Overborrowing, Underborrowing, and Macroprudential Policy*

Fernando Arce
Federal Reserve Bank of Chicago

Julien Bengui
Bank of Canada and CEPR

Javier Bianchi
Federal Reserve Bank of Minneapolis

May 2023

Abstract

In this paper, we revisit the scope for macroprudential policy in production economies with pecuniary externalities and collateral constraints. We study competitive equilibria and constrained-efficient equilibria and examine the extent to which the gap between the two depends on the production structure and the policy instruments available to the planner. We argue that macroprudential policy is desirable regardless of whether the competitive equilibrium features more or less borrowing than the constrained-efficient equilibrium. In our quantitative analysis, macroprudential taxes on borrowing turn out to be larger when the government has access to ex-post stabilization policies.

Keywords: Macroprudential policy, over-borrowing, under-borrowing

JEL Classifications: E58, F31, F32, F34

*We thank Gianluca Benigno, Thomas Drechsel, and Alessandro Rebucci for useful comments. The views expressed herein are those of the authors and not necessarily those of the Bank of Canada, the Federal Reserve Bank of Minneapolis or the Federal Reserve System.
1 Introduction

After the 2008 global financial crisis, many countries upgraded their policy toolkit with macroprudential tools designed to prevent the buildup of excessive risks and vulnerabilities. A key theoretical foundation for the adoption of these policies is pecuniary externalities. In particular, a body of work has shown that collateral constraints linked to market prices may cause “overborrowing” and therefore call for macroprudential interventions to restrict external borrowing ahead of financial crises (e.g., Bianchi 2011). Other studies, however, have questioned the robustness of this prescription, arguing that, in the context of production economies, agents may instead “underborrow,” and thus macroprudential policies may be either undesirable or unnecessary (e.g., Benigno, Chen, Otrok, Rebucci and Young 2013).\footnote{In their study of a production economy, Benigno et al. (2013) present numerical results where positive taxes on debt lead to welfare losses, but they do not study the decentralization of their planner’s problem. In a recent survey, Rebucci and Ma (2020) argue that: “...with a production margin that affects the collateral value in the borrowing constraint, capital controls alone cannot restore constrained efficiency and are generally suboptimal policy instruments.” See also Mendoza (2018) for another discussion of the caveats of macroprudential policy.}

In this paper, we revisit the foundations for macroprudential policies in a production economy and argue that comparing the level of borrowing under the constrained-efficient equilibrium and laissez-faire is not informative about the desirability of macroprudential policies. Using a canonical model with pecuniary externalities, we study constrained-efficient equilibria where we vary the planner’s ability to control market allocations and examine the associated decentralization. We show that even in configurations in which the constrained-efficient equilibrium features higher levels of borrowing, macroprudential policy remains desirable. In this sense, we find that there is always overborrowing. The logic is that macroprudential taxes are needed ex-ante to make agents internalize the full social costs of debt, regardless of whether the planner is able to alleviate the severity of crises ex-post. Furthermore, we also find that taxes turn out to be larger when the government has access to ex-post stabilization policies.

We analyze a two-sector small open economy model with production and imperfect financial markets, building on the framework developed by Mendoza (2002) and Bianchi (2011). In this economy, households face a credit constraint linked to the market price of non-tradable goods. Standard shocks to income can trigger sharp contractions in borrowing capacity through a feedback loop between consumption and the price of non-tradables. We first consider a scenario in which the planner can control the level of borrowing subject to the credit constraint, letting goods and labor markets clear competitively. We show that a macroprudential tax on debt can decentralize the constrained-efficient allocations, as in
Bianchi (2011)’s endowment economy model. We then consider a scenario in which the planner can also reallocate labor across sectors and thus resort to an ex-post stabilization policy. In this case, we find that such interventions lead to an increase in borrowing ex-ante, a result that echoes Benigno et al. (2013) who consider an analogous planning problem but do not examine the question of decentralization. Our analysis demonstrates that a strictly positive tax on debt in normal times remains needed to decentralize the constrained-efficient allocations. Moreover, we find that taxes can actually be larger despite the laissez-faire economy featuring less borrowing.

