yi ∈ A, di = 1|xi = 1)

≥
∑
k

πkP (yi + βk ∈ A, di = 1|xi = 0) for all A,
∑
k

πk = 1

}
.

This places restrictions on K and {βk, πk}
K
k=1. In the applications below, we specify K, but

it could in principle be considered a parameter to be estimated or bounded.

Since βi is allowed to depend on xi, the restriction that βi takes a finite number of values,

K, is similar in spirit to the group-specific heterogeneity studied in Bonhomme and Manresa

(2015).

Example 1 Let (εi, νi) be distributed according to a bivariate normal distribution with E [εi] =

0, E [νi] = 1, V [εi] = 1, V [νi] = 1 and cov (εi, νi) = 0.5, and let P (β1i = 0) = P (β1i = 1) =

1
2
. If the researcher knows that β1i has a discrete distribution with two equally likely points

of support, θ1 and θ2, but does not know the distribution of (εi, νi), then the identified region

for (θ1, θ2) is as depicted in the left hand panel of Figure 2. The identified set is symmetric

around the 45-degree line since the two points of support enter the model symmetrically.

It is difficult to graphically present the identified set of a parameter of dimension higher

than two. In those cases, it can be useful to present identified regions for summary statistics

of the parameter. For example, when the object of interest is a distribution, one might

present the joint identified set for the mean and the variance.

Example 2 (Continuation of Example 1) Consider the same data generating progress

as in Example 1. If the researcher knows that β1i has a discrete distribution with two points

of support, but does not know the associated probabilities, then the identified region for the

mean and variance of β1i is as depicted in the right hand panel of Figure 2. Combined with

1, this example illustrates that the sample selection model with parameter heterogeneity is far

from point-identified even when the distribution of the heterogeneity is tightly parameterized,

but that one can still construct informative bounds on objects of interest such as the mean

and the variance of the heterogeneous parameter.
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Figure 2: Examples 1 and 2

(a) Identified Region for points of support (b) Identified region for (E [β1i] , SD [β1i])

The same line of argument can be used to find the identified set for the distribution of

β1i when γ = −1, that is, the case where the selection is more severe when xi is 1 than when

it is 0. It is{
(βk, πk) : P (yi ∈ A, di = 1|xi = 1)

≤
∑
k

πkP (yi + βk ∈ A, di = 1|xi = 0) for all A,
∑
k

πk = 1

}
.

3.2 Generalization to Multiple x

We now turn to the more general case where x1i is still a binary (0/1) “treatment”, but there

are additional explanatory variables. For simplicity, we assume that these have homogeneous

parameters and that γ1 is positive (and normalized to 1). Specifically,

y∗i = x1iβ1i + x′2iβ2 + εi,

where yi = y∗i is observed when di ≡ 1 {x′iγ + νi > 0} equals 1. We maintain the assumption

that β1i, (εi, νi, ) and xi are independent. We also assume that a set of sufficient conditions
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for γ to be identified up to scale are satisfied5 (see for example Klein and Spady (1993)) and

that conditional on di = 1, (εi, x
′
2i, x

′
iγ) satisfy the conditions on (Ui, Xi, Zi) in Robinson

(1988). The distribution of the heterogeneous parameter, β1i, can in principle be continuous

or discrete, although we restrict it to be discrete in the application in the next section. We

assume that E [β1i] is finite. The selection equation, di ≡ 1 {x′iγ + νi > 0}, is a monotonicity

assumption which states that if yi is observed for an individual with x′iγ = ξ1, then yi would

also be observed if x′iγ = ξ2 > ξ1 and (εi, νi) is left unchanged.

To construct bounds for the distribution of β1i, one can pick an arbitrary b2 and apply (6)

with y replaced by y− x′2b2. This gives a (possibly empty) identified set for the distribution

of β1i for each b2. One identified set for the distribution of β1i is then the union (over b2)

of these. Unfortunately, this approach is difficult to implement, unless the dimensionality of

x2i is small. We therefore pursue an alternative approach.

Conditional on selection, and conditional on β1i, we have

yi = x1iβ1i + x′2iβ2 + g (x′iγ) + ui,

where g (x′iγ) = E [εi|xi, x′iγ + νi > 0] and E [ui|xi, β1i] = 0. This implies that

E [yi|x′iγ] = E [x1i|x′iγ]E [β1i|x′iγ] + E [x2i|x′iγ] β2 + g (x′iγ)

= E [x1i|x′iγ] β1i − E [x1i|x′iγ] (β1i − E [β1i|x′iγ]) + E [x2i|x′iγ] β2 + g (x′iγ)

and therefore

yi−E [yi|x′iγ] = (x1i − E [x1i|x′iγ]) β1i+(x2i − E [x2i|x′iγ])
′
β2−E [x1i|x′iγ] (β1i − E [β1i|x′iγ])+ui.

