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Debt Dynamics with Fixed Issuance Costs

Abstract

We investigate equilibrium debt dynamics for a firm that cannot commit to a future debt policy

and is subject to a fixed restructuring cost. We formally characterize equilibria when the firm

is not required to repurchase outstanding debt prior to issuing additional debt. For realistic

values of issuance costs and debt maturity, the no-commitment policy generates tax benefits

that are similar to those obtained by a benchmark policy with commitment. For positive but

arbitrarily small issuance costs, there are maturities for which shareholders extract essentially

the entire claim to cash-flows.

JEL Classification Codes: G12; G32; G33
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1 Introduction

Enticed by low interest rates and incentivized by government intervention in the corporate debt

market, firms have been issuing debt at unprecedented levels over the past decade.1 Such growth

underscores the role of debt as a key and recurrent source of corporate financing. Because firms make

repeated financing decisions, issuance costs are a crucial determinant of their leverage dynamics,

together with taxes and the cost of financial distress (see, e.g., Graham and Harvey (2001) and

Graham (2022)).

In this paper, we investigate a firm’s dynamic debt policy when shareholders are subject to

debt restructuring costs and cannot commit to future restructuring policies. In a framework

without commitment, shareholders have an incentive to issue additional debt over time both to

increase tax benefits and to extract wealth from existing debtholders. Anticipating this incentive,

creditors account for both future dilutions and a higher default probability when pricing debt. This

anticipation reduces the proceeds from debt issuances. As noted by, e.g., DeMarzo (2019), issuance

costs make it more expensive for the firm to tap the debt market, and thus act as a commitment

device that mitigates the manager’s desire to issue debt too aggressively. As such, issuance costs

may help shareholders extract tax benefits from debt.

We study a firm that, at any time, can issue additional debt or repurchase outstanding debt at

market prices by paying a fixed cost. Consistent with the “leverage ratchet” effect of Admati, De-

Marzo, Hellwig, and Pfleiderer (2018), we first show that in any Markov Perfect Equilibrium (MPE),

firms never find it optimal to repurchase outstanding debt. We can therefore restrict the search for

equilibria to strategies that involve only debt issuances. Within this class, we focus on “barrier”

strategies that are characterized by a single state variable—the firm’s income-to-debt ratio—which

can fall into one of three regions. In the lowest region, shareholders choose to default rather than

service outstanding debt. In the highest region, firms find it optimal to issue additional debt so

that the new income-to-debt ratio immediately jumps into the middle region. In the middle region,

1For instance, in the U.S., the stock of non-financial corporate bonds more than doubled from $3.2 trillions at
the end of 2009 to $6.7 trillions at the end of 2021. Source: Board of Governors of the Federal Reserve System,
Nonfinancial Corporate Business, Table B.103.
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firms choose to service existing debt, but not to issue additional debt.

We then provide a formal characterization of the equilibrium. We show that the existence of an

MPE depends on the interaction between issuance costs and debt maturity. For a given maturity,

we analytically identify an issuance cost threshold above which shareholders find it optimal to never

issue debt. Intuitively, this is because the present value of issuance costs exceed the present value of

additional net tax benefits. For issuance costs below this threshold, we find MPEs in which the firm

issues debt and shareholders extract positive tax benefits with magnitude that varies with maturity.

These results highlight the role that issuance costs play as a commitment device in mitigating debt

issuance, in turn allowing the firm to extract positive tax benefits.

However, as we consider even lower issuance costs, we find a threshold below which an MPE in

barrier strategies no longer exists. That is, there we numerically identify a region of parameters

for which issuance costs are no longer an effective commitment device. This result may at first

be surprising because when debt-restructuring costs are low, shareholders would be able to extract

positive tax benefits if they could commit to a future debt issuance policy. However, without

commitment, we find that these policies are not incentive-compatible. Intuitively, this occurs because

lower rollover costs induce the manager to issue debt more aggressively. This action reduces the

price creditors are willing to pay for new debt, which in turn reduces issuance proceeds, and thus

the option value to keep the firm operating. As such, the manager chooses to default at higher

values of the income-to-debt ratio. This creates a “vicious cycle” of creditors offering lower debt

prices and the manager liquidating the firm at a higher default boundary, eventually leading to a

situation with no equilibrium in barrier strategies.

To quantify the loss in shareholder value due to the firm’s inability to commit to a particular

strategy, we also explore an otherwise identical model in which shareholders can commit to a

future debt adjustment policy. When we calibrate the model to debt maturities and issuance costs

consistent with empirical observation, we find that the tax benefits to debt for the policy without

commitment are only slightly lower than those for the policy with commitment. Moreover, we show

that when the issuance cost parameter approaches zero, there are maturities for which shareholders
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can extract close to 100% of the claim to the firm’s cash flow for both cases with and without

commitment. Therefore, even in the presence of arbitrarily small issuance costs, our model implies

that shareholders’ inability to commit to a dynamic capital structure policy may have only a small

impact on the tax benefits that the firm can extract.

To our knowledge, this is the first paper to provide a formal characterization of MPEs when debt

issuance is subject to a fixed cost, and firms are not forced to repurchase all outstanding debt prior

to issuing new debt. This is in contrast to most of the existing literature, which assumes that the

firm must call (i.e., repurchase) all of its outstanding debt prior to issuing new debt, an assumption

that rarely holds in practice.2 The main challenge of this problem comes from the analysis of off-

equilibrium deviations. Specifically, when the income-to-debt ratio falls in the restructuring region,

shareholders rebalance towards a target that depends on the value of the income-to-debt ratio.

That is, the target is characterized by a function whose domain is the entire restructuring region.

We provide a verification argument for the existence of an MPE and derive necessary and sufficient

conditions for debt issuance to indeed be optimal in the restructuring region. In contrast, when a

firm is forced to call all outstanding debt prior to issuing new debt, the issuance decision is always

made with zero debt outstanding. In this case, the debt restructuring function reduces to a single

point, which greatly simplifies the analysis.

Our paper builds upon the quickly evolving literature that examines dynamic capital structure

decisions of firms. There are only a few tractable frameworks in this literature, due to the difficulty

of valuing assets in an economy in which current prices depend on the firm’s future debt issuance

policy.3 Most relevant to our work is DeMarzo and He (2021), who investigate leverage dynamics

without commitment in the absence of restructuring costs. They show that the unique MPE is

characterized by a locally deterministic process in which new debt is issued in all states of nature,

2See, e.g., Fischer, Heinkel, and Zechner (1989), Leland (1998), Goldstein, Ju, and Leland (2001), Strebulaev
(2007), Danis, Rettl, and Whited (2014), Hugonnier, Malamud, and Morellec (2015), and Dangl and Zechner (2020).

3See, e.g., Leland and Toft (1996), Leland (1998), Brunnermeier and Yogo (2009), Cheng and Milbradt (2012),
He and Xiong (2012a,b), Chen, Xu, and Yang (2012), Brunnermeier and Oehmke (2013), Décamps and Villeneuve
(2014), Diamond and He (2014), He and Milbradt (2014, 2016), Hugonnier, Malamud, and Morellec (2015), Abel
(2016), Huang, Oehmke, and Zhong (2019), Della Seta, Morellec, and Zucchi (2020), and DeMarzo, He, and Tourre
(2021).
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even when the firm is near default. Due to this aggressive policy, this model generates no tax

benefits to debt regardless of the debt’s maturity.

In contrast, we investigate a framework in which debt issuance is subject to a fixed adjustment

cost. There is strong empirical evidence that it is costly for firms to issue debt (see, e.g., Altınkılıc

and Hansen (2000), Yasuda (2005), Kim, Palia, and Saunders (2008), and Ivashina (2009)). In

particular, Leary and Roberts (2005), Strebulaev (2007), and Morellec, Nikolov, and Schürhoff

(2012) show that fixed issuance costs of debt can explain many patterns in the data, such as the

infrequent adjustments observed in firm financing and the discrete size of debt issues. Consistent

with this evidence, we consider a model with fixed issuance costs in which, in a no-commitment

equilibrium, firms issue discrete amounts of debt at infrequent intervals and extract positive tax

benefits, unlike the continuous debt-adjustment policy in DeMarzo and He (2021).

A vast literature has studied dynamic capital structure choice in the presence of issuance costs.4

Closely related to our work is Goldstein, Ju, and Leland (2001), who show that the firm can extract

positive tax benefits from debt in a model with perpetual callable debt and commitment. We extend

their analysis to the case of finite-maturity non-callable debt and no-commitment, and explore the

interplay between maturity and issuance costs. We also use a variation of their policy to assess

how much tax benefits are lost due to the inability to commit to a debt issuance strategy. Several

explanations have been proposed to explain commitment in this framework. For example, firms

can limit future debt issuance by specifying restrictive covenants in their bond indentures (see, e.g.,

Roberts and Sufi (2009)). Alternatively, commitment can arise because of the repeated interaction

between the issuer and credit markets. In this setting, reputation concerns provide shareholders the

incentive to abide by the commitment policy if debtholders were to punish any deviation by pricing

all future debt issuances according to the DeMarzo and He (2021) equilibrium. This idea is further

developed by Malenko and Tsoy (2020), who investigate a model of debt issuance and repurchases

without restructuring costs. They focus on non-Markovian barrier policies that satisfy a credibility

4See, e.g., Kane, Marcus, and McDonald (1984, 1985), Fischer, Heinkel, and Zechner (1989), Titman and
Tsyplakov (2007), Strebulaev (2007), Morellec, Nikolov, and Schürhoff (2012), Hennessy and Whited (2007), Gomes
and Schmid (2012), Bolton, Chen, and Wang (2011), Hugonnier, Malamud, and Morellec (2015), Bolton, Wang, and
Yang (2020), Benzoni, Garlappi, and Goldstein (2020), and many others.
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constraint when EBIT follows a jump-diffusion process and they identify a time-consistent debt

policy outside the Markov class. Aside from the inclusion of jumps and the absence of issuance

costs, their proposed time-consistent policy coincides with our benchmark policy with commitment.

Finally, Dangl and Zechner (2020) also study the interplay between issuance costs and maturity

when the firm chooses how to refinance expiring debt. Similar to our findings, Dangl and Zechner

(2020) highlight a tradeoff between the costs of higher rollover frequencies and the benefits of

increased flexibility associated with shorter maturity debt. Unlike Dangl and Zechner (2020), we

focus on non-callable debt that does not have to be repurchased prior to additional debt being

issued. Moreover, we formally derive necessary and sufficient conditions for the existence of an

MPE in barrier strategies. Finally, we quantify the difference in available tax benefits between

models with and without commitment.

The predictions of our model are in line with the empirical literature that investigates the

capital structure and maturity decisions of firms. Because we specify fixed restructuring costs, our

model predicts that firms issue debt in discrete (rather than continuous) amounts, consistent with

observation. Moreover, our model generates both persistence in leverage and a negative correlation

between profitability and leverage, consistent with, e.g., Titman and Wessels (1988) and Frank and

Goyal (2014). Our model captures these features because, when firms are in the inaction region,

higher profitability increases equity values while debt outstanding remains constant, leading to

lower leverage, and vice-versa. Also consistent with our model’s predictions are van Binsbergen,

Graham, and Yang (2010), and Korteweg (2010), who document that firms are able to extract tax

benefits to debt. Moreover, our findings are consistent with Barclay and Smith (1995) and Stohs

and Mauer (1996), who report that firms are not indifferent toward debt maturity choice. Fama

and French (2002), Baker and Wurgler (2002), and Welch (2004) provide evidence that shocks to

capital structures are persistent, and Leary and Roberts (2005) attribute this persistence to the

presence of adjustment costs. Finally, Graham and Harvey (2001) report survey evidence that 45%

of CFOs are concerned with the tax advantage of interest deductibility, suggesting that firms are

not indifferent to capital structure choices.
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The rest of the paper proceeds as follows. Section 2 presents the model and provides necessary

and sufficient conditions for the existence of barrier-strategy MPEs. In Section 3, we illustrate

the properties of the MPEs and compare them to those of a policy with commitment. Section 4

discusses the lack of existence of single-barrier MPEs and Section 5 concludes. Appendix A and

the Online Appendix contain proofs and additional results.

2 The Model

The firm. We investigate an economy in which all agents are risk neutral and the discount rate

(r > 0) is exogenous. The representative firm in the economy generates cash flows characterized by

an exogenously specified EBIT process Yt with dynamics:

dYt

Yt

= µ dt+ σ dWt , (1)

for some constants µ < r and σ > 0, where dWt denotes increments of a standard Brownian motion.

The value Vt of the claim to EBIT is:

Vt = Et

[∫ ∞

t

e−r(s−t) Ys ds

]
=

Yt

r − µ
. (2)

Due to the linear relation between Yt and Vt in equation (2), we can choose either as the exogenous

state variable. We choose Yt for consistency with the existing dynamic capital structure literature.

The firm dynamically chooses its leverage to maximize shareholders’ value. Specifically, at any

time, the firm can either adjust its capital structure by retiring or issuing bonds at market value,

or do nothing. All outstanding bonds pay coupons at a continuous rate c > 0, and amortize at a

rate ξ. We denote by Ft the date-t outstanding face value of debt. During the interval (t, t + dt),

debtholders receive cash flows (c+ ξ)Ft dt as long as the firm operates. As in the benchmark case of

DeMarzo and He (2021), we assume that c and ξ are exogenous parameters and that debtholders’

recovery in default is zero. The firm’s problem is fully characterized by the state variables Yt and

Ft .
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We assume that the firm faces a fixed cost to adjust its debt. In general, these costs can have

both a fixed and a proportional component. However, we know from DeMarzo and He (2021)

that the MPE with proportional costs would still be characterized by a continuous debt issuance

policy in which the net tax benefit to shareholders is zero. In contrast, Leary and Roberts (2005),

Strebulaev (2007), and Morellec, Nikolov, and Schürhoff (2012) show that fixed issuance costs can

capture many patterns in the data, such as the infrequent adjustments observed in firm financing

and the discrete size of debt issues. Therefore, we restrict our attention to fixed adjustment costs.

The dynamics for the face value of debt are endogenously determined in that, by paying a fixed

adjustment cost βYt , the firm can adjust its capital structure by repurchasing or issuing bonds at

market prices. The adjustment cost is fixed in that it is independent of the size of debt adjustment.

As a result of debt adjustments, the face value of the firm’s debt evolves according to the process

dFt = −ξFt- dt+ At Ft- dNt ,

where At =
(

Ft−Ft-

Ft-

)
is the fractional change in outstanding debt at a restructuring time t, and dNt

is a counting process which increases by unity each time debt is restructured. Both the size (At)

and timing (dNt) of debt issuance, are chosen by the firm.

