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Abstract

Using data from 197 metro areas, we estimate the parameters of a dynamic, forward-
looking neighborhood choice model where households have preferences over the racial
composition of the neighborhood in which they live. Using multiple metro areas in the
estimation sample enables us to develop a new, shift-share IV strategy to estimate the
impact of the racial composition of neighborhoods on location choice that relies only
on across-metro comparisons of similarly situated neighborhoods. Our neighborhood-
level instrument is constructed by interacting national-average, across-neighborhood
sorting patterns with respect to neighborhood-level topography with metro-level shares
of households by demographic subgroup. For a given configuration of neighborhood-
level topographic data, the instrument predicts variation in neighborhood-level racial
shares that is attributable exclusively to variation in metro-level shares of demographic
subgroups. We find that households in many different demographic subgroups have
strong preferences to live in neighborhoods consisting mostly or entirely of households
of the same race. These preferences are sufficiently strong that model simulations
suggest that the current demographic composition of neighborhoods is not stable.
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1 Introduction

In this paper, we propose a new method for estimating household preferences for racial

diversity in the neighborhoods in which they live. As documented by Cutler, Glaeser, and

Vigdor (1999) and others, households in the United States continue to be racially segregated.

This segregation may be the outcome of some or many households having explicit preferences

over the racial mix of the neighborhood in which they live. An alternative explanation is that

households do not directly care about the racial mix of their neighborhood, but segregation

occurs because households of different races differentially value or differ in their ability to

pay for various neighborhood amenities. Of course, both of these forces may be present and

contributing to the segregation of neighborhoods today, especially once historical policies

and patterns are taken into consideration.

There are important policy implications of understanding why segregation occurs. If

households do not have strong preferences regarding the race of their neighbors, then gov-

ernment programs that incentivize racial integration may be able to increase neighborhood

racial diversity. If some households have preferences exhibiting “homophily,” the desire to

live in neighborhoods with households of their same race, then government programs may

shift people around in the short run, but may not increase racial diversity in the long run as

households respond to the program and to other households moving.

To get at these important questions, we specify a dynamic, discrete-choice model of

within-metro neighborhood choice and estimate household preferences for the racial mix of

their neighborhood using a new shift-share strategy (Bartik, 1991). We use a dynamic model

in order to discuss the short- and long-run impacts of hypothetical government policies on

the demographic composition of neighborhoods. Our shift-share research design requires

estimating a different version of the dynamic location choice model specifically tailored for

each of a large number of metro areas, because the approach for identifying racial preferences

involves comparisons of similarly situated neighborhoods across metro areas. For that reason,

the geographic scope of our analysis needs to be substantially larger than existing studies

that estimate dynamic discrete choice models of neighborhood choice using data from a

single metro area. We apply our research design using panel data on neighborhood choices in

nearly 200 metro areas from the New York Fed/Equifax Consumer Credit Panel and detailed

topographic data in each neighborhood in these metros, a key input to our shift-share IV.

We estimate the model’s parameters using a two-step, BLP-style procedure (Berry, Levin-

sohn, and Pakes, 1995; Bayer, Ferreira, and McMillan, 2007), appropriately adapted for our

dynamic modeling environment (Bishop, 2012; Davis, Gregory, Hartley, and Tan, 2021). In

the first step, we use maximum likelihood to obtain estimates of the indirect flow utility
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that each census tract (“neighborhood”) provides to households from each of 54 different

demographic subgroups (“types”) in each metro area. In the second step, we regress these

first-stage estimates of neighborhood indirect utilities on variables describing neighborhood

racial composition, instrumenting for the racial share variables which are likely to be corre-

lated with neighborhood-level unobserved amenities.

We construct the IVs for neighborhood racial shares using a shift-share strategy that har-

nesses the fact that topography inside a metro area is highly predictive of where households

with different demographic and socio-economic characteristics tend to live (Ye and Becker,

2018; Heblich, Trew, and Zylberberg, 2021; Ye and Becker, 2024) and that metro areas vary

substantially in their overall demographic structure. The shift-share instrument that we

generate for racial composition in every neighborhood in every metro interacts (a) national

average neighborhood-choice patterns with respect to topographic variables for each of the

54 demographic types in our data, computed using prediction equations that we pre-estimate

using a national sample of neighborhoods, with (b) metro-level shares of those household

types. Thus, for a given configuration of topographic data, the instrument predicts variation

in neighborhood-level racial shares that is attributable exclusively to variation in metro-level

shares of demographic types. In estimation, we control directly for the impact of topography

on preferences, such that this across-metro variation in our instrument (exclusively deter-

mined by variation in metro-level type shares) is the only source of identification of the

impact of racial shares on preferences.

The recent literature on the econometrics of shift-share instrumental variables has em-

phasized that either exogeneity of the shares (Goldsmith-Pinkham, Sorkin, and Swift, 2020)

or exogeneity of the shifts (Borusyak, Hull, and Jaravel, 2022), but not neccessarily both,

is required for shift-share IVs to satisfy instrument exogeneity. Our approach relies on an

assumption of “share exogeneity,” specifically the metro-level type shares, and importantly

we do not require topography to be exogenous to neighborhood amenities. To verify this

theoretical result, we perform Monte Carlo simulation experiments that demonstrate our

approach produces consistent estimates of preference parameters in an environment where

households directly sort on amenities (including topography) when making location choices.

Our estimates suggest that some, but not all, types of households have relatively strong

preferences for neighborhood racial composition exhibiting homophily. The fact that house-

holds do not uniformly wish to live in more segregated neighborhoods hints that there may

be some room for policy to engineer more racially integrated neighborhoods than currently

observed. We use our model to predict the outcomes of one such hypothetical policy that,

absent any resorting response, should mechanically increase racial integration relative to

current data. We simulate a policy shock in which all current low-income housing tax credit
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developments expand by 10 percent and the new units are populated by low-income house-

holds with the same demographic mix as the metro average for low-income households. We

then compute a new steady state after the policy is implemented and all households have

had a chance to resort in response to this policy and the location-choice decisions of other

households.

In every metro that we simulate, the new steady state features much more racial segrega-

tion (relative to the starting point of the simulations) due to the endogenous resorting of the

population that takes place over time. This resorting and the increase in segregation that re-

sults occurs because many types of households have strong preferences exhibiting homophily.

When we repeat simulations of the hypothetical policy shock, but after significantly “shrink-

ing” (but not eliminating) estimates of racial preferences for all types of households, the

steady state that emerges in many metro areas is more racially integrated than the starting

point of the simulations.

We also use simulations of the model to understand the relationship between household

expectations and the speed at which households resort in response to implementation of this

policy. If households are myopic and assume current racial shares will persist indefinitely

(only updating expectations when observed shares change), then it can take decades for

households to resort in response to the policy.1 In contrast, if households expect a new

steady state to emerge immediately after the policy is implemented, they act rapidly and

the new steady state in fact typically emerges within 10 years.

Our paper contributes to established literatures on how the racial composition of neigh-

borhoods affects location choices, and how this impacts the equilibrium allocation of people

across neighborhoods. Kuminoff, Smith, and Timmins (2013) provides a survey of equilib-

rium models with endogenous location choices, including a few papers where households

have preferences over the racial composition of neighborhoods, for example Bayer, Fer-

reira, and McMillan (2007). Focusing on estimation, some prominent recent papers have

used quasi-experimental variation in geographically proximate locations to estimate how the

racial composition of neighborhoods affects location choice, for example Almagro, Chyn,

and Stuart (2022) and Bayer, Casey, McCartney, Orellana-Li, and Zhang (2022).2 Almagro,

Chyn, and Stuart (2022) use randomness in the timing of demolitions of public housing in

Chicago, under the assumption that other amenities are held fixed over time, and Bayer,

1In the classic paper by Schelling (1971), households are assumed to solve a sequence of static models
when making decisions, implying expectations are myopic over future neighborhood composition.

2These papers are in the spirit of Bayer, Ferreira, and McMillan (2007), who use boundaries for school
attendance zones in San Francisco to generate plausibly exogenous changes in neighborhood racial com-
position, under the assumption that unobserved amenities on both sides of the boundary are roughly the
same.
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Casey, McCartney, Orellana-Li, and Zhang (2022) focus on changes to the racial composi-

tion of neighbors that are geographically close (on their block) and therefore plausibly share

the same bundle of amenities not related to race. Despite our use of a different model,

different data, and an estimation procedure that relies on a different source of variation

for identification, our results about preferences are in line with findings of Almagro, Chyn,

and Stuart (2022) and Bayer, Casey, McCartney, Orellana-Li, and Zhang (2022) and others:

Many households have preferences that exhibit homophily.3

Our work also directly relates to other design-based studies estimating White households’

migration response to inflows of Black households. Boustan (2010), who studies post-WWII

White migration from central cities to suburbs, uses a shift-share approach similar to that

of Card (2001) to estimate the impact of Black inflows on White migration.4 Shertzer and

Walsh (2019) use an IV approach similar to Boustan (2010), but with a prediction equation

that generates within-city White migration in response to Black migration between 1900 and

1930.5

Finally, there is an extensive literature on the dynamics of neighborhood change. See

Ellen (2000) for an overview and Ellen and Torrats-Espinosa (2019) for a discussion of

racial change in the context of gentrification. An important recent study in this literature is

Caetano and Maheshri (2021), which exploits the time-series structure of a dynamic location-

choice decision model to develop instruments based on sufficiently lagged data that identifies

exogenous components of the current racial composition of neighborhoods in San Francisco.

Similar to our findings, Caetano and Maheshri (2021) estimate that household preferences

exhibit homophily. Given these preferences, their model predicts that the racial composition

of neighborhoods in San Francisco will change over time.

3Additionally, in line with our findings, Aliprantis, Carroll, and Young (2022) find that preferences
(homophily) rather than wealth explain differences in the socio-economic status of the neighborhoods in
which Black and White households reside. Christensen and Timmins (2021) and Christensen and Timmins
(2022) also show that steering and barriers to entry may also play a role in determining the neighborhoods
to which Black households have access.

4In related papers, Derenoncourt (2022) studies the impact of southern Black migration to northern
and western commuting zones on inter-generational income mobility of households in those zones and Shi,
Hartley, Mazumder, and Rajan (2022) study the impact of this migration on urban renewal projects at the
city level. For identification, Boustan (2010), Derenoncourt (2022) and Shi, Hartley, Mazumder, and Rajan
(2022) use southern state-level push factors interacted with historical county-level migration patterns.

5In Shertzer and Walsh (2019), the source of variation arises from differences in Black out-migration
rates from southern states interacted with historical northern city neighborhood destinations of migrants
from those states. Relative to Shertzer and Walsh (2019), we are using different shifts and shares and are
estimating racial preferences within the context of a dynamic model of location choice.
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2 A Simple Location-Choice Model (for Exposition)

To illustrate our new method of identifying preferences for neighborhood racial composition,

we start by analyzing a simplified, static version of the dynamic location-choice model we

eventually estimate. This simplified model makes clear the conditions required for identifi-

cation of parameters. Additionally, we perform Monte Carlo simulation experiments using

the simplified model to evaluate the properties of the estimator we propose under different

assumptions about the data-generating process.

Relative to the full dynamic model that we ultimately estimate, there are two differences.

First, we assume that when a household changes its location, the move is costless. This

implies that households do not need to be forward looking when making location choices,

and a household’s location-choice decision can be described by a static model. Second, with

respect to the demographic composition of any location, in this simplified model we assume

household utility is linear over one demographic variable, the percentage of the location that

is comprised of Black households. When we estimate the full dynamic model, we assume

household utility in any location is a quadratic function over two demographic variables, the

share of households in that location that are Black and the share that are Hispanic.

2.1 The Model

Demand for Locations. In any given metro area m, each household (indexed by i) must

choose a location in that metro (indexed by ℓ) in which to live. We assume households can

freely move to any location in the metro area. We also assume households are not allowed

to exit from their current metro area.

Households belong to “types” that capture differences in demographics and socio-economic

status. Each type of household has its own set of parameters that determines the expected

utility of living in any location. Household i of type τ living in location ℓ in metro area m

receives utility of

uτi,ℓ,m = δτℓ,m + ϵτi,ℓ,m (1)

δτℓ,m is the portion of utility that is common to all type τ households choosing location ℓ in

metro m and ϵτi,ℓ,m is a shock that is specific to household i that is drawn iid from the Type I

Extreme Value Distribution. The inclusion of ϵτi,ℓ,m ensures that not every household of the

same type optimally chooses the same location.

δτℓ,m is assumed to have three components: (1) the price of a rental unit in neighborhood

ℓ in metro m, rℓ,m; (2) the fraction of neighborhood ℓ in metro m that is comprised of Black
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households, Sb
ℓ,m; (3) and “amenities” in neighborhood ℓ in metro m, Aτ

ℓ,m. We specify δτℓ,m
as

δτℓ,m = −aτr log rℓ,m + aτ1S
b
ℓ,m + Aτ

ℓ,m (2)

The parameters aτr and aτ1 are allowed to vary across household types. The amenity value of

neighborhood ℓ in metro m, Aτ
ℓ,m, is also allowed to vary across types.

Households are assumed to know rℓ,m and Sb
ℓ,m in every ℓ in metro m.6 Each household

optimally chooses its utility-maximizing location ℓ in metro m after observing ϵτi,ℓ,m in all

locations in the metro. Suppose there are Jm possible locations in metro m, and denote ℓ∗i,m

as the optimal location choice for household i in metro m. This choice satisfies

ℓ∗i,m = argmax
ℓ=1,...,Jm

{
uτi,ℓ,m

}
Given ϵτi,ℓ,m is drawn iid from the Type 1 extreme value distribution, the probability that a

household of type τ optimally chooses location k in metro m takes a multinomial logit form

pτk,m =
exp(δτk,m)∑Jm

k′=1 exp(δ
τ
k′,m)

(3)

and the probability that a household of type τ optimally chooses location k in metro m

relative to the probability that that same household optimally chooses another location ℓ in

metro m has the simple expression

log
(
pτk,m/p

τ
ℓ,m

)
= δτk,m − δτℓ,m (4)

where pτj,m is the probability that a household of type τ chooses location j in metro m for

j = ℓ, k.

Supply of Housing. We assume each neighborhood has its own housing supply curve. In

simulations of this version of the model that follow, we consider two cases for all locations:

Perfectly elastic provision of housing at a fixed price and perfectly inelastic and fixed supply

of housing in every location. In the full dynamic model that we estimate, we allow each

neighborhood to have its own housing-supply elasticity that is taken from Baum-Snow and

Han (2022).

6Formally, each household takes rℓ,m and Sb
ℓ,m as given when making decisions. In equilibrium, rℓ,m and

Sb
ℓ,m must be consistent with the decisions all households have made.
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2.2 Estimation with IV

We now discuss our strategy to estimate each type’s preferences for the racial composition of

neighborhoods. We construct IVs for neighborhood racial shares using a shift-share strategy

that harnesses the fact that topography inside a metro area is highly predictive of where

households with different demographic and socio-economic characteristics tend to live (Ye

and Becker, 2018; Heblich, Trew, and Zylberberg, 2021; Ye and Becker, 2024). Topography

may be correlated with household type because the natural amenities of various topographies

may vary and the willingness to pay for those amenities is likely to vary in the population.

Ye and Becker (2024) mention, specifically, that the estimated income elasticity of better

scenery (for example) is greater than one and that “elevation variance” reduces access to

public transit, which imposes costs on poor households that are less likely to own a car.