As in Honoré and Hu (2020), (x1i − E [x1i|x′iγ]) + (x2i − E [x2i|x′iγ])′ γ2 = 0. We therefore

5When γ is not point-identified up to scale, the approach below can be applied to each point in the
identified set for γ.
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have

yi − E [yi|x′iγ] = − (x2i − E [x2i|x′iγ])
′
γ2β1i + (x2i − E [x2i|x′iγ])

′
β2

−E [x1i|x′iγ] (β1i − E [β1i|x′iγ]) + ui

= (x2i − E [x2i|x′iγ])
′
(β2 − γ2β1i)− E [x1i|x′iγ] (β1i − E [β1i|x′iγ]) + ui

= (x2i − E [x2i|x′iγ])
′
(β2 − γ2E [β1i|x′iγ])− E [x1i|x′iγ] (β1i − E [β1i|x′iγ]) + ui

− (x2i − E [x2i|x′iγ])
′
γ2 (β1i − E [β1i|x′iγ])

Since the last three terms have mean 0 conditional on xi, and β1i is assumed to be

independent of xi (so E [β1i|x′iγ] = E [β1i]), this implies that

α2 ≡ (β2 − γ2E [β1i])

is identified provided that (x2i − E [x2i|x′iγ]) has full rank.

Having identified α2, we write

y∗i − x′2iα2 = y∗i − x′2i (β2 − γ2E [β1i]) = x1iβ1i + x′2iβ2 + εi − x′2i (β2 − γ2E [β1i])

= x1iβ1i + (x′2iγ2)E [β1i] + εi,

or

y∗i − x′2iα2 − (x′2iγ2)E [β1i] = x1iβ1i + εi.

In other words

y∗i − x′2iα2 − (x′2iγ2)E [β1i] = εi when x1i = 0 (7)

and

y∗i − x′2iα2 − (x′2iγ2)E [β1i] = β1i + εi when x1i = 1. (8)

Thinking of the left hand side as a dependent variable, equations (7) and (8) have the same

structure as the problem in Section 3.1. The main difference is that to arrive at (7) and

(8) we assumed independence between β1i and xi. This was not necessary when there is a

single, binary, explanatory variable. Moreover, the selection probability is now monotone in
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the index x′iγ.

Combining (7) and (8), we have

y∗i − x′2iα2 − (x′2iγ2)E [β1i] + 1 {x1i = 0} β1i = β1i + εi.

Hence, for any interval A and for ξ1 < ξ2,

P ((y∗i − x′2iα2 − (x′2iγ2)E [β1i] + 1 {x1i = 0} β1i) ∈ A, di = 1|x′iγ = ξ2) ≥ (9)

P ((y∗i − x′2iα2 − (x′2iγ2)E [β1i] + 1 {x1i = 0} β1i) ∈ A, di = 1|x′iγ = ξ1) .

Therefore we can construct an identified set for the distribution of β1i, F , as

{
F ∈ Fβ :

∫
P
(

(yi − x′2iα2 − (x′2iγ2)EF [β1i] + b) ∈ A, di = 1|x′iγ = ξ2
)
dF (b)

≥
∫
P ( (yi − x′2iα2 − (x′2iγ2)EF [β1i] + b) ∈ A, di = 1|x′iγ = ξ1)dF (b)

}

for all ξ1 < ξ2. We use the notation EF [β1i] as a reminder that the expectation of β1i in (9)

will depend on F .

For each F in the identified set for the distribution of β1i, the average treatment effect is

EF [β1i]. The remaining parameter vector, β2, is given by α2+γ2EF [β1i] where γ2 is identified

from the semiparametric discrete choice model di ≡ 1 {x′iγ + νi > 0} with γ = (γ1, γ
′
2)
′ and

the normalization that γ1 = 1.

4 Empirical Illustration

To illustrate the approach outlined above, we consider a simple sample selection model for

wages for females. The question is how to make statements about the coefficient on being

white, β1, without exclusion restrictions.

We first estimate the model under joint normality of the errors using the maximum

likelihood estimator and Heckman’s two-step estimator. The parameters of the model are

not point-identified without a distributional assumption on the errors. We therefore next
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apply the method in Honoré and Hu (2020) to construct a confidence region for β1 under the

assumption that this parameter is homogenous. After that, we use the approach discussed

in Section 3.2 to estimate a (two point) discrete distribution for β1.

Using the Current Population Survey from 1982 to 2018, we construct a data set of

1,060,351 females aged 25 to 65. Of them, 552,446 are working and have a recorded (real)

wage. The explanatory variable of interest is a dummy for being white, and the additional

explanatory variables are the unemployment rate, a time trend, age, age-squared, and two

education indicators (one for some college, and one for college and beyond).

Table 1 reports the maximum likelihood estimates that assume joint normality of (εi, νi)

for the full sample and for the three subsamples defined by educational group. Table 2

reports the corresponding 2-step estimates. Comparing the estimates in Table 1 and 2 makes

it very clear that the normality assumption is violated. For example, under the null that

the normality assumption is satisfied, the standard error of the difference in the estimates

of the coefficient on being white for the full sample would be 0.0036. The difference in the

point estimates is 0.0225, which leads to a t-statistic of more than 6. The values of the

corresponding t-statistics for the three subsample are all above 2.3 in absolute value.