The firm’s EBIT Yt is subject to a corporate tax rate τ ∈ [0, 1) and coupon payments are tax

deductible. Hence, the instantaneous cash flow to shareholders, i.e., the dividend δ(Fs , Ys), is given

by

δ(Fs , Ys) ≡ (1− τ)Ys − (c(1− τ) + ξ)Fs . (3)

Markov strategies. Because the firm faces a positive debt adjustment cost, we consider Markov

strategies in which management makes one of the following three choices, based only on the

knowledge of the current value of the state variables (Ft , Yt): (i) default; (ii) restructure the

amount of debt outstanding; or (iii) do neither, i.e., inaction, and simply service outstanding

debt. More formally, denote by D and R the sets of state variables (Ft , Yt) at which default

and debt restructuring occur, respectively. Then a Markov strategy (a) consists of a default time
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τ
b
(a) = inf{t ≥ 0 : (Ft , Yt) ∈ D} and a debt adjustment function At(a) ≡ A(Ft , Yt|a) ≥ −1, for

(Ft , Yt) ∈ R. The adjustment function At(a) determines the face value of debt upon restructuring,

that is, Ft = F
t−
(1 + At(a)). A special case consists of Markov strategies that can be fully

characterized by a single state variable, the income-to-debt-ratio yt = Yt/Ft . We refer to such

strategies as “reduced” Markov strategies. Note that any strategy that involves continuous debt

adjustments would lead to an infinite accumulation of restructuring costs, and can therefore be

ruled out.

Debt valuation. We denote by Pt(a) ≡ P (Ft , Yt |a) ≥ 0 the date-t present value of the outstand-

ing debt claim per unit of face value Ft when creditors anticipate that management will use the

Markov strategy (a). Since each bond pays a coupon c per unit of face value and amortizes at the

rate ξ, absence of arbitrage opportunities implies5

Pt(a) ≡ P (Ft , Yt |a) = Et

[∫ τ
b
(a)

t

e−(r+ξ)(s−t)(c+ ξ) ds

]
, (4)

where τ
b
(a) = inf{s ≥ t : (Fs , Ys) ∈ D}, with D denoting the default region. The exponential

amortization rate ξ implies that, conditional upon no default, bonds have an expected maturity

1/ξ. If a strategy (a) is reduced Markov, then P (Ft , Yt|a) = P (yt |a), where yt = Yt/Ft is the

income-to-debt ratio.6

Equity valuation without commitment. Absent commitment, creditors will lend money to

the firm only if the debt contract is incentive compatible in that shareholders would never want to

deviate from the default and issuance strategy that creditors use to price the bonds at issuance.

If creditors conjecture that the firm will use a Markov strategy (a) but management instead uses

5The absence of arbitrage opportunities requires that Pt(a) = Et

[∫ τm∧τ
b
(a)

t
e−r(s−t)c ds+ 1{τm<τ

b
(a)}e

−r(τm−t)
]

on the set {τ
m

∧ τ
b
(a) > t} where τ

m
is an exponential random variable with mean m = 1/ξ that denotes

the bond maturity. Integrating inside the expectation against the conditional distribution P
t
[τ

m
∈ ds |τ

m
> t ] =

1{s>t}e
−ξ(s−t)ξds shows that on the set {τ

b
(a) > t} the market price of an individual bond issued by the firm is

given by equation (4).
6More formally, if a strategy (a) is reduced Markov, the debt price function P (F, Y ) is homogeneous of degree 0

in F and Y , i.e., P (1, y = Y/F ) ≡ P (y) = P (F, Y ).
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another strategy (s), then the value of equity is

Et(s, a) ≡ E(Ft , Yt|s, a) = Et

[∫ τ
b
(s)

t

e−r(u−t)

(
δ(Fu , Yu)︸ ︷︷ ︸

Dividend

du+
(
Pu(a)Au(s)Fu−

− βYu

)︸ ︷︷ ︸
Cash inflow/outflow from

debt restructuring net of cost

dNu(s)

)]
,

where (τ
b
(s), Au(s)) are the default time and the restructuring process associated with strategy (s),

δ(Fu , Yu) is the after-tax cash flow defined in equation (3), Pu(a) is the price of debt per unit

of face value defined in equation (4), and dNu(s) is a counting process that increases by one at

the time of debt restructuring. Finally, note that Au(s)Fu−
=
(
Fu − F

u−

)
, and hence the term(

Pu(a)Au(s)Fu−
− βYu

)
represents the amount distributed to shareholders after debt restructuring,

net of the fixed restructuring cost βYu . If, in addition, both strategies (s, a) are reduced Markov

strategies, that is, they can be characterized by the single state variable yt , then equity value

depends on the state variables (Ft , Yt) only through the ratio yt ≡ Yt/Ft and we define the scaled

equity function7

et(s, a) ≡ e(yt|s, a) =
E(Ft , Yt |s, a)

Ft

.

2.1 Characterization of Markov perfect equilibria

Here we define the concept of Markov perfect equilibrium and characterize its properties.

Definition 1 (Markov perfect equilibrium) A Markov Perfect Equilibrium (MPE) is a strat-

egy (a ∈ M) such that

Et(a, a) = sup
s∈M

Et(s, a), t ≥ 0,

where M denotes the space of feasible Markov strategies.8 A reduced MPE is an MPE in the class

of reduced Markov strategies.

The definition formalizes the notion that, in an MPE, shareholders’ best response to the creditors’

7More formally, if a strategy (a) is reduced Markov, the equity price function E(F, Y ) is homogeneous of degree

1 in F and Y , i.e., E(1, y = Y/F ) ≡ e(y) = E(F,Y )
F .

8Feasible Markov strategies are Markov strategies that satisfy the integrability condition (I.7) in the Online
Appendix.

9



conjectured strategy (a) is the strategy (a) itself. Therefore, if (a) is an MPE, shareholders have

no incentive to deviate to a different strategy (s). We next provide two properties of MPE that are

useful to construct a candidate equilibrium.

Property 1 (Leverage ratchet effect) In any feasible strategy that is an MPE, shareholders

never repurchase debt.

Property 1 generalizes the “leverage ratchet” effect (see, e.g., Admati, DeMarzo, Hellwig, and

Pfleiderer (2018) and DeMarzo and He (2021)) to the case of fixed restructuring costs and allows

us to restrict the search of equilibria within strategies that involve only debt issuance. As in

Admati, DeMarzo, Hellwig, and Pfleiderer (2018), debt repurchases reduce shareholder wealth

because (i) they reduce the option value to default in states of the world where the firm would

have defaulted absent such a repurchase; (ii) they transfer more resources to creditors via reverse

dilution; and (iii) they reduce tax shields. In our setting, restructuring costs make debt repurchases

more costly and therefore even less attractive. Proposition II.1 in the Online Appendix formalizes

this argument and provides a rigorous proof.

Property 2 (Constant default boundary) If a strategy (a) is a reduced MPE then there is a

constant value of the income-to-debt ratio y
b
(a) > 0 such that the equity value e(y|a) ≡ et(a, a) = 0

in the default region y ≤ y
b
(a).

Property 2, which follows from Corollary II.2 in the Online Appendix, implies that in any reduced

MPE the default region is characterized by a constant, rather than a time-varying default boundary.

Taken together, these two properties allow us to restrict the search of MPEs, but not the set of

possible deviations, to the subset of debt issuance and default strategies characterized by a constant

default threshold.

2.2 Barrier strategies

A class of strategies of particular interest within the set identified in Section 2.1 is the class of barrier

strategies that can be characterized by two parameters and one function. The two parameters are
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the default boundary (y
b
) and the debt-issuance boundary (yu), with the restriction (yu > y

b
). These

two parameters demarcate three regions. The region yt ≤ y
b
is the default region, where it is optimal

for management to immediately default, rather than continue to service outstanding debt. The

region yt ∈ (y
b
, yu) is the inaction region, where it is optimal for management to neither default nor

change the level of outstanding debt. Finally, the region yt ≥ yu is the restructuring region, where it

is optimal for shareholders to issue debt in sufficient amounts so that the post-issuance income-to-

debt ratio immediately jumps to the inaction region. The function Y(yt) : [yu ,∞) → (y
b
, yu) is the

restructuring function associated with the parameters y
b
and yu . Immediately after a debt issuance,

the income-to-debt ratio jumps from y
t−

∈ [yu ,∞) to y
t+

≡ Y(y
t−
) ∈ (y

b
, yu).

9 An important special

case is y∗ ≡ Y(yu), which is the target income-to-debt ratio chosen at the upper boundary of the

inaction region. In this section, we focus on such strategies to construct a candidate MPE.

Note that, under a barrier strategy, if the state variable “begins” in the inaction region, then

the entire restructuring region is inaccessible, except for yu . However, as we discuss in Section 2.3,

the characterization of a barrier equilibrium relies on a verification argument for all off-equilibrium

values yt ∈ (yu ,∞). Applying Itô’s lemma to the income-to-debt ratio yt = Yt/Ft , we find:

dyt =
dYt

Ft-

− Yt

F 2
t-

(−ξFt- dt) +

(
Yt

Ft- (1 + At)
− Yt

Ft-

)
1{yt-≥yu}

= yt-

[
(µ+ ξ) dt+ σ dWt

]
+ (Y(yt- )− yt- )︸ ︷︷ ︸

≤0

1{yt-≥yu} , (5)

where, consistent with the focus on barrier strategies, we have replaced the counting process (dNt)

with an indicator function that equals one if and only if the current state vector is in the restructuring

region, and where we have used the relation Y(yt- ) =
yt-

1+At
.

Debt valuation in barrier strategies. In a barrier strategy (a), the default stopping time τ
b
(a)

in the definition of the bond price in equation (4) denotes the first time that the income-to-debt ratio

yt hits the default boundary y
b
(a) from above, that is, τ

b
(a) := inf{s > t : ys ≤ y

b
(a)}. Because

9Corollary II.3 in the Online Appendix shows that in any MPE in barrier strategies shareholders never find it
optimal to jump either to the default region or to another location in the restructuring region.
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barrier strategies are reduced Markov strategies, we can write the bond price in equation (4) as a

function of the income-to-debt ratio (yt) only:

Pt(a) ≡ P (yt|a) = Et

[∫ τ
b
(a)

t

e−(r+ξ)(s−t)(c+ ξ) ds

]
. (6)

The firm may issue additional debt after date-t, which impacts the default time τ
b
(a), but not the

validity of the pricing equation (6). For ease of notation, in what follows, we will suppress the

dependence of the debt value on the strategy (a). Given the zero-recovery assumption, the bond is

worthless in the default region, i.e., P (yt) = 0, for all yt ∈ (0, y
b
]. Similarly, debt issuance occurs

when the current income-to-debt ratio is in the restructuring region [yu ,∞). To preclude arbitrage

opportunities, since debt-issuance times are predictable, we require that the bond price does not

jump at the time of issuance, that is,

P (yt) = P (Y(yt)) ∀yt ∈ [yu ,∞).

Standard arguments relying on Itô’s lemma and the continuity of the bond price at the issuance

boundary imply that, for values of yt ∈ (y
b
, yu), the debt price in equation (6) is the unique solution

P (y) to the following ordinary differential equation:

(c+ ξ)− (r + ξ)P (y) + (µ+ ξ)y P ′(y) +
σ2

2
y2 P ′′(y) = 0, y ∈ (y

b
, yu), (7)

subject to the boundary conditions

P (y) = 0 0 ≤ y ≤ y
b

P (y) = P (Y(y)) y ≥ yu .
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The solution is

P (y) =



0 if 0 ≤ y ≤ y
b(

c+ξ
r+ξ

) (
1 + Aπ y

Θ +Bπ y
Π
)

if y
b
< y < yu(

c+ξ
r+ξ

) (
1 + Aπ Y(y)Θ +Bπ Y(y)Π

)
if y ≥ yu ,

with Aπ ≡ yΠ
u
−y∗Π

yΠ
b
(yΘu −y∗Θ)+yΘ

b
(y∗Π−yΠ

u )
≤ 0 and Bπ ≡ y∗Θ−yΘ

u

yΠ
b
(yΘu −y∗Θ)+yΘ

b
(y∗Π−yΠ

u )
≤ 0, and where the

exponents (Θ, Π) are the two solutions of the quadratic equation

σ2

2
λ(λ− 1) + (µ+ ξ)λ− (r + ξ) = 0. (8)

Because both Aπ and Bπ are non-positive and (y
b
< y∗ < yu), the bond price function is strictly

concave in the inaction region (y
b
, yu), with P ′(y

b
) > 0, P ′(y∗) ≥ 0, and P ′(yu) ≤ 0. Intuitively,

an increase in the income to debt ratio y raises the value of debt claim. However, as y approaches

the restructuring boundary (yu), bondholders anticipate that their claim will be diluted by debt

issuance. This explains the negative slope of the debt price function at yu .

Equity valuation in barrier strategies. Consider the equity value that prevails when cred-

itors correctly anticipate that management will use a barrier strategy a = (y
b
, yu ,Y(y)). In the

restructuring region [yu ,∞), let E(Ft , Yt) be the equity value just prior to debt restructuring and

E(F ∗
t
, Yt) the value just after debt restructuring to the new face value F ∗

t
. To preclude arbitrage,

the value of the equity claim just prior to debt restructuring must equal the equity claim just after

restructuring plus any cash flows received from debt issuance:

E(Ft , Yt) = E(F ∗
t
, Yt)︸ ︷︷ ︸

Post-issuance equity value

+(F ∗
t
− Ft) P

(
F ∗

t
, Yt

)︸ ︷︷ ︸
Proceeds from debt issuance

− βYt︸︷︷︸
Issuance costs

, (9)

where, for ease of notation, we suppress the dependence of claim values on the barrier strategy (a).

The second term on the right-hand side of equation (9) is the cash flow to equity from the debt
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issuance of size (F ∗
t
− Ft), which is priced by creditors at the post-adjustment price P

(
F ∗

t
, Yt

)
.

Defining yt ≡ (Yt/Ft) and zt ≡
(
Yt/F

∗
t

)
, we use the homogeneity property of the equity and debt

claims to identify the expressions E(F ∗
t
, Yt) = F ∗

t
e (zt), P

(
F ∗

t
, Yt

)
= P

(
1,

Yt

F ∗
t

)
≡ P (zt). As such,

we can rewrite equation (9) as:

e(yt) ≡ E(Ft , Yt)

Ft

=

(
yt

zt

)
e(zt) +

(
yt

zt
− 1

)
P (zt)− βyt ≡ Φ(yt , zt), yt ∈ [yu ,∞). (10)

Inside the inaction region, i.e., for yt ∈ (y
b
, yu), standard results relying on Itô’s lemma show

that the scaled equity value e(y) is the solution to the following ordinary differential equation

δ(y)− (r + ξ) e(y) + (µ+ ξ)y e′(y) +
σ2

2
y2
t
e′′(y) = 0, for all y ∈ (y

b
, yu), (11)

with δ(y) ≡ δ
(
1, Y

F

)
= δ(F,Y )

F
, subject to the boundary conditions

e(y) = 0 0 ≤ y ≤ y
b

e(y) =
y

Y(y)
e(Y(y)) +

(
y

Y(y)
− 1

)
P (Y(y))− βy y ≥ yu .

The solution to this problem is

e(y) =



0 if 0 ≤ y ≤ y
b

ê(y) + Aε y
Θ
t
+Bε y

Π if y
b
< y < yu

y
Y(y)

[
ê(Y(y)) + Aε Y(y)Θ +Bε Y(y)Π

]
+
(

y
Y(y)

− 1
)
P (Y(y))− βy if y ≥ yu ,

(12)

with ê(yt) denoting the levered claim to EBIT,

ê(y) = −c(1− τ) + ξ

r + ξ
+

(
1− τ

r − µ

)
y, (13)
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and where the constants (Aε , Bε) are the unique solutions to the value-matching conditions

e(y
b
) = 0 (14)

e(yu) =
yu

y∗
e(y∗) +

(
yu

y∗
− 1

)
P (y∗)− βyu , with y∗ ≡ Y(yu). (15)

Equations (12)–(15) determine the equity value under any barrier strategy a = (y
b
, yu ,Y(y)). The

next section provides necessary and sufficient conditions for a barrier strategy (a) to be an MPE.