To create the shift-share instrument, we pool all the metro-area data and use a nationally-

estimated relationship of within-metro “relative topography” (the value of any topographic

variable after metro-area fixed effects have been removed) and neighborhood choice probabil-

ities to predict the probability each type will occupy any given neighborhood. In each metro

area, we combine these predicted probabilities with the observed distribution of household

types to predict the share of households in each location that are Black. Thus, for a given

configuration of topographic data (the direct effect of which we control for), the instru-

ment predicts variation in neighborhood-level racial shares that is attributable exclusively

to variation in metro-level shares of household types.

To be clear, we are not assuming topographic variables are instruments unrelated to

amenities. Rather, we use topography to predict where households of various types will

tend to live. This allows the instrument to exploit the fact that the impact of metro-level

shares of certain types of households on predicted neighborhood-level racial shares varies by

topography. We discuss this in great detail in sections 2.2.2 and 2.2.3.

2.2.1 Constructing the Estimator

To estimate the parameters of this model, we assume the following data are available:

1. Type shares. For each metro area, the total share of the population accounted for by

each household type, denoted by sτm for type τ in metro m.

2. Neighborhood choice probabilities. Estimates of the market share for each location ℓ in

each metro area m, for many metro areas, and for all household types τ , p̂τℓ,m > 0.

3. Topographic data. Topographic data for each location ℓ in each metro area m, TOPℓ,m.

In this section, TOPℓ,m has one dimension.

4. Rental prices. The constant-quality rental price of a housing unit in each location ℓ in
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each metro m, rℓ,m.

Note that when items (1) and (2) are appropriately combined, we can construct the share

of Black households in each neighborhood ℓ in each metro area m as follows:

Sb
ℓ,m =

∑
τ ′

I (τ ′ ∈ Black) sτ
′

m p̂τ
′

ℓ,m∑
τ

sτm p̂τℓ,m
(5)

In this equation τ and τ ′ are indexes for household type and I (τ ′ ∈ Black) is an indicator

function that is equal to 1 if type τ ′ households are Black, 0 otherwise. When the population

of metro m is equal to 1.0, the numerator of (5) is the total population of Black households

living in tract ℓ in metro m and the denominator is the total population of households living

in tract ℓ in metro m.

BLP Stage 1: Given these data, our procedure to estimate type-specific parameters

of this model has two steps as in Berry, Levinsohn, and Pakes (1995). First, we obtain

estimates of δτℓ,m for all ℓ,m, τ . Call these estimates δ̂τℓ,m. To do this, for each τ in each

metro m we normalize δ̂τk,m = 0 for one particular location k = 1. Given this normalization,

we use equation (4) to map data on p̂τℓ,m to δ̂τℓ,m for all the ℓ ̸= 1 in metro m,

∀ℓ ̸= 1, δ̂τℓ,m = log
(
p̂τℓ,m

/
p̂τ1,m)

The focus of our study is the impact of racial composition on neighborhood demand.

In this simplistic model where only the Black share of households enters utility, that is the

coefficient aτ1. In line with this focus, and consistent with our strategy to estimate the more

complicated dynamic model, we assume we know from a previous study the parameter aτr , the

sensitivity of location choices to exogenously shifting rental prices. Bayer, McMillan, Mur-

phy, and Timmins (2015) discuss why estimation of aτr is an unusually difficult undertaking

and make the case for bringing in outside evidence, as we do here.7

Given presumed knowledge of aτr , we define a new variable:

d̂τℓ,m = δ̂τℓ,m + aτr log rℓ,m

7When we estimate the more complicated dynamic model, we take aτr from Davis, Gregory, Hartley, and
Tan (2021). Out of concern that our results may be sensitive to our assumed values of aτr , we confirmed that
the parameter estimates on racial composition in the full dynamic model that we estimate are essentially
unaffected by reasonable variation (doubling or halving) of aτr . This result occurs because the estimated co-
efficients of racial composition on indirect utility are orders of magnitude more important than the coefficient
on rental prices.

8



Then we can rewrite equation (2) as

d̂τℓ,m = aτ1S
b
ℓ,m + Aτ

ℓ,m (6)

Note the switch of notation for amenities, from Aτ
ℓ,m in equation (2) to Aτ

ℓ,m in equation (6)

to explicitly account for the fact that δτℓ,m in equation (2) is replaced with d̂τℓ,m in equation

(6).

BLP Stage 2, Constructing the Instrument: We generate a prediction equation for

location choice in each metro for each household type that only depends on the topography

of a location in that metro. For each type of household we pool all data across locations and

metros and estimate

log p̂τℓ,m = ατ
m + bτTOPℓ,m + ντℓ,m (7)

where ατ
m is a metro-area fixed effect that can vary by τ , bτ is a coefficient that maps relative

topography to location choice probabilities that can also vary by τ , and ντℓ,m is a location,

metro, and type-specific error.

Once (7) is estimated for all household types, we use it to predict the probability each

type lives in any location in any metro area. Denote the predicted probability for type τ in

location ℓ in metro m as ˆ̂pτℓ,m. We then create a predicted Black share in each location ℓ in

each metro m, Zb
ℓ,m, as

Zb
ℓ,m =

∑
τ ′

I (τ ′ ∈ Black) sτ
′

m
ˆ̂pτ

′

ℓ,m∑
τ

sτm
ˆ̂pτℓ,m

(8)

Similar to equation (5), τ and τ ′ are indexes for household type and I (τ ′ ∈ Black) is an

indicator function that is equal to 1 if type τ ′ households are Black, 0 otherwise. The

numerator of (8) is the predicted total population of Black households living in tract ℓ in

metro m and the denominator is the predicted total population of households living in tract

ℓ in metro m, where all of these predictions are based only on topographic data. Restated,

we use equation (7) to predict where everyone will live based only on topographic data and

then, given this prediction, use metro-level household-type shares to calculate the predicted

share of each location that is comprised of Black households.

BLP Stage 2, IV: Once we have created Zb
ℓ,m, we use 2SLS to estimate aτ1. Specifically,
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we pool data across all locations in all metros and for each type of household we estimate

d̂τℓ,m = θτm + aτ1S
b
ℓ,m + gτ (TOPℓ,m) + υτℓ,m (9)

where d̂τℓ,m = δ̂τℓ,m + aτr log rℓ,m, θ
τ
m is a metro-area fixed effect that varies by τ , gτ (TOPℓ,m)

is a flexible function of TOPℓ,m, and υ
τ
ℓ,m is an error term. The first stage is

Sb
ℓ,m = ϑm + γZb

ℓ,m + g1 (TOPℓ,m) (10)

where ϑm is a metro-area fixed effect and g1 (TOPℓ,m) is a different flexible function of

TOPℓ,m.

2.2.2 Discussion of Variation in the Instrument

To see why the Black share of a neighborhood ℓ in metro m is an endogenous variable in

equation (9), causing OLS to yield biased estimates of aτ1, we show equation (5) again here

for convenience

Sb
ℓ,m =

∑
τ ′

I (τ ′ ∈ Black) sτ
′

m p̂τ
′

ℓ,m∑
τ

sτm p̂τℓ,m

This is the same as equation (8) with the exception that p̂τℓ,m is the observed, not predicted,

probability that household type τ chooses location ℓ in metro m. Sb
ℓ,m is an endogenous

variable because p̂τℓ,m depends on unobserved amenities, Aτ
ℓ,m. When the predicted Black

share Zb
ℓ,m is constructed using equation (8), the observed probability p̂τℓ,m is replaced with

a predicted probability ˆ̂pτℓ,m that only depends on topographic data. When we replace the

observed probabilities with the predicted probabilities to construct the instrument, condi-

tional on topography all of the variation in predicted Black shares Zb
ℓ,m will be attributable

to variation in household type shares across metro areas.

To see this, we now work through a simple illustrative example with two metros where

the metros have the identical topographic map but different metro-wide shares of household

types. Suppose:

a. There are only two types of households in the economy, Black and White. The share

of Black households in the first metro area “A” is 5 percent and the share of Black

households in the second metro area “B” is 40 percent.

b. Topography in each of metros A and B can be characterized as 50 percent “relatively

flat” and 50 percent “relatively elevated.”
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2. A regression of location choice data with national data like equation (7) predicts that

Black households choose to live in the relatively flat part of a metro area 65 percent

of the time and White households choose to live in the relatively flat part of a metro

area 45 percent of the time.

In this fictitious example, the table below shows how the predicted share of Black house-

holds varies from relatively flat to relatively elevated parts of metros A and B

Black Share

Location Metro A Metro B

Relatively Flat 7.1% 49.1%

Relatively Elevated 3.2% 29.8%

In both metro A and B, the share of Black households increases from the relatively elevated

to the relatively flat parts of the metro. However, the predicted level of the Black share in all

parts of the metro and – more importantly – the predicted change in the Black share from

the relatively elevated to the relatively flat part of the metro are much larger in metro B

than in metro A. The shares in this table are computed according to equation (8) as follows

A B

flat 0.071 =
0.05× 0.65

0.05× 0.65 + 0.95× 0.45
0.491 =

0.40× 0.65

0.40× 0.65 + 0.60× 0.45

elevated 0.032 =
0.05× 0.35

0.05× 0.35 + 0.95× 0.55
0.298 =

0.40× 0.35

0.40× 0.35 + 0.60× 0.55

The boldface text highlights that the only variable generating differences in the predicted

Black shares between metros A and B for a given topography is the metro-area share of

the population that is Black. As equations (9) and (10) show, when we estimate preference

parameters using 2SLS we include metro fixed effects and control for the direct impact of

topography on location choice, so the variation we emphasize in this example – variation in

the shares of Black and White households across metro areas – is driving identification.

2.2.3 Discussion of the Exclusion Restrictions

The recent literature on the econometrics of shift-share instrumental variables has empha-

sized that either the exogeneity of shares (Goldsmith-Pinkham, Sorkin, and Swift, 2020) or

the exogeneity of shifts (Borusyak, Hull, and Jaravel, 2022), but not necessarily both, is re-

quired for the shift-share IVs resulting from the aggregation of the shift-share interactions to

satisfy instrument exogeneity. We proceed under an assumption of share exogeneity, which

can be stated formally as follows:
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A1) Share exogeneity:

across m: Äτ
ℓ,m ⊥ sτ

′
m

¨TOP ℓ,m ∀τ, τ ′ (11)

where Ẍ means that variable X has had metro-area fixed effects removed. In words, this

equation specifies the following: Consider a given topography and a given type of household

τ . Across metro areas, the amenity value (for that τ) at locations with that specific topog-

raphy cannot be correlated with the realized metro-level population shares of any type of

household. This lack of correlation must hold for all types τ and all possible topographies.

Under the assumption of share exogeneity, the shift variables (national-average predicted

neighborhood choice probabilities based only on topography) can be thought of as weights

that capture the idea that city-wide metro shares of particular types contribute more strongly

or less strongly to predicted neighborhood-level racial makeup depending on which topo-

graphic features are present in the neighborhood. Because we control for the direct effect of

topography on location choices, identification in our framework is driven only by compar-

isons of tracts with similar topographic configurations that have different predicted racial

compositions due to the metro-wide type shares in the metro where they are located.

In seminars, we have been asked to more intuitively explain what is required for identi-

fication. To do this, we revisit equation (9), rewritten here for convenience:

d̂τℓ,m = θτm + aτ1S
b
ℓ,m + gτ (TOPℓ,m) + υτℓ,m (12)

Note that for consistent estimation of a1, it does not matter if topography is endogenous

and correlated with υτℓ,m since equation (12) explicitly controls for topography. Now apply

the Frisch-Waugh-Lovell theorem: regress each of d̂τℓ,m and Sb
ℓ,m on metro fixed effects and

gτ (TOPℓ,m). Denote the residuals from this regression as
¨̂̈
dτℓ,m and ¨̈Sb

ℓ,m and rewrite equation

(12) as

¨̂̈
dτℓ,m = aτ1

¨̈Sb
ℓ,m + ¨̈υτℓ,m

The error term in this equation, ¨̈υτℓ,m, is uncorrelated with metro fixed effects and uncorrelated

with topography. Thus, a valid instrument only needs to be uncorrelated with the component

of amenities that is uncorrelated with topography. Since the variation in type shares across

metros generates the variation in the instrument we construct, this explains our required

assumption A1 that across-metro variation in type shares needs to be uncorrelated with the

component of amenities that is itself uncorrelated with topography.
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2.2.4 Discussion of the Great Migration of 1910-1970

For share exogeneity to be violated, household types would have needed to systematically

choose metros in which to locate based on the component of amenities (uncorrelated with

topography) in neighborhoods in that metro with the topographic features commonly chosen

by their household type. To be clear, share exogeneity is not violated if household types

chose metros in which to locate based on metro-wide factors or amenities common to all

topographies in the metro.

The most prominent historical process of voluntary metro-level location choices affect-

ing modern metro-level racial composition was the Great Migration of 1910-1970 in which

roughly 6 million moved from the rural South to Northern metro areas. Therefore, under-

standing the factors that most strongly influenced households’ choices of a Northeren metro

during this period provides a direct check of the plausibility of our identifying assumption.

Share exogeneity would likely be violated if, during this period, Black households moved

to metro areas based on the relative amenities (not directly driven by topography) of the

topographies in each metro in which they were most likely to locate, as compared to the

overall desirability of the metro area. If these considerations played a meaningful role in

determining the metros to which Black households migrated, we would expect a positive

correlation between sτ
′

m for Black household types and Äτ
ℓ,m at the topographies where those

households are most likely to live, violating share exogeneity – assumption A1 as written in

equation (11).

Stuart and Taylor (2021) provides a summary of the literature on factors that influenced

location decisions during the Great Migration. These factors include: 1) Labor demand

factors such as Word War I, which increased manufacturing employment in Northern cities

and decreased labor supply from European immigrants; 2) Southern push factors such as the

destruction of cotton crops by the boll weevil, labor market discrimination, racial violence,

and Jim Crow laws; 3) railroad networks which channeled migration from certain regions in

the South to specific Northern cities, and; 4) social networks of family, friends, and church

members that had already migrated to the North. None of these factors are related to the

amenities of the neighborhoods at the within-metro relative topographies in which Black

households tend to live. For these reasons, we think it unlikely that the Great Migration led

to migration flows that violate share exogeneity.

2.3 Monte Carlo Simulations

We now perform a set of Monte Carlo experiments using this simplified version of our model

to demonstrate the ability of our proposed estimator to recover accurate estimates of racial

13



preferences for multiple household types in a setting with a number of metros and neigh-

borhoods similar to that of our actual sample. In the experiments, we repeatedly simulate

decisions of 4 types of households in 200 metro areas, each with 100 possible locations. Each

time we simulate the model using procedures described next, we generate a data set con-

taining the information listed in section 2.2.1 that is required for estimation: Type shares,

neighborhood choice probabilities, topographic data, and rental prices. We then estimate

model parameters using that data via the IV procedure described in that section. From each

simulation, we store the estimate of the model parameter of interest, aτ1, and then evaluate

the mean and standard deviation of this estimate across simulations to understand the size

of possible bias. In the rest of this section, we list the details of the simulation procedure

and results.

2.3.1 Drawing Metro-Wide Type Shares and Local Amenities

We specify that type 1 and 2 households are Black and type 3 and 4 households are White.

To determine the simulated share of type τ in metro m, sτm, we first compute the variable

s̃τm as

s̃τm = lnµτ + eτm (13)

where eτm is a random draw from a Normal with mean 0 and standard deviation στ
em. In all

simulations, we set µτ = 0.25 and στ
em = 1.0 for all household types. We then set simulated

type shares in each metro as as

sτm =
exp {s̃τm}
4∑

τ ′=1

exp {s̃τ ′m}
(14)

The total population in every metro is assumed to be 1.0, implying the share of each type is

also the population of that type.