To estimate the semiparametric version of the sample selection model that acknowledges

that the coefficients are only partially identified without exclusion restrictions, we turn the

constraints in (9) into a finite number of moment inequalities by first dividing the range of

x′iγ̂ into five regions, C`, defined by quintiles. For a given candidate distribution of β1i, we

then divide the range of y−x′2α̂2−(x′2iγ̂2)EF [β1i] into ten regions, Aj, defined by the deciles

of y − x′2α̂2 − (x′2iγ̂2)EF [β1i]. This gives moment conditions of the type

E [1 {(y∗i − x′2iα2 − (x′2iγ2)EF [β1i] + 1 {x1i = 0} β1i) ∈ Aj, di = 1}|x′iγ ∈ C`] ≥ (10)

E [1 {(y∗i − x′2iα2 − (x′2iγ2)EF [β1i] + 1 {x1i = 0} β1i) ∈ Aj, di = 1}|x′iγ ∈ C`−1] .

Since the distribution of ν is left unspecified, we should in principle estimate γ semi-

parametrically, for example by employing the maximum rank estimator of Han (1987) or the

estimator proposed by Klein and Spady (1993). These can be difficult and computationally

expensive to calculate. Below, we calculate confidence sets by subsampling, and we therefore
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Table 1: Parametric Estimation under Normality (MLE)

All No College Some College College Plus

White 0.062 0.117 0.060 0.020
(0.002) (0.003) (0.003) (0.003)

Unemployment Rate 0.012 0.011 0.006 0.006
(0.000) (0.001) (0.001) (0.001)

Year 0.004 0.002 0.000 0.007
(0.000) (0.000) (0.000) (0.000)

Age 0.241 0.272 0.528 0.502
(0.006) (0.015) (0.013) (0.011)

Age-Squared -0.021 -0.028 -0.057 -0.053
(0.001) (0.002) (0.002) (0.001)

Some College 0.195
(0.002)

College Plus 0.528
(0.002)

Constant 1.112 0.923 0.527 1.083
(0.016) (0.041) (0.032) (0.026)

Observations 1,060,351 519,750 264,233 276,368
Standard errors in parentheses

estimate γ by a logit maximum likelihood. Following Robinson (1988), we estimate α2 by

regressing yi − Ê [yi|x′iγ̂] on
(
x2i − Ê [x2i|x′iγ̂]

)
, where the Ê’s are constructed by kernel

estimation. The estimator of the distribution of β1i is then defined by minimizing the sum

of the squares of the negative deviations between the sample analogs of the left and right

hand sides of (10). Specifically, we define

Rj` (F )

= EF

[
Ê [1 {(y∗i − x′2iα̂2 − (x′2iγ̂2)EF [β1i] + 1 {x1i = 0} β1i) ∈ Aj, di = 1}|x′iγ̂ ∈ C`]

]
,

where Ê refers to sample averages as well as averaging β1i over the distribution F , and
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Table 2: Parametric Estimation under Normality (2-Step)

All No College Some College College Plus

White 0.040 0.081 0.073 0.095
(0.004) (0.012) (0.006) (0.027)

Unemployment Rate 0.016 0.017 -0.001 -0.007
(0.001) (0.002) (0.002) (0.006)

Year 0.005 0.003 -0.002 0.001
(0.000) (0.000) (0.001) (0.002)

Age 0.037 0.012 0.976 1.684
(0.033) (0.085) (0.127) (0.322)

Age-Squared 0.007 0.005 -0.117 -0.233
(0.004) (0.011) (0.017) (0.049)

Some College 0.144
(0.008)

College Plus 0.449
(0.012)

Constant 1.715 1.641 -0.672 -2.344
(0.095) (0.234) (0.339) (0.927)

Observations 1,060,351 519,750 264,233 276,368
Standard errors in parentheses

EF [β1i] is the expectation of β1i calculated using F . We then calculate the objective function

Qn (F ) = −
∑
`,j

max {Rj,`−1 (F )−Rj,` (F ) , 0}2 (11)

for the distributions, F , under consideration.

We first calculate the identified region for the coefficient on the dummy for being white

(β1) in a model with homogeneous parameters. In other words, F is degenerate. In this

case, the approach here is the same as that in Honoré and Hu (2020). The left hand panel of

Figure 3 displays the objective function, (11), as a function of the parameter, as well as the

20% (the solid red line) and 5% (the dashed red line) critical value functions calculated using

sub-sampling (see Canay and Shaikh (2017)) for the full sample. We generate 1,000 sub-

samples, each having sample size equal to 50,000. The left hand panel of Figure 3 shows the

95% confidence interval for the coefficient on being white to be (0.042, 0.060). This overlaps
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Figure 3: Estimated Effect. Full Sample.

(a) Homogenous Effect (b) Heterogeneous Effect

with the confidence intervals suggested by the maximum likelihood estimator and by the

2-step estimator which assume normality. It is quite time-consuming to calculate the critical

values by subsampling. For the remaining results, we therefore generate 250 subsamples and

report 20% critical regions.