In addition to the work mentioned above, our paper is complementary to other studies on pecuniary externalities and inefficient borrowing. Dávila and Korinek (2018) find that externalities operating through redistributive effects under incomplete markets can lead to over- or under-borrowing as well as over- or under-investment. Drechsel and Kim (2022) show that with earning-based borrowing constraints, firms may underborrow as higher debt reduces equilibrium factor prices and thereby relaxes borrowing constraints.2 Benigno et al. (2016) study Ramsey optimal policy in an endowment economy and find that when price support policies require distortionary taxes, the optimal policy also involves a tax on debt.3 Schmitt-Grohé and Uribe (2021) find that the possibility of self-fulfilling financial crises leads to too little borrowing relative to the constrained planner’s allocations. Finally, in the context of different models, several studies have examined interactions between ex-ante and ex-post policies, including Bianchi (2016), Bornstein and Lorenzoni (2018), and Jeanne and Korinek (2020).

2 Model

We consider a dynamic small open economy model with production of tradable and non-tradable goods. The economy is populated by a continuum of identical households that borrow externally, subject to an occasionally binding borrowing constraint.

2In a similar vein, Bianchi and Mendoza (2010) point to an attenuation effect of overborrowing through the wage bill and working capital.

3Benigno et al. (2023) studies a richer set of policy instruments in a production economy and show how the unconstrained equilibrium can be implemented. Vargas and Parra-Polania (2021) highlight how fiscal constraints can impose limits on price support policies.
2.1 Households’ problem

Households’ preferences are given by

$$\mathbb{E}_0 \sum_{t=0}^{\infty} \beta^t u(c_t),$$

(1)

where $\mathbb{E}_0$ is the expectation operator conditional on date 0 information; $0 < \beta < 1$ is a discount factor; $u(\cdot)$ is a standard increasing, concave, and twice continuously differentiable function satisfying the Inada conditions. Consumption $c_t$ is an Armington-type constant elasticity of substitution (CES) aggregator with elasticity of substitution $1/(\eta + 1)$ between tradable goods $c^T_t$ and non-tradable goods $c^N_t$, given by

$$c_t = \left[ \omega (c^T_t)^{-\eta} + (1 - \omega) (c^N_t)^{-\eta} \right]^{-\frac{1}{\eta}}, \quad \text{with} \quad \eta > -1, \omega \in (0, 1).$$

In each period, households are endowed with a fixed number of hours $\bar{h}$, are perfectly mobile across sectors, and do not value leisure. They receive a competitive wage for their labor, as well as profits from firms in the tradable and non-tradable sectors.\(^4\)

Households can borrow (or save) using a one-period non-state-contingent bond $b_{t+1}$ denominated in units of tradables that pays a constant interest rate $R$ exogenously determined in international capital markets.\(^5\) Their budget constraint, in units of tradables, is given by

$$c^T_t + p^N_t c^N_t - \frac{b_{t+1}}{R} = w_t \bar{h} + \pi^T_t + \pi^N_t - b_t,$$

(2)

where $p^N_t$ is the price of non-tradables, $w_t$ is the wage, and $\pi^T_t$ and $\pi^N_t$ are profits from tradable and non-tradable producing firms. In addition, following Mendoza (2002), Bianchi (2011), and Benigno et al. (2013) households face a credit constraint given by

$$\frac{b_{t+1}}{R} \leq \kappa \left( w_t \bar{h} + \pi^T_t + \pi^N_t \right).$$

(3)

The constraint captures in a parsimonious way, the empirical fact that income is critical in determining households’ credit-market access (see, e.g., Jappelli, 1990; Lian and Ma, 2021), and from a macro perspective, it has been shown to be important for accounting for the

\(^4\)In a minor departure from Benigno et al. (2013), we do not consider leisure in the utility function. This assumption simplifies the analysis without affecting our theoretical results. For the quantitative analysis, it also helps avoid a counterfactual increase in employment during sudden stops events.

\(^5\)Assuming no foreign inflation, this condition is equivalent to denominating the bonds in foreign currency, capturing the liability dollarization phenomenon.
dynamics of capital flows in emerging markets.\footnote{The credit constraint can be derived endogenously from a problem of limited enforcement under the assumption that if households default at the end of the period, they lose a fraction \( \kappa \) of the current income, and immediately regain access to credit markets (see Bianchi and Mendoza, 2018, for a derivation of a similar constraint). The ability to borrow could also depend on future income as well, but as emphasized by Ottonello, Perez and Varraso (2022), what is crucial for the analysis is that borrowing is at least partially leveraged on current income.}

Households choose consumption and borrowing to maximize their utility (1), subject to their budget constraint (2) and credit constraint (3), taking prices and taxes as given. Their optimality conditions are given by

\[
p_t^N = \frac{1 - \omega}{\omega} \left( \frac{c_t^T}{c_t^N} \right)^{\eta+1}, 
\]