Amenities for each location ℓ in each metro m for each type τ are assumed to be a linear

function of a topography variable TOPℓ,m and 4 other common factors, fn,ℓ,m for n = 1, . . . , 4,

as follows

Aτ
ℓ,m =

4∑
n=1

γτnfn,ℓ,m + γτtopTOPℓ,m

Each of the four common factors and the topography variable can vary across locations within

and across metros, but for any given location in any given metro these variables do not vary
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by type. The parameters γτn, n = 1, . . . , 4 and γτtop can vary across types of households but

for any given type of household they do not vary across locations and metros. We chose four

factors to allow us to consider a scenario where each type’s valuations of amenities (other

than topography) are independent. In the simulations, we draw fn,ℓ,m and TOPℓ,m iid from

N (0, 1).

The parameters we use in our baseline simulations for each type are listed in Table 1.

Note that we set γτtop > 0 for all types, implying all types value the topography variable, but

by varying degrees. Note that for aτr , we have in mind that Types 1 and 3 have lower income

and higher budget shares on rent than Types 2 and 4. Additionally, Types 1 and 3 are less

willing to pay for high values of the topography variable, the component of location-specific

amenities that is common to all types.

Table 1: Baseline Set of Parameters for Monte Carlo

Type Race aτr aτ1 γτ1 γτ2 γτ3 γτ4 γτtop
1 Black 0.5 0.5 1 0 0 0 0.25
2 Black 0.3 0.5 0 1 0 0 0.75
3 White 0.4 -0.5 0 0 1 0 0.50
4 White 0.2 -0.5 0 0 0 1 1.00

Notes: In the baseline parameterization, we assume housing in every location in every metro area is inelas-

tically supplied. Referring to equation (13), we set µτ = 0.25 and στ
em = 1.0 for all types.

2.3.2 Finding Rental Prices and Racial Shares

For a given metro area m, we need to find market-clearing rental prices rℓ,m and, given these

prices, the share of Black households Sb
ℓ,m in each of the locations ℓ in the metro. We employ

the following algorithm to find rℓ,m and Sb
ℓ,m in every ℓ in every m:

a. We initialize rℓ,m and Sb
ℓ,m by setting rℓ,m = 1 and Sb

ℓ,m equal to the metro-m wide

share of black households (s1m + s2m) for every metro. Label these initial values as r̂ℓ,m

and Ŝb
ℓ,m.

b. Given the simulated realized values of Aτ
ℓ,m and the values r̂ℓ,m and Ŝb

ℓ,m, we compute

δ̂τℓ,m = −aτr log r̂ℓ,m + aτ1Ŝ
b
ℓ,m + Aτ

ℓ,m

for every location ℓ and every type τ .

c. After steps a and b have been completed for every ℓ and k in every metro m for every
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household type τ , we compute for every location ℓ in metro m and type τ

p̂τℓ,m =
exp

(
δ̂τℓ,m

)
∑
k

exp
(
δ̂τk,m

)
where p̂τℓ,m is the probability that type τ chooses location ℓ in metro m.

d. Give the distribution of all location choices for all types in all metros as determined

in step c, we compute the simulated population in each location ℓ in metro m, p̃opℓ,m,

and the simulated Black share of the population, S̃b
ℓ,m as

p̃opℓ,m =
4∑

τ=1

p̂τℓ,ms
τ
m

S̃b
ℓ,m =

(
p̂1ℓ,ms

1
m + p̂2ℓ,ms

2
m

)
/p̃opℓ,m

e. For each ℓ, we update Ŝb
ℓ,m by setting it equal to S̃b

ℓ,m

f. When housing is inelastically supplied, we assume (i) every location ℓ has 0.01 units of

housing, equal to the total population divided by 100 locations, and (ii) each household

demands 1 unit of housing. We compute

log r̃ℓ,m = log r̂ℓ,m + log p̃opℓ,m − log 0.01

and then we set the updated value of r̂ℓ,m equal to r̃ℓ,m.

g. We repeat steps b through f for all locations until expectations on the share of Black

households converges to simulated Black shares in every location (S̃b
ℓ,m = Ŝb

ℓ,m), and,

p̃opℓ,m = 0.01 in every location.

2.3.3 Other Features and Assumptions

We simulate the model under 5 different sets of assumptions, listed below. Unless otherwise

stated, each environment uses the baseline set of parameters.

1. Baseline. Baseline set of parameters.

2. Elastic Supply. In these simulations, we set and hold rℓ,m = 1.0 everywhere; conver-

gence (steps a-g listed above) requires only that expectations on the share of Black

households is equal to simulated Black shares in every location, S̃b
ℓ,m = Ŝb

ℓ,m.

3. Low Variance. στ
em = 0.3. This simulation helps show the relationship of the variance

of estimates of aτ1 to the amount of across-metro variation in household type shares.

4. Correlated Amenities. γττ ′ = 0.5 for τ ′ ̸= τ . This simulation checks the sensitivity of
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estimates to assumptions about how much each household type also cares about the

favorite amenity of the other household types by increasing γττ ′ from 0 in the baseline

to 0.5.

5. Imperfect Factor Measurement. Location-specific amenities are determined as

Aτ
ℓ,m =

4∑
n=1

γτnfn,ℓ,m + γτtopf5,ℓ,m

f5,ℓ,m = TOPℓ,m + f6,ℓ,m

where the topography variable is observed by the econometrician (as in the baseline)

but f6,ℓ,m, also drawn from N (0, 1), is not observed. What we have in mind is that the

topography that households value in amenities, in this case f5,ℓ,m, is only imperfectly

proxied by the topography variable that an econometrician observes, TOPℓ,m. This

simulation checks that results are robust to imperfect observation of topography.

For each of the 5 environments described above, we generate 1,000 data sets and evaluate

the properties of two different estimators for aτ1 in equation (9): OLS and our IV. For a final

set of details, note that g (TOPℓ,m) and g1 (TOPℓ,m) are both 4th order polynomials and

we use exact market shares as predicted by the model as our data for p̂τℓ,m. Finally, to be

explicit, we assume an econometrician observes TOPℓ,m for all ℓ in every m but fn,ℓ,m for

n = 1, . . . , 4 and Aτ
ℓ,m are never observed.

2.3.4 Results

The results of this exercise are shown in Table 2. The eight columns of the table report the

average and standard deviation of estimates of aτ1, τ = 1, . . . , 4 across all 1,000 data sets. The

first column of each pair shows estimates when aτ1 is estimated using OLS and the second

shows estimates using IV. Recall the actual value of aτ1 is 0.5 for Types 1 and 2 and −0.5

for Types 3 and 4, as shown in Table 1.

Table 2 clearly shows that the OLS estimates are biased. There is no mean OLS estimate

of any parameter that can be considered “close” in any meaningful sense to the corre-

sponding preference parameter. This highlights the challenge of identification. Household

sorting based on type-specific valuations of amenities leads to correlation of the amenities

in the location and the share of Black households in that location. Even though OLS con-

trols for topography, a common component of amenities, the omission of the other factors

f1,ℓ,m, . . . , f4,ℓ,m that determine amenities (along with weights in the computation of ameni-

ties γτ1 , . . . , γ
τ
4 that vary by type) is sufficient to cause OLS to be severely biased.

In contrast, for each parameter we consider in all 5 simulation scenarios, the IV estimator
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has a mean (across the 1,000 simulations) very close to 0.5 for τ = 1, 2 and −0.5 for τ = 3, 4.

Even though the environment changes in each of the 5 scenarios, what is common across

scenarios is that the distribution of type shares in each metro area is drawn independently of

the realization of all factors and topography comprising amenities in any given metro area.

As shown by equation (11), this is a sufficient condition for our IV approach to be valid.

Table 2: Monte Carlo Results

τ = 1 τ = 2 τ = 3 τ = 4
aτ1 = 0.5 aτ1 = 0.5 aτ1 = −0.5 aτ1 = −0.5

Sim Name OLS IV OLS IV OLS IV OLS IV

1 Baseline 1.785 0.494 2.054 0.495 -2.367 -0.499 -2.311 -0.500
(0.056) (0.146) (0.062) (0.133) (0.064) (0.144) (0.071) (0.144)

2 Elastic 2.340 0.484 2.133 0.490 -2.430 -0.493 -2.044 -0.498
Supply (0.057) (0.252) (0.058) (0.235) (0.055) (0.252) (0.059) (0.251)

3 Low 1.881 0.485 2.118 0.485 -2.505 -0.491 -2.371 -0.490
Variance (0.032) (0.349) (0.032) (0.319) (0.031) (0.350) (0.034) (0.345)

4 Correlated -1.429 0.493 -1.216 0.494 -4.309 -0.504 -4.165 -0.505
Amenities (0.126) (0.172) (0.158) (0.165) (0.119) (0.169) (0.150) (0.171)

5 Imperfect 1.368 0.495 1.152 0.500 -2.741 -0.495 -3.098 -0.493
Factor Msmt (0.049) (0.171) (0.093) (0.190) (0.056) (0.184) (0.099) (0.227)

3 The Actual Dynamic Location-Choice Model

We model the system of demand for neighborhoods by considering the decision problem of

a particular household head deciding where the household should live. As in Kennan and

Walker (2011) Bayer, McMillan, Murphy, and Timmins (2015), and Davis, Gregory, Hartley,

and Tan (2021) we model location choices in a dynamic discrete choice setting. We assume

each household i takes its metro area m as given. Each year, the household can choose to

live in one of Jm locations in the metro. When we estimate this model, Jm will vary with

the metro.

Denote j as the current location of household i in the metro and τ as that household’s
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type. We write the value to the household, V τ
m,t

(
ℓ | j, ϵτi,ℓ,m,t

)
, of choosing to live in location

ℓ in metro m in year t given a current location of j in the metro and current value of a shock

ϵτi,ℓ,m,t (to be explained later) as

V τ
m,t

(
ℓ | j, ϵτi,ℓ,m,t

)
= uτm,t

(
ℓ | j, ϵτi,ℓ,m,t

)
+ β

∑
τ ′

φτ,τ ′Et

[
V τ ′

m,t+1 (ℓ)
]

In the above equation uτm,t

(
ℓ | j, ϵτi,ℓ,m,t

)
is the flow utility in year t to household i of choosing

to live in location ℓ in metro m given a current location of j in the metro and current value

of a shock ϵτi,ℓ,m,t; β is the discount factor on future expected utility; φτ,τ ′ is the probability

that the household becomes type τ ′ next year given it is type τ this year; and Et

[
V τ ′
m,t+1 (ℓ)

]
is the expected value (expectation taken as of year t) in year t + 1 of a type τ ′ household

of having chosen to live in neighborhood ℓ in metro m in year t. The t subscripts explicitly

allow that flow utility and expectations may change over time.

Flow utility depends on neighborhood racial composition, similar to assumptions made

in Caetano and Maheshri (2021) and Almagro and Dominguez-Iino (2022).8 We specify

uτm,t

(
ℓ | j, ϵτi,ℓ,m,t

)
as

uτm,t

(
ℓ | j, ϵτi,ℓ,m,t

)
= δτℓ,m,t − κτ · 1ℓ̸=j + ϵτi,ℓ,m,t

δτℓ,m,t is the deterministic portion of flow utility a type τ household receives in year t from

living in neighborhood ℓ in metro m; this does not vary across type τ households. κτ are

fixed costs a household of type τ must pay when it moves to a different neighborhood in the

metro i.e. when ℓ ̸= j; 1ℓ̸=j is an indicator function that is equal to 1 if location ℓ ̸= j in

metro m and 0 otherwise; and ϵτi,ℓ,m,t is a random shock that is known at the time of the

location choice. ϵτi,ℓ,m,t is assumed to be iid across locations, time and people. ϵτi,ℓ,m,t induces

otherwise identical households living at the same location at the same time to optimally

choose different future locations.

We assume δτℓ,m,t is comprised of disutility from log rental prices (log rℓ,m,t), a quadratic

function of the share of neighborhood ℓ that is Black (Sb
ℓ,m,t) and is Hispanic (Sh

ℓ,m,t), and

8The utility function in Almagro and Dominguez-Iino (2022) does not depend on race but does depend
on neighborhood consumption amenities which are endogenously determined.
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amenities of that neighborhood that may vary by household type, Aτ
ℓ,m,t.

(15)

δτℓ,m,t = −aτr log rℓ,m,t rents

+aτ1S
b
ℓ,m,t + aτ2

(
Sb
ℓ,m,t

)2
+ aτ3S

h
ℓ,m,t + aτ4

(
Sh
ℓ,m,t

)2
+ aτ5S

b
ℓ,m,tS

h
ℓ,m,t demographics

+Aτ
ℓ,m,t amenities

We do not impose a linear specification in racial shares because we do not want to impose

that the marginal utility of a change in a racial share is constant with respect to the level

of that racial share. A quadratic functional form is a parsimonious specification that allows

for the possibility that households may like some diversity; it also allows, depending on

parameters, that households may not like any diversity.

Denote ϵτ1,m,t as the shock associated with location 1 in period t, ϵτ2,m,t as the shock with

location 2, and so on. In each period after the vector of ϵ are revealed (one for each location),

households choose the location that yields the maximal value

V τ
m,t

(
j | ϵτ1,m,t, ϵ

τ
2,m,t, . . . , ϵ

τ
Jm,m,t

)
= max

ℓ∈1,...,Jm
V τ
m,t

(
ℓ | j, ϵτi,ℓ,m,t

)
(16)

4 Estimation and Data

To match model to data, we assume that a location (neighborhood) is a census tract. We

use a 2-step procedure like Berry, Levinsohn, and Pakes (1995) to estimate our model of

demand for locations. In the first step, we use GMM to estimate the vector of δτℓ,m,t and

the moving cost κτ for each τ . This is similar to the procedure of Neilson (2017), who uses

GMM to estimate a similar first stage in a model of school choice. In the second step, we

use an IV procedure to understand how exogenous changes in racial shares impact δτℓ,m,t for

each τ .

4.1 Step 1: GMM to Estimate Demand for Locations

In the first step, we use the approach of Hotz and Miller (1993) employed by Bishop (2012)

and Davis, Gregory, Hartley, and Tan (2021) to set up estimating equations for δτℓ,m,t and κ
τ .

This approach does not require that we solve for the value functions. Instead, as we show

in appendix A, the log probabilities that choices are observed are simple functions of δτℓ,m,t,

κτ , β and of observed choice probabilities. Note that due to data limitations we discuss

later, we combine data across multiple years when estimating probabilities and preference
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parameters. For this reason, going forward we remove time subscripts from value functions,

expectations and elements of utility.

Define Θτ
1 as the full vector of parameters to estimate in step 1 for type τ

Θτ
1 =

{
κτ ,

{
δτℓ,m=1

}J1

ℓ=1
,
{
δτℓ,m=2

}J2

ℓ=1
, . . . ,

{
δτℓ,m=M

}JM

ℓ=1

}
(17)

where δτℓ,m is the value of δ for type τ in tract ℓ in metro m, assumed fixed over the years in

our estimation sample, and M is the number of metros in the sample.

The first moment we target for each household type is the unconditional probability of

not moving. Define the distance between the model predicted non-moving rate and the data

as

Gτ
1 (Θ

τ
1)

=
M∑

m=1

Jm∑
j′=1

P̂ τ
m

(
j = j′

)︸ ︷︷ ︸ P̂ τ
m

(
ℓ = j′ | j = j′

)︸ ︷︷ ︸ −
M∑

m=1

Jm∑
j′=1

P̂ τ
m

(
j = j′

)︸ ︷︷ ︸ P τ
m

(
ℓ = j′ | j = j′; Θτ

1

)︸ ︷︷ ︸
data data data model

(18)

In this equation, j is the location at the start of the period and ℓ is the location at the end

of the period. j′ indexes locations that are in metro m and there are Jm of these locations.