In the right panel of Figure 3, we report the 80% confidence region for the identified set

in a model in which the coefficient on the dummy for being white is allowed to take on two

values, θ1 and θ2, with probabilities p and 1−p. We restrict θ1 and θ2 to be between −1 and

1, and the grid for p is 0, 0.05, 0.10, ..., 0.50. The confidence set is calculated by sub-sampling

as above.

The identified region in the right panel of Figure 3 contains points for which the standard

deviation of the parameter of interest is 0. This is consistent with the fact that the left hand

panel of Figure 3 gives a non-empty confidence region under the assumption of parameter

homogeneity. On the other hand, the identified regions also contain points for which the

standard deviation of β1 is quite high relative to its mean. The identified set for the average

effect, E [β1i], is fairly small, although it does include points that are lower than the 80%

confidence region that would be obtained under the assumption that β1 is homogenous.6

Figures 4, 5, and 6 show the estimated effects for the three subsamples defined by educa-

6As pointed out by a referee, it might not be interesting to estimate the effect of being White conditional
on education. We performed the calculations leading to Figure 3 excluding education as an explanatory
variable. This model is strongly rejected by the data, and we therefore do not pursue this further in this
paper.
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Figure 4: Estimated Effect. No College.

(a) Homogenous Effect (b) Heterogeneous Effect

Figure 5: Estimated Effect. Some College.

(a) Homogenous Effect (b) Heterogeneous Effect

tion group. Since the sample sizes for these subsets are smaller than for the full data set (see

Table 1), we use sub-sample sizes of 30,000, 20,000, and 20,000 for the three subsamples.

The most striking finding in Figures 4, 5, and 6 is that the confidence set is empty for the

subset of observations with at least a college degree. This suggests that the simple sample

selection model is inconsistent with the data. We also find it interesting that the location of

the maximum of the objective function for this group is slightly negative. This is consistent

with the pseudo-maximum-likelihood estimate of the coefficient of being white in Table 1

being low (0.0195, with a robust standard error of 0.0033) for this sample.

The left hand panel of Figure 5 is difficult to read because we have kept the scale of the

x-axis the same across Figures 3 to 6. Figure 7 shows the same objective function using
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Figure 6: Estimated Effect. College Plus.

(a) Homogenous Effect (b) Heterogeneous Effect

Figure 7: Estimated Effect. Some College.

a different scale. Formally speaking, it suggests a very small 80% confidence interval for a

homogeneous β1. However, it also suggests that this apparent precision is due to the fact

that the model is only marginally not rejected by the data.

We also note that the scale of the objective functions in the left hand panels of Figures 3

and 4 are quite different from those in Figures 5 and 6. Informally, this hints at the samples

of women with some college and at least a college degree being more at odds with the simple

sample selection model than the other samples.

Figure 4 suggests that the derived implications of the classical sample selection model

are consistent with the data. As noted above, the parametric maximum likelihood and two-

step estimation results obtained by estimating the model under the assumption of normality

lead to parameter estimates that are statistically significantly different from each other,
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Figure 8: Estimated Effect Using More Bins. Full Sample.

(a) Homogenous Effect (b) Heterogeneous Effect

Figure 9: Estimated Effect Using More Bins. No College.

(a) Homogenous Effect (b) Heterogeneous Effect

suggesting that the normality assumption is violated. For example, the absolute value of the

t-tests for testing equality of each coefficient ranges between 2.1 and 3.1.

The equation (10) aggregates the constraints in equation (9) into 50 moment inequalities.

One might worry that will lead to important loss of information. In Figures 8, 9, 10, and

11, we present the confidence sets that are obtained by dividing both the distribution of

x′iγ̂ and of y − x′2α̂2 − (x′2iγ̂2)EF [β1i] into 15 intervals, each based on their percentiles. As

anticipated, this leads to smaller confidence regions, and the model is now rejected on the

full sample.
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Figure 10: Estimated Effect Using More Bins. Some College.

(a) Homogenous Effect (b) Heterogeneous Effect

Figure 11: Estimated Effect Using More Bins. College Plus.

(a) Homogenous Effect (b) Heterogeneous Effect
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5 Heteroskedasticity

Most of the classical literature on the estimation of semiparametric sample selection models

assumes that the error in the outcome equation is independent of the explanatory variables.

Donald (1995) is a notable early exception. That paper assumes joint normality of the

errors, but allows their variance matrix to depend arbitrarily on the explanatory variables.

In other words, Donald (1995) introduces heteroskedasticity by multiplying the errors by an

unknown function of x. In the spirit of this, Chen and Khan (2003) allow for multiplicative

heteroskedasticity in both the selection equation and the outcome equation. That paper

maintains an exclusion restriction.7

In this subsection, we first investigate identification when the error in the outcome equa-

tion is allowed to have multiplicative heteroskedasticity and then proceed to the more general

case. We maintain the assumption that the error in the selection equation is independent of

the explanatory variable. The reason is that heteroskedasticity in the selection equation can

actually aid in the identification of β. See, for example, Ahn and Powell (1993), Chen and

Khan (2003), Escanciano, Jacho-Chávez, and Lewbel (2016) and the discussion in Section

6.2.