2.3 Characterization of MPEs in barrier strategies

In a barrier-strategy MPE, in addition to the value-matching conditions (14)–(15), the equity value

function e(yt) must satisfy smooth-pasting conditions at the default and restructuring boundaries

(y
b
, yu), i.e.,

e′(y
b
) = 0 (16)

e′(yu) =
e(y∗) + P (y∗)

y∗
− β. (17)

The smooth pasting condition (16), which is derived by differentiating (14) with respect to y
b
,

guarantees that y
b
is the default threshold that maximizes equity value under the limited liability

constraint. Similarly, the smooth pasting condition (17), which is derived by differentiating (15)

with respect to yu , guarantees that yu is chosen optimally.

Moreover, in any MPE the restructuring function Y(y) maximizes equity value at the time of

restructuring, that is,

Y(y) = argmax
z∈(y

b
,yu )

{y
z
e(z) +

(y
z
− 1
)
P (z)− βy

}
, y ≥ yu . (18)

For the special case (y = yu), we denote y∗ ≡ Y(yu).

Finally, the default threshold y
b
of an MPE with debt issuance cannot exceed the threshold y

b,NI

of a “no-issuance” MPE in which shareholders find it optimal to never issue debt, derived below

in equation (26). The intuition for this result is as follows. If creditors price debt according to a
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policy (a) with default threshold such that y
b
> y

b,NI
, then it is in shareholders’ best interest not

to choose (a), because there are policies under which equity value would be higher, implying that

(a) cannot be an MPE. For example, since under policy (a) the equity claim e(y|a) = 0 for all

y ∈ [0, y
b
], the value of equity under this strategy would be lower than that in a no-issuance MPE

for all y ∈ [y
b,NI
, y

b
]. Moreover, Lemma II.10 in the Online Appendix shows that the equity function

is increasing and convex in y ∈ (y
b
, yu) and decreasing in y

b
. Thus, the equity claim in a no-issuance

MPE would be higher than that under policy (a) for all y ∈ [y
b,NI
, yu ]. As equation (26) shows, the

default threshold y
b,NI

in a no-issuance MPE coincides with the default barrier of an MPE without

issuance costs (see Proposition 4, equation (26) in DeMarzo and He (2021)) and with the default

barrier in the Leland (1994) model, extended for finite maturity.

In summary, necessary (but not sufficient) conditions for a strategy (a) to be an MPE in barrier

strategies are: (i) the value-matching conditions (14)–(15), (ii) the smooth pasting conditions (16),

(iii) the optimality of the restructuring function (18) and (iv) the requirement that y
b
< y

b,NI
.

The next proposition formalizes these necessary conditions, which provide a blueprint for the

construction of a candidate MPE in barrier strategies. Lemma II.9 in the Online Appendix proves

these conditions.

Proposition 1 (Necessary conditions for barrier-strategy MPE) Assume that the barrier

strategy a = (y
b
, yu ,Y(y)) is an MPE. Then the following conditions are satisfied:

1. Default boundary: y
b
< y

b,NI
, with y

b,NI
= Π

Π−1
r−µ
r+ξ

(
c+ ξ

1−τ

)
and Π given by the negative root

of the quadratic equation (8).

2. Limited liability: e(y|a) = max{ϕ(y|a), 0} = 0 for y ∈ (0, y
b
], where ϕ(y|a) is the equity

continuation value

ϕ(y|a) ≡ sup
z≥0

Φ(y, z|a) = sup
z∈R+

{y
z
e(z|a) +

(y
z
− 1
)
P (z|a)− βy

}
.

3. Equity valuation in the restructuring region: e(y|a) = max{ϕ(y|a), 0} > 0 for y ∈ [yu ,∞).
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4. Value-matching and smooth-pasting at the default boundary y
b
:

e(y
b
|a) = e′(y

b
|a) = 0.

5. Value-matching and smooth-pasting at the restructuring boundary yu:

e(y|a) = y

Y(y)
e(Y(y)|a) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy, y ≥ yu

e′(y|a) = e(Y(y)|a) + P (Y(y)|a)
Y(y)

− β, y ≥ yu .

6. Optimality of restructuring:

{Y(y)} = argmax
z∈(y

b
,yu )

{y
z
e(z|a) +

(y
z
− 1
)
P (z|a)− βy

}
, y ≥ yu . (19)

To insure that such a candidate strategy is indeed an MPE, we also need to verify that

shareholders have no incentive to deviate from the strategy conjectured by creditors. Intuitively,

in a barrier-strategy MPE it must be that: (i) in the default region (y ≤ y
b
), default dominates

restructuring or inaction; (ii) in the inaction region (y
b
< y < yu), inaction dominates defaulting or

restructuring; and (iii) in the restructuring region (y ≥ yu), restructuring into the inaction region

dominates inaction, default, and restructuring to any point in the default or restructuring regions.

In an MPE, the shareholders’ strategy (s) coincides with the conjectured strategy (a) of bond-

holders, i.e., (s = a) in Definition 1. Therefore, in what follows we condition the claim values to the

equilibrium strategy (a). As a first step, we investigate the value Φ(yt , z|a), defined in equation (10),

of a barrier strategy (a) in which management decides to change the level of outstanding debt so

that the firm’s income-to-debt ratio immediately jumps from yt to z. If (a) is an MPE then

e(y|a) ≥ Φ(yt , z|a) for all y, z ∈ [0, yu ] and Φ(yt , z|a) ≤ Φ(yt ,Y(yt)|a) for all z ∈ [y
b
, yu ] and

yt ≥ yu .

Second, we also need to show that inaction is dominated by immediate debt issuance in the

restructuring region. To provide intuition, we compare two strategies. The first strategy is to
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follow the proposed restructuring policy by immediately issuing an amount of debt as described in

equation (10) above. The second strategy is to wait a period dt (in turn, receiving the cash flows

owed to shareholders), and then issue an amount of debt according to equation (10). Hence, for

a proposed strategy to be an equilibrium, for all values of (Yt , Ft) such that yt ≡
Yt

Ft
∈ [yu ,∞), it

must be that:

E(Ft , Yt |a) ≥ δ(Ft , Yt) dt+ e−r dt Et [E(Ft + dFt , Yt + dYt |a)] . (20)

In the special case of Ft = 0, equation (20) implies that the equity value of an unlevered firm that

issues debt in the future must be higher than the value of an equivalent firm that never issues debt:

E(0, Yt |a) ≥
(
1− τ

r − µ

)
Yt . (21)

This condition will prove important in Section 3 when we numerically investigate the existence of

MPEs and compute the associated net tax benefit of debt.

Using Itô’s lemma and recalling that E(Ft , Yt |a) = Fte(yt|a) and δ(Ft , Yt) = Ftδ(yt), equa-

tion (20) simplifies to:

δ(yt)− (r + ξ) e(yt |a) + (µ+ ξ)y e′(yt |a) +
σ2

2
y2
t
e′′(yt |a) ≤ 0. (22)

Note that this equation differs from equation (11) only due to the inequality sign. Equation (20)

is reminiscent of the optimal strategy of an agent whose only available gamble is associated with

an expected loss, and whose only decision is to choose when to stop playing. As such, we refer

to equation (22) as the “supermartingale condition.” While the above intuition contemplates only

a particular deviation from the candidate equilibrium policy, the following proposition provides a

formal characterization of the necessary and sufficient conditions for a barrier strategy to be an

MPE.

Proposition 2 (Verification argument) Consider a barrier strategy a = (y
b
, yu ,Y(y)) that sat-

isfies the conditions of Proposition 1 and let Φ(y, z|a) be the equity value when the income-to-debt

ratio is y ≥ 0 and the firm restructures to a target z ≥ 0, defined in equation (10). Then such a
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strategy (a) satisfies

sup
z∈[y

b
,yu ]

Φ(y, z|a) = sup
z≥0

Φ(y, z|a), y ≥ 0, (23)

and constitutes an MPE if and only if

e(y|a) ≥ Φ(y, z|a), (y, z) ∈ [0, yu ]
2, (24)

and the following condition holds for all y ≥ yu:

δ(y)− (r + ξ) e(y|a) + (µ+ ξ)y e′(y|a) + σ2

2
y2
t
e′′(y|a) ≤ 0, (25)

or, equivalently,

δ(y)− (r − µ) e(y|a) + (µ+ ξ)P (y|a) + 1

2
σ2y P ′(y|a) ≤ 0.

Equation (23) states that it is never optimal for shareholders to issue debt so that the post-issuance

income-to-debt ratio falls either into the default region, y < y
b
, or into the restructuring region

y > yu .
10 The condition in equation (24) guarantees that it is not optimal to issue debt when the

income to debt ratio y is inside the inaction region (y
b
, yu). Equation (25), which is equivalent

to the supermartingale condition that we derived heuristically in equation (22), provides an off-

equilibrium condition guaranteeing that it is optimal for shareholders to issue debt immediately

when the income-to-debt ratio falls in the restructuring region, y ≥ yu .

A key requirement for the verification argument in Proposition 2 is to allow for any possible

off-equilibrium Markov strategies, including strategies outside of the barrier class. To achieve this

generality, the Online Appendix establishes that a strategy (a) is an MPE if and only if the induced

equity value can be written as an optimal stopping time problem over all stopping times associated

with Markov strategies, not just those in the barrier class (Lemmas II.4 and II.5). The proof of

Proposition 2 exploits this stopping time representation and applies results from the stochastic

control literature (e.g., Lamberton and Zervos (2013)) to obtain a formal characterization of the

10Corollary II.3 in the Online Appendix provides a formal proof of this claim.
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MPE.

2.4 No-issuance equilibrium

In this section we identify necessary and sufficient conditions for an MPE in which shareholders

default strategically and find it optimal to never issue additional debt in the future. This is a

special case of the barrier strategy MPE derived in the previous section in which the restructuring

boundary is infinite: yu → ∞.

We first investigate the case in which shareholders are not allowed to issue debt in the future,

but can default strategically. In this case, the equity value is given by:

e
NI
(yt) = sup

τ

Et

[∫ τ

t

e−(r+ξ)(s−t) δ(y
s
) ds

]
, with y

t
≡ Yt/F t .

Because shareholders cannot issue any debt in the future, the face value of debt evolves via

dF t = −ξF tdt.

Itô’s lemma implies that the income-to-debt ratio y
t
dynamics follow:

dy
t

y
t

= (µ+ ξ) dt+ σ dWt .

It is well known (see, e.g., DeMarzo and He (2021, Propositions 4 and 6)) that in this case the

default boundary, which satisfies the smooth pasting condition, is

y
b,NI

≡
(

Π

Π− 1

)(
r − µ

r + ξ

) (
c(1− τ) + ξ

1− τ

)
, (26)
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and that the values of debt and equity per unit face value of debt Ft are:

P
NI
(y) =

 0 if 0 ≤ y ≤ y
b,NI(

c+ξ
r+ξ

) (
1−

(
y

y
b,NI

)Π)
if yt > y

b,NI
,

(27)

e
NI
(y) =

 0 if 0 ≤ y ≤ y
b,NI

ê(y)− 1−τ
(r−µ)Π

(
y

y
b,NI

)Π
y
b,NI

if y > y
b,NI

,
(28)

where ê(y) is the value of the levered claim to EBIT defined in equation (13), and Π is the negative

root of the quadratic equation (8).

The debt and equity values in equations (27)–(28) are derived under the assumption that

shareholders do not issue any debt in the future. In order for this no-issuance strategy to be an

MPE, it follows from Proposition 2 that, for any value of the income-to-debt ratio y, shareholders

find it optimal not to issue debt, that is:

e
NI
(y)︸ ︷︷ ︸

No issue

≥ sup
z≥0

{y
z
e
NI
(z) +

(y
z
− 1
)
P

NI
(z)− βy

}
︸ ︷︷ ︸

Issue

≡ ϕ
NI
(y), (29)

Since the debt and equity prices in equations (27)–(28) do not depend on β, condition (29) is

equivalent to

β ≥ β∗(ξ) ≡ sup
(y,z)∈[y

b,NI
,∞]2

{
e
NI
(z)

z
− e

NI
(y)

y
+

(
1

z
− 1

y

)
P

NI
(z)

}
. (30)

As we show in Appendix A.2, the incentive-compatibility condition (30) holds for any y ≥ y
b,NI

if

and only if it holds for y → ∞. That is, ϕ
NI
(∞) = sup

y∈[y
b,NI

,∞]
ϕ

NI
(y). This is because the benefit

of issuing debt is highest when there is no debt in place. Hence, it is necessary to check only that

shareholders will not want to issue debt for y → ∞. Checking that issuance is not optimal at y → ∞

is also sufficient since, for finite values of y, the benefit to issue debt is smaller and shareholder will

still not want to issue debt.

The case y → ∞ corresponds to a generalization of the Leland (1994) model in which the
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issuance of finite maturity debt can occur only at time zero when the firm is unlevered, that is,

F0 = 0. Using this property, we can find the threshold β∗(ξ) of debt issuance costs above which the

MPE involves no debt issuance. Specifically, letting y → ∞ in equation (30), we find that

β∗(ξ) = sup
z∈[y

b,NI
,∞]

{
e
NI
(z)

z
− 1− τ

r − µ
+
P

NI
(z)

z

}
. (31)

The solution y∗
NI

to the maximization problem in equation (31) identifies the optimal income-to-debt

ratio for a firm that, as in Leland (1994), starts unlevered and issues debt only once at time 0. It

is given by:

y∗
NI

=

(
τc

τc+ (−Π)(c+ ξ)

) 1
Π

y
b,NI
. (32)

Using equations (27), (28) and (32), we can rewrite equation (31) as:

β∗(ξ) =

(
1− τ

r − µ

)(
τc

τc− Π(c+ ξ)

)Π−1
Π
[
(c+ ξ)(1− Π)

c(1− τ) + ξ
− 1

]
. (33)

Therefore, the no-issuance strategy is an MPE if and only if debt issuance costs are higher than the

threshold β∗(ξ). For β > β∗(ξ), the restructuring barrier yu in the barrier strategy MPE converges

to infinity, yu → ∞, and the restructuring target y∗ → y∗
NI
, where y∗

NI
is defined in equation (32).

An important special case is ξ = 0, for which we obtain

β =

(
τ

r − µ

)(
τ − Π∗

τ

) 1
Π∗

, where Π∗ ≡ Π
(ξ=0)

=
σ2

2
−µ−

√(
σ2

2
−µ

)2
+2rσ2

σ2 < 0. (34)

If β > β, then regardless of debt maturity 1/ξ, the MPE corresponds to a policy in which there is

no future debt issuance (i.e., yu = ∞).