(4)

\[
\lambda_t = u_T(t),
\]

(5)

\[
\lambda_t = \beta R E_t \lambda_{t+1} + \mu_t,
\]

(6)

\[
0 = \mu_t \left[ \kappa \left( w_t \bar{h} + \pi_t^T + \pi_t^N \right) - \frac{b_{t+1}}{R} \right],
\]

(7)

where \( u_T(t) \) is shorthand notation for \( \frac{\partial u}{\partial c^T} \frac{\partial c^T}{\partial c^T} \) and \( \mu_t \) denotes the non-negative Lagrange multiplier on the borrowing constraint. Condition (4) is a static optimality condition equating the marginal rate of substitution between tradable and non-tradable goods to their relative price. Condition (5) equates the marginal utility of tradable consumption to the shadow value of current wealth. Condition (6) is the household’s Euler equation for debt, where \( \mu_t \geq 0 \) is the multiplier on the credit constraint (3). Finally, condition (7) is the household’s complementary slackness condition. When \( \mu_t > 0 \), the credit constraint binds, and the marginal utility benefits from increasing tradable consumption today exceed the expected marginal utility costs from borrowing one unit and repaying next period.

### 2.2 Firms’ problem

The tradable and non-tradable goods are produced by competitive firms that maximize profits and respectively solve

\[
\max_{h_t^T} z_T^T (h_t^T)\alpha - w_t h_t^T,
\]

(8)

\[
\max_{h_t^N} p_t^N z^N (h_t^N)^\alpha - w_t h_t^N,
\]

(9)

where \( z_t^T \) is a stochastic productivity shock, while \( z^N \) and \( \alpha \) are constant parameters.
The tradable and non-tradable goods firms’ optimality conditions are respectively given by

\[ w_t = z^T_t \alpha (h^T_t)^{\alpha-1}, \]

(10)

\[ w_t = p^N_t z^N \alpha (h^N_t)^{\alpha-1}. \]

(11)

Combining (10) and (11), we obtain

\[ 1 = \frac{z^N_t (h^N_t)^{\alpha-1}}{z^T_t (h^T_t)^{\alpha-1}} p^N_t. \]

(12)

This expression implies that increases in the relative price of non-tradables are associated with a shift in employed hours toward the non-tradable sector.

2.3 Competitive equilibrium

In equilibrium, the market for non-tradable goods must clear domestically and total labor demand by firms must equal \( \bar{h} \). That is, we must have

\[ c^N_t = z^N (h^N_t)^\alpha, \]

(13)

\[ \bar{h} = h^N_t + h^T_t. \]

(14)

We can now define a competitive equilibrium:

**Definition 1.** The competitive equilibrium is given by a sequence of prices \( \{p^N_t, w_t\}_{t=0}^\infty \) and allocations \( \{c^N_t, c^T_t, h^N_t, h^T_t, b_{t+1}\}_{t=0}^\infty \) such that:

i) Households optimize. That is, (2)-(7) are satisfied.

ii) Firms optimize. That is, (10)- (11) are satisfied.

iii) Markets clear. That is, (13) and (14) hold.

3 Normative Analysis

We now analyze the normative properties of this economy. We consider two cases. First, we look at the case of a planner that directly controls the level of debt, but lets markets for labor and goods clear competitively. Second, we consider a case in which the planner can
also choose the allocation of labor across sectors in addition to choosing the level of debt, and lets only the goods market clear competitively.

### 3.1 Ex-ante macroprudential intervention

We first assume that the planner directly controls only the level of debt, while the labor and goods markets clear competitively. While the planner cannot directly choose the labor allocations, it internalizes how its borrowing choices affect employment across sectors. In recursive form, the planner’s problem can be written as

\[
V(b, z^T) = \max_{c^T, c^N, h^T, h^N} \ u(c^T, c^N) + \beta \mathbb{E} V(b', z'^T)
\]