5.1 Univariate x

We start by introducing multiplicative heteroskedasticity in the outcome equation of the

simple model (3), where the only explanatory variable is binary. In this subsection, we assume

that the parameter is homogeneous, so the only complication is the heteroskedasticity. In

order to simplify the exposition, we focus on the case where the sample selection is more

severe when xi = 0 than when xi = 1 (i.e. γ in the sample selection equation is positive and

normalized to 1).

Multiplicative heteroskedasticity only makes sense after one has controlled for the level

(for example, the mean or the median) of the errors. We therefore write

7Klein and Vella (2009) consider a related model with a dummy endogenous variable. That paper allows
for heteroskedasticity in both equations, and the heteroskedasticity in the selection equation is assumed to
be multiplicative; see also Klein and Vella (2010).
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yi = β0 + xiβ + σ (xi) εi is observed if xi + νi > 0. (12)

When σ (x) is constant, β0 becomes part of εi. Otherwise, β0 is the level around which

the multiplicative heteroskedasticity operates. Below, we use σ to denote σ (1). Since the

distribution of εi is unspecified, there is no loss of generality in assuming that σ (0) = 1.

As before, the monotonicity of the selection equation implies that

P (εi ∈ A, νi > 0) ≤ P (εi ∈ A, νi > −1)

for any A. Since εi is independent of xi, and with di = 1 {xi + νi > 0}, this can be written

as

P (εi ∈ A, di = 1|xi = 0) ≤ P (εi ∈ A, di = 1|xi = 1) .

As yi = εi + β0 when xi = 0, and yi = β0 + β + σεi when xi = 1, the true (β0 + β, σ) must

therefore satisfy

P (yi − β0 ∈ A, di = 1|xi = 0) ≤ P ( (yi − β − β0)/σ ∈ A, di = 1|xi = 1) .

This gives the following identified set for (β0, β, σ):

{(b0, b, s) : P (yi − b0 ∈ A, di = 1|xi = 0) ≤ P ( (yi − b0 − b)/ s ∈ A, di = 1|xi = 1) for all A} .

This can be extended to a model with non-multiplicative heteroskedasticity. Suppose

that when xi = 0 we observe

yi = ε0i if νi > 0,

and when xi = 1 we observe

yi = β + ε1i if νi > −1.

As before, xi is independent of the errors (ε0i , ε
1
i , νi), and β0 is now implicit in ε0i and ε1i .

Of course, without restrictions on the distributions of ε0i and ε1i , β will be unidentified since
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one can incorporate it in ε1i . We therefore have in mind that their distributions, F0 and

F1, belong to some class of distributions, F . For example, F0 and F1 could be restricted to

having mean or median equal to 0.

For simplicity, assume that F restricts both ε0i and ε1i to have continuous, strictly in-

creasing cumulative distribution functions, F0 and F1, respectively. Then ε0i is distributed

like F−10 (F1 (ε1i )).

As before, we have the inequality

P
(
ε0i ∈ A, di = 1

∣∣xi = 0
)
≤ P

(
ε0i ∈ A, di = 1

∣∣xi = 1
)
,

or

P
(
ε0i ∈ A, di = 1

∣∣xi = 0
)
≤ P

(
F−10

(
F1

(
ε1i
))
∈ A, di = 1

∣∣xi = 1
)
.

Let g (·) = F−10 (F1 (·)). Using the fact that ε0i = yi when xi = 0 and that ε1i = yi − β when

xi = 1, we then have

P (yi ∈ A, di = 1|xi = 0) ≤ P (g (yi − β) ∈ A, di = 1|xi = 1) .

So one identified set for β is

{
b : There exists an increasing function, g (·) = F−10 (F1 (·)) with F0, F1 ∈ F , such that

P (yi ∈ A, di = 1|xi = 0) ≤ P (g (yi − b) ∈ A, di = 1|xi = 1) for all A} .

Restrictions on the form of heteroskedasticity will appear as restrictions on the function

g in the expression above. For example, with the multiplicative heteroskedasticity above,

ε0i = β0 + εi and ε1i = β0 + β1 + σεi. Therefore F1 (a) = F0 (β0 + (a− β0 − β1)/σ) and

g (yi) = F−10 (F1 (yi)) = β0 + (a− β0 − β1)/σ.

5.2 Multiple x and Heteroskedasticity

Allowing for heteroskedasticity is more complicated when the model includes additional

explanatory variables.
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Consider the model

y∗i = β0 + x′iβ + σ (xi) εi,

where σ belongs to a class of heteroskedasticity functions. When σ (xi) is constant, β0 can

be incorporated into εi. When σ (xi) is not constant, β0 is implicitly defined as the central

tendency parameter around which the multiplicative heteroskedasticity operates.