2.5 Dynamic debt issuance with commitment

So far we have focused on Markov-perfect equilibria in which shareholders do not have the ability

to commit to a future debt issuance policy. To assess the value of commitment to shareholders,
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here we investigate a benchmark model in which shareholders can commit to a future restructuring

policy. Specifically, we consider a variation of the Goldstein, Ju, and Leland (2001) framework in

which debt maturity (1/ξ) is finite and shareholders commit to an optimal restructuring threshold

yu and target y∗, but not to a default boundary y
b
, which is chosen to be consistent with limited

liability. Commitment to the restructuring policies (yu , y
∗) could arise, for instance, by the firm

specifying restrictive covenants in its bond indenture that limit future debt issuances (see, e.g.,

Roberts and Sufi (2009)). Alternatively, our benchmark policy can be motivated based on the

repeated interactions between the issuer and the credit market. In this context, reputation concerns

provide shareholders the incentive to abide by the commitment policy if the punishment is that,

following a deviation, debt would always be priced according to the no-commitment equilibrium of

DeMarzo and He (2021). Such a “grim-trigger” punishment is a credible threat because debtholders

observe the size of the debt issuance, pay fair value for their claim at the restructuring date, and

are therefore indifferent to the firm’s debt issuance policy.

For consistency with our no-commitment framework, we modify the Goldstein, Ju, and Leland

(2001) setting to the case in which the firm faces fixed restructuring costs and does not need

to repurchase all of its outstanding debt prior to issuing new debt.11 Furthermore, we extend

their model to allow for finite maturity. As in Goldstein, Ju, and Leland (2001), we define the

commitment policy (y
b
, y∗, yu)

GJL that maximizes the enterprise value at the beginning of the firm’s

life, subject to the constraint that the default decision is incentive compatible, i.e., y
b
satisfies a

smooth-pasting condition e′(y
b
) = 0. More formally, the commitment policy (y

b
, y∗, yu)

GJL solves

the following problem:

(y
b
, y∗, yu)

GJL = argmax
0≤y

b
≤y∗≤yu

e(y∗) + P (y∗)

y∗
− β, such that e′(y

b
) = 0,

where the debt and equity prices, P (y) and e(y), satisfy the ODEs (7) and (11), for y ∈ (y
b
, yu),

11In the Goldstein, Ju, and Leland (2001) model restructuring costs are proportional. However, because the firm
is constrained to repurchase all debt before issuing new debt, in their model, there is de facto a fixed issuance cost.
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subject to the boundary conditions

P (y
b
) = 0 (zero debt recovery at default)

P (yu) = P (y∗) (no jump at issuance)

e(y
b
) = 0 (zero equity recovery at default)

e(yu) =
yu

y∗
e(y∗) +

(
yu

y∗
− 1

)
P (y∗)− βyu (equity value at issuance).

3 Results

In this section, we investigate the properties of the MPE in barrier strategies derived from our

model. Table 1 reports the coefficients for the baseline calibration of the model. We set the annual

risk-free rate to r = 4%, consistent with the average three-month constant maturity U.S. Treasury

yield over the 1990–2020 period. We fix the drift of the EBIT dynamics in equation (1) to µ = 0,

which yields a price-dividend ratio 1/(r − µ) = 25. Finally we set the EBIT volatility coefficient

to σ = 22%, consistent with values used in the dynamic capital structure literature (e.g., Leland

(1994)). We assume that corporate profits are taxed at a rate τ = 20% and we fix the coupon rate

c = r.12

The key parameters of our model are the debt issuance cost parameter β and the inverse maturity

parameter ξ. In our benchmark case, we calibrate them to match two empirical facts: (i) an

average debt maturity of three to seven years (e.g., Choi, Hackbarth, and Zechner (2018)) and

(ii) debt issuance costs in the range of one to two percent of the amount issued (e.g., Altınkılıc and

Hansen (2000)). Within these ranges, we focus on a maturity of five years (i.e., ξ = 0.2), and a

debt issuance cost parameter β that generates a 1% fee on the amount raised. From equation (9),

issuance costs at a restructuring time t equal βYt = βyuFt . Moreover, the amount of debt raised is

(F ∗
t
− Ft) P

(
Yt/F

∗
t

)
. Noting that y∗F ∗

t
= yuFt = Yt and simplifying, we choose β so that:

β = 0.01×
(

1

y∗
− 1

yu

)
P (y∗),

12Choosing c so that the bond is priced at par at issuance generates nearly identical results.
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where P (y∗), which equals P (yu), is the MPE debt issuance price when debt maturity is five years.

We obtain a value β = 0.065, which corresponds to 0.26% of asset value.

3.1 MPEs in barrier strategies

Figure 1 partitions the parameter space (β, ξ) into two regions separated by the blue line labeled

“existence threshold.” The points to the right of this threshold represent MPEs in that they satisfy

the necessary and sufficient conditions of Proposition 2. Within this region, the red line labeled “no-

issuance threshold” further partitions barrier-strategy MPEs into two sub-regions: one region with

a finite restructuring boundary yu , and one region with yu = ∞, implying that firms in this region

choose not to issue debt in the future. The no-issuance threshold β∗(ξ) is determined analytically

by equation (33). Figure 2 illustrates policy parameters for the baseline case of a five-year debt

maturity, ξ = 0.2, as a function of β. As the issuance cost parameter β approaches β∗(ξ = 0.2) from

below, the values of the default threshold and restructuring target (y
b
, y∗) converge to those of the

generalized Leland (1994) model given in equations (26) and (32), and the restructuring threshold

yu approaches infinity. That is, when β is sufficiently high so that the threshold yu goes to infinity,

both the no-commitment model and the model with commitment converge to the Leland model.

The intuition for the three regions in Figure 1 is the following: For any given maturity (1/ξ),

and for sufficiently large values of β (i.e., the region to the right of the no-issuance threshold in

Figure 1), issuance costs exceed the tax-benefits from debt and, in equilibrium, the firm finds it

optimal not to issue debt in the future. A special case in this region is β = limξ→0 β
∗(ξ), defined

in equation (34) and denoted by the red dotted line. This parameter value refers to the lowest

issuance cost at which the upper restructuring boundary yu is infinite regardless of maturity.

For intermediate levels of β (the region between the existence and no-issuance thresholds), the

tax benefit from debt exceeds issuance costs and the MPE is characterized by a barrier strategy

with a finite restructuring boundary yu . This finding highlights the role of issuance costs as a

commitment device that mitigates shareholders’ incentive to issue debt too aggressively, and allows

the firm to extract positive tax benefits.
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However, for values of β that fall to the left of the existence threshold in Figure 1, no barrier-

strategy MPE exists, because at least one of the conditions of Proposition 2 is violated. Figure 2

provides intuition for this result in the special case ξ = 0.2, which corresponds to a five-year ma-

turity; this is the case highlighted by the horizontal black-dotted segment in Figure 1. Specifically,

without commitment, Panels B and C show that the manager issues debt more aggressively as the

issuance cost parameter β decreases. Indeed, both the restructuring boundary yu and the target

y∗ drop with issuance costs. As shown in Panel D, this more aggressive policy leads to a reduction

in bond price. However, the impact of a change in β on the default boundary y
b
in Panel A is U-

shaped. On the one hand, a lower β reduces issuance costs. On the other hand, it also induces more

debt issuance, which lowers the debt price and therefore the proceeds associated with debt issuance.

When β is sufficiently close to β∗(ξ = 0.2), the first effect dominates, which increases the option

value of ownership, thus resulting in a lower default boundary y
b
. As β is decreased even further,

however, the price of new debt falls to a point where the second effect dominates, leading to a higher

default boundary y
b
. Indeed, the value of the default boundary at the left-most point of the red line

in Panel A of Figure 2 is only slightly lower than the value of the default boundary at the right-most

point, which corresponds to the default boundary of the no-issuance MPE. Reducing β further (to

the left of the existence threshold) leads to a failure of the supermartingale condition (25), implying

that the candidate policy (y
b
, yu ,Y(·)) is not an MPE.13

Figure 2 also shows that the no-commitment results are in sharp contrast to those with com-

mitment. First, for all parameter values (β, ξ), a barrier strategy with commitment always exists.

Moreover, lower values of β offer larger tax benefits to debt. This can be seen in Panel A of Figure 2

in which the default boundary with commitment monotonically increases with β (dashed-blue line).

That is, with commitment, lower restructuring costs are associated with larger option values to

maintain ownership, and thus, higher equity values. Panels B and C show that the restructuring

boundary yu and the target y∗ with commitment are more conservative in the commitment case

than in the MPE. This more conservative strategy implies higher debt issuance prices across all

13Hugonnier, Malamud, and Morellec (2015) also find a threshold value of issuance costs below which an MPE no
longer exists in a model with proportional issuance costs and callable debt.
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values of the issuance cost parameter (Panel D).

3.2 Equilibrium restructuring policy

For the baseline parameters β = 0.065 and ξ = 0.2, Figure 3 shows the restructuring function

Y(y) : [yu ,∞) → (y
b
, yu), defined in equation (18). In the MPE, the firm issues debt at y = yu ,

bringing the income-to-debt ratio to the value y∗ ∈ (y
b
, yu), denoted by the black dot in the figure.

Off-equilibrium, i.e., y > yu , the target income-to-debt ratio Y(y) is an increasing function of y. Note

that in the limit y → ∞ the function Y(y) converges to the income-to-debt ratio that maximizes

the total enterprise value firm value (e(z) + P (z))/z, i.e., Y(∞) represents the optimal initial debt

issuance of an unlevered firm. The dependence of the restructuring target Y(y) ∈ (y
b
, yu) on y is a

key feature of our model, and is due to our assumption that the firm is not required to repurchase

(i.e., call) all outstanding debt prior to issuing new debt. This assumption contrasts with much of

the existing literature, which assumes all outstanding debt must be called prior to any new debt

issuance. This assumption implies that the debt issuance decision is always made with zero debt

outstanding (y → ∞) and thus the function Y(y), for all y ∈ (yu ,∞), reduces to a single value,

Y(∞).

3.3 Tax benefits to debt, issuance costs, and debt maturity

In this section, we quantify the tax benefits to debt as a function of restructuring costs (β) and

debt maturity (ξ). To construct this measure, we first consider the total enterprise value (TEV) for

an initially unlevered firm that chooses its optimal leverage by issuing an amount of debt F ∗:

TEV L ≡ E(0, Y0) = sup
F∗≥0

(
E(F ∗, Y0) + P (F ∗, Y0)− βY0

)
, (35)

where F ∗ is chosen optimally given initial conditions (F0 = 0, Y0), i.e., F
∗ = Y0/y

∗, where y∗ =

Y(y → ∞) from equation (19). We then relate the total enterprise value of the optimally levered

27



firm to that of an unlevered firm that never issues any debt, that is,

TEV U = (1− τ)

(
Y0

r − µ

)
.

The differences between TEV L and TEV U represent the net benefits to leverage. Hence, following

the literature, e.g., van Binsbergen, Graham, and Yang (2010) and Korteweg (2010), we define the

net tax benefit as:

NTB =
TEV L − TEV U

TEV U
. (36)

Note that TEV L ≡ E(0, Y0), defined in equation (35), includes the proceeds from the initial optimal

debt placement, net of issuance costs. Hence, NTB denotes the net tax benefit of debt accrued

to shareholders when they choose an optimal initial leverage. Moreover, the unlevered enterprise

value TEV U equals the equity value in the no-issuance MPE described in Section 2.4 for y → ∞,

that is, TEV U ≡ E
NI
(0, Y0), where ENI

(0, Y0)/Y0 = limy→∞ e
NI
(y)/y. Therefore, we can interpret

NTB as the net tax benefit accrued to shareholders relative to a no-issuance benchmark.14

Figure 4 shows that the tax benefit is zero at the boundary of the MPE existence region.

This is because in our numerical analysis we find that, for any given amortization rate ξ, as β

approaches the MPE existence threshold in Figure 1 the supermartingale condition (21) at y → ∞

holds as an equality, i.e., E(0, Yt) =
(

1−τ
r−µ

)
Yt . This result implies that, on the MPE existence

threshold, the shareholders of an unlevered firm are indifferent between issuing debt or not. Hence,

by equation (36), the net tax benefit is zero.

In contrast, for (β, ξ) values that lie inside the MPE existence region, the net tax benefit is

strictly positive with magnitude that varies with debt maturity. In particular, the debt maturity

that maximizes tax benefits increases with issuance costs, as highlighted by the red markers. This

is due to a tradeoff between debt-issuance fees and tax benefits net of bankruptcy costs. A shorter

maturity makes debt less risky and thus allows the manager to increase leverage and extract more

14Equation (36) also applies to the special case β = 0, in which the tax benefit is zero, regardless of debt maturity.
See equation (31) in DeMarzo and He (2021),evaluated in the limit y → ∞.
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tax-benefit. This is evident from equation (5) in which the drift of the EBIT process y increases

with ξ. Hence, for ξ → ∞ debt becomes virtually risk-free. However, a shorter maturity also implies

more frequent rollovers, leading to higher restructuring costs.

To provide a benchmark for the MPE, we also compute the tax benefit in equation (36) for the

case of the commitment policy (blue markers in Figure 4). As the figure shows, the value of tax

benefit associated with the MPE (red markers) is very close to that of the commitment policy (blue

markers). An alternative way to assess the value of commitment is to compute the equity share of

the claim to EBIT, E(0, Y0)/V0 , which, from equations (35) and (36), equals (1− τ)× (1 +NTB).

We find that, along the (β, ξ) points that maximize the tax benefit in the MPE, the firm extracts

most of the value of the EBIT claim. Indeed, as β is lowered, for both cases with and without

commitment, the equity share E(0, Y0)/V0 approaches 1, which, from equation (36), corresponds to

a tax benefit equal to τ/(1 − τ) = 0.25 in our calibration. These results show that the presence

of even arbitrarily small issuance costs can break the irrelevance of capital structure and maturity

choices found in DeMarzo and He (2021) that arise in an MPE without issuance costs.

Finally, Figure 5 shows the net tax benefit in the MPE as a function of the issuance cost β

when the inverse maturity parameter is fixed at the baseline value ξ = 0.2, which corresponds to

a five-year debt maturity. The plot shows that the net tax benefit is a hump-shaped function of

the issuance cost parameter β. The right-most point in the figure corresponds to the issuance cost

threshold β∗(ξ = 0.2), derived in equation (33), beyond which debt issuance is too costly and there

is no issuance in the MPE. At that point, the net tax benefit is zero. As the issuance cost drops

below β∗(ξ = 0.2) shareholders issue debt in equilibrium, leading to a positive net tax benefit that

first increases as issuance becomes cheaper. However, as β continues to decline, the effectiveness

of issuance costs as a commitment device weakens. As a result, the MPE involves progressively

more debt issuance compared to the benchmark policy with commitment. Such debt accumulation

increases expected default costs and thus erodes the net tax benefit. Finally, the left-most point in

the figure corresponds to the issuance cost threshold below which an MPE fails to exists (the blue

line in Figure 1) and the net tax benefit is zero.
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The red marker in Figure 5 denotes the tax benefit for the baseline parameter β = 0.065, which

reflects a fractional cost of 1% of the debt amount issued. At this point, dynamic debt issuance in

the MPE increases enterprise value by 5.2% compared to an unlevered firm. In the commitment

case, for the same value of β and ξ, the tax benefit is very close at 5.7% (the blue marker). For

comparison, van Binsbergen, Graham, and Yang (2010) and Korteweg (2010) report values of the

net tax benefit ranging from 3.5% to 5.5% of asset value. Our estimate of the net tax benefit in the

MPE falls within this range.