In this equation and the next, any variable with a “hat” is computed directly from the data.

P̂ τ
m (j = j′) is the probability that a type τ household starts a period in location j′ in metro

m and P̂ τ
m (ℓ = j′ | j = j′) is the probability that a type τ household that starts a period in

location j′ chooses to remain in location j′. The conditional probability P τ
m (ℓ | j; Θτ

1) for

any ℓ and j is determined by the model for a given Θτ
1.

The remaining
M∑

m=1

[Jm − 1] moments for each type are that the model matches the prob-

ability of choosing any given location in each metro. There are Jm − 1 moments in each

metro because the probability of choosing a location must sum to 1, and (as mentioned)

households are assumed to not move outside of their metro. For any given metro m, we can

write the distance for these Jm − 1 moments as

for ℓ = 2, . . . , Jm Gτ
ℓ,m (Θτ

1) =
Jm∑
j=1

P̂ τ
m (j)︸ ︷︷ ︸ P̂ τ

m (ℓ | j)︸ ︷︷ ︸ −
Jm∑
j=1

P̂ τ
m (j)︸ ︷︷ ︸ P τ

m (ℓ | j; Θτ
1)︸ ︷︷ ︸

data data data model

(19)

We normalize δτ1,m = 0 in each metro, which is allowable because utility is relative and

adding a constant to each δτ in the choice set will not affect the probability of any choice.

For each type τ , we find the vector of parameters to minimize the sum of squared errors
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of the moments

Θ̂τ
1 = argmin

Θτ
1

{
[Gτ

1 (Θ
τ
1)]

2 +
M∑

m=1

Jm∑
ℓ=2

[
Gτ

ℓ,m (Θτ
1)
]2}

The model is exactly identified, so at Θτ
1 = Θ̂τ

1 the term in braces will be zero. For each

type, there are 1 +
∑
m

(Jm − 1) moments and the same number of parameters.

4.2 Step 2: IV to Estimate Impact of Demographics on Demand

Once we have estimates of δτℓ,m from the 1st stage, we wish to uncover the parameters aτr and

aτ1, . . . , a
τ
5 from equation (15). We start by taking a value for the impact of rental prices on

flow utility, aτr , from Davis, Gregory, Hartley, and Tan (2021). Define δ̂τℓ,m as the estimated

value of δτℓ,m from the first stage. Then we wish to estimate aτ1, . . . , a
τ
5 in the following

specification that is the same as equation (15), but with time subscripts removed:

δ̂τℓ,m + aτr log rℓ,m = aτ1S
b
ℓ,m + aτ2

(
Sb
ℓ,m

)2
+ aτ3S

h
ℓ,m + aτ4

(
Sh
ℓ,m

)2
+ aτ5S

b
ℓ,mS

h
ℓ,m + Aτ

ℓ,m (20)

In the equation above, log rℓ,m is an estimate of the log rental price for a standardized housing

unit in neighborhood (census tract) ℓ of metro m that we compute from data from the 2007-

2011 American Community Survey tract-level tabulations.9 Also note, consistent with our

practice in section 2, the switch of notation for amenities from A in equation (15) to A in

the above equation.

Define the vector of parameters that we estimate for each type in this second step as Θτ
2,

Θτ
2 = { aτ1, aτ2, . . . , aτ5 }

Since racial shares are likely to be correlated with unobserved amenities, we use an instru-

mental variables approach to estimate Θτ
2. Our approach is nearly identical to what we do

in our that described in the Monte Carlo section. To generate instruments for Sb
ℓ,m and Sh

ℓ,m,

9Define r̄ℓ,m as the median rent of renting households for census tract ℓ in metro m and Xℓ,m as a vector
of tract-level housing characteristics. To compute log rℓ,m, we first run the regression

log r̄ℓ,m = [Γ]
′
Xℓ,m + erℓ,m

where Γ is a vector of coefficients and erℓ,m is the error in this equation. Defining êrℓ,m as the estimate of the

residual from this regression, we set log rℓ,m =
[
Γ̂
]′
X̄+ êrℓ,m where Γ̂ is the vector of coefficient estimates

of Γ and X̄ is the average value (element by element) of Xℓ,m.
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for each type of household we pool all data across locations and metros and estimate

log p̂τℓ,m = ατ
m + [bτ ]′ ·TOPℓ,m + ντℓ,m (21)

where p̂τℓ,m is the estimated market share (within-metro choice probability) for location ℓ in

metro m for type τ households, ατ
m is a metro-area fixed effect that can vary by τ , and ντℓ,m

is an error. In comparison to the prediction equation (7) of the simple model, in equation

(21) TOPℓ,m is a vector of topographic variables for each location ℓ in metro m and bτ is a

vector of coefficients that can vary by τ .

Once equation (21) is estimated for all types, we use it to predict the probability each

type lives in any location in any metro area. Call this predicted probability as ˆ̂pτℓ,m. Given

these predicted choice probabilities for all types in all locations in all metros, we create a

predicted Black share Zb
ℓ,m and a predicted Hispanic share Zh

ℓ,m in each ℓ and m as as

Zb
ℓ,m =

∑
τ ′

I (τ ′ ∈ Black) sτ
′

m
ˆ̂pτ

′

ℓ,m∑
τ

sτm
ˆ̂pτℓ,m

(22)

Zh
ℓ,m =

∑
τ ′

I (τ ′ ∈ Hispanic) sτ
′

m
ˆ̂pτ

′

ℓ,m∑
τ

sτm
ˆ̂pτℓ,m

(23)

In the above equations τ and τ ′ are indexes for household type; sτm is the share of the metro

population that is accounted for by type τ households; I (τ ′ ∈ Black) is an indicator function

that is equal to 1 if type τ ′ households are Black, 0 otherwise; and I (τ ′ ∈ Hispanic) is an

indicator function that is equal to 1 if type τ ′ households are Hispanic, 0 otherwise. When

the population of the metro area is equal to 1.0, the numerators of (22) and (23) are the

predicted total population of Black and Hispanic households, respectively, living in tract ℓ in

metro m and the denominator of both equations is the total population of households living

in tract ℓ in metro m. In both equations, the predictions are based only on the topography

variables, equation (21). We use equation (21) to predict where everyone will live based

only on topography and then, given this prediction, use metro-level household-type shares

to calculate the predicted share of each location that is Black and Hispanic.

Our five instruments are then Zb
ℓ,m, Z

h
ℓ,m,

(
Zb

ℓ,m

)2
,
(
Zh

ℓ,m

)2
, and

(
Zb

ℓ,mZ
h
ℓ,m

)
. With these

instruments in hand, we estimate Θτ
2 of equation (20) using 2SLS for each type, exactly anal-

ogous to the procedure we use for the Monte Carlo of the simple model described earlier. In

both the first and second stages, we include metro-area fixed effects and a set of topographic

variables as controls. We discuss the topographic data later in this section.
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4.3 Data

4.3.1 FRBNY Consumer Credit Panel / Equifax

We estimate the model using panel data from the FRBNY Consumer Credit Panel / Equifax

data set (CCP). The panel is comprised of a 5% random sample of U.S. adults with a social

security number, conditional on having an active credit file, and any individuals residing

in the same household as an individual from that initial 5% sample.10 For years 1999 to

2019, the database provides a quarterly record of variables related to debt: Mortgage and

consumer loan balances, payments and delinquencies and a few other variables we discuss

later. The data does not contain information on basic demographics like race, education,

or number of children. The data also includes the Equifax Risk ScoreTM which provides

some information on the financial wherewithal of the household as demonstrated in Board

of Governors of the Federal Reserve System (2007).

Most important for our application, the panel data includes in each period the current

census block (and therefore census tract) of residence.11 To match the annual frequency of

our location choice model, we use location data from the first quarter of each calendar year.

In each year, we only include people living in metro areas – if, for example, a household

moves from an eligible metro area to a rural area, that household-year observation is not

included in the estimation sample. To keep estimation computationally feasible, we assume

each household can only move within its metropolitan division (“metro”). If a household

moves to a different metro, the household-year observation of the move is not included in

the estimation sample, but the years before and after the across-metro move are included.

The panel is not balanced, as some individuals’ credit records first become active after

1999. We restrict the sample to households living in one of 197 metros, each containing

between 50 and 1,000 census tracts.12 The total number of person-year observations in the

estimation sample is 142,692,072.

We sort households into 54 mutually exclusive types: by age of the head of the household

(young, middle, old), by housing tenure status (renter, owner), by credit score (low, middle,

high), and by race (Black, Hispanic, White/other). Referring to φτ,τ ′ , with the exception

of race, a household’s type can stochastically change over time. Borrowing a method from

overlapping generations models in macroeconomics to conserve on state variables, we specify

10The data include all individuals with 5 out of the 100 possible terminal 2-digit social security number
(SSN) combinations. While the leading SSN digits are based on the birth year/location, the terminal SSN
digits are essentially randomly assigned. A SSN is required to be included in the data and we do not capture
the experiences of illegal immigrants.

11We match census block to census tract using the year-2000 definition of census tracts.
12We impose the limitation on the maximum number of census tracts in a metro to keep estimation feasible.
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that households age up (i.e. low to middle, middle to high) or die (high to death) with a

5% probability each year. Conditional on age and race, we estimate the annual 6x6 matrix

of transition probabilities of housing tenure status and credit score using the CCP data

pertaining to our estimation sample.

From the CCP data, we classify a household as young if the age of the household head

is between 25-44, middle aged if 45-64, and old if 65 and older. We classify the household

as a homeowner if the household has a mortgage and a renter if not. Finally, we classify a

household as having a low credit score if the Equifax Risk ScoreTM of the household head

is less than or equal to 599, middle credit score if between 600 and 720 inclusive, and high

credit score if greater than or equal to 721.13

Before we discuss estimation of the parameters, we first need to explain how we structure

the CCP for estimation and document a shortcoming of the data. For each type, we construct

an estimate of the probability that ℓ is the end-of-period location given a beginning-of-period

location of j. We compute this estimate by pooling all observations across all time periods.

Additionally, while we observe most of the elements of any type τ , we do not directly

observe race. We infer information about a household’s race from the census block where we

first observe the primary sample person in the household.14 Let the superscript r denote race

(r equals w for White/other, b for Black, and h for Hispanic) and define ωr
i as our estimate

of the probability that household i is of race r where
∑
r

ωr
i = 1. For each r = {w, b, h}, we

set ωr
i for household i equal to that race’s share in the census block in which household i is

first observed. We then use these probabilities to identify, for each type τ , the conditional

probability that a location ℓ′ is chosen in metro m given a starting location of j′ in metro m

that period. Denote r (τ) as the specific race r associated with type τ . The estimate of that

conditional probability is

P τ
m (ℓ′ | j′) =

∑
t

∑
i

ω
r(τ)
i I (ℓi,t+1 = ℓ′) I (ji,t = j′)∑
t

∑
i

ω
r(τ)
i I (ji,t = j′)

(24)

where I (ji,t = j′) is an indicator that is equal to 1 if household i starts period t in location

j′ in metro m and is 0 otherwise, and I (ℓi,t+1 = ℓ′) as an indicator that household i chooses

13We keep only households with 4 or fewer adult members. A household is defined as a homeowner based
on whether anyone in the household has any type of home loan. The credit score is that of the oldest adult
if the household has 2 or fewer adults, and the oldest adult under the age of 65 of there are 3 or 4 adults in
the household.

14For reference, each census block has about 100 residents and a census tract has about 4,000 residents.
If a household is first observed before 2010, then we use racial shares for that household for census blocks
from the year-2000 census. If a household is first observed in 2010 or later, we use racial shares for census
blocks from the year-2010 census.
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period ℓ′ in metro m in period t (or, equivalently, starts period t+ 1 in location ℓ′).

4.3.2 Potential Implications of Imperfect Measurement of Race

The fact that we do not perfectly observe race suggests that our estimates of choice proba-

bilities by race could be mismeasured. This may ultimately bias our estimates of δτℓ,m. That

said, any bias that arises will make location choices look more similar by race than would

be estimated if race were perfectly measured.

To see this, consider a simple estimate of the probability location ℓ is chosen by a White

household where race is not always measured correctly.15 This estimate can be written as

P̂w (ℓ) = (1− ϕw)Pw (ℓ) + ϕwP−w (ℓ)

In the equation above, ϕw is the fraction of respondents labeled as “White” households that

are actually nonwhite, Pw (ℓ) is the true probability White households choose tract ℓ and

P−w (ℓ) is the true probability nonwhite households choose tract ℓ. The estimated probability

White households choose tract ℓ, P̂w (ℓ), will be a blended average of the probabilities White

and nonwhite households choose tract ℓ. The size of the bias depends on the extent of the

mislabeling and the difference of the choice probabilities of White and nonwhite households:

P̂w (ℓ) = Pw (ℓ) − ϕw
[
Pw (ℓ)− P−w (ℓ)

]︸ ︷︷ ︸
bias

If Pw (ℓ) > P−w (ℓ), then the bias is negative; estimated choice probabilities by race will

appear to be more similar than would be implied if race were perfectly observed.16

Some simple math shows that any bias that arises due to mismeasurement is likely to be

about one-third the size for White households than for either Black or Hispanic households.

The reason is that White households comprise 76 percent of our sample and Black and

Hispanic households each account for about 12 percent of our sample. Consider a simple

example of a sample of 1000 people with 760 White, 120 Black, and 120 Hispanic. If 10% of

Black and 10% of Hispanic households are incorrectly labeled as White, only 24 out of 760

White-labeled households will be mislabeled – about 3 percent. For the overall racial shares

in the sample to be accurate, 12 White households will be mislabeled as Black and 12 White

15In this simple example we hold all aspects of a household’s type other than race fixed.
16Obviously, other authors have discussed issues with imputing race in large data sets. One recent proposal

for imputing race in administrative data suggests using both full names (or combinations of letters appearing
together) and geography: See Cabreros, Agniel, Martino, Damberg, and Elliott (2022). Note that we do not
observe names in our data.
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households will be mislabeled as Hispanic, 10% each of Black and Hispanic households. Thus,

ϕ for White households will be about one-third the size of ϕ for nonwhite households due to

simple arithmetic.

As we show later, our current estimates imply many households make choices that suggest

they prefer racially segregated neighborhoods. The bias we have discussed pushes estimates

away from this finding of homophily, since it shrinks differences across race in estimated

location-choice probabilities. In Appendix C, we evaluate the stability of racial shares in

neighborhoods in our data by estimating the eigenvalues of our decision model. We show the

hypothesis that existing neighborhood racial shares are stable can be rejected because our

estimated preferences for homophily are strong. The fact that our estimates may be biased

away from finding homophily makes the rejection of stability of neighborhood racial shares

even more stark.17

4.3.3 Sample Statistics

Table 3 below shows tract level statistics on racial composition, racial mixing, and adjusted

rents for the census tracts in our overall estimation sample, the third column, and our

estimation sample split into metros with below-median shares of Black households, the fourth

and fifth columns, and metros with above-median shares of Black households, the columns six

and seven. The first column of each pair (columns four and six) shows results for relatively

small metros and the second column shows results for larger metros. We consider two

different ways to weight the data. In the first way, marked “tract,” we assign to each tract

a weight of 1.0. In the second way (marked as “Black pop,” “Hisp pop,” “White pop”), to

compute averages for each tract we assign a weight equal to the population of the indicated

race in that tract. For example, focusing on the third row of the table, the value of 0.359 in

the third column means that a randomly chosen Black household in our sample on average

lives in census tracts with a share of Black households of 35.9%.