For the true heteroskedasticity parameter, σ,

y∗i /σ (xi) = β0/σ (xi) + xi/σ (xi)
′ β + εi. (13)

Suppose that the function σ is known and is not a constant. The explanatory variables in

(13) are then not the same as in the sample selection equation, and the key assumption

for identification is that conditional on x′iγ, [1/σ (xi) , xi/σ (xi)] has “full rank” (i.e., is not

contained in a linear subspace of Rk+1 (with probability 1)). This will typically be satisfied

unless σ (xi) is constant.

One possible approach for bounding β (in the population) would then be to apply the

following procedure to each candidate function, σ (xi). If [1/σ (xi) , xi/σ (xi)] has full rank

conditional on x′iγ, then this identifies β (σ). It must then be the case that

P ( (yi − x′iβ (σ))/σ (xi) ∈ A, di = 1|x′iγ = ξ1)

≤ P ( (yi − x′iβ (σ))/σ (xi) ∈ A, di = 1|x′iγ = ξ2) (14)

for all A and ξ1 < ξ2. If that is not the case, then that σ (xi) can be eliminated from the

identified set. If [1/σ (xi) , xi/σ (xi)] does not have full rank conditional on x′iγ, then Honoré

and Hu (2020) delivers the identified set for β for that σ. If that identified set is empty, then

σ can be eliminated from the identified set.

Suppose, for example,

y∗i = β0 + x1iβ1 + x′2iβ2 + σ (xi) εi,

where x1i is binary and one specifies the heteroskedasticity function to be a function of x1i

23



alone:

σ (xi) =

 1 if x1i = 0

σ if x1i = 1.

In this case xi/σ (xi) will not have full rank conditional on x′iγ if x is composed of all inter-

actions between x1i and a vector of variables wi (in other words, x2i = ((1− xi) · wi, xi · wi)).

5.3 Empirical Illustration

The discussion in Section 4 suggests that our simple specification of the classical sample

selection model is strongly rejected for the sample of women with a college degree or more.

In this section, we explore whether the data are consistent with the derived implications of

a version of the sample selection model in which the errors are heteroskedastic as a function

of being white. Except for allowing for heteroskedasticity, the specification is the same as in

Section 4.

For a set of values of σ (bounded away from 1), we consider the model

y∗i /σ = β0/σ + β1/σ + (x2i/σ)′ β2 + εi when x1i = 1 and

y∗i = β0 + x′2iβ2 + εi when x1i = 0,

and yi = y∗i is observed whenever x1i + x′2iγ2 + νi > 0. Here, x1i is an indicator for being

white. For each value of σ, we estimate this model using the estimator of the semiparametric

sample selection model proposed by Powell (1987).8 We bound σ away from 1, because when

σ is 1, the key identifying exclusion restriction for Powell’s estimator is not satisfied, and we

expect the inference to be arbitrarily poor when σ is arbitrarily close to 1.

Consider a collection of sets, Aj and C`, where the C`’s are increasing in the sense that

the every element in C`−1 is below each element in C`. We define

Rj,` (σ) = Ê
[

1
{(

y∗i /σ (xi)− β̂0

/
σ (xi)− x′iβ̂

/
σ (xi)

)
∈ Aj, di = 1

}∣∣∣x′iγ̂ ∈ C`] .
8We estimate the selection equation using a logit model, and we use a normal kernel and a bandwidth of

0.05 for the outcome equation.
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Figure 12: Allowing for Heteroskedasticity

The functions Rj,` (σ) estimate the terms on each side of the inequality in (14) aggregated

over a set of values of ξ. In the population, and at the true parameter values, Rj,` (σ) ≤

Rj,k (σ) for ` < k. We therefore define the objective function

Qn (σ) = −
∑
`,j

max {Rj,`−1 (F )−Rj,` (F ) , 0}2 .

If the model is correct and the sample is large, Qn (σ) should be close to 0 at the true σ.

As in Section 4, we calculate the 20% (the solid red line) and 5% (the dashed red line)

critical value functions by subsampling using 1,000 subsamples with 20,000 observations in

each. The resulting graphs are shown in Figure 12.

It is clear from Figure 12 that for the sample of women with a college degree or more,

our simple specification of the classical sample selection model is still strongly rejected after

allowing for heteroskedasticity.

6 Generalizations

In this section, we discuss identification in several extensions of the sample selection model

above. Throughout, we assume that γ1 is positive and normalized to 1. In other words, we
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assume that everything else equal, the sample selection is less severe when x1i is one than

when it is zero.

6.1 β depends on ε

In the discussion in Section 3, we assumed that βi is independent of (εi, νi). This is a

strong assumption. Here, we illustrate one way to proceed under the alternative (strong)

assumption that βi is a deterministic function of εi. To simplify the exposition, we focus on

the case where there is only one binary explanatory variable:

yi = β (εi)xi + εi if xi + νi > 0.

For any interval, A, we have P (εi ∈ A, di = 1|xi = 0) ≤ P (εi ∈ A, di = 1|xi = 1) and

hence

P (β (εi) + εi ∈ A, di = 1|xi = 0) ≤ P (β (εi) + εi ∈ A, di = 1|xi = 1) ,

or

P (β (yi) + yi ∈ A, di = 1|xi = 0) ≤ P (yi ∈ A, di = 1|xi = 1) .