In sum, when the restructuring cost β and the inverse maturity ξ are calibrated to match

empirical observation, we find realistic estimates of the net tax benefit that are only slightly impacted

by shareholders’ inability to commit to a future issuance policy.

4 On the lack of existence of barrier-strategy MPEs

One of the most puzzling findings of our model is that, as seen in Figure 1, there are combinations

of (β, ξ) parameters for which a barrier-strategy MPE does not exist. This raises the question of

whether, for those parameters, an MPE would exist if we either consider a broader class of strategies

or modify some features of the model. Here we briefly discuss two possible modifications that might

change the nature of the equilibrium.

First, for parameter values to the left of the existence threshold in Figure 1, we find that a barrier

strategy MPE does not exist because the supermartingale condition in equation (25) fails. One way

to modify our model that might circumvent this failure is to consider multi-barrier strategies that

allow for more than a single inaction region. In this setting, a firm that begins with, say, zero

debt could jump into the inaction region associated with the highest income-to-debt ratios yt (i.e.,

lowest leverage ratios) before transitioning into inaction regions with lower values of yt . Hence,

multi-barrier policies could reduce the amount of debt issuance expected by creditors, increase the

debt price, and in turn help shareholders extract a positive tax shield. A possible direction of future

work is to characterize such strategies and verify whether multi-barrier MPEs exist.

Second, the lack of existence of MPEs for small values of the issuance cost parameter β may
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be due to the continuous-time specification of our model. Note that when β is set to zero at the

outset, our framework is identical to that of DeMarzo and He (2021). Yet, for a fixed maturity ξ,

we find that an MPE does not exist in the limit β → 0 and therefore our model does not converge

to theirs. To gain intuition for this discrepancy, consider a discrete-time model with horizon T ,

time step ∆t, and therefore N = T
∆t

time intervals. For any positive value of β, a policy in which

shareholders issue debt in each period, as in DeMarzo and He (2021), would generate issuance

costs proportional to βN . In the continuous time limit, ∆t → 0, N goes to infinity, implying an

infinite accumulation of issuance costs for any positive value of β. Therefore, a continuous issuance

policy cannot be an equilibrium if β > 0. In contrast, when ∆t is finite, the issuance costs βN

goes to zero in the limit β → 0. Thus, in a discrete-time version of our model, it is possible that

the MPE converges to the smooth issuance policy of DeMarzo and He (2021). In particular, there

could be MPEs for values of β below the existence threshold in Figure 1. Interestingly, in such

equilibria there could be positive tax benefit even in the case of β = 0, because the inability to issue

continuously effectively provides a commitment mechanism over a finite time interval. DeMarzo, He,

and Tourre (2021) explore this mechanism in a model of sovereign debt issuance and conclude that,

when time intervals are discrete, there are gains from trade between an impatient sovereign and a

patient lender. However, such gains are entirely dissipated when trading occurs continuously. These

findings echo the result that a durable goods monopolist can extract positive rents when production

is fixed over discrete-time intervals, while in continuous-time the Coase conjecture (Coase (1972))

of a competitive equilibrium holds (Stokey (1981)).

5 Conclusion

In the absence of both debt issuance costs and the ability to commit to a specific financing policy,

DeMarzo and He (2021) prove a “Modigliani-Miller” irrelevance result in which dynamic debt

issuance adds no value in equilibrium. In practice, however, it is costly for firms to issue debt.

Moreover, the literature has shown that by specifying fixed debt issuance costs, models can capture

empirical regularities observed in debt dynamics such as the lumpiness of leverage adjustments and
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the negative correlation between profitability and leverage. Motivated by this evidence, in this paper

we investigate equilibrium leverage dynamics when a firm is subject to a fixed restructuring cost

and cannot commit to a future debt policy. We provide a formal characterization of Markov Perfect

Equilibria in barrier strategies when the firm is not required to repurchase outstanding debt prior

to issuing additional debt. We show that the interaction between issuance costs and debt maturity

determines a region in which equilibria exist and debt tax benefits are positive with magnitude

that depends on maturity. These results highlight the role of issuance costs as a commitment

device that mitigates a manager’s incentive to issue debt too aggressively, thus allowing the firm

to extract positive tax benefits. When issuance costs decline, their effectiveness as a commitment

device weakens. Indeed, for any maturity, we numerically identify an issuance cost threshold below

which the debt contract is no longer incentive compatible, implying that a barrier-strategy MPE

no longer exists.

When we calibrate our model to empirically relevant issuance costs and debt maturities, we

find realistic estimates of the net tax benefit in the MPE that are only slightly lower than those

associated with a commitment benchmark policy. Furthermore, as the issuance cost parameter

approaches zero, there are maturities for which shareholder can extract close to 100% of the firm’s

EBIT for both cases with and without commitment. Thus, even for vanishing (but strictly positive)

issuance costs, not being able to commit to a dynamic capital structure policy may have only a

small impact on a firm’s ability to extract tax benefits to debt.
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Appendix A

A.1 Proof of Proposition 2

By construction we have:

P (y|a) = P (Y(y)|a), y ≥ yu (A.1)

e(y|a) = Φ(y,Y(y)|a) = sup
z∈[yb,yu ]

Φ(y, z|a) y ≥ yu , (A.2)

and, since the scaled equity value function is differentiable at yu , we deduce from Lemma II.10.i)

in the Online Appendix that the function e(y|a) is globally convex, non-decreasing, and strictly

positive on the interval [y
b
,∞).

To prove the claim in equation (23), note that, a direct calculation using the above expressions

shows that it is not optimal for shareholders to restructure from y to a point z ≥ yu . In fact, for

z ≥ yu we have

Φ(y, z|a) = y

z
e(z) +

(y
z
− 1
)
P (z)− βy

=
y

z
Φ(z,Y(z)|a) +

(y
z
− 1
)
P (z)− βy

=
y

z

{
z

Y(z)
e(Y(z)) +

(
z

Y(z)
− 1

)
P (Y(z))− βz

}
+
(y
z
− 1
)
P (z)− βy

=
y

Y(z)
e(Y(z)) +

(
y

Y(z)
− y

z

)
P (Y(z))− βy +

(y
z
− 1
)
P (Y(z))− βy

=
y

Y(z)
e(Y(z)) +

(
y

Y(z)
− 1

)
P (Y(z))− βy︸ ︷︷ ︸

≡Φ(y,Y(z)|a)

−βy

= Φ(y,Y(z)|a)− βy

< Φ(y,Y(y)|a), (A.3)

where the first equality follows from the definition of Φ(y, z|a); the second equality uses condi-

tion (A.2); the third equality follows from the definition of Φ(x,Y(z)); and the fourth equality uses

the no-jump condition (A.1) at z ≥ yu . The inequality at the end of equation (A.3) shows that
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restructuring to Y(y) < yu dominates restructuring to z ≥ yu . Furthermore, restructuring from y

to a point z < y
b
is also suboptimal, since Φ(y, z|a) = −yβ < 0 for all z ≤ y

b
. Hence, the claim in

equation (23) follows.

Now, since the function e(y|a) is convex it follows from Proposition II.3 in the Online Appendix

that (a) is an equilibrium if and only if the convex function v(y) ≡ e(y|a)− ê(y), with ê(y) defined

in equation (13), is a weak solution to the Hamilton-Jacobi-Bellman equation (II.14) of the Online

Appendix. On the interval [0, y
b
] we have v(y) = −ê(y) and

Ov(dy) = δ(y
b
) dy ≤ δ(y0) dy < 0,

where Ov(dy) denotes the measure defined in equation (II.13) of the Online Appendix. Hence v(y)

is a weak solution on that interval if and only if equation (24) holds for all y ≤ yb. On the interval

(yb, yu) we have that Ov(dy) ≡ 0 and it follows that v(y) is a weak solution on that interval if and

only if equation (24) holds for y ∈ [yb, yu ]. Finally, since e(y|a) > 0 for y > y
b
we have that

v(y) = e(y|a)− ê(y) = Φ(y,Y(y)|a)− ê(y) = ψ(y|a)

for all y ∈ [yu ,∞) and it follows that v(y) is a weak solution on that interval if and only if the

restriction of the measure

Ov(dy) = Oe(dy|a)−Oê(dy) = Oe(dy|a) + δ(y)dy (A.4)

to that interval is non-positive. To complete the proof we now provide an expression for this measure.

First observe that as a result of Condition (18) and Milgrom and Segal (2002, Corollary 4) we have

that

e(y|a) = Φ(y,Y(y)|a) = sup
z∈[yb,yu ]

Φ(y, z|a)

is continuously differentiable at all points of [yu ,∞) and satisfies

e′(y|a) = s(Y(y)|a)− β = s(y|a) = 1

y
(e(y|a) + P (Y(y)|a)) , y ≥ yu , (A.5)
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where the last two equalities equality follow from (A.1) and

s(y|a) ≡ 1

y
(e(y|a) + P (y|a)) ,

denotes the enterprise value of the firm per unit of cash flow. Since e(y|a) is convex, Y(y) is

continuous on y ≥ yu , and P (y|a) is continuous on [0, yu ] we have this derivative is continuous

as well as non-decreasing and, therefore, absolutely continuous. Combining this property with

equation (A.5) we obtain

e′′(dy|a) = s′(y|a)dy =
1

y
(e′(y|a) + P ′(y|a)− s(y|a)) dy =

1

y
P ′(y|a)dy. (A.6)

Using equations (A.5) and (A.6), it follows that the non-positivity of equation (A.4) is equivalent

to the supermartingale condition in equation (22):

0 ≥ δ(y)− (r − µ) e(y|a) + (µ+ ξ)P (y|a) + 1

2
σ2y P ′(y|a)

= δ(y)− (r + ξ) e(y|a) + (µ+ ξ)y e′(y|a) + σ2

2
y2 e′′(y|a).

A.2 No-issuance equilibrium

Here we show that sup
y∈[y

b,NI
,∞]
ϕ

NI
(y) = ϕ

NI
(∞), where ϕ

NI
(y) is defined in equation (29). By

definition, ϕ
NI
(y) is the equity value at y upon restructuring to an optimal income-to-debt level

z∗(y), that is,

ϕ
NI
(y) ≡ sup

z≥0

{y
z
e
NI
(z) +

(y
z
− 1
)
P

NI
(z)− βy

}

= y

(
e
NI
(z∗(y)) + P

NI
(z∗(y))

z∗(y)
− β

)
− P

NI
(z∗(y)), (A.7)
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No-arbitrage implies the value matching conditions:

P
NI
(y) = P

NI
(z∗(y)) (A.8)

e
NI
(y) =

y

z∗(y)
e
NI
(z∗(y)) +

(
y

z∗(y)
− 1

)
P

NI
(z∗(y))− βy (A.9)

Optimality of z∗(y) implies that the smooth pasting condition at y must hold, that is,

e′
NI
(y) =

e
NI
(z∗(y)) + P

NI
(z∗(y))

z∗(y)
− β, (A.10)

which is equivalent to the optimality condition in equation (17). To prove equation (A.10), suppose

that the state vector is (F, Y ) and the firm decides to issue debt. The value of equity is then

E
NI
(F, Y ) = sup

F∗
{E

NI
(F ∗, Y ) + (F ∗ − F )P

NI
(F ∗, Y )− βY } ≡ sup

F∗
Φ

NI
(F, Y, F ∗)

Note that F ∗ = F ∗(F, Y ), and hence E
NI
(F, Y ) = Φ

NI
(F, Y, F ∗(F, Y )). By the envelope theorem we

have

∂E
NI
(F, Y )

∂F
=
∂Φ

NI
(F, Y, F ∗)

∂F
+
∂Φ

NI
(F, Y, F ∗)

∂F ∗
∂F ∗(F, Y )

∂F︸ ︷︷ ︸
=0

= −P
NI
(F ∗, Y ).

In the scaled space, y = Y/F , z∗(y) = Y/F ∗, P
NI
(F, Y ) = P

NI
(y), and E

NI
(F, Y ) = Fe

NI
(y), so we

have

∂E
NI
(F, Y )

∂F
= e

NI
(y)− ye′

NI
(y) = −P

NI
(z∗(y))

which can be rewritten as

e′
NI
(y) =

e
NI
(y) + P

NI
(z∗(y))

y
. (A.11)

Using the value-matching conditions (A.8)–(A.9) for debt and equity in equation (A.11) we obtain

e′
NI
(y) =

e
NI
(z∗(y)) + P

NI
(z∗(y))

z∗(y)
− β,
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which is equation (A.10). Using condition (A.10), we can write (A.7) as follows:

ϕ
NI
(y) = ye′

NI
(y)− P

NI
(y).

Since e
NI
(y) is an increasing and convex function and P

NI
(y) ≤ c+ξ

r+ξ
we have that

sup
y∈[y

b,NI
,∞]

ϕ
NI
(y) = sup

y∈[y
b,NI

,∞]

{
ye′

NI
(y)− P

NI
(y)
}
= ϕ

NI
(∞).
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Parameter Symbol Value

Annual risk-free rate r 0.04

Annual coupon rate c 0.04

Annual EBIT drift µ 0

Annual EBIT volatility σ 0.22

Corporate tax rate τ 0.2

Inverse debt maturity ξ 0.2

Fixed issuance cost β 0.065

Table 1: Baseline model coefficients. The table shows the values of the model coefficients in the
baseline calibration. An inverse debt maturity ξ = 0.2 corresponds to a five-year expected maturity. The
fixed issuance cost β = 0.065 corresponds to a 1% of the debt amount issued.

Figure 1: Existence of barrier-strategy MPEs. This figure identifies the regions in the space (β, ξ)
of issuance costs and inverse-maturity parameters for which barrier-strategy MPEs exist. In the region to
the left of the existence threshold (blue line) there is no MPE in barrier strategies. To the right of the
no-issuance threshold (red line) it is optimal for the firm not to issue debt. The black dotted segment
highlights the β values for which there is an MPE with debt issuance and debt maturity is five years,
ξ = 0.2.
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Figure 2: Debt issuance policies and values for a fixed maturity. This figure shows the default
boundary y

b
(Panel A); the post-issuance target y∗ (Panel B); the restructuring boundary yu (Panel C);

and the value of debt P (y∗) (Panel D) as a function of the issuance cost β. The red lines correspond to the
no-commitment case (MPE) while the blue lines refer to the case of commitment. The two red markers in
the top two panels denote the values of y

b
and y∗ in the no-issuance MPE. The vertical dotted line in the

next panel refers to β∗(ξ = 0.2), which is the smallest value of β for which the issuance boundary is yu = ∞
when ξ = 0.2. The inverse maturity parameter is fixed at ξ = 0.2, corresponding to a debt maturity of 5
years.
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Figure 3: Restructuring function Y(y). This figure shows the restructuring function Y(y), y ≥ yu ,
defined in equation (18). As in the baseline calibration, we set β = 0.065 and ξ = 0.2, which reflect a
fractional cost of 1% of the debt amount issued and a maturity of five years. The black dot denotes the
restructuring point (yu , y

∗ = Y(yu)).