We highlight a few results from this table. First, each race tends to have a high proportion

of same-race neighbors. On average a Black household lives in census tracts with a share of

Black households of 35.9% (as discussed); a Hispanic household lives in census tracts with

a Hispanic share of 31.1%; and White households live in census tracts with a White share

of 82.4%. Second, the exposure of Black households to White neighbors decreases with the

share of Black households in a metro. In metros with a relatively small fraction of Black

households, a typical Black household lives in a census tract that is comprised of 68.0%

or 78.9% White households (the smaller estimate is from larger metros). These exposure

17We discuss our analysis of eigenvalues in more detail at the end of section 5.2.1.
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rates fall about 20 percentage points, to 49.7% and 57.2%, in large and small metros with a

relatively large fraction of Black households. Finally, composition-adjusted rents are lower

in smaller metros compared to larger metros.

Table 3: Statistics on Race and Rent from the Estimation Sample

Metros with
Low Black Share High Black Share

Outcome Weighting Mean (SD) Small Large Small Large
(1) (2) (3) (4) (5) (6) (7)
Pct. Black tract 0.152 0.047 0.063 0.241 0.219

(0.209) (0.065) (0.086) (0.227) (0.247)
Black pop. 0.359 0.099 0.138 0.377 0.414
Hisp pop. 0.105 0.037 0.063 0.189 0.162
White pop. 0.088 0.036 0.048 0.147 0.119

Pct. Hisp tract 0.116 0.124 0.163 0.055 0.094
(0.153) (0.189) (0.180) (0.057) (0.126)

Black pop. 0.099 0.112 0.182 0.051 0.089
Hisp pop. 0.311 0.404 0.346 0.100 0.265
White pop. 0.089 0.079 0.121 0.050 0.075

Pct. White tract 0.732 0.829 0.774 0.705 0.687
(0.244) (0.198) (0.202) (0.231) (0.268)

Black pop. 0.543 0.789 0.680 0.572 0.497
Hisp pop. 0.584 0.560 0.591 0.711 0.573
White pop. 0.824 0.885 0.831 0.803 0.806

Rent tract $928 $804 $1,030 $762 $916
($338) ($271) ($371) ($228) ($321)

Black pop. $905 $797 $1,038 $752 $909
Hisp pop. $1,014 $825 $1,062 $868 $1,026
White pop. $987 $844 $1,088 $821 $980

Number of tracts 40,556 4,478 12,932 3,256 19,890
Number of metros 197 57 42 42 56

4.3.4 Topography

We use 11 topography variables tabulated to census tracts from Baum-Snow and Han

(2022).18 In that study, the authors construct topographic information using the “Scien-

tific Investigations Map 3085” derived from the US Geological Survey’s National Elevation

Database.19 Baum-Snow and Han (2022) write, “This data set uses raster information on

18These variables were graciously given to us by Nathaniel “Nate” Baum-Snow and Lu Han.
19For reference, see USGS Land Surface Forms available at https://pubs.usgs.gov/publication/sim3085
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slope and elevation range for all 30X30 meter land pixels within a 0.56 km radius (1 sq.

km.) of each pixel to classify it into one of nine categories that describe how flat or hilly

the surrounding area is.” Each of the 11 variables is the percentage of the census tract

characterized by the stated topographical feature, and the sum of the variables in each tract

is 1.0. The specific variables are Flat Plains, Smooth Plains, Irregular Plains, Escarpments,

Low Hills, Hills, Breaks-Foothills, Low Mountains, High Mountains, Drainage Channels and

Everything Else.

The first two columns of Table 4 report the unconditional means and standard deviations

of the 11 topography variables. The third and fourth columns decompose the unconditional

standard deviation into the within-metro standard deviation, the third column, and the

between-metro standard deviation, the fourth column. The third column shows that there

is real variance in topography within metro areas, a condition we exploit in estimation.

Table 4: Means and Standard Deviations of Topography Variables

Std. Std. Dev.
Variable Mean Dev. Within Between
Flat Plains 0.410 0.423 0.276 0.320
Smooth Plains 0.221 0.262 0.222 0.139
Irregular Plains 0.203 0.265 0.211 0.160
Escarpments 0.006 0.030 0.029 0.010
Low Hills 0.000 0.001 0.001 0.000
Hills 0.032 0.095 0.081 0.050
Breaks-Foothills 0.025 0.088 0.075 0.047
Low Mountains 0.014 0.072 0.067 0.028
High Mountains 0.001 0.015 0.015 0.003
Drainage Channels 0.088 0.096 0.076 0.059
Everything Else 0.001 0.016 0.015 0.004

We now show that the relative, within-metro topography of locations is related to house-

hold race and socio-economic status, consistent with results from other papers (Lee and Lin,

2018; Ye and Becker, 2018; Heblich, Trew, and Zylberberg, 2021; Ye and Becker, 2024). Fig-

ure 1 below shows how within-metro location choices vary by the the sum of the fraction of

the census tract that is made up of Flat Plains and Smooth Plains. Table 4 shows that these

two variables account for 63 percent of a census tract’s topography, on average, but that

there is significant variation in these variables across-tracts within a metro area. The y-axis

shows the log of location choice probabilities after removing metro area fixed effects and the

x-axis shows the sum of the Flat Plains and Smooth Plains variables, also after removing

metro area fixed effects. The graph is a binscatter of the data from 10 deciles. The figure
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shows results for four types of households from our data: young, low-credit score renters,

dashed lines (Types 1 and 37), and middle-aged, high-credit score homeowners, solid lines

(Types 12 and 48). For both the dashed and solid lines, the blue lines show results for Black

households (Types 1 and 12) and the red lines show results for White households (Types

37 and 48). The graph shows how topography and demographics interact: middle-aged,

high-credit score homeowners (Types 12 and 48) are more likely to live in hilly, low-Flat or

Smooth Plain areas, than young, low-credit score renters (Types 1 and 37). But, conditional

on age and tenure status, White households are more likely to live in hilly areas than Black

households: Type 48 is more likely to live in hilly areas than Type 12, and Type 37 is more

likely to live in hilly areas than Type 1.

Figure 1: Variation in Location Choice Probabilities by Sum of Flat and Smooth Plains
Percentages
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Notes: This figure shows a binscatter, across 10 deciles, of the log of location choice probabilities

with metro area fixed effects removed (y-axis) against the sum of the Flat Plains and Smooth

Plains Variables, also with metro area fixed effects removed, and recentered to range from 0-1

(x-axis).

In Table 5 below we show coefficient estimates and standard errors for equation (21),

the full prediction equation, for the 4 types of households shown in Figure 1. Appendix
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B shows estimates and standard errors for all 54 types in our analysis. At the bottom of

the table we report the number of observations, overall R2 including the fixed effects, and

within R2 (R2 after variation from fixed effects is removed). Three results are apparent

from this table. First, relative to the omitted topography variable of Flat Plains, most

coefficients are statistically significant. Second, within-R2 values are highest for low-credit

score young Black renters, Type 1, and high-credit score middle-aged White homeowners,

Type 48. These are the two types of households with likely the largest difference in affluence.

Finally, the magnitudes and signs of the coefficients are in alignment with the lines in the

graph in Figure 1. Focusing on the column for Type 1, as the percentage of the location

(census tract) increases in Flat Plains, the omitted variable, the predicted percentage of

Type 1 households choosing that location increases.20 In Figure 1, this outcome is shown by

the increasing dashed blue line. In contrast, for Type 48, as the percentage of the location

increases in Flat Plains, the omitted variable, the predicted percentage of Type 1 households

choosing that location decreases. This is shown by the declining solid red line in Figure 1.

5 Estimates and Implications

5.1 Estimates

Table 6 provides a summary of our estimates of preferences that household types in our data

have over the racial mix of their neighborhood, Θτ
2 = {aτ1, . . . , aτ5}, as described in section

4.2. Based on results from Davis, Gregory, Hartley, and Tan (2021), we set aτr equal to 0.243

for all low credit score household types, 0.179 for all middle credit score types, and 0.135

for all high credit score types.21 This implies that if log rents increase by 0.3 (about a 35%

increase in rental prices), that holding all else equal indirect utility declines by 0.073, 0.054

and 0.041 for low-, middle-, and high- credit score types. Keep these values in mind when

evaluating the estimated magnitudes of racial preferences reported in Table 6

Column (1) of Table 6 shows the index for household type and (2) reports the percentage

of the estimation sample accounted for by that type. Columns (3)-(6) show the race, age

(y=young, m=middle-aged, and o=old), homeownership tenure (r=rent, o=own), and bin

of credit score (l=low, m=middle, h=high) of the type. Column (7) reports the average

share of Black households in the census tracts in which that type tends to live and column

(8) shows 0.1 times the average derivative of utility that type would experience from an

20The coefficients on all of the variables in the column showing Type 1 results are negative.
21The estimates we report in Table 6 almost do not change when we double or halve the values of aτr (not

shown).
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Table 5: Estimates and Standard Errors for Prediction Equation (21)

Variable Type 1 Type 12 Type 37 Type 48

Flat Plains (Ref) - - - -

Smooth Plains -0.107 0.333 -0.060 0.356
(0.027) (0.025) (0.018) (0.027)

Irregular Plains -0.448 0.255 -0.253 0.468
(0.028) (0.026) (0.019) (0.028)

Escarpments -0.113 -0.336 -0.237 -0.282
(0.193) (0.175) (0.128) (0.193)

Low Hills -9.103 3.480 5.258 17.045
(8.531) (7.735) (5.662) (8.525)

Hills -1.572 0.514 -0.160 1.768
(0.073) (0.066) (0.048) (0.073)

Breaks-Foothills -1.158 0.453 -0.648 1.038
(0.078) (0.071) (0.052) (0.078)

Low Mountains -1.873 -0.170 -0.818 0.941
(0.091) (0.082) (0.060) (0.091)

High Mountains -1.080 -0.099 -0.959 0.031
(0.392) (0.355) (0.260) (0.392)

Drainage Channels -1.181 0.473 0.065 1.550
(0.077) (0.070) (0.051) (0.077)

All Else -4.164 -2.085 -1.666 0.499
(0.356) (0.323) (0.236) (0.356)

Constant -1.181 0.473 0.065 1.550
(0.077) (0.070) (0.051) (0.077)

Obs. 40273 40273 40273 40273
Overall R2 0.431 0.425 0.579 0.417
Within R2 0.057 0.011 0.016 0.050
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Table 6: Summary of Estimates of Preferences over Race

Type Sample % Race Age Tenure Credit Avg Sb
ℓ

1
10

·Avg

(
∆δℓ
∆Sb

ℓ

)
Avg Sh

ℓ
1
10

·Avg

(
∆δℓ
∆Sh

ℓ

)
δ95ℓ − δ5ℓ

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
1 2.2 y r l 0.42 0.22 0.10 0.15 2.70
2 1.2 y r m 0.34 0.26 0.11 0.04 1.98
3 0.6 y r h 0.24 0.07 0.11 0.04 0.36
4 0.4 y o l 0.36 0.21 0.10 -0.20 2.44
5 0.5 y o m 0.27 0.20 0.10 -0.02 1.33
6 0.6 y o h 0.17 0.01 0.09 -0.01 0.50
7 1.1 m r l 0.45 0.13 0.10 0.03 2.25
8 0.9 m r m 0.39 0.17 0.10 -0.03 1.74
9 0.6 Black m r h 0.29 0.05 0.10 0.02 0.36
10 0.4 m o l 0.43 0.08 0.09 -0.12 1.48
11 0.6 m o m 0.36 0.09 0.10 -0.15 0.93
12 0.9 m o h 0.23 0.01 0.09 -0.06 0.28
13 0.3 o r l 0.50 0.09 0.09 0.09 1.97
14 0.5 o r m 0.46 0.09 0.09 -0.12 1.47
15 1.0 o r h 0.36 0.05 0.08 -0.20 0.62
16 0.1 o o l 0.52 0.03 0.08 -0.18 1.69
17 0.2 o o m 0.46 0.08 0.09 -0.29 1.88
18 0.4 o o h 0.31 0.07 0.09 -0.23 0.75
sum 12.3 avg 0.36 0.13 0.10 -0.02 1.53

19 1.6 y r l 0.13 0.34 0.35 0.17 1.84
20 1.4 y r m 0.11 0.18 0.34 0.15 1.35
21 0.8 y r h 0.09 -0.00 0.28 0.08 0.97
22 0.3 y o l 0.12 0.30 0.33 0.11 1.65
23 0.5 y o m 0.10 0.07 0.30 0.12 0.94
24 0.7 y o h 0.08 -0.18 0.23 0.01 1.05
25 0.7 m r l 0.14 0.28 0.35 0.11 1.58
26 0.9 m r m 0.11 0.20 0.35 0.10 1.25
27 0.8 Hisp m r h 0.09 -0.08 0.30 0.08 0.87
28 0.3 m o l 0.13 0.13 0.33 0.03 0.97
29 0.6 m o m 0.10 0.03 0.31 0.05 0.57
30 1.1 m o h 0.08 -0.13 0.24 -0.00 0.77
31 0.1 o r l 0.13 0.27 0.39 0.15 1.51
32 0.3 o r m 0.11 0.18 0.38 0.12 1.12
33 1.0 o r h 0.09 -0.01 0.30 0.03 0.52
34 0.0 o o l 0.14 0.15 0.36 -0.00 0.48
35 0.1 o o m 0.11 0.15 0.34 0.10 0.89
36 0.4 o o h 0.08 -0.01 0.25 0.07 0.67
sum 11.6 avg 0.10 0.10 0.31 0.09 1.14

37 5.6 y r l 0.13 0.21 0.11 0.15 0.77
38 6.1 y r m 0.10 0.05 0.11 0.12 0.76
39 5.4 y r h 0.08 -0.25 0.09 -0.03 1.63
40 1.5 y o l 0.11 0.20 0.10 0.06 0.83
41 3.3 y o m 0.09 -0.03 0.09 0.05 1.38
42 6.8 y o h 0.07 -0.41 0.08 -0.07 2.03
43 2.7 m r l 0.13 0.19 0.11 0.06 0.63
44 4.1 m r m 0.10 0.15 0.11 0.05 0.50
45 6.5 White m r h 0.08 -0.27 0.08 -0.04 1.37
46 1.3 m o l 0.11 0.09 0.09 -0.04 0.55
47 3.7 m o m 0.09 -0.06 0.09 -0.06 0.87
48 11.5 m o h 0.07 -0.47 0.08 -0.19 1.73
49 0.5 o r l 0.13 0.16 0.11 0.08 0.54
50 1.8 o r m 0.10 0.04 0.10 0.07 0.29
51 10.5 o r h 0.08 -0.16 0.08 -0.04 1.17
52 0.2 o o l 0.12 0.06 0.10 -0.03 0.37
53 0.7 o o m 0.10 0.02 0.09 -0.01 0.42
54 4.0 o o h 0.07 -0.18 0.08 -0.09 1.25
sum 76.1 avg 0.09 -0.14 0.09 -0.02 1.21

For age: y = young, m = middle-aged, o = old. For tenure: r = renter, o = owner. For credit: l = low, m = middle, h = high.
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increase in the share of Black households in the census tracts in which that type tends to

live (discussed two paragraphs below). Similarly, column (9) reports the average share of

Hispanic households in the census tracts in which which that type tends to live and column

(10) shows 0.1 times the average derivative of utility that type would experience from an

increase in the share of Hispanic households in the census tracts in which that type tends to

live. Note that the values reported in columns (7)-(10) are computed as weighted averages

over all tracts in which the type may live, with the weights being the probability that the

type lives in the tract.22

The top, middle and bottom panels of the table show results for Black, Hispanic, and

White types of households, respectively. Focusing on the bottom row of each of the panels,

Black households account for 12.3% of our sample, Hispanic households account for 11.6%

of our sample, and White households account for 76.1% of our sample. Table 6 shows that

same-race sorting is a prominent feature of our data. Columns (7) and (9) show that, on

average, Black households live in census tracts that are 36% Black, Hispanic households live

in census tracts that are 31% Hispanic and White households live in census tracts that are

82% White.23

Columns (8) and (10) show 0.1 times the derivative of utility with respect to exogenous

changes in the tract-level Black share (8) or Hispanic share (10). Roughly speaking, given

the tracts where each type tends to live, this is the average change in utility resulting from

a 10 percentage point increase in the share of Black (column 8) or Hispanic (column 10)

households living in each tract. As shown in the bottom row of each panel that summarizes

all types of a given race, homophily is a prevalent feature of our data: on average Black

households receive additional utility from an increase in Black shares; Hispanic households

receive additional utility from an increase in Hispanic shares (as well as Black shares); and

White households receive additional utility from an increase in White shares.24 Note that our

results suggest there is considerable within-race heterogeneity in preferences. For example,

focusing on White types of households, Type 37 (young, low-credit score renters) accounting

for 5.6 percent of the sample experience a relatively large increase in utility as the share of

Black households in the neighborhoods where they tend to live increases; whereas Type 48

(middle aged, high-credit score homeowners), accounting for 11.5% of our sample, experience

22For example, suppose there are two tracts A and B; and, thinking about column 8, suppose a particular
type experiences a -1.0 derivative to utility with respect to the Black share in tract A and a +1.0 derivative to
utility with respect to the Black share in tract B. If the probability that that type lives in tract A is 0.20, then
we would report a value in column 8 for that type of (1/10) times 0.6, computed as 0.6 = 0.2 (−1.0)+0.8 (1.0).