subject to

\[
c^T - \frac{b'}{R} = z^T \left( h^T \right)^\alpha - b, \tag{15a}
\]
\[
c^N = z^N \left( h^N \right)^\alpha, \tag{15b}
\]
\[
\bar{h} = h^T + h^N, \tag{15c}
\]
\[
\frac{b'}{R} \leq \kappa \left[ z^T \left( h^T \right)^\alpha + \frac{1 - \omega}{\omega} \left( \frac{c^T}{c^N} \right)^{\eta+1} z^N \left( h^N \right)^\alpha \right], \tag{15d}
\]
\[
\frac{z^T}{z^N} \left( \frac{h^T}{h^N} \right)^{\alpha-1} = \frac{1 - \omega}{\omega} \left( \frac{c^T}{c^N} \right)^{\eta+1}, \tag{15e}
\]

where (15a) is the resource constraint for tradable goods, (15b) is the resource constraint for nontradable goods, (15c) is the time constraint for labor, (15d) is the credit constraint, and (15e) is an implementability constraint associated to firms’ and households’ optimal intratemporal choices. When both the labor and goods market clear competitively, the marginal rate of substitution is equal to the marginal rate of transformation between goods.

Returning to sequential notation, the planner’s Euler equation for debt is given by

\[
\lambda_t = \beta \mathbb{E}_t \lambda_{t+1} + \mu_t, \tag{16}
\]

its credit constraint is given by

\[
- \frac{b_{t+1}}{R} + \kappa \left[ z^T \left( h^T \right) \alpha + \frac{1 - \omega}{\omega} \left( \frac{c^T}{c^N} \right)^{\eta+1} z^N \left( h^N \right) \alpha \right] \geq 0, \tag{17}
\]
and its complementary slackness condition is

\[
\left\{ -\frac{b_{t+1}}{R} + \kappa \left[ z_t^T (h_t^T) \alpha + \frac{1 - \omega}{\omega} \left( \frac{c_t^T}{c_t^N} \right)^\eta z_t^N (h_t^N) \alpha \right] \right\} \mu_t = 0. \tag{18}
\]

Meanwhile, its remaining optimality conditions for \(c_t^T, c_t^N, h_t^T\) and \(h_t^N\) are given by

\[
\lambda_t = u_T(t) + \left( \mu_t \kappa + \frac{\nu_t}{c_t^N} \right) (1 + \eta) p_t^N c_t^N/c_t, \tag{19}
\]

\[
\delta_t = u_N(t) - \left( \mu_t \kappa + \frac{\nu_t}{c_t^N} \right) (1 + \eta) p_t^N, \tag{20}
\]

\[
\chi_t = (\lambda_t + \mu_t \kappa) z_t^T \alpha (h_t^T)^{\alpha-1} - \nu_t (\alpha - 1) p_t^N \frac{1}{h_t^T}, \tag{21}
\]

\[
\chi_t = (\delta_t + \mu_t \kappa p_t^N) z_t^N \alpha (h_t^N)^{\alpha-1} + \nu_t (\alpha - 1) p_t^N \frac{1}{h_t^N}, \tag{22}
\]

where \(\lambda_t, \delta_t, \chi_t, \mu_t\) and \(\nu_t\) respectively denote the multipliers on constraints (15a), (15b), (15c), (15d) and (15e). Equations (19) and (20) equate the marginal utility benefits of tradable and non-tradable consumption to their marginal utility costs while (21) and (22) are the analogous conditions for tradable and non-tradable employment. Crucially, these conditions incorporate how changes in allocations alter the tightness of the collateral constraint, as captured by the terms featuring \(\mu_t\).

Combining (19)-(22) to eliminate the multipliers \(\delta_t, \chi_t\) and \(\nu_t\) leads to the following expression

\[
\lambda_t = u_T(t) + \mu_t \Psi_t, \tag{23}
\]

where \(\Psi_t \equiv \Psi_t \Gamma_t, \Psi_t \equiv (1 + \eta) \kappa (p_t^N c_t^N)/c_t^T\) and

\[
\Psi_t \equiv \frac{1-\alpha}{\alpha} \frac{h}{h_t^T} \Gamma_t \equiv \frac{1-\alpha}{\alpha} \frac{h}{h_t^T} + (1 + \eta) [c_t^T/(c_t^T + p_t^N c_t^N)]^{-1}. \tag{24}
\]

Comparing (23) with (5) reveals that the social planner has a higher shadow value of wealth than private agents when the collateral constraint binds. The valuation wedge is the product of the planner’s shadow value of the constraint \(\mu_t\) with the term \(\Psi_t\). This later term, which measures the extent to which the collateral constraint is relaxed by an additional unit of tradable consumption is itself the product of two terms, \(\Psi_t\) and \(\Gamma_t\). The term \(\Psi_t\), also present in Bianchi (2011)’s endowment economy model, captures the elasticity of the collateral value with respect to a change in tradable consumption, for a given level of non-tradable
goods consumption. The attenuation term $\Upsilon_t$, which is specific to production economies, accounts for the fact that any rise in tradable consumption, by pushing up the price of non-tradables, reallocates labor towards the non-tradable sector and thereby also raises non-tradable consumption in equilibrium. In turn, this rise in non-tradable consumption mutes some of the increase in the price of non-tradable, so the general equilibrium elasticity of the collateral value is lower in the production economy than in a benchmark endowment economy where non-tradable consumption would be constant.