Figure 4: Net tax benefit. This figure shows the net tax benefit of debt for values of (β, ξ) that belong
to the MPE existence region of Figure 1. The red markers correspond to the set (β, ξ) at which the tax
benefit in the MPE is highest. For the same set of (β, ξ) points, the blue markers show the tax benefit
under the benchmark policy with commitment.
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Figure 5: Net tax benefit for a five-year debt maturity. This figure shows the net tax benefit
in the MPE as a function of the issuance cost β when debt maturity is fixed at five years (ξ = 0.2).
The red marker denotes the tax benefit for β = 0.065, which reflects a fractional cost of 1% of the debt
amount issued. For the same values of β and ξ, the blue marker denotes the tax benefit associated with
the commitment benchmark policy.
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I Formulation

I.1 The firm

The firm operates in continuous time and generates cash flows at rate Yt ≥ 0. The value of the

unlevered firm is defined as

Vt = Et

∫ ∞

t

e−r(s−t)(1− τ)Ysds

where r > 0 denotes the risk-free rate, τ ∈ [0, 1) denotes the corporate tax rate, and the expectation

is with respect to the risk-neutral probability measure P. We assume that the cash flow process Yt

evolves according to

dYt = Yt (σdWt + µdt) (I.1)

for some constants σ > 0 and 0 ≤ µ < r where Wt is a risk-neutral Brownian motion. As a result,

the value of the unlevered firm is explicitly given by

Vt =

(
1− τ

r − µ

)
Yt

and thus also evolves as a geometric Brownian motion. This shows that we may equivalently use

Vt or Yt as a state variable and we choose later so stay in line with the existing dynamic capital

structure literature .

I.2 Debt contracts

The firm’s debt takes the form of a continuum of ex-ante identical, exponentially maturing bonds

that have equal seniority and pay coupons at rate c > 0. The mass of existing bonds at date t ≥ 0

defines the face value Ft of the firm’s debt and we assume that each bond matures independently

of all others with intensity ξ > 0 so that debtholders receive payments at rate (c+ ξ)Ft as long as

the firm operates. The recovery of bonds in default is assumed to be zero.

The firm can at adjust its capital structure all times by retiring or issuing bonds at market value
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but is subject to a fixed adjustment cost βYt with β > 0. As a result, the face value of the firm’s

debt evolves according to

dFt = −ξFt−dt+ dIt

where It is a process with initial value I0− = 0 whose increments capture changes in the capital

structure of the firm.

I.3 Strategies

As long as β > 0 any adjustment process It whose paths has intervals of continuity leads to an

infinite accumulation of adjustment costs. Building on this observation we define a default and

adjustment strategy as a pair

s ≡ {τb(s), I(s)}

where τb(s) is a stopping time that represents the time of default and It(s) is a discrete process of

the form

It(s) =
∑

s∈A(s)

1{s≤t}∆Is(s) =
∑

s∈A(s)

1{s≤t}As(s)Fs−

where A(s) is a thin set whose elements represent the moments at which the firm restructures its

capital and At(s) ≥ −1 is a predictable process that represents the relative size of the adjustment

conditional on a restructuring at date t ≥ 0.

We will for the most part focus on Markov equilibria in which the state summarized by the

variables Ft and Yt that determine the cash flows of all stakeholders. Accordingly, a strategy is said

to be Markovian if

A(s) = {t ≥ 0 : (Ft−, Yt) ∈ R} ,

τb(s) = inf{t ≥ 0 : (Ft, Yt) ∈ D},
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and

At(s) = 1{(Ft−,Yt)∈R}A (Ft−, Yt) .

for some closed disjoint subsets D,R of R2
+ and some function A = A(·|s) : R → [−1,∞). If in

addition

D =
{
(F, Y ) ∈ R2

+ : Y/F ∈ D̄
}
,

R =
{
(F, Y ) ∈ R2

+ : Y/F ∈ R̄
}
,

A (F, Y ) = a (Y/F )

for some closed disjoint subsets D̄, R̄ of R+ and some function a = a(·|s) : R̄ → [−1,∞) then we

say that s is reduced Markovian. Throughout we denote by S0 the set of all default and adjustment

strategies, by M ⊂ S0 the subset of Markovian strategies, and by Mr ⊂ M the subset of reduced

Markovian strategies.

I.4 Debt valuation

Denote by Pt(s) ≥ 0 the value of an individual bond issued by the firm when creditors anticipate

that management will use the strategy s ∈ S0. The absence of arbitrage opportunities requires that

Pt(s) = Et

[∫ τm∧τb(s)

t

e−r(s−t)cds+ 1{τm<τb(s)}e
−r(τm−t)

]

on the set {τm ∧ τb(s) > t} where τm is an exponential random variable with mean m = 1/ξ

that represents the maturity of the individual bond under consideration. Integrating inside the

expectation against the conditional distribution

Pt [τm ∈ ds |τm > t ] = 1{s>t}e
−ξ(s−t)ξds
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then shows that on the set {τb(s) > t} the market price of an individual bond issued by the firm is

given by

Pt(s) = Et

[∫ τb(s)

t

e−ρ(s−t)(c+ ξ)ds

]
≤ c+ ξ

ρ
(I.2)

with the maturity-adjusted discount rate ρ ≡ r + ξ.

If s is Markovian then the right hand side of the above identity only depends on the path of the

pair (Ft, Yt). As a result, the bond price

Pt(s) = P (Ft, Yt|s)

is a bounded function of these variables and, since the adjustment times are predictable, we have

that this function satisfies the no-jump condition

P (F, Y |s) = P (F (1 + A(F, Y )) , Y |s) , (F, Y ) ∈ R(s), (I.3)

which guarantees that the market price of the bond does not react to the occurence of an anticipated

restructuring of the firm’s capital. By the same token, if s is reduced Markovian then the right

hand side of (I.2) only depends on the path of the invers leverage process yt. In that case, the bond

price Pt(s) = P (yt|s) is a bounded function of yt and the absence of arbitrage requires that this

function satisfies

P (y|s) = P

(
y

1 + a(y)

∣∣∣∣ s) , y ∈ R̄(s), (I.4)

which again guarantees that the market price of the bond does not react to the occurence of an

anticipated restructuring.

I.5 Equity valuation without commitment

Because default and capital adjustments are decided upon after debt has been issued management

may have incentives to deviate from the policy conjectured by creditors. Absent commitment this

implies that creditors will only accept to lend money to the firm if the debt contract is incentive
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compatible in the sense that management never wants to deviate from the strategy that creditors

use to price the bonds at issuance.

If creditors conjecture that the firm will use a ∈ S0 but management instead uses another

strategy s ∈ S0 then the value of equity is

Et(s, a) ≡ Et

[∫ τb(s)

t

e−r(s−t) (δ(Fs, Ys)ds+ Ps(a)dIs(s)− βYsdNs(s))

]
(I.5)

subject to the cash flow dynamics (I.1) and

dFs = −ξFs−dt+ dIs(s) (I.6)

where

δ(Fs, Ys) ≡ (1− τ)Ys − (ξ + c(1− τ))Fs

is the instantaneous cash flow to equity holders and

Nt(s) ≡
∑

s∈A(s)

1{s≤t}

is the counting process induced by the restructuring times of s. To formalize the notion of an

equilibrium let S denote the set of strategies such that

Λ(s) ≡ E

[∫ τb(s)

0

e−rs (Fs(s) + Ys) ds+ (|∆Fs(s)|+ Ys) dNs(s)

]
<∞ (I.7)

We then have the following:

Definition I.1 A subgame perfect equilibrium (SPE) is a strategy a ∈ S such that

Et (a, a) = sup
s∈S

Et (s, a) , t ≥ 0.

A Markov perfect equilibrium (MPE) is a SPE in M while a reduced Markov Perfect Equilibrium

(rMPE) is a SPE in Mr.
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II Results

II.1 Characterization of SPEs

As a first step towards the construction of equilibria for our default and restructuring game we

derive a version of the one shot deviation principle.

Lemma II.1 A strategy a ∈ S is a SPE if and only if

Et (a, a) = sup
s∈S

Et

[∫ θt(s)∧τb(s)

t

e−r(s−t)δ(Fs, Ys)ds (II.1)

+ 1{θt(s)<τb(s)}e
−r(θt(s)−t)

(
Eθt(s)(a, a) + Pθt(s)(a)∆Iθt(s)(s)− βYθt(s)

)]

where the stopping time

θt(s) ≡ inf {s ≥ t : s ∈ A(s)} = inf {s ≥ t : dIs(s) ̸= 0}

denotes the time of the first restructuring prescribed by the strategy s ∈ S on or after an arbitrary

date t ≥ 0.

Proof. Assume that a ∈ S is a SPE, let s ∈ S and consider for each fixed starting point t ≥ 0 the

one-shot deviation st obtained by following s until τb(s)∧ θt(s) and then reverting to (a). Using the

equilibrium property of (a) together with the law of iterated expectations we deduce that

Et (a, a) = Et

[∫ θt(a)∧τb(a)

t

e−r(s−t)δ(Fs, Ys)ds

+ 1{θt(a)<τb(a)}e
−r(θt(a)−t)

(
Eθt(a)(a, a) + Pθt(a)(a)∆Iθt(a)(a)− βYθt(a)

)]

≥ Et (st, a) = Et

[∫ θt(s)∧τb(s)

t

e−r(s−t)δ(Fs, Ys)ds

+ 1{θt(s)<τb(s)}e
−r(θt(s)−t)

(
Eθt(s)(a, a) + Pθt(s)(a)∆Iθt(s)(s)− βYθt(s)

)]
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and the necessity of (II.1) follows from the arbitrariness of s ∈ S. To establish the converse assume

that a ∈ S satisfies (II.1). Since never restructuring and defaulting at the first time that the cash

flow becomes negative is feasible we have that Et(a, a) ≥ 0 at all times. Using this property and

iterating (II.1) forward we deduce that

Et(a, a) ≥ Et

[∫ τb(s)∧θn,t(s)

t

e−r(s−t) (δ(Fs, Ys)ds+ Ps(a)dIs(s)− βYsdNs(s))

]

where θn,t(s) is the time of the nth restructuring after t ≥ 0. let Zn,t denote the random variable

inside the conditional expectation. Since the bond price is bounded and δ(F, Y ) is a linear function

we have that

sup
n≥1

|Zn,t| ≤ C0(t)

∫ τb(s)

0

e−rs ((Fs + Ys) ds+ (|∆Is(s)|+ Ys)dNs(s))

for some deterministic function C0(t) > 0 and it follows from (I.7) that the right hand side has finite

expectation. Letting the number of restructuring rounds n → ∞ and appealing to the dominated

convergence theorem then gives

Et(a, a) ≥ Et

[∫ τb(s)

t

e−r(s−t) (δ(Fs, Ys)ds+ Ps(a)dIs(s)− βYsdNs(s))

]

and the desired result now follows from (I.5).

Lemma II.1 provides a characterization of SPEs in terms of a stochastic control problem in which

the controlled process is two dimensional. To further simplify the construction of equilibria we now

provide an alternative characterization that only involves a one dimensional controlled process.

Corollary II.1 A default and adjustment strategy a ∈ S is a SPE if and only if the scaled equity
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value process et(a) = Et(a, a)/Ft satisfies

et(a) = sup
s∈S

Et

[∫ θt(s)∧τb(s)

t

e−ρ(s−t)δ(ys)ds (II.2)

+ 1{θt(s)<τb(s)}e
−ρ(θt(s)−t)

(
(1 + Aθt(s)(s))eθt(s)(a) + Pθt(s)(a)Aθt(s)(s)− βyθt(s)−

)]

with the discount rate ρ = r + ξ and the cash flow function δ(y) ≡ δ(1, y).

Proof. The result follows from Lemma II.1 by noting that we have

Fs = e−ξ(s−t)Ft, for all s ∈ [t, θt(s)),

and therefore

Eθt(s)(a, a) + Pθt(s)(a)∆Iθt(s)(s)− βYθt(s)

= Fθt(s)−

(
Fθt(s)

Fθt(s)−
eθt(s)(a) + Pθt(s)(a)

∆Iθt(s)(s)

Fθt(s)−
− βyθt(s)−

)
= Fθt(s)−

((
1 + Aθt(s)(s)

)
eθt(s)(a) + Pθt(s)(a)Aθt(s)(s)− βyθt(s)−

)
= e−ξ(θt(s)−t)Ft

((
1 + Aθt(s)(s)

)
eθt(s)(a) + Pθt(s)(a)Aθt(s)(s)− βyθt(s)−

)
where the second equality follows from the definition of At(s) ≥ −1 as the relative size of the debt

adjustment.

Proposition II.1 (Leverage ratchet effect) If a ∈ S is a MPE then It(a) is a non decreasing

process.

Proof. Assume that a ∈ M is a MPE in which

P [{s ∈ A(a) : dIs(a) < 0}] ̸= 0.

To show that this leads to a contradiction consider the deviation â ∈ S0 defined by the default time
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τb(â) ≡ τb(a) and the face value process

Ft(â) ≡ sup
0≤u≤t

{
eξ(u−t)Fu(a)

}
.

Standard results in the theory of Skorokhod reflection problems (see for example Kruk, Lehoczky,

Ramanan, and Shreve (2007) and references therein) show that we have

0 ≤ ∆It(â) = (Ft(a)− Ft−(â))
+ ≤ ∆It(a)

+ (II.3a)

0 = (Ft(a)− Ft(â))∆It(â). (II.3b)

Using these properties we show in Lemma II.2 below that â ∈ S defines a feasible deviation and it

remains to show that this deviation is profitable.

Denote by P (F, Y ) = P (F, Y |a) the bond price function induced by the assumed Markov perfect

equilibrium and by c̄ ≡ c(1 − τ) + ξ the after tax cost of debt per unit of face value. A direct

calculation using (I.5) then shows

E0 (â, a)− E0 (a, a) = E

[∫ τb(a)

0

e−rsc̄ (Fs(a)− Fs(â)) ds (II.4)

+

∫ τb(a)

0

e−rs (P (Fs(â), Ys)dIs(â)− βYsdNs(â))

−
∫ τb(a)

0

e−rs (P (Fs(a), Ys)dIs(a)− βYsdNs(a))

]

≥ E

[∫ τb(a)

0

e−rs (c̄Gsds− P (Fs−(a), Ys) (dGs + ξGs−ds))

]

= E

[∫ τb(a)

0

e−rs(c̄− ξP (Fs(a), Ys))Gsds+

∫ τb(a)

0

Gs−d
(
e−rsP (Fs(a), Ys)

)]

where Gt ≡ Ft(a)−Ft(â) is the difference between the face value processes associated with the two

strategies, the inequality follows from (II.3b) and (I.3), and the last equality follows from the fact
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that

P (F0, Y0|a)G0 = Gτb(a)P
(
Fτb(a)(a), Yτb(a)

)
= 0.

Now, since the process

e−ρtP (Ft(a), Yt) +

∫ t

0

e−ρs(c+ ξ)ds

is by construction a martingale on the stochastic interval [[0, τb(a)]] we have that there exists a local

martingale Mt such that

d(e−rtP (Ft(a), Yt)) = e−rt (ξP (Ft−(a), Yt)− (c+ ξ)) dt+ e−rtdMt.

Substituting this evolution into (II.4) then gives

E0 (â, a)− E0 (a, a) ≥ E

[∫ τb(a)

0

e−rsGs−dMs −
∫ τb(a)

0

e−rscτGsds

]
(II.5)

and the desired result now follows from Lemma II.3 below and the fact that Gt is non positive by

construction.

Lemma II.2 The strategy â ∈ S.