23The total shares of Black and White households shown in this table and shown in Table 3 are different
because this table uses person weights whereas the other table weights each tract equally to compute total
racial shares.

24Specifically, utility increases for White households if either the Black or Hispanic shares decrease.
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a large decrease in utility as the share of Black households in the neighborhoods where they

tend to live increases.

Finally, column (11) illustrates the importance of racial preferences in accounting for

location choice in our data. For column 11, we set aτr = 0 and Aτ
ℓ,m = 0 for all τ and

all ℓ and m and then evaluate the the level of utility for each type of household in each

census tract; in this calculation, differences in Black and Hispanic shares entirely determine

differences in utility across census tracts. For each type, we sort tracts by the level of utility

the tract provides; we then report in column (11) the level of utility for the type at the

location representing the 95th percentile less the level of utility at the location representing

the 5th percentile. When compared to the estimates reported in columns 8 and 10, the

average change in utility from a 10 percentage point change in the percentage of households

that are Black or Hispanic, these utility differentials attributable entirely to differences in

racial composition across neighborhoods are huge.

5.2 Implications: Impact of a Small Policy Shock

Next, we use simulations of the model to study the implications of a somewhat small policy

change that simultaneously affects a relatively large number of locations in a metro area.

Specifically, for each metro area, we simulate the long-run steady-state predicted response

after local governments unexpectedly allow a one-time and immediate 10 percent expansion

of all housing developments previously financed using Low Income Housing Tax Credits

(LIHTC). We allow this policy to potentially increase racial integration in the new simulated

steady state by initially populating the new units with low credit score tenants that have

the same demographic mix as the low credit score population of the metro. The thought

behind this analysis was to ask if local governments could implement a relatively small place-

based policy in many locations at once without causing a lot of disruption. If the policy was

sufficiently small, and implemented in enough locations that already had experience with

government policy via existing LIHTC developments, perhaps incumbent residents would

not move in response to a small influx of new low-credit-score residents that may be of a

different average racial mix than existing residents.25

Before continuing, we need to define a steady state. A steady state has the features that

(i) the mix of household types in each tract is stable (implying shares of Black and Hispanic

25Note that Cook, Li, and Binder (2024) show that, in practice and unlike our assumptions in this exper-
iment, Black households are less likely to occupy LIHTC units in “higher opportunity” neighborhoods in a
metro area. The point of this experiment is not to exactly predict the racial composition of any new LIHTC
units, but rather to study the behavioral response to a policy rule that mechanically tries to force a small
amount of extra racial integration into a large number of locations at once.
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households in each tract are stable), (ii) the rent in each tract is stable, and (iii) expected

future rents and Black and Hispanic shares in each tract are equal to realized rents and

shares after all location decisions are made each period.

We implement this counterfactual policy experiment as follows. Denote ∆H as the total

number of new LIHTC units that will be built in the metro as a consequence of this policy.

In the first step, we remove ∆H housing units (in total) from census tracts that are currently

housing low-credit-score households in the metro.26 Then, in the second step we simulate

the model for 5 periods holding δℓ,m fixed and rℓ,m fixed for every ℓ in the metro. After

these 5 periods, and before adding the new LIHTC units, in each tract and for each type

we compute the number of households that need to enter or exit (“births and deaths”) such

that the data are in a steady state with these ∆H units removed.27

Finally, in the third step – the jumping-off point for finding the steady state that occurs

after the policy is implemented – we add new LIHTC units in proportion to existing LIHTC

units until ∆H units are added. We assume the distribution of household types in these

new units is the same as the distribution of household types from the ∆H units removed in

the first step. With these three steps, we preserve the metro-wide distribution of household

types and maintain the metro-wide aggregate stock of housing, but move ∆H low-credit

score households from census tracts without LIHTC units to census tracts with LIHTC

units. Importantly, the mix of household types moving into the ∆H new LIHTC units is

unlikely to be the same as the mix of household types in the tracts where those units are

located.

Once we have taken the three steps listed above, we compute a new steady state for

each metro. When households have strong preferences over the demographic composition of

their neighborhood, we cannot rule out the possibility that there may be multiple feasible

steady states in each metro. We therefore compute a new steady state that is consistent with

“myopic” expectations. The steady state we consider – as well as the path to the steady

state – implied by this assumption about expectations is unique.

Our algorithm to compute the new steady state with myopic expectations is as follows:

a. For each tract ℓ in metro m, denote the total number of households and the rental

price in each tract in the starting steady state as Hℓ,m and rℓ,m, respectively.

b. For each tract ℓ in metro m, denote the expected black share and expected hispanic

share as E
[
Sb
ℓ,m

]
and E

[
Sh
ℓ,m

]
. Set both of these equal to their values in the starting

steady state.

26The housing units are removed in proportion to the low-credit score population of each tract.
27Recall that each household in our model faces stochastic transitions over states: age (including death),

housing tenure choice, and credit score. For a stable mix of types, at a minimum we need births but also
need to account for any other asymmetric type transitions.
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c. Given household assumptions of E
[
Sb
ℓ,m

]
, and E

[
Sh
ℓ,m

]
, simulate one period of house-

hold decisions, add location- and type-specific births and deaths as computed in the

jumping off point of the simulations, and find market clearing rents r′ℓ,m and the new

housing stockH′
ℓ,m in each tract such that the following housing-supply-elasticity holds:

logH′
ℓ,m − logHℓ,m = ψℓ,m

[
log r′ℓ,m − log rℓ,m

]
(25)

Where the housing supply in tract ℓ in metro m, ψℓ,m, is given by the estimates in

Baum-Snow and Han (2022) with a floor value of 0.025.28

d. Given the simulated household location decisions from step [c.], update expected Black

and Hispanic shares by setting them equal to realized (simulated) Black and Hispanic

shares in each tract, E
[
Sb
ℓ,m

]
= Sb

ℓ,m and E
[
Sh
ℓ,m

]
= Sh

ℓ,m.

e. Repeat steps c and d until the distribution of types in each tract does not change with

one additional iteration.

To be completely clear, when households solve for their optimal location, they need to

know utility today and in the future for all possible locations. The current and future values

of δτℓ,m in each period have the following as components: (i) fixed amenities Aτ
ℓ,m, (2) expected

racial shares, and (3) actual current market clearing rents given those expected racial shares.

At each step in the simulation path, households assume the current and expected value of

δτℓ,m is fixed at its current value. But, along each step of the simulation path, the value of δτℓ,m
changes as realized racial shares and market-clearing rents change. Thus, when the model

is not in steady state, at each step along the simulation path expected racial shares are not

accurate because they are backward looking.

5.2.1 Change to the Racial Composition of Neighborhoods

In the simulations, we track three statistics for each metro. The first statistic we compute is

the share of tracts that “tip.” We define a tract to have tipped if either the Black share or

the Hispanic share changes by 5 percentage points or more in the new steady state relative

to the original steady state prior to the policy change. The other two statistics we compute

are Black-White and Hispanic-White dissimilarity indices. For each metro m, we compute

these indices as

Black-White dissimilarity =
1

2

∑
ℓ∈m

∣∣∣ bℓ,m
Bm

− wℓ,m

Wm

∣∣∣
Hispanic-White dissimilarity =

1

2

∑
ℓ∈m

∣∣∣ hℓ,m
Hm

− wℓ,m

Wm

∣∣∣
28In a handful of tracts, Baum-Snow and Han (2022) estimate a negative supply elasticity.
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where bℓ,m, hℓ,m and wℓ,m are the numbers of Black, Hispanic, and White households in

tract ℓ of metro m and Bm, Hm, and Wm are the numbers of Black, Hispanic, and White

households in metro m. If there is perfect mixing of races in each tract, then these indices

will equal 0; and if there is perfect segregation then the indices will equal 1.

In Table 7 below, we show the results for 20 representative metros in our sample. We

chose these metros using the following process: First, we split our estimation sample of

metros into 10 deciles based on number of census tracts. Then, decile by decile we find the

median percentage of black households in each metro and further split the metros in each

decile into above- and below-median groupings. We then randomly select two metro areas

per decile, one in the grouping of below-median-share of Black households one in the above-

median grouping. The metro areas in this table and others showing these same metros are

sorted in the order they were chosen using this procedure.

Explaining the columns of this table, column (1) shows the (shortened) name of the metro

and column (2) shows the percentage of census tracts in that metro with some LIHTC units.

Columns (3), (6) and (7), and (10) and (11) show results at our baseline estimate of prefer-

ences. Column (3) shows the percentage of tracts that tip after the policy is implemented;

columns (6) and (10) show the level of the Black and Hispanic dissimilarity indexes at the

jumping-off steady state, respectively; and columns (7) and (11) show the change in those

indexes at the new steady state, measured in percentage points. Columns (4), (5), (8), (9),

(12), and (13) are discussed two paragraphs below.

The results in this table illustrate that the demographic composition of neighborhoods

is not stable, in the sense that a small policy change can cause a huge reshuffling of the

population that yields a new steady state that is enormously more segregated than in the

current data. When measured at the median metro of the 20 we consider (penultimate

row of the table), the policy generates a new steady state where 75% of tracts tip relative

to the jumping-off point (column 3), the Black-White dissimilarity index changes by 60.5

percentage points (column 7), and the Hispanic-White dissimilarity index changes by 67.1

percentage points (column 11). These results reinforce the idea that households, on net,

want to move to more racially segregated neighborhoods.

Ultimately, neighborhoods are not stable because a sufficient number of households have

strong preferences over the racial composition of their neighborhoods. To show this, we rerun

the policy experiment after “shrinking” preferences for race. In columns (4), (8) and (12)

of the table, we show results after setting Θτ
2 = {aτ1, . . . , aτ5} equal to 0.25 of the baseline

estimates, but keep the baseline starting values of δτℓ,m unchanged for all types. This keeps

baseline preferences for each neighborhood unchanged, but reduces the impact of changes

in demographic composition on the desirability of neighborhoods. In columns (5), (9) and
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Table 7: Summary of Neighborhood Change in Response to Small Policy Shock

% Tracts Tip BW Dissim HW Dissim
Name LIHTC % Base 1

4
1
8 Start ∆ ∆- 14 ∆- 18 Start ∆ ∆- 14 ∆- 18

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
Springfield, IL 25 76 18 0 31 60.3 18.5 -0.1 13 72.3 3.4 0.1
Spartanburg, SC 33 100 47 0 20 69.7 28.9 0.1 13 73.0 14.9 0.1
Norwich, CT 16 50 2 0 27 63.3 -0.2 -0.0 23 63.0 -0.1 -0.0
Port St. Lucie, FL 18 92 20 0 27 62.9 10.0 0.0 18 66.8 4.5 0.0
Charleston, WV 29 34 5 0 30 59.2 4.5 -0.1 14 65.7 0.2 0.0
Erie, PA 21 47 3 0 36 53.4 1.5 -0.0 24 56.9 0.2 0.0
Eugene, OR 36 21 0 0 12 66.6 -0.0 -0.0 8 69.9 -0.0 -0.0
Montgomery, AL 40 96 80 11 34 58.3 39.2 3.0 14 74.3 36.4 4.6
Brownsville, TX 22 97 0 0 16 54.1 0.1 -0.1 29 48.2 -0.0 -0.2
Salinas, CA 30 92 5 0 26 61.7 0.9 -0.1 42 41.9 -0.8 -0.2
Utica, NY 21 27 3 0 36 53.2 5.9 -0.1 27 58.8 -2.7 -0.0
Augusta, GA 22 100 86 3 27 65.1 46.3 0.0 14 76.8 28.5 0.2
Lansing, MI 30 74 12 0 33 58.8 2.7 -0.1 21 66.3 1.5 -0.0
Charleston, SC 33 100 90 2 21 70.5 53.9 1.1 13 77.2 32.6 1.3
Knoxville, TN 29 49 9 0 27 64.7 8.0 -0.0 11 73.5 0.5 0.1
Greenville, SC 38 96 69 0 25 65.4 32.8 -0.0 15 73.5 14.7 0.1
Worcester, MA 22 45 0 0 26 60.8 -0.1 -0.0 30 54.0 -0.1 -0.0
Youngstown, OH 26 60 12 0 43 46.9 2.3 -0.0 27 56.1 -1.2 0.0
Albany, NY 20 52 8 0 33 58.4 10.4 -0.1 19 68.9 0.5 0.0
Dayton, OH 38 81 25 0 49 42.4 16.9 -0.2 15 67.5 12.4 0.6

IQR column by column:
25th Percentile 22 49 3 0 26 58.3 1.5 -0.1 14 58.8 -0.0 -0.0
median 28 75 11 0 27 60.5 7.0 -0.0 16 67.1 0.5 0.0
75th Percentile 33 96 25 0 33 64.7 18.5 0.0 24 73.0 12.4 0.1

(13) of the table, we shrink preferences even more and set Θτ
2 = {aτ1, . . . , aτ5} equal to 0.125

of the baseline estimates. Columns (4) and (5) show that as we shrink preferences for race,

the percentage of tracts that tip in the steady state after the policy is implemented falls to

zero; and columns (8) and (9) and (12) and (13) show that as we shrink preferences for race,

changes in the steady state black-white and hispanic-white dissimilarity indices also fall to

zero.

One might wonder if the results we report are due to the nature of the policy experiment

we consider. Restated, perhaps it is the case that a different policy experiment evaluated at

our baseline preferences would not generate a new steady state that looks so different from

the starting point that is based on current data. To investigate this, in every metro area we

consider we ask if the model, when evaluated at the starting point of the policy experiments,
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will return to that same starting point after a tiny shock to the demographic composition

of any one neighborhood. We call this evaluation our “eigenvalue analysis.” Appendix C

details the exact procedure we use to compute eigenvalues (measures of system stability).