This provides a set of restrictions which can be used to bound the function β (·).

6.2 Identification Through Possible Nonlinearity

The heteroskedasticity in Section 5.2 transformed the explanatory variable in the outcome

equation from xi to xi/σ (xi), making the explanatory variables in the outcome equation

a nonlinear function of the explanatory variable in the selection equation. This gives an

exclusion restriction which can be used to achieve identification of β for a known function,

σ. In the spirit of Escanciano, Jacho-Chávez, and Lewbel (2016), we can also consider

identification through nonlinearities in the selection equation. The basic idea in that paper

is that the nonlinearity in the selection equation can act as an excluded variable in the

outcome equation (see also the discussion in Ahn and Powell (1993)).

To explore this avenue for identification in a model with parameter heterogeneity, we

again start with the equation
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y∗i = x1iβ1i + x′2iβ2 + εi, (15)

where β1i is assumed to be independent of (xi, νi, εi).

Without (much) loss of generality, assume that di = 1 {p (xi) > νi} where νi is uniform

(so P (di = 1|xi) = p (xi)). Then

yi = x1iβ1i + x′2iβ2 + h (p (xi)) + ui,

where h (p (xi)) = E [εi| p (xi) > νi], ui = εi − E [εi| p (xi) > νi], and E [ui|xi, di = 1] = 0.

Hence,

yi − E [yi| p (xi) , di = 1, β1i] = (x1i − E [x1i| p (xi) , di = 1, β1i]) β1i

+ (x′2i − E [x′2i| p (xi) , di = 1, β1i]) β2 + ũi,

where ũi = ui −E [ui| p (xi) , di = 1, β1i] has conditional mean 0. Since β1i is assumed to be

independent of (xi, νi, εi), this becomes

yi − E [yi| p (xi) , di = 1] = (x1i − E [x1i| p (xi) , di = 1])E [β1i]

+ (x′2i − E [x′2i| p (xi) , di = 1]) β2 + ˜̃ui,
where ˜̃ui = ũi+(x1i − E [x1i| p (xi) , di = 1, β1i]) (β1i − E [β1i]) has conditional mean 0. This

identifies (E [β1i] , β2) subject to a rank condition on ((x1i − E [x1i| p (xi) , di = 1]) , (x′2i −

E [x′2i| p (xi) , di = 1])).

6.3 Panel Data

We finally note that the general approach outlined in this paper also applies to panel data

versions of the sample selection model like the one studied in Kyriazidou (1997):

y∗it = x′itβ + αi + εit
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where y∗it is observed whenever x′itγ+δi+νit > 0. Here αi and δi play the roles of fixed effects

in the outcome and selection equations, respectively. It is well known that γ is identified up

to scale subject to regularity conditions (see Manski (1987)), so from an identification point

of view, we can consider it known.

If x′i2γ > x′i1γ, then P (εi2 ∈ A, di2 = 1) ≥ P (εi1 ∈ A, di1 = 1) as above. This implies that

P (εi2 + αi ∈ A, di2 = 1) ≥ P (εi1 + αi ∈ A, di1 = 1). Writing this in terms of the observed

yit, we therefore have P (yi2 − x′i2β ∈ A, di2 = 1) ≥ P (yi1 − x′i1β ∈ A, di1 = 1). This suggests

an identified set for β of the type

{β : P (yi2 − x′i2β ∈ A, di2 = 1|x′i2γ > x′i1γ)

≥ P (yi1 − x′i1β ∈ A, di1 = 1|x′i2γ > x′i1γ) for all A}.

7 Potential Outcomes

The key to the relative simplicity of the identified region discussed so far is that the het-

erogeneous parameter has been multiplied by a binary x1i. This implies that when x1i = 0,

the distribution of yi differs from the distribution of εi only because of the selection and the

additional controls, x2i. The heterogeneity of β1i plays no role when x1i = 0. In some cases,

this might seem somewhat artificial. For example, in the empirical illustration in Section 4,

the model would be different if we redefine x1i to be 0 for whites and 1 for non-whites. One

way to overcome this is to use the potential outcomes setup frequently used in the program

evaluation literature. Within the structure of the selection model discussed here, one would

specify the potential outcomes as9

y∗i =

 β0i + x′2iβ2 + εi when x1i = 0

β1i + x′2iβ2 + εi when x1i = 1,

where yi is observed if x′iγ + νi > 0 . We assume that (β0i, β1i) is independent of (εi, νi, xi),

but β0i and β1i need not be independent of each other.