Proof. Using (II.3) we deduce that the deviation (â) satisfies dNt(â) ≤ dNt(a) as well as |∆Ft(â)| ≤

|∆Ft(a)| and it follows that

E

[∫ τb(a)

0

e−rs ((|∆Fs(â)|+ Ys) dNs(â)− (|∆Fs(a)|+ Ys) dNs(a))

]
≤ 0. (II.6)

On the other hand, Itô’s formula implies that we have

Fs(â)− Fs(a) =

∫ s

0

eξ(u−s) (dIu(â)− dIu(a))

10



and therefore∫ τb(a)

0

e−rs (Fs(â)− Fs(a)) ds =

∫ τb(a)

0

ds e−ρs

{∫ s

0

eξu (dIu(â)− dIu(a))

}

≤
∫ τb(a)

0

ds e−ρs

{∫ s

0

eξu|∆Fu(a)|dNu(a)

}

=

∫ τb(a)

0

e−rudNu(a)|∆Fu(a)|
{∫ τb(a)

u

e−ρ(s−u)ds

}

≤ 1

ρ

∫ τb(a)

0

e−ru|∆Fu(a)|dNu(a). (II.7)

where the first inequality follows from (II.3b). Combining (II.6) and (II.7) then shows that Λ(â) ≤

C0Λ(a) for some C0 > 0 and the desired result follows.

Lemma II.3 The process

Ut ≡
∫ t∧τb(a)

0

e−rsGs−dMs

that appears in (II.5) has expected value zero.

Proof. Denote by Pt(a) = P (Ft(a), Yt) the bond price along the path of the assumed equilibrium.

Itô’s formula implies that

Ut = e−rθGθPθ(a) +

∫ θ

0

e−rs ((c+ ξ)Gsds− Ps(a) (dIs(a)− dIs(â)))

∣∣∣∣
θ≡τb(a)∧t

and it thus follows from the uniform boundedness of the bond price process, the non positivity of

Gt and (II.3a) that we have

|Ut|
C1

≤ e−rt∧τb(a)|Gt∧τb(a)|+
∫ t∧τb(a)

0

e−rs ((c+ ξ)|Gs|ds+ |dIs(a)− dIs(â)|)

=

∫ t∧τb(a)

0

e−rs ((r − c)Gsds+ dIs(â)− dIs(a) + |dIs(a)− dIs(â)|)

≤
∫ τb(a)

0

e−rs ((Fs(â) + Fs(a)) |r − c|ds+ |∆Fs(a)|dNs(a))

11



for some constant C1 > 0. This in turn implies that

E
{
sup
t≥0

|Ut|
}

≤ C2 (Λ(a) + Λ(â)) <∞

for some constant C2 > 0 where the second inequality follows from the fact that (a) and (â) are

both feasible by Lemma II.2. This shows that the local martingale Ut is a uniformly integrable

martingale and the desired result follows.

II.2 Recursive optimal stopping representation

The following lemma shows that the search for Markov equilibria is equivalent to solving a recursive

optimal stopping problem.

Lemma II.4 A Markovian strategy a ∈ M ∩ S is a MPE if and only if the induced equity value

function satisfies

E(F, Y |a) = sup
θ∈T

EF,Y

[∫ θ

0

e−rtδ(F̄t, Yt)dt+ e−rθR
(
F̄θ, Yθ|a

)+]
(II.8)

subject to (I.1) and the uncontrolled dynamics

dF̄t = −ξF̄tdt

where the reward function is defined by

R(F, Y |a) ≡ sup
G∈R+

{E(G, Y |a) + (G− F )P (G, Y |a)− βY } (II.9)

and T denotes the set of stopping times.

Proof of necessity. Assume that a ∈ M∩ S is a MPE and denote by

R(F, Y,G|a) ≡ E(G, Y |a) + (G− F )P (G, Y |a)− βY

the objective function on the right hand side of (II.9). Since (τb(a), θ0(a)) are stopping times it

12



follows from (II.9) and Lemma II.1 that

E(F, Y |a) = EF,Y

[∫ τb(a)∧θ0(a)

0

e−rtδ(F̄t, Yt)dt

+ e−rθ0(a)1{θ0(a)<τb(a)}R
(
F̄θ0(a), Yθ0(a), F̄θ0(a)

(
1 + A(F̄θ0(a), Yθ0(a))

)∣∣ a)]

≤ sup
(τ,θ)∈T 2

EF,Y

[∫ τ∧θ

0

e−rtδ(F̄t, Yt)dt+ 1{θ<τ}e
−rθR

(
F̄θ, Yθ|a

)]

≤ sup
(τ,θ)∈T 2

EF,Y

[∫ τ∧θ

0

e−rtδ(F̄t, Yt)dt+ 1{θ<τ}e
−rθR

(
F̄θ, Yθ|a

)+]

≤ sup
ζ∈T

EF,Y

[∫ ζ

0

e−rtδ(F̄t, Yt)dt+ e−rζR
(
F̄ζ , Yζ |a

)+]

To establish the reverse inequality let

Rn(F, Y |a) ≡ sup
0≤G≤n

R(F, Y,G|a)

and consider the sequence (sn)
∞
n=1 of one shot deviations defined by

θ0(sn) ≡ σ + 1{Rn(F̄σ ,Yσ |a)≤0}∞,

τb(sn) ≡ 1{Rn(F̄σ ,Yσ |a)≤0}σ + 1{Rn(F̄σ ,Yσ |a)>0}(σ + qσ ◦ τb(a)),

and

F̄θ0(sn)

(
1 + Aθ0(sn)(sn)

)
= argmax0≤G≤nR

(
F̄θ0(sn), Yθ0(sn), G|a

)
where σ is an arbitrary but fixed stopping time, and qσ denotes the Markov shift operator. It is

easily seen that sn ∈ S is a feasible deviation for each n ≥ 1. Therefore, it follows from Lemma II.1

13



and the specification of sn that we have

E(F, Y |a) ≥ EF,Y

[∫ τb(sn)∧θ0(sn)

0

e−rtδ(F̄t, Yt)dt

+ e−rθ0(sn)1{θ0(sn)<τb(sn)}Rn(F̄θ0(sn), Yθ0(sn)|a)
]

= EF,Y

[∫ σ

0

e−rtδ(F̄t, Yt)dt+ e−rσRn(F̄σ, Yσ|a)+
]
.

Letting n → ∞ on both sides and invoking the monotone convergence theorem to justify the

interchange of limit and expectation then gives

E(F, Y |a) ≥ EF,Y

[∫ σ

0

e−rtδ(F̄t, Yt)dt+ e−rσR(F̄σ, Yσ|a)+
]

and the result follows by taking the supremum over σ ∈ T .

Proof of sufficiency. Assume that a ∈ M ∩ S satisfies (II.8) and let s ∈ S be fixed. Because

τb(s) ∧ θt(s) is a stopping time this implies that we have

E(Ft, Yt|a) ≥ Et

[∫ τb(s)∧θt(s)

t

e−r(s−t)δ(F̄s, Ys)ds

+ e−r(τb(s)∧θt(s)−t)R
(
F̄τb(s)∧θt(s), Yτb(s)∧θt(s)

∣∣ a)+]

≥ Et

[∫ τb(s)∧θt(s)

t

e−r(s−t)δ(F̄s, Ys)ds

+ e−r(θt(s)−t)1{θt(s)<τb(s)}R
(
F̄θt(s), Yθt(s)

∣∣ a)]

≥ Et

[∫ τb(s)∧θt(s)

t

e−r(s−t)δ(F̄s, Ys)ds

+ e−r(θt(s)−t)1{θt(s)<τb(s)}R
(
F̄θt(s), Yθt(s), F̄θt(s)

(
1 + Aθt(s)(s)

)∣∣ a)]

and the required result now follows from Lemma II.1, the arbitrariness of s ∈ S and the definition

of the function R(F, Y,G|a).
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The next result specializes Lemma II.4 to the case of rMPEs and will serve as a basis for most of

our results on barrier strategies.

Lemma II.5 A strategy a ∈ Mr ∩ S is a rMPE if and only if the induced equity value function

satisfies

e(y|a) = sup
θ∈T

Ey

[∫ θ

0

e−ρtδ(ȳt)dt+ e−ρθϕ (ȳθ|a)+
]

(II.10)

= ê(y) + sup
θ∈T

Ey

[
e−ρθψ (ȳθ|a)

]
(II.11)

subject to

dȳt = ȳt (σdWt + (ξ + µ) dt)

where

ê(y) ≡ Ey

[∫ ∞

0

e−ρtδ(ȳt)dt

]
=
δ(0)

ρ
+
δ(y)− δ(0)

r − µ

denotes the equity value associated with never defaulting or restructuring, and the reward functions

are defined by

ϕ(y|a) ≡ sup
z≥0

Φ(y, z|a) = sup
z∈R+

{y
z
e(z|a) +

(y
z
− 1
)
P (z|a)− βy

}
ψ(y|a) ≡ ϕ(y|a)+ − ê(y).

In particular, if (a) is a rMPE then the induced scaled equity value is nonnegative, convex, and

differentiable at all points where e(y|a) = ϕ(y|a)+.

Proof. Equation (II.10) follows from Lemma II.4 by noting that

R(F̄t, Yt|a)/F̄t = sup
z≥0

{
Yt
zF̄t

e (z|a) +
(
Yt
zF̄t

− 1

)
P (z|a)

}
− βYt

F̄t

= sup
z≥0

{ ȳt
z
e (z|a) +

( ȳt
z
− 1
)
P (z|a)

}
− βȳt = ϕ(ȳt|a)

15



and F̄t = e−ξtF0. To see that (II.10) is equivalent to (II.11) it suffices to observe that the no-action

equity value function satisfies the Dynkin identity

ê(y)− Ey

[
e−ρζ ê(ȳζ)

]
= Ey

[∫ ζ

0

e−ρtδ(ȳt)dt

]

for all stopping times ζ ∈ T . Setting θ ≡ 0 in (II.10) shows that the equity value function is

nonnegative. On the other hand, we have that ψ(y|a) is convex as the supremum of a family of

affine functions and it thus follows from Alvarez (2003, Theorem 5) and Lamberton and Zervos (2013,

Corollary 7.5) that v(y) ≡ e(y|a)− ê(y) is differentiable at all points of the set

{y ≥ 0 : v(y|a) = ψ(y|a)} = {y ≥ 0 : e(y|a) = ϕ(y|a)+}.

Since the function ê(y) is linear this in turn implies that e(y|a) is also convex and differentiable at

all points of this set and the proof is complete.

Corollary II.2 If a ∈ Mr ∩ S is a rMPE then the induced scaled equity value function is nonde-

creasing and there exists and constant 0 ≤ yb(a) <∞ such that

e(y|a) = 0 = ϕ(y|a)+

at all points y ≤ yb(a).

Proof. Assume that a ∈ Mr∩S is a rMPE and observe that since e(y|a) ≥ ê(y) we have e(y|a) > 0

for all sufficiently large y and thus D̄(a) ̸= R+. Let

yb(a) ≡ sup{y ≥ 0 : y ∈ D̄(a)}.

Since the scaled equity value function is nonnegative and not identically zero we have that yb(a) <∞

and that e′+(z|a) > 0 at some point z > yb(a). Together with the convexity afforded by Lemma

II.5 this implies that the scaled equity value is nondecreasing and it follows by continuity that

e(y|a) = 0 ≥ ϕ(y|a)+ for all y ≤ yb(a).
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Corollary II.3 If a ∈ Mr ∩ S is a rMPE then

e(y|a) = sup
z∈C(a)

Φ (y, z|a) ,

{Y(y) ≡ y/ (1 + a(y|a))} = argmaxz∈C(a)Φ (y, z|a)

for all y ∈ R̄(a) where C(a) ≡ R+\(D̄∪R̄)(a). Furthermore, the scaled equity value is differentiable

and satisfies

e′(y|a) = ∂Φ

∂y
(y,Y(y)|a)

at all points of the restructuring region R̄(a).

Proof. If y ∈ R̄(a) lies then it follows from (II.10) that

e(y|a) ≥ ϕ(y|a)+ = sup
z≥0

Φ(y, z|a)+

and from (II.2) that

e(y|a) = Φ(y,Y(y)|a) = y

Y(y)
e(Y(y)|a) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy

Combining the two shows that we have

R̄(a) ⊆ {y ≥ 0 : e(y|a) = ϕ(y|a) ≥ 0} (II.12)

Y(y) ∈ Z = argmaxz≥0Φ (y, z|a)

and the first part will follow if we can show that the maximizer is unique and lies in C(a). Suppose

to the contrary that y ∈ R̄(a) is such that

sup
z≥0

Φ(y, z|a) = Φ(y, z∗|a).

for some z∗ /∈ C(a). If z∗ ∈ D̄(a) then it follows from (II.12) that we have

e(y|a) = Φ(y, z∗|a) = −βy < 0

17



which contradicts the nonnegativity of the scaled equity value function. On the other hand, if

z∗ ∈ R̄(a) then

e(y|a) = Φ(y, z∗|a)

=
y

z∗
e(z∗|a) +

( y
z∗

− 1
)
P (z∗|a)− βy

=
y

z∗
Φ(z∗,Y(z∗)|a) +

( y
z∗

− 1
)
P (z∗|a)− βy

= Φ(y,Y(z∗)) +
( y
z∗

− 1
)
(P (z∗|a)− P (Y(z∗)|a))− βy

= Φ(y,Y(z∗))− βy < Φ(y,Y(z∗))

where the third equality follows from (II.2), the fifth equality follows from the no jump condition

(I.4) and the inequality follows from the strict positivity of the fixed cost. This contradicts the fact

that e(y|a) = ϕ(y|a) over R̄(a) and thus establishes that Z ⊆ C(a). To complete the proof observe

that

e(y|a) = ϕ(y|a) = sup
z∈C(a)

Φ(y, z|a)

is differentiable at all points of R̄(a) as a result of (II.12) and Lemma II.5, and apply Milgrom and

Segal (2002, Corollary 4.iii)).

II.3 The HJB equation

If v : R+ → R is a convex function then its one sided derivatives v′±(y) are nondecreasing functions

of finite variation, and its second distributional derivative is a positive measure that we denote by

v′′(dy). Consider now the measure

Ov(dy) = [(ξ + µ)yv′−(y)− ρv(y)]dy +
1

2
σ2y2v′′(dy). (II.13)
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Lamberton and Zervos (2013) show that the solution to (II.11) is intimately related to the set of

functions that solve the HJB equation

max {Ov(y), ψ(y|a)− v(y)} = 0 (II.14)

in the distributional sense. To make this result precise we start by formally defining the type of

weak solutions we are interested in.

Definition II.1 A function v : (0,∞) → R is a solution to (II.14) in the sense of distributions if

it is convex and such that

i) v(y) ≥ ψ(y|a) for all y ≥ 0

ii) Ov(dy) is a non positive measure on R+

iii) Ov(dy) does not charge the set {y ≥ 0 : v(y) > ψ(y|a)}

Proposition II.2 a ∈ Mr ∩ S is a rMPE if and only if

v(y) ≡ e(y|a)− ê(y)

solves (II.14) in the sense of distributions subject to the boundary conditions

lim sup
y↓0

y−Πv(y) = lim sup
y↓0

y−Πψ(y|a) <∞, (II.15)

lim sup
y↑∞

y−Θv(y) = lim sup
y↑∞

y−Θψ(y|a) <∞, (II.16)

where Π < 0 and Θ > 1 denote the two solutions to (II.22).