In summary, in almost every metro we investigate, at least one eigenvalue is larger than 1.0,

a condition for system instability. In most metros a substantial fraction of eigenvalues are

much larger than 1.0. This implies that in nearly every metro we evaluate, any perturbation

to demographic composition in any census tract has the potential to generate a new steady

state that looks very different from the current data.

5.2.2 The Speed of Convergence to New Steady State

To understand the importance of expectations in determining the rate at which the model

converges to a new steady state, we study two paths for expectations in response to the

policy shock. The first assumes household expectations look backwards but are updated

every period, i.e. what we have assumed so far to find the new steady state. We call this the

“backward-looking path.” In the second, we take the steady state arising from the backward-

looking path and specify that households assume that particular steady state will occur in

every period. We call this the “forward-looking path.” This path is also unique, although

different from the backward-looking path.

In both the backward- and forward-looking paths, the new steady states are identical but

household expectations will be incorrect along the transition path to the new steady state.

It turns out that the “miss” between expected and realized racial shares in both cases in

each tract will be relatively small. The miss is small because realized racial shares change

quite slowly along the backward-looking path and quite rapidly along the forward-looking

path.

Table 9 demonstrates the importance of household expectations on the rate of convergence

to the new steady state. In this table, we keep track of census tracts in which the Black or

Hispanic racial share changed by at least 5 percentage points between steady states at our

baseline set of parameter estimates. Columns (3) and (4) report the percentage of tracts in

the metro in which the Black (column 3) or Hispanic (column 4) share changed by at least

5 percentage points. Columns (5) and (6) report the median number of years required for

80% of the total change in the tipped racial share to occur for the tracts where the Black-

share tips (column 5) and Hispanic share tips (column 6) along the backward-looking path.

Columns (7) and (8) report the same for the forward-looking path.

This table shows that when expectations are backward looking, convergence to the new

steady state occurs much more slowly than when expectations are forward looking. In the
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Table 9: Expectations and Rate of Change Between Steady States

Median (w/in CBSA) Years for 80% Convg.
Total % Tracts that Tip Backward Looking Forward Looking

CBSA Tracts Black Hispanic Black Hispanic Black Hispanic
(1) (2) (3) (4) (5) (6) (7) (8)
Springfield, IL 55 75 2 32 68 6 10
Spartanburg, SC 51 100 4 34 80 6 8
Norwich, CT 62 47 27 51 53 5 7
Port St. Lucie, FL 60 90 35 42 41 7 10
Charleston, WV 76 33 1 47 160 6 12
Erie, PA 72 46 8 35 34 5 2
Eugene, OR 78 3 18 158 148 6 14
Montgomery, AL 82 96 1 30 45 5 8
Brownsville, TX 86 1 97 82 46 5 9
Salinas, CA 83 20 89 65 36 8 8
Utica, NY 92 25 10 34 44 5 6
Augusta, GA 95 100 2 33 102 5 6
Lansing, MI 117 73 26 38 51 5 6
Charleston, SC 117 100 5 33 43 5 7
Knoxville, TN 128 48 2 29 50 5 8
Greenville, SC 126 95 6 28 40 6 7
Worcester, MA 163 20 42 51 60 5 8
Youngstown, OH 168 59 7 27 35 5 2
Albany, NY 213 48 10 29 37 5 6
Dayton, OH 208 79 3 26 46 5 8
Median 45.2 61.0 5.5 7.7

backward-looking path, at the median across all the metros we consider, for the median

census tract where the Black share tips, 80% of the convergence to the new racial share

occurs after 45 years and for the median census track where the Hispanic share tips, 80% of

the convergence to the new racial share occurs after 61 years. In contrast, along the forward-

looking path these values fall in the range of 5.5 to 7.7 years. In our view, the rate of change

along the backward-looking path is so slow that it is conceivable people who are not paying

attention are unlikely to notice a change in any given year, even though the change is large

and significant when measured over decades.

6 Conclusion

We use a new shift-share IV approach to estimate the extent to which the racial composition

of neighborhoods affects household utility and neighborhood choice in a dynamic, forward-

looking location-choice model where households care about amenities of neighborhoods as

well as the racial composition. We find that many households have very strong preferences
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for homophily. Same-race preferences are so strong that a relatively small public policy we

consider generates a new steady state that involves a radical resorting of the population and

even more segregation than currently observed.
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Not For Publication Internet Appendix

A Hotz-Miller Expression for Continuation Values

In our estimation sample time window, we assume that δτℓ,m,t is fixed for each ℓ, m and τ ,

such that time subscripts can be removed. Also in what follows, we will hold the metro fixed

such that the metro subscript m can be removed. When the ϵ are assumed to be drawn i.i.d.

from the Type 1 Extreme Value Distribution, the expected value function E [V τ (j)] has the

functional form

E [V τ (j)] = log

{
J∑

ℓ=1

exp Ṽ τ (ℓ | j)

}
+ ζ (26)

where ζ is equal to Euler’s constant and

Ṽ τ (ℓ | j) = δτℓ − κτ · 1ℓ̸=j + β
∑
τ ′

φτ,τ ′E
[
V τ ′ (ℓ)

]
(27)

That is, the tilde symbol signifies that the shock ϵℓ has been omitted.

Now, we show that the log probabilities that choices are observed are simple functions of

model parameters δτℓ , κ
τ , β and of observed choice probabilities. To see this, start by noting

the log of the probability that location ℓ is chosen by type τ given a current location of j,

call it pτ (ℓ | j), has the solution

pτ (ℓ | j) = Ṽ τ (ℓ | j) − log

{
J∑

ℓ′=1

exp
[
Ṽ τ (ℓ′ | j)

]}
(28)

Denote ℓ0 as a reference tract. Subtract and add Ṽ τ (ℓ0 | j) to the right-hand side of the

above to derive

pτ (ℓ | j) = Ṽ τ (ℓ | j)− Ṽ τ (ℓ0 | j) − log

{
J∑

ℓ′=1

exp
[
Ṽ τ (ℓ′ | j)− Ṽ τ (ℓ0 | j)

]}
(29)

Note that equation (27) implies

Ṽ τ (ℓ | j)− Ṽ τ (ℓ0 | j) (30)

= δτℓ − δτℓ0 − κτ [1ℓ ̸=j − 1ℓ0 ̸=j] + β
∑
τ ′

φτ,τ ′
{
E
[
V τ ′ (ℓ)

]
− E

[
V τ ′ (ℓ0)

]}
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But from equation (26),

E
[
V τ ′ (ℓ)

]
− E

[
V τ ′ (ℓ0)

]
= log

{
J∑

ℓ′=1

exp Ṽ τ ′ (ℓ′ | ℓ)

}
− log

{
J∑

ℓ′=1

exp Ṽ τ ′ (ℓ′ | ℓ0)

}

Now note that equation (28) implies

pτ
′
(ℓ0 | ℓ) = Ṽ τ ′ (ℓ0 | ℓ) − log

{
J∑

ℓ′=1

exp
[
Ṽ τ ′ (ℓ′ | ℓ)

]}

pτ
′
(ℓ0 | ℓ0) = Ṽ τ ′ (ℓ0 | ℓ0) − log

{
J∑

ℓ′=1

exp
[
Ṽ τ ′ (ℓ′ | ℓ0)

]}

and thus

log

{
J∑

ℓ′=1

exp
[
Ṽ τ ′ (ℓ′ | ℓ)

]}
− log

{
J∑

ℓ′=1

exp
[
Ṽ τ ′ (ℓ′ | ℓ0)

]}

is equal to

Ṽ τ ′ (ℓ0 | ℓ)− Ṽ τ ′ (ℓ0 | ℓ0) −
[
pτ

′
(ℓ0 | ℓ)− pτ

′
(ℓ0 | ℓ0)

]
= −κτ ′ · 1ℓ̸=ℓ0 −

[
pτ

′
(ℓ0 | ℓ)− pτ

′
(ℓ0 | ℓ0)

]
The last line is quickly derived from equation (27). Therefore,

E
[
V τ ′ (ℓ)

]
− E

[
V τ ′ (ℓ0)

]
= −

[
pτ

′
(ℓ0 | ℓ)− pτ

′
(ℓ0 | ℓ0) + κτ

′ · 1ℓ̸=ℓ0

]
and equation (30) has the expression

Ṽ τ (ℓ | j)− Ṽ τ (ℓ0 | j) (31)

= δτℓ − δτℓ0 − κτ [1ℓ̸=j − 1ℓ0 ̸=j] − β
∑
τ ′

φτ,τ ′
[
pτ

′
(ℓ0 | ℓ)− pτ

′
(ℓ0 | ℓ0) + κτ

′ · 1ℓ̸=ℓ0

]
Due to data limitations we discuss in the paper, we combine data across multiple years

when estimating probabilities and preference parameters. For this reason, we assume value

functions and expectations are fixed in our sample period.

46



B Prediction Equation Estimates and Standard Errors

Coefficient Estimates and Standard Errors
Black Households

Smooth Irreg. Escarf- Low Breaks- Low High Drainage All
Type Const Plains Plains Ments Hills Hills Foothills Mntns. Mntns. Channels Else
1 -1.181 -0.107 -0.448 -0.113 -9.103 -1.572 -1.158 -1.873 -1.080 -1.181 -4.164
yng,rnt,low ( 0.077) ( 0.027) ( 0.028) ( 0.193) ( 8.531) ( 0.073) ( 0.078) ( 0.091) ( 0.392) ( 0.077) ( 0.356)

2 -0.919 0.003 -0.250 -0.064 -1.675 -1.072 -0.851 -1.501 -1.015 -0.919 -3.685
yng,rnt,med ( 0.066) ( 0.023) ( 0.024) ( 0.165) ( 7.283) ( 0.062) ( 0.067) ( 0.078) ( 0.334) ( 0.066) ( 0.304)

3 -0.404 0.194 0.077 0.007 0.241 -0.372 -0.330 -1.013 -0.919 -0.404 -2.877
yng,rnt,high ( 0.061) ( 0.022) ( 0.023) ( 0.154) ( 6.800) ( 0.058) ( 0.062) ( 0.072) ( 0.312) ( 0.061) ( 0.284)

4 -0.477 -0.062 -0.388 -0.746 -0.796 -0.854 -0.680 -1.276 -1.044 -0.477 -4.662
yng,own,low ( 0.082) ( 0.029) ( 0.030) ( 0.207) ( 9.148) ( 0.078) ( 0.084) ( 0.098) ( 0.420) ( 0.082) ( 0.382)

5 -0.066 0.088 -0.181 -0.750 6.138 -0.266 -0.280 -0.992 -0.950 -0.066 -3.987
yng,own,med ( 0.072) ( 0.025) ( 0.026) ( 0.181) ( 7.962) ( 0.068) ( 0.073) ( 0.085) ( 0.366) ( 0.072) ( 0.332)

6 0.579 0.317 0.226 -0.420 7.439 0.623 0.339 -0.438 -0.727 0.579 -3.130
yng,own,high ( 0.073) ( 0.026) ( 0.027) ( 0.183) ( 8.085) ( 0.069) ( 0.074) ( 0.086) ( 0.371) ( 0.073) ( 0.337)

7 -1.178 -0.103 -0.448 -0.139 -8.747 -1.555 -1.137 -1.622 -0.924 -1.178 -3.757
mid,rnt,low ( 0.080) ( 0.028) ( 0.030) ( 0.201) ( 8.868) ( 0.075) ( 0.081) ( 0.095) ( 0.407) ( 0.080) ( 0.370)

8 -0.859 -0.005 -0.290 -0.242 -6.149 -1.053 -0.843 -1.235 -0.533 -0.859 -3.237
mid,rnt,med ( 0.069) ( 0.024) ( 0.026) ( 0.174) ( 7.669) ( 0.065) ( 0.070) ( 0.082) ( 0.352) ( 0.069) ( 0.320)

9 -0.379 0.182 0.069 0.037 1.248 -0.258 -0.222 -0.641 -0.123 -0.379 -2.439
mid,rnt,high ( 0.062) ( 0.022) ( 0.023) ( 0.157) ( 6.921) ( 0.059) ( 0.064) ( 0.074) ( 0.318) ( 0.062) ( 0.289)

10 -0.546 0.010 -0.328 -0.573 -12.456 -0.860 -0.470 -1.032 -0.752 -0.546 -4.829
mid,own,low ( 0.087) ( 0.031) ( 0.032) ( 0.218) ( 9.617) ( 0.082) ( 0.088) ( 0.103) ( 0.442) ( 0.087) ( 0.401)

11 -0.271 0.107 -0.164 -0.608 -4.519 -0.387 -0.208 -0.777 -0.630 -0.271 -4.092
mid,own,med ( 0.075) ( 0.026) ( 0.028) ( 0.188) ( 8.278) ( 0.070) ( 0.076) ( 0.088) ( 0.380) ( 0.075) ( 0.345)

12 0.473 0.333 0.255 -0.336 3.480 0.514 0.453 -0.170 -0.099 0.473 -2.085
mid,own,high ( 0.070) ( 0.025) ( 0.026) ( 0.175) ( 7.735) ( 0.066) ( 0.071) ( 0.082) ( 0.355) ( 0.070) ( 0.323)

13 -1.363 -0.093 -0.450 -0.059 -24.128 -1.673 -1.117 -1.678 -0.620 -1.363 -3.767
old,rnt,low ( 0.096) ( 0.034) ( 0.036) ( 0.242) (10.668) ( 0.091) ( 0.098) ( 0.114) ( 0.490) ( 0.096) ( 0.445)

14 -1.027 0.005 -0.279 -0.023 -12.208 -1.181 -0.758 -1.202 -0.480 -1.027 -3.454
old,rnt,med ( 0.082) ( 0.029) ( 0.030) ( 0.206) ( 9.074) ( 0.077) ( 0.083) ( 0.097) ( 0.417) ( 0.082) ( 0.379)

15 -0.597 0.194 0.062 -0.047 -3.021 -0.500 -0.264 -0.746 -0.338 -0.597 -2.241
old,rnt,high ( 0.070) ( 0.025) ( 0.026) ( 0.177) ( 7.818) ( 0.066) ( 0.072) ( 0.083) ( 0.359) ( 0.070) ( 0.326)

16 -1.034 0.010 -0.297 -0.757 -22.886 -1.039 -0.352 -1.013 -0.975 -1.034 -4.252
old,own,low ( 0.109) ( 0.039) ( 0.040) ( 0.274) (12.065) ( 0.103) ( 0.111) ( 0.129) ( 0.554) ( 0.109) ( 0.503)

17 -0.727 0.098 -0.198 -0.482 -13.229 -0.734 -0.268 -0.841 -0.480 -0.727 -3.577
old,own,med ( 0.094) ( 0.033) ( 0.035) ( 0.237) (10.445) ( 0.089) ( 0.096) ( 0.111) ( 0.480) ( 0.094) ( 0.436)

18 0.106 0.319 0.216 -0.118 -1.416 0.151 0.339 -0.220 -0.240 0.106 -1.638
old,own,high ( 0.080) ( 0.028) ( 0.029) ( 0.201) ( 8.854) ( 0.075) ( 0.081) ( 0.094) ( 0.407) ( 0.080) ( 0.369)

Notes: This table shows the coefficient estimates and standard errors for the prediction equation (21) of location choice on

topographic variables by household type. Legend: yng = young, mid = middle aged, old = old aged, rnt = renter, own =

owner, low = low credit score, med = medium credit score, high = high credit score.
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Coefficient Estimates and Standard Errors
Hispanic Households