We obtain the following proposition:

**Proposition 1** (Decentralization with ex ante intervention). Consider the allocations that solve the optimal policy problem (15). These allocations can be decentralized as a competitive equilibrium with a state contingent tax on debt rebated with lump sum transfers. In states in which the borrowing constraint is not binding, the tax on debt is given by:

$$
\tau_t = \frac{\mathbb{E}_t \mu_{t+1} \tilde{\Psi}_{t+1}}{\mathbb{E}_t u_T(t+1)} \geq 0,
$$

(25)

*Proof.* See Appendix A.1. 

Thus, the desirability of a strictly positive tax on borrowing in Bianchi (2011) extends to the case with production. Failing to internalize that additional tradable consumption would support the equilibrium price of non-tradable goods and relax credit constraints, private households borrow too much relative to what is socially optimal.\(^7\)

### 3.2 Ex-ante and ex-post interventions

In the preceding section, we examined a scenario where the planner had the ability to solely control the debt level. We now allow the planner to also control the allocation of labor across

---

\(^7\)When the borrowing constraint is binding, one can show that the tax on borrowing that implements the optimal policy is zero if $\mu_{t+1} \tilde{\Psi}_{t+1} + \mu_t (1 - \Psi_t) \geq 0$. 

sectors. In this case, the planner’s problem is given by

\[
V(b, z^T) = \max_{c^T, c^N, h^T, h^N} u(c^T, c^N) + \beta E V(b', z^{T'})
\]

(26)

subject to

\[
c^T - \frac{b'}{R} = z^T (h^T)^\alpha - b,
\]

(26a)

\[
c^N = z^N (h^N)^\alpha,
\]

(26b)

\[
\bar{h} = h^T + h^N,
\]

(26c)

\[
\frac{b'}{R} \leq \kappa \left[ z^T (h^T)^\alpha + \frac{1 - \omega}{\omega} \left( \frac{c^T}{c^N} \right)^{\eta+1} z^N (h^N)^\alpha \right].
\]

(26d)

The difference with problem (15) is that the implementability constraint (15e) associated with the intratemporal allocation of labor across sector can now be dropped. The planner can now choose to clear the labor market at a marginal rate of transformation between goods that can be different from the marginal rate of substitution between goods.

Again using the same sequential notation for convenience, we get that the planner’s Euler equation for debt, its credit constraint and its complementary slackness condition are still given by (16), (17) and (18), while its remaining optimality conditions for \(c_i^T, c_i^N, h_i^T\) and \(h_i^N\) are now given by

\[
\lambda_t = u_T(t) + \mu_t \Psi_t,
\]

(27)

\[
\delta_t = u_N(t) - \mu_t \kappa (1 + \eta) p_i^N,
\]

(28)

\[
\chi_t = (\lambda_t + \mu_t \kappa) z^T \alpha (h_i^T)^{\alpha-1},
\]

(29)

\[
\chi_t = \left( \delta_t + \mu_t \kappa p_i^N \right) z^N \alpha (h_i^N)^{\alpha-1},
\]

(30)

where \(\lambda_t, \delta_t, \chi_t\) and \(\mu_t\) again respectively denote the multipliers on constraints (26a), (26b), (26c) and (26d). In contrast to the regime with only ex-ante intervention, characterized by (23), condition (27) equating the marginal benefits of tradable consumption to its marginal cost is now identical to its endowment economy model counterpart (cf. Bianchi 2011, equation 12). The reason is that unlike in the case without ex post intervention, here a higher price of non-tradable does not automatically trigger a labor reallocation toward the non-tradable sector, since the planner is not bound by a private allocation of labor across sectors. As a result, despite non-tradable consumption being endogenous, the elasticity of the collateral value with respect to changes in tradable consumption is given by \(\Psi_t\), and the externality
relevant for the planner is the same as in the endowment economy model.