9Here β2 is the same whether x1i is 0 or 1. This is easily relaxed by interacting x2i with x1i.
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To fix ideas, we first consider the case where there are no additional controls (x2i) and

where the selection is more severe when x1i = 0 than when x1i = 1 (i.e., γ1 = 1). In this

case,

P (εi ∈ A, di = 1|x1i = 0) ≤ P (εi ∈ A, di = 1|x1i = 1)

for any set A. This implies that

P
((

εi + β̃0i + β̃1i

)
∈ A, di = 1

∣∣∣x1i = 0
)
≤ P

((
εi + β̃0i + β̃1i

)
∈ A, di = 1

∣∣∣x1i = 1
)
,

(16)

where β̃0i and β̃1i are independent of each other, with β̃0i drawn from the marginal distri-

bution of β0i and β̃1i drawn from the marginal distribution of β1i.

In terms of the observable data, yi is distributed like εi+ β̃0i when x1i = 0 and like εi+ β̃1i

when x1i = 1. Equation (16) can therefore be written as

P
((

yi + β̃1i

)
∈ A, di = 1

∣∣∣x1i = 0
)
≤ P

((
yi + β̃0i

)
∈ A, di = 1

∣∣∣x1i = 1
)
,

where β̃0i and β̃1i are independent of the data and distributed as the marginal distributions

of β0i and β1i, respectively. This yields constraints on the marginal distributions of β0i and

β1i.

Additional controls, x2i, can be dealt with as in Section 3. Conditional on selection, and

conditional on (β0i, β1i), we have

yi = (1− x1i) β0i + x1iβ1i + x′2iβ2 + g (x′iγ) + ui,

where g (x′iγ) = E [εi|xi, x′iγ + νi > 0] and E [ui|xi, β1i] = 0.
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Using that (x1i − E [x1i|x′iγ]) = − (x2i − E [x2i|x′iγ])′ γ2, we therefore have

yi − E [yi|x′iγ] = (1− x1i) β0i + x1iβ1i + (x2i − E [x2i|x′iγ])
′
β2 + ui

− (1− E [x1i|x′iγ])E [β0i]− E [x1i|x′iγ]E [β1i]

= (1− x1i) (E [β0i] + β0i − E [β0i]) + x1i (E [β1i] + β1i − E [β1i])

+ (x2i − E [x2i|x′iγ])
′
β2 + ui − (1− E [x1i|x′iγ])E [β0i]− E [x1i|x′iγ]E [β1i]

= (1− x1i)E [β0i] + (1− x1i) (β0i − E [β0i]) + x1iE [β1i] + x1i (β1i − E [β1i])

+ (x2i − E [x2i|x′iγ])
′
β2 + ui − (1− E [x1i|x′iγ])E [β0i]− E [x1i|x′iγ]E [β1i]

= (x1i − E [x1i|x′iγ])E [β1i − β0i] +

(1− x1i) (β0i − E [β0i]) + x1i (β1i − E [β1i]) + (x2i − E [x2i|x′iγ])
′
β2 + ui

= (x2i − E [x2i|x′iγ])
′
(β2 − γ2E [β1i − β0i])

+ (1− x1i) (β0i − E [β0i]) + x1i (β1i − E [β1i]) + ui

The term (1− x1i) (β0i − E [β0i]) + x1i (β1i − E [β1i]) + ui has mean 0 conditional on xi,

and we can therefore identify α2 ≡ (β2 − γ2E [β1i − β0i]) by regressing (yi − E [yi|x′iγ]) on

(x2i − E [x2i|x′iγ]).

With this, we have

y∗i − x′2iα2 = y∗i − x′2i (β2 − γ2E [β1i − β0i])

= (1− x1i) β0i + x1iβ1i + x′2iβ2 + εi − x′2i (β2 − γ2E [β1i − β0i])

= (1− x1i) β0i + x1iβ1i + x′2iγ2E [β1i − β0i] + εi

or

y∗i − x′2iα2 + (1− x1i) β1i + x1iβ0i − x′2iγ2E [β1i − β0i] = β0i + β1i + εi.

The marginal distributions of β0i and β1i must therefore satisfy

P ((y∗i − x′2iα2 + (1− x1i) β1i + x1iβ0i − x′2iγ2E [β1i − β0i]) ∈ A, di = 1|x′iγ = ξ2)

≥ P ((y∗i − x′2iα2 + (1− x1i) β1i + x1iβ0i − x′2iγ2E [β1i − β0i]) ∈ A, di = 1|x′iγ = ξ1)
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for all intervals A and ξ2 > ξ1.

8 Conclusion

Semiparametric sample selection models are generally not point-identified without exclusion

restrictions. In earlier work, Honoré and Hu (2020) derived the sharp identified region of the

parameters in such a model. In this paper, we extend that analysis to allow for parameter

heterogeneity and heteroskedasticity while maintaining the basic linearity, independence and

monotonicity assumptions of the classical sample selection model. We also discuss a potential

outcomes version of the sample selection model, identification through nonlinearities, and

panel data versions of the model.

We illustrate the key insights in a simple wage regression for females, where the parameter

of interest is the coefficient on a dummy variable for being white. We find that for the

full sample, neither the introduction of parameter heterogeneity nor heteroskedasticity is

sufficient for the data to be consistent with the model. The classical sample selection model

is especially at odds with the data for the subsample of women with a college degree or more.
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