Proof. This follows from Lemma II.5 and Lamberton and Zervos (2013, Theorems 6.3|4) using the

fact that in our case the state space is the positive real line with inaccessible boundaries and the

reward function is convex and thus continuous.
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II.4 Barrier strategies

In view of Proposition II.1 and Corollary II.2 we can essentially restrict the search for rMPEs (but

not the set of possible deviations) to the subset of default and adjustment strategies such that

dIt(a) ≥ 0 and

τb(a) = inf{t ≥ 0 : yt ≤ yb(a)}

for some constant default threshold yb(a) > 0. A class of strategies of particular interest within

that subset is the class of barrier strategies which is illustrated in Figure II.1 and formally defined

as follows.

Definition II.2 A strategy a ∈ Mr is a barrier strategy if

D(a) =
{
(F, Y ) ∈ R2

+ : Y ≤ ybF
}

R(a) =
{
(F, Y ) ∈ R2

+ : Y ≥ yuF
}

and

A(F, Y |a) = y

Y(y)
− 1

∣∣∣∣
y=Y

F

for some 0 < yb ≤ yu and some function Y : [yu,∞) → (yb, yu) that determines the target level of

inverse leverage after the adjustment. In what follows we denote the set of barrier strategies by B.

Remark 1 The requirement that Y(y) takes values in (yb(a), yu(a)) rather than in [0, y] is without

loss of generality for equilibrium purposes since adjustments that move the state to a point inside

(D ∪R)(a) are strictly suboptimal as long as the fixed cost of adjustment is strictly positive.

Assume that the firm follows a barrier strategy a ∈ B. Then (I.6) implies that the face value of

debt satisfies

dFt = −ξFtdt+ 1{yt−≥yu(a)}

(
Yt

Y(yt−)
− Ft−

)
, on {t < τb(a)}
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Figure II.1: Illustration of a barrier strategy. In the figure represents the default region D(a),

represents the restructuring region R(a), the complement represents the continuation region, and

the arrows indicate increases in the face value of debt that move the state from the restructuring region

to the continuation region.

and it follows that the induced inverse leverage process is an autonomous Markov process that

evolves according to

dyt = yt−σdWt + yt− (ξ + µ) dt+ 1{yt−≥yu(a)} (Y(yt−)− yt−) (II.17)

until the first time that it reaches the barrier level yb(a) where the strategy requires shareholders

to file for bankruptcy.

Before proceeding with the computation of the security values induced by a barrier strategy we

first prove that all barrier strategies are feasible.

Lemma II.6 B ⊆ S.
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Proof. Fix a barrier strategy a ∈ B. Since the pair (Ft, Yt) forms a Markov process we have that

Λ(a) = Λ(F0, Y0) for some (possibly infinite) function Λ : R2
+ → R∪{∞} that satisfies the boundary

conditions

Λ(F, Y ) = 0, (F, Y ) ∈ D(a), (II.18)

Λ(F, Y ) = Y

(
1 +

1

Y(y)

)
+ Λ

(
Y

Y(y)
, Y

)
, (F, Y ) ∈ R(a). (II.19)

On the other hand, a standard calculation using Girsanov’s theorem and the law of iterated

expectations shows that

Λ(F, Y ) = λ(y)Y, (F, Y ) ∈ R+\(D ∪R)(a)

for some function λ : R+ → R ∪ {∞} that satisfies

λ(y) = G(y) +H(y)

(
1 +

1

Y(yu(a))
− 1

y
+ λ(Y(yu(a)))

)
(II.20)

with H,G : R+ → R+ uniformly bounded and such that

min{G(y), 1−H(y)} > 0, y ∈ C(a) ≡ (yb(a), yu(a)). (II.21)

Combining (II.18), (II.19), and (II.20) we deduce that the strategy is feasible if and only if the

constant

λ(Y(yu(a))) =
G(Y(yu(a))) +H(Y(yu(a)))

1−H(Y(yu(a)))

is finite and the desired result now follows from (II.21) since the point Y(yu(a)) lies by assumption

in the set C(a).

Let now a ∈ B be a barrier strategy and denote by

Lf(y) ≡ y (ξ + µ) f ′(y) +
1

2
σ2y2f ′′(y)

the differential operator associated with the continuous part of this stochastic differential equation.
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Standard arguments relying on Itô’s lemma and the continuity of the bond price at the issuance

point show that the function

P (yt|a) = Pt(a) = Et

[∫ τb(a)

t

e−ρ(s−t) (c+ ξ) ds

]

is the unique solution to

ρP (y) = LP (y) + c+ ξ, y ∈ (yb(a), yu(a)),

P (y) = P (Y(y)), y ≥ yu(a),

P (y) = 0, y ≤ yb(a)

in the space of functions that are bounded on R+ and twice continuously differentiable on the

continuation region C(a) ≡ (yb(a), yu(a)).

To describe the solution to this differential problem denote by Θ > 1 and Π < 0 the solutions

to the quadratic equation

−ρ+ (ξ + µ) y +
1

2
σ2y(y − 1) = 0 (II.22)

induced by the continuous part of (II.17); and by y∗(a) ≡ Y(yu(a)) the level of inverse leverage to

which the firm moves upon reaching from the inside the right boundary of the continuation region.

Lemma II.7 Assume that a ∈ B is a barrier strategy. Then

Pt(a) = P (yt|a) ≡ 1{yt∈C(a)}π(y|a) + 1{yt≥yu(a)}π (Y(yt)|a)

with the function

π(y|a) ≡ 1

ρ
(c+ ξ)

(
1 + Aπ(a)y

Θ +Bπ(a)y
Π
)
,
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and the constants

Aπ(a) ≡
yu(a)

Π − y∗(a)Π

yb(a)Π (yu(a)Θ − y∗(a)Θ) + yb(a)Θ (y∗(a)Π − yu(a)Π)
,

Bπ(a) ≡
y∗(a)Θ − yu(a)

Θ

yb(a)Π (yu(a)Θ − y∗(a)Θ) + yb(a)Θ (y∗(a)Π − yu(a)Π)
.

In particular, the bond price function is strictly concave on C(a) with P ′(yb(a)|a) > 0, P ′(y∗(a)|a) ≥

0, and P ′(yu(a)|a) ≤ 0.

Proof. The first part follows by direct calculation and the second by noting that since Θ > 1,

Π < 0, and yb(a) ≤ y∗(a) ≤ yu(a) we have Aπ(a), Bπ(a) ≤ 0.

Remark 2 The derivatives of the bond price at the points y∗(a) and yu(a) are either both non zero

or both equal to zero depending on whether the length of the continuation region |C(a)| is strictly

positive or zero. In the latter case, the bond price function coincides with the solution that obtains

when imposing a reflecting boundary condition at the upper threshold.

Consider now the scaled equity value that prevails when creditors correctly anticipate that man-

agement will use the barrier strategy a:

et(a) = Et

[∫ τb(a)

t

e−ρ(s−t) (δ(ys)ds+ (As(a) (es(a) + Ps(a))− βys−) dNs(a))

]
.

When a is a barrier strategy (or more generally a reduced Markov strategy) all the terms in the

conditional expectation only depend on the path of the Markov process described by (II.17). As a

result, et(a) = e(yt|a) for some deterministic function and standard results show that this function

is the unique solution to

ρe(y) = Le(y) + δ(y), y ∈ C(a), (II.23)

e(y) = 0, y ≤ yb(a),

e(y) =
y

Y(y)
e(Y(y)) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy, y ≥ yu(a), (II.24)
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in the space of functions that are finite on R+ and twice continuously differentiable on the contin-

uation region C(a).

Lemma II.8 Assume that a ∈ B is a barrier strategy. Then

et(a) = e(yt|a) ≡ 1{yt∈C(a)}ε(yt|a) + 1{yt≥yu(a)}ε(yt|a)

where

ε(y|a) ≡ ê(y) + Aε(a)y
Θ +Bε(a)y

Π

ε(y|a) ≡ y

Y(y)
ε(Y(y)|a) +

(
y

Y(y)
− 1

)
P (Y(y)|a)− βy

and (Aε(a), Bε(a)) are the unique solutions to the value matching conditions

ε(yb(a)|a) = 0,

ε(yu(a)|a) = ε(yu(a)|a),

at the endpoints of the continuation region.

Proof. Follows by direct calculation.

II.5 rMPEs in barrier strategies

We start with a result that specializes the differential characterization of Proposition II.2 to the

case of barrier strategies.

Proposition II.3 A barrier strategy is a rMPE if and only if the induced equity value function

e(y|a) is a solution to (II.14) in the sense of distributions.

Proof. Combining Corollary II.3, Lemma II.7, and Lemma II.8 we deduce that there exists a

constant k > 0 such that

|e(y|a)| ∨ |ϕ(y|a)| ≤ k (1 + |y|) , y ≥ 0.
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Since Π < 0 and Θ > 1 this implies that we have

lim
y↓0

y−Πf(y) = lim
y↑∞

y−Θf(y) = 0, for f ∈ {e(·|a), ϕ(·|a)+}.

This shows that the boundary conditions (II.15) and (II.16) hold for any barrier strategy and the

desired result now follows from Proposition II.2.

The next result provides a set of necessary conditions for a barrier strategy to form an equilibrium.

To state the result let

s(y|a) ≡ 1

y
(e(y|a) + P (y|a))

denote the value of the firm per unit of cash flow.

Lemma II.9 Assume that the barrier strategy a ∈ B is a rMPE. Then the following conditions are

satisfied:

i) yb(a) ≤ y
b,NI

, where y
b,NI

= Π
Π−1

r−µ
ρ

(
c+ ξ

1−τ

)
,

ii) e(y|a) = ϕ(y|a)+ = 0 on (0, yb(a)],

iii) e(y|a) = ϕ(y|a)+ > 0 on [yu(a),∞),

iv) Smooth pasting and value matching at the default boundary:

e′(yb(a)|a) = e(yb(a)|a) = 0. (II.25)

v) Smooth pasting and value matching at restructuring points:

e′(y|a) = s(Y(y)|a)− β = s(y|a), y ≥ yu(a). (II.26)

vi) Optimality of restructuring:

{Y(y)} = argmaxz≥0Φ(y, z|a) = argmaxz∈C(a)Φ(y, z|a), y ≥ yu(a).
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Proof of i). This follows by observing that if a is an rMPE with yb(a) > y
b,NI

then e(y|a) = 0 <

e
NI
(y) with e

NI
(y) the equity-value in a no-issuance rMPE, defined in equation (28) of the main

text, for all y ∈ (y
b,NI
, yb(a)). This contradicts (II.2).

Proof of ii). If a ∈ B is a rMPE then it follows from Lemma II.5 and the definition of the strategy

that we have e(y|a) = 0 ≥ ϕ(y|a)+ for all y ≤ yb(a).

Proof of iv). Since by definition e(y|a) = 0 for all y ≤ yb(a) it follows from Lemma II.5 that

e(y|a) = ϕ(y|a)+ = 0 over that region. This in turn implies that the scaled equity value function

is differentiable at all points y ≤ yb(a) and the desired result follows by noting that e′−(y|a) = 0 at

any such point.

Proof of iii). Since by definition e(y|a) = Φ(y,Y(y)|a) ≤ ϕ(y|a) for y ≥ yu(a) it follows from

Lemma II.5 that we have

0 ≤ e(y|a) = Φ(y,Y(y)|a) = ϕ(y|a), y ≥ yu(a).

To see that the inequality is strict note that due to Item iv) the scaled equity value function solves

(II.23) subject to (II.25). In particular,

lim
y↓yb(a)

1

2
σ2y2e′′(y|a) = −δ(yb(a)) > 0

where the strict inequality follows from Item i) and the definition of the no-issuance default

threshold. The above inequality implies that we have e(y|a) > 0 in a right neighborhood of yb(a)

and thus for all y > yb(a) by convexity.

Proof of vi). This follows directly from Corollary II.3.

Proof of v). Since e(y|a) = ϕ(y|a) > 0 for all y ≥ yu(a) by Item iii) it follows from Lemma II.5 that

the scaled equity value function, and thus also ϕ(y|a), is differentiable at all points y ≥ yu(a). On

the other hand, by Item vi) we have that Y(y) is the unique maximizer of the function z 7→ Φ(y, z|a)

over the compact set C(a) and the validity of (II.26) now follows from Milgrom and Segal (2002,

Corollary 4) and (II.24).
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Lemma II.10 Assume that the barrier strategy a ∈ B satisfies Conditions i) and iv) of Lemma

II.9. Then

i) e(y|a) is nonnegative, nondecreasing, convex on the interval [0, yu(a)) and strictly positive on

the interval (yb(a), yu(a))

ii) e(y|a) ≥ e
NI
(y) for all y ≤ yu(a) if and only if yb(a) ≤ y

b,NI
.

Proof of i). Since e(y|a) solves (II.23) subject to value matching and smooth pasting at the default

boundary the uniqueness of the solution to second order differential equations implies that the

constants in Lemma II.8 can be expressed as

Aε(a) =
yb(a)

−Θ(1− τ)
(
yb(a)− y

b,NI

)
(Π− 1)

(r − µ)(Θ− Π)
≥ 0,

Bε(a) =
yb(a)

−Π(1− τ)(yb(a)(Θ− 1)Π + y
b,NI

Θ(1− Π))

(r − µ)Π(Π−Θ)
≥ 0.

Therefore, e(y|a) is convex on the interval [0, yu(a)) and remaining claims in the statement follow

by observing that because

lim
y↓yb(a)

1

2
σ2y2e′′(y) = −δ(yb(a)) > 0

we must have min{e, e′}(y|a) > 0 in a right neighbourhood of yb(a) and thus over the whole interval

since the scaled equity value is convex.

Proof of ii). The necessity of the condition is clear since in its absence e(y|a) = 0 < e
NI
(y) for all

y ≤ (y
b,NI
, yb(a)). Now assume that yb(a) ≤ y

b,NI
. If yu(a) ≤ y

b,NI
then the result follows from Item

i)) since e
NI
(y) = 0 on [0, y

b,NI
]. Assume from now on that yu(a) > y

b,NI
. Proceeding as in the first

part of the proof shows that

w(y) = e(y|a)− e
NI
(y) = Aε(a)y

Θ + 1{y>y
b,NI}B̄(a)yΠ, y ∈ [y

b,NI
, yu(a))
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where Aε(a) ≥ 0 and

B̄(a) ≡
y1−Π
b,NI

(1− τ)

(r − µ)Π
+
yb(a)

−Π(1− τ)(yb(a)(Θ− 1)Π + y
b,NI

Θ(1− Π))

(r − µ)(Π−Θ)Π

Noting that 0 = B̄(a)
∣∣ yb(a)=y

b,NI
and

dB̄(a)

dyb(a)
=

(1− τ)(Π− 1)(yb(a)(Θ− 1)− y
b,NI

Θ)

yb(a)1+Π(r − µ)(Θ− Π)
≥ 0, yb(a) ≤ y

b,NI

we deduce that B̄(a) ≤ 0. This implies that w(y) is non decreasing on [y
b,NI
, yu(a)] and the thesis

follows by observing that w(y
b,NI

) = e(y
b,NI

|a) ≥ 0.
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