We obtain the following proposition.

**Proposition 2** (Decentralization with ex ante and ex post intervention). *Consider the allocations that solve the optimal policy problem (26). These allocations can be decentralized as a competitive equilibrium with a state contingent tax on debt and a payroll tax on non-tradable labor, both rebated lump sum. In states in which the borrowing constraint is not binding, the tax on debt is given by

\[ \tau_t = \frac{\mathbb{E}_t \mu_{t+1} \Psi_{t+1}}{\mathbb{E}_t u_T(t+1)} \geq 0. \]  

(31)

The payroll tax on non-tradable labor is given by

\[ \tau_t^N = \mu_t \kappa c_t^N (1 + \eta) p_t^N \frac{\left( c_t^T \right)^{-1} + \left( c_t^N \right)^{-1} \beta_N (h_t^N)^{\alpha - 1}}{u_T(t) + \mu_t \kappa} \geq 0. \]  

(32)

*Proof.* See Appendix A.2. 

The proposition shows that a macroprudential debt tax is still warranted in this economy with ex-post government intervention. Irrespective of whether the planner has access to an ex-post stabilization policy or not, the optimal policy thus features a macroprudential tax on debt. The reason is that regardless of the planner’s ability to distort the allocation of labor ex-post, private households always undervalue wealth in states of nature in which the credit constraint binds.

In addition, the proposition also shows that implementation requires a payroll tax on non-tradable labor. This tax is positive whenever the credit constraint binds for the planner (i.e., whenever \( \mu_t > 0 \)). The logic is that in such cases, the planner optimally redirects production away from the non-tradable sector so as to support the price of non-tradable goods and relax the credit constraint at the margin.

**Underborrowing and macroprudential policy.** These results clarify a common misconception in the literature which posits that the case for macroprudential debt taxes is weaker (or absent) in production economies and/or when ex-post stabilization policies are available. This interpretation stems from the fact that in the presence of production and an ex-post policy margin, the optimal policy intervention often results—as we will see below—in higher borrowing than in the laissez-faire economy, a phenomenon referred by Benigno et al. (2013) as *underborrowing*, as opposed to overborrowing. Benigno et al. (2013), however,
do not consider the decentralization of their planner problem. Our results for Propositions 1 and 2 clarify that the externality motivating macroprudential debt taxes in endowment economies identically applies to production economies, regardless of whether ex-post policies are available. Intuitively, what is key for the macroprudential policy motive is that households face a private shadow cost of debt lower than the social one. This feature of the model is present irrespective of whether the laissez-faire economy features more or less borrowing than to the optimal policy outcome.\footnote{An implication of the desirability of a tax on debt in this environment (with or without production) is the desirability of imposing quantity restrictions on borrowing, or other macroprudential policies, such as reserve requirements (see Bianchi, 2011).}

4 Quantitative Analysis

We next proceed to study quantitatively how the set of instruments available to the planner matters for the levels of borrowing and taxes.\footnote{We solve the model globally, following Bianchi (2011). We use a grid of 500 points for debt and 20 different values of the exogenous shocks. The laissez-faire economy and the economy with an ax-ante intervention are solved using time iteration. The economy with ex-ante ex-post intervention is solved using value function iteration.}

4.1 Calibration

Our model calibration largely follows Bianchi (2011)’s calibration to Argentina. A period in the model represents a year. A first set of parameters is taken from the literature or estimated in the data outside of the model. The preference parameters for risk aversion and the elasticity of substitution are set to $\sigma = 2$, $1/(1 + \eta) = 0.83$. The value for the interest rate is set to 4%. The labor share $\alpha = 0.67$ coincides with the share of aggregate income that goes to labor as a percentage of GDP in household surveys (see García-Verdú, 2005), a standard value in quantitative sudden stop models with production (see Benigno et al., 2013).

A second set of parameters is calibrated so that the unregulated competitive equilibrium matches a set of moments from the data (following the same targets as in Bianchi, 2011). The relative preference for tradables is set to $\omega = 0.307$ to match the share of tradable GDP in the data. The discount factor $\beta = 0.91$ is set to match the average net foreign asset position to GDP ratio. The collateral constraint parameter is set to $\kappa = 0.32$ to match the observed frequency of sudden stops.\footnote{These parameters are equal to those used in Bianchi (2011).}
Arce et al. (2019). First, we construct a tradable GDP index for Argentina from the World Development Indicators from 1965 to 2007. We assume a first-order autoregressive process for the cyclical component of this series: \( \ln y_t^y = \rho^y \ln y_{t-1}^y + \varepsilon_t^y \) with \( \varepsilon_t^y \sim N(0, \sigma_y) \). We estimate values of \( \rho^y = 0.5 \) and \( \sigma_y = 0.0502 \). We then set the persistence parameter of the productivity shocks in the tradable sector to the persistence of tradable GDP and calibrate the volatility of the productivity shocks in the tradable sector to ensure that the standard deviation of the simulated tradable output at the ergodic distribution of the unregulated economy coincides with the one in the data. This method yields values of \( \rho^z = 0.5 \) and \( \sigma_z = 0.0535 \). A summary of parameter values is provided in Table 1.

Table 1: Parameter Values

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
<th>Source/Targets</th>
</tr>
</thead>
<tbody>
<tr>
<td>Interest Rate</td>
<td>( r = 0.04 )</td>
<td>Standard value</td>
</tr>
<tr>
<td>Risk Aversion</td>
<td>( \sigma = 2 )</td>
<td>Standard value</td>
</tr>
<tr>
<td>Elasticity of Substitution</td>
<td>( 1/(1 + \eta) = 0.83 )</td>
<td>Standard value</td>
</tr>
<tr>
<td>Weight on Tradables in CES</td>
<td>( \omega = 0.32 )</td>
<td>Share of tradable consumption</td>
</tr>
<tr>
<td>Discount Factor</td>
<td>( \beta = 0.91 )</td>
<td>Net foreign asset position</td>
</tr>
<tr>
<td>Credit coefficient</td>
<td>( \kappa = 0.32 )</td>
<td>Frequency of sudden stops</td>
</tr>
<tr>
<td>Labor share in production</td>
<td>( \alpha = 0.67 )</td>
<td>Share of labor income in GDP</td>
</tr>
<tr>
<td>Stochastic structure ( z^T )</td>
<td>( \rho^z = 0.5, \sigma_z = 0.0535 )</td>
<td>Persistence and volatility of tradables</td>
</tr>
</tbody>
</table>

4.2 Ex-ante intervention only

Figure 1 plots the policy functions for debt issuance and for employment in the tradable sector as a function of the initial level of assets in the case in which the planner has access only to an ex-ante instrument. Policy functions from the laissez-faire economy are also plotted for comparison. As in Bianchi (2011) and most of the literature on overborrowing, we find that the planner chooses a lower level of borrowing when the credit constraint is not binding (panel a), relative to its level in the laissez-faire economy. We also find that the effect of this lower debt on relative prices leads to a higher level of labor allocated in the tradable sector when the constraint is not binding (panel b). However, for high enough initial levels of debt, the credit constraint binds, and the allocations of the regulated and laissez-faire economies coincide.
Figure 1: Policy functions: ex ante intervention

Note: In the both panels, the tradable productivity shock is set at the mean value.

4.3 Ex-ante and ex-post interventions

Figure 2 plots the policy functions for debt issuance and employment in the tradable sector as a function of the initial level of assets in the case in which the planner has access to both ex-ante and ex-post policies. Policy functions from the laissez-faire economy are once again plotted as a benchmark. This time, the level of borrowing in the regulated economy is always more than that in the laissez-faire economy (panel a), a phenomenon often referred to as underborrowing in the literature (Benigno et al., 2013). While the policy function for debt still exhibits a kink due to the credit constraint, the level of borrowing is always increasing in the current debt level.

The policy function for labor allocated to the tradable sector is helpful for understanding this feature (panel b). When the current level of debt is high enough to lead to a binding credit constraint, the planner seeks to relax the constraint by allocating more labor to the tradable sector. This in turn increases the collateral value and allows the economy to sustain a higher level of debt. Moreover, given that a binding collateral constraint can be alleviated in this way, the incentive to accumulate precautionary savings when the credit constraint is not binding is weaker than in the laissez-faire economy. As a result, the level of borrowing is also higher. This in turn appreciates the real exchange rate, increases wages, and reduces the share of labor employed in the tradable sector relative to their levels in the laissez-faire economy.
Figure 2: Policy functions: ex ante and ex post intervention

Note: In both panels, the tradable productivity shock is set at the mean value.

4.4 Policy Comparison: Ex-ante vs. Ex-ante and Ex-post

Figure 3 delves deeper into the comparison between the economy with only ex-ante intervention and the economy featuring both ex-ante and ex-post interventions. Panel (a) shows the ergodic distribution of debt for the two regulated economies as well as for the laissez-faire economy (blue). The economy with only ex-ante policies exhibits the least amount of debt, followed by the laissez-faire economy, and then the economy with ex-ante and ex-post policies.

Figure 3: Policy functions for debt and labor in the tradable sector

Note: In panel (b), the tradable productivity shock is set at the mean value.
Panel (b) shows the optimal tax on debt that implements the planner’s allocations with only ex-ante policies (red) and with ex-ante and ex-post policies (green). In both cases, macroprudential policy is active only when the credit constraint is not binding. Interestingly, taxes on debt are higher in the economy with ex-ante and ex-post policies. This result may appear surprising, as the ability to intervene ex-post can in principle mitigate the externality by relaxing a binding credit constraint. However, it is important to recognize that while this credit constraint relaxation effect applies at a given debt level, the mere anticipation by the private sector of an ex-post intervention leads to higher borrowing ex-ante. In turn, this higher borrowing can lead to a larger externality and, accordingly, to a higher optimal tax on debt.

5 Conclusions

Collateral constraints linked to market prices generate a pecuniary externality that leads to inefficient private borrowing. In this paper, we revisit the question of whether this externality leads to overborrowing and the extent to which this depends on the production structure.

Our main findings are threefold. First, configurations where the unregulated competitive equilibrium features less borrowing than the constrained-efficient equilibrium emerge when the planner is endowed with ex-post policy instruments. Second, regardless of whether the unregulated competitive equilibrium features more or less borrowing, optimal taxes on borrowing are always positive, implying that macroprudential policy is always desirable. Finally, those configurations where the competitive equilibrium features less borrowing may call for even higher taxes on borrowing.
References


A Proofs

A.1 Proof of Proposition 1

Denote by $\tau_t$ the tax charged on debt issued at time $t$, the Euler equation for bonds in the regulated decentralized equilibrium (6) becomes

$$u_T(t) = \beta R(1 + \tau_t) E_t u_T(t + 1) + \mu_t. \quad (A.1)$$

Combining the optimality conditions (16) and (23) from the planning problem (15)-(15e) yields

$$u_T(t) = \beta R E_t \left[ u_T(t + 1) + \mu_{t+1} \Psi_{t+1} \right] + \mu_t \left( 1 - \Psi_t \right). \quad (A.2)$$

The optimal policy with ex-ante macroprudential intervention consists of stochastic sequences $\{c_t^T, c_t^N, b_{t+1}, h_t^T, h_t^N, p_t^N, w_t, \mu_t \}_{t \geq 0}$ such that the following conditions hold: (4), (10), (11), (13), (14), (16), (18), (23), (A.2), and $\mu_t \geq 0$.

Meanwhile, the decentralized equilibrium with taxes on debt consists of stochastic sequences $\{c_t^T, c_t^N, b_{t+1}, h_t^T, h_t^N, p_t^N, w_t, \mu_t, \tau_t, T_t \}_{t \geq 0}$ such that the following conditions hold: (4), (7), (10), (11), (13), (14), (A.1), $T_t = b_t R \tau_{t-1}$ and $\mu_t \geq 0$.

Setting the tax to $\tau_t = E_t \mu^*_{t+1} \Psi^*_{t+1} / E_t u^*_T(t + 1)$ yields that the conditions characterizing the decentralized equilibrium with a tax on debt are identical to those characterizing the optimal policy outcome with ex-ante macroprudential intervention. Finally, the result that $\tau_t \geq 0$ is immediate from the fact that $\Psi_t \geq 0$.

A.2 Proof of Proposition 2

With the payroll tax on non-tradable labor, firms maximize $\max_i p_t^N z^N (h_t^N)^\alpha - w_t (1 + \tau_t) h^N$ and optimality implies

$$w_t(1 + \tau_t^N) = p_t^N z^N \alpha (h_t^N)^{\alpha - 1}. \quad (B.1)$$

The proof for the tax on debt follows the same steps as Proposition 1, this time with

$$u_T(t) = \beta R E_t \left[ u_T(t + 1) + \mu_{t+1} \Psi_{t+1} \right] + \mu_t \left( 1 - \Psi_t \right) \quad (B.2)$$
 replacing (A.2), in addition to condition (27) replacing condition (23).

Regarding the payroll tax on non-tradable labor, we can obtain (32) by combining (27)-(29) and (30), together with (B.1).