Smooth Irreg. Escarf- Low Breaks- Low High Drainage All
Type Const Plains Plains Ments Hills Hills Foothills Mntns. Mntns. Channels Else
19 -0.710 -0.198 -0.529 -0.592 -2.122 -1.262 -1.464 -1.699 -1.481 -0.710 -3.811
yng,rnt,low ( 0.067) ( 0.024) ( 0.025) ( 0.168) ( 7.389) ( 0.063) ( 0.068) ( 0.079) ( 0.339) ( 0.067) ( 0.308)

20 -0.415 -0.113 -0.353 -0.593 4.062 -0.775 -1.203 -1.396 -1.548 -0.415 -3.363
yng,rnt,med ( 0.061) ( 0.022) ( 0.023) ( 0.154) ( 6.802) ( 0.058) ( 0.062) ( 0.073) ( 0.312) ( 0.061) ( 0.284)

21 0.070 0.064 -0.034 -0.505 11.286 -0.029 -0.649 -0.970 -1.443 0.070 -2.426
yng,rnt,high ( 0.063) ( 0.022) ( 0.023) ( 0.159) ( 7.032) ( 0.060) ( 0.065) ( 0.075) ( 0.323) ( 0.063) ( 0.293)

22 -0.076 -0.188 -0.516 -1.310 3.385 -0.556 -0.934 -1.189 -1.784 -0.076 -4.512
yng,own,low ( 0.078) ( 0.028) ( 0.029) ( 0.197) ( 8.696) ( 0.074) ( 0.080) ( 0.093) ( 0.399) ( 0.078) ( 0.363)

23 0.308 -0.022 -0.297 -1.120 12.192 -0.011 -0.578 -0.933 -1.664 0.308 -3.998
yng,own,med ( 0.072) ( 0.026) ( 0.027) ( 0.182) ( 8.041) ( 0.068) ( 0.074) ( 0.086) ( 0.369) ( 0.072) ( 0.336)

24 0.762 0.177 0.114 -0.660 13.861 0.751 0.004 -0.471 -1.216 0.762 -2.821
yng,own,high ( 0.076) ( 0.027) ( 0.028) ( 0.191) ( 8.400) ( 0.071) ( 0.077) ( 0.090) ( 0.386) ( 0.076) ( 0.350)

25 -0.664 -0.202 -0.539 -0.716 0.345 -1.159 -1.397 -1.349 -1.134 -0.664 -3.089
mid,rnt,low ( 0.068) ( 0.024) ( 0.025) ( 0.172) ( 7.606) ( 0.065) ( 0.070) ( 0.081) ( 0.349) ( 0.068) ( 0.317)

26 -0.248 -0.134 -0.383 -0.836 3.616 -0.648 -1.125 -1.034 -1.108 -0.248 -2.698
mid,rnt,med ( 0.061) ( 0.022) ( 0.023) ( 0.154) ( 6.789) ( 0.058) ( 0.062) ( 0.072) ( 0.312) ( 0.061) ( 0.283)

27 0.232 0.053 -0.052 -0.652 13.993 0.213 -0.505 -0.464 -0.974 0.232 -1.599
mid,rnt,high ( 0.062) ( 0.022) ( 0.023) ( 0.155) ( 6.834) ( 0.058) ( 0.063) ( 0.073) ( 0.314) ( 0.062) ( 0.285)

28 -0.041 -0.093 -0.431 -1.289 -5.961 -0.468 -0.821 -0.836 -1.262 -0.041 -4.065
mid,own,low ( 0.077) ( 0.027) ( 0.029) ( 0.195) ( 8.584) ( 0.073) ( 0.079) ( 0.091) ( 0.394) ( 0.077) ( 0.358)

29 0.250 -0.019 -0.243 -1.085 8.112 0.014 -0.527 -0.583 -1.149 0.250 -3.160
mid,own,med ( 0.070) ( 0.025) ( 0.026) ( 0.175) ( 7.725) ( 0.066) ( 0.071) ( 0.082) ( 0.355) ( 0.070) ( 0.322)

30 0.827 0.204 0.145 -0.708 13.207 0.845 0.101 -0.056 -0.871 0.827 -1.427
mid,own,high ( 0.071) ( 0.025) ( 0.026) ( 0.178) ( 7.870) ( 0.067) ( 0.072) ( 0.084) ( 0.361) ( 0.071) ( 0.328)

31 -0.838 -0.229 -0.570 -0.858 -4.361 -1.227 -1.493 -1.579 -1.209 -0.838 -3.197
old,rnt,low ( 0.086) ( 0.031) ( 0.032) ( 0.217) ( 9.574) ( 0.081) ( 0.088) ( 0.102) ( 0.440) ( 0.086) ( 0.399)

32 -0.334 -0.135 -0.398 -0.732 2.903 -0.730 -1.058 -1.118 -0.720 -0.334 -2.377
old,rnt,med ( 0.069) ( 0.025) ( 0.026) ( 0.175) ( 7.699) ( 0.065) ( 0.071) ( 0.082) ( 0.354) ( 0.069) ( 0.321)

33 0.193 0.046 -0.050 -0.661 10.207 0.035 -0.543 -0.542 -0.939 0.193 -1.300
old,rnt,high ( 0.065) ( 0.023) ( 0.024) ( 0.164) ( 7.226) ( 0.061) ( 0.066) ( 0.077) ( 0.332) ( 0.065) ( 0.301)

34 -0.360 -0.096 -0.383 -0.975 16.188 -0.581 -0.833 -0.858 -1.525 -0.360 -3.695
old,own,low ( 0.104) ( 0.037) ( 0.038) ( 0.261) (11.519) ( 0.098) ( 0.106) ( 0.123) ( 0.529) ( 0.104) ( 0.481)

35 -0.060 -0.015 -0.297 -1.012 4.905 -0.275 -0.634 -0.650 -0.812 -0.060 -2.938
old,own,med ( 0.085) ( 0.030) ( 0.031) ( 0.213) ( 9.402) ( 0.080) ( 0.086) ( 0.100) ( 0.432) ( 0.085) ( 0.392)

36 0.679 0.196 0.126 -0.723 16.122 0.636 0.052 -0.018 -0.636 0.679 -0.833
old,own,high ( 0.076) ( 0.027) ( 0.028) ( 0.190) ( 8.386) ( 0.071) ( 0.077) ( 0.089) ( 0.385) ( 0.076) ( 0.350)

Notes: This table shows the coefficient estimates and standard errors for the prediction equation (21) of location choice on

topographic variables by household type. Legend: yng = young, mid = middle aged, old = old aged, rnt = renter, own =

owner, low = low credit score, med = medium credit score, high = high credit score.
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Coefficient Estimates and Standard Errors
White Households

Smooth Irreg. Escarf- Low Breaks- Low High Drainage All
Type Const Plains Plains Ments Hills Hills Foothills Mntns. Mntns. Channels Else
37 0.065 -0.060 -0.253 -0.237 5.258 -0.160 -0.648 -0.818 -0.959 0.065 -1.666
yng,rnt,low ( 0.051) ( 0.018) ( 0.019) ( 0.128) ( 5.662) ( 0.048) ( 0.052) ( 0.060) ( 0.260) ( 0.051) ( 0.236)

38 0.415 0.073 -0.008 -0.074 8.580 0.393 -0.256 -0.386 -0.813 0.415 -1.033
yng,rnt,med ( 0.053) ( 0.019) ( 0.020) ( 0.134) ( 5.900) ( 0.050) ( 0.054) ( 0.063) ( 0.271) ( 0.053) ( 0.246)

39 0.793 0.250 0.308 0.110 12.604 1.032 0.311 0.069 -0.592 0.793 -0.272
yng,rnt,high ( 0.065) ( 0.023) ( 0.024) ( 0.163) ( 7.170) ( 0.061) ( 0.066) ( 0.076) ( 0.329) ( 0.065) ( 0.299)

40 0.732 -0.039 -0.216 -0.660 9.012 0.446 -0.149 -0.326 -1.169 0.732 -2.407
yng,own,low ( 0.068) ( 0.024) ( 0.025) ( 0.172) ( 7.581) ( 0.064) ( 0.070) ( 0.081) ( 0.348) ( 0.068) ( 0.316)

41 1.033 0.129 0.040 -0.671 12.070 0.940 0.283 -0.009 -1.006 1.033 -1.620
yng,own,med ( 0.069) ( 0.025) ( 0.026) ( 0.174) ( 7.679) ( 0.065) ( 0.070) ( 0.082) ( 0.353) ( 0.069) ( 0.320)

42 1.341 0.325 0.391 -0.310 16.693 1.550 0.832 0.420 -0.636 1.341 -0.769
yng,own,high ( 0.078) ( 0.028) ( 0.029) ( 0.197) ( 8.690) ( 0.074) ( 0.080) ( 0.093) ( 0.399) ( 0.078) ( 0.363)

43 0.179 -0.063 -0.241 -0.300 3.642 -0.004 -0.543 -0.473 -0.499 0.179 -1.134
mid,rnt,low ( 0.051) ( 0.018) ( 0.019) ( 0.129) ( 5.686) ( 0.048) ( 0.052) ( 0.061) ( 0.261) ( 0.051) ( 0.237)

44 0.634 0.037 -0.042 -0.275 10.530 0.544 -0.155 -0.012 -0.351 0.634 -0.446
mid,rnt,med ( 0.052) ( 0.018) ( 0.019) ( 0.131) ( 5.776) ( 0.049) ( 0.053) ( 0.062) ( 0.265) ( 0.052) ( 0.241)

45 1.085 0.221 0.309 -0.046 18.836 1.351 0.554 0.638 0.102 1.085 0.724
mid,rnt,high ( 0.066) ( 0.023) ( 0.024) ( 0.166) ( 7.299) ( 0.062) ( 0.067) ( 0.078) ( 0.335) ( 0.066) ( 0.305)

46 0.909 0.052 -0.088 -0.662 2.296 0.682 0.137 0.176 -0.608 0.909 -1.756
mid,own,low ( 0.066) ( 0.023) ( 0.024) ( 0.165) ( 7.291) ( 0.062) ( 0.067) ( 0.078) ( 0.335) ( 0.066) ( 0.304)

47 1.167 0.161 0.123 -0.548 10.307 1.135 0.450 0.450 -0.390 1.167 -0.818
mid,own,med ( 0.066) ( 0.024) ( 0.025) ( 0.167) ( 7.365) ( 0.063) ( 0.068) ( 0.078) ( 0.338) ( 0.066) ( 0.307)

48 1.550 0.356 0.468 -0.282 17.045 1.768 1.038 0.941 0.031 1.550 0.499
mid,own,high ( 0.077) ( 0.027) ( 0.028) ( 0.193) ( 8.525) ( 0.073) ( 0.078) ( 0.091) ( 0.392) ( 0.077) ( 0.356)

49 0.191 -0.076 -0.274 -0.536 6.870 -0.121 -0.672 -0.565 -0.447 0.191 -1.078
old,rnt,low ( 0.066) ( 0.023) ( 0.024) ( 0.166) ( 7.299) ( 0.062) ( 0.067) ( 0.078) ( 0.335) ( 0.066) ( 0.305)

50 0.642 0.057 -0.010 -0.276 10.468 0.502 -0.132 0.048 -0.175 0.642 0.027
old,rnt,med ( 0.058) ( 0.020) ( 0.021) ( 0.145) ( 6.391) ( 0.054) ( 0.059) ( 0.068) ( 0.294) ( 0.058) ( 0.267)

51 1.085 0.238 0.336 -0.104 18.406 1.167 0.508 0.536 -0.005 1.085 1.061
old,rnt,high ( 0.071) ( 0.025) ( 0.026) ( 0.178) ( 7.856) ( 0.067) ( 0.072) ( 0.084) ( 0.361) ( 0.071) ( 0.328)

52 0.611 0.014 -0.113 -0.740 11.761 0.483 0.074 0.108 -1.511 0.611 -1.359
old,own,low ( 0.089) ( 0.032) ( 0.033) ( 0.225) ( 9.929) ( 0.084) ( 0.091) ( 0.106) ( 0.456) ( 0.089) ( 0.414)

53 0.919 0.141 0.090 -0.390 8.018 0.931 0.377 0.467 -0.303 0.919 -0.132
old,own,med ( 0.071) ( 0.025) ( 0.026) ( 0.179) ( 7.902) ( 0.067) ( 0.073) ( 0.084) ( 0.363) ( 0.071) ( 0.330)

54 1.439 0.359 0.480 -0.217 18.941 1.605 0.948 0.995 0.301 1.439 1.570
old,own,high ( 0.077) ( 0.027) ( 0.029) ( 0.195) ( 8.601) ( 0.073) ( 0.079) ( 0.092) ( 0.395) ( 0.077) ( 0.359)

Notes: This table shows the coefficient estimates and standard errors for the prediction equation (21) of location choice on

topographic variables by household type. Legend: yng = young, mid = middle aged, old = old aged, rnt = renter, own =

owner, low = low credit score, med = medium credit score, high = high credit score.
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C Eigenvalue Analysis

We wish to understand if our estimates imply that the current demographic composition of

neighborhoods is stable. This has been studied before by Caetano and Maheshri (2021) and

others, but our methods and definition of stability are going to be different. We begin by

introducing some notation and defining what we mean by stability. For a given metrom with

Jm total tracts, denote T as a 2Jm× 1 vector comprised of starting values of expectations of

racial shares, E
[
Sb
ℓ,m

]
and E

[
Sh
ℓ,m

]
for all tracts. Let g (T ) be an expectations-generating

function produced by our model that takes as a starting input T and produces a different

vector of expectations T ′,

T ′ = g (T ) .

We define a steady state of g as a vector of expectations T ∗ that generates, via g, an identical

set of expectations, i.e.

T ∗ = g (T ∗) .

Before describing how we compute g (T ), we now define a steady state that is consistent

with the data in our estimation sample for each metro. We start with the distribution of

types by tract implied by our estimation sample and then simulate the model for 5 periods,

our “burn in” period. During these 5 periods, we assume each household’s type stays fixed.

During the burn in period, we hold δτℓ,m fixed for all types and all tracts in all metros. We

use a 5-period burn in to ensure all types populate all tracts in our baseline steady state

implied by the data.29 After the burn-in, we use the resulting distribution of types by tract

to compute our baseline vector for T , E
[
Sb
ℓ,m

]
= Sb

ℓ,m and E
[
Sh
ℓ,m

]
= Sh

ℓ,m for all ℓ and m.

Next, we compute the distribution of types across all tracts that results after running

the decision model for one period such that all location choices are made and all types

probabilistically evolve. For each tract, we compute the required additions (“births”) or

subtractions (“deaths”) of the population of each type such that the resulting measures of

household types in each tract after all decisions are made and all types have stochastically

evolved is constant in all tracts. The addition of type-specific births and deaths to each

tract guarantees that the model-predicted distribution of types across tracts is stable and

the vector T ∗ reflecting our data is a steady state. That is, the decisions implied by the

model are consistent with expectations households have over racial shares and rental prices

in each tract.

29The burn-in period smoothes through sampling variability in the data.
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We now describe the g (T ) function that we use to predict how expectations evolve given

any starting set of expectations T . To start, denote the total number of households and the

rental price in each tract in the data as Hℓ,m and rℓ,m, respectively. Then, we compute g (T )

as follows:

1. Denote the guess of new rental prices r′ℓ,m.

2. Using equation (15), adjust δτℓ,m appropriately for all ℓ, m, and τ given the values of

E
[
Sb
ℓ,m

]
and E

[
Sh
ℓ,m

]
from T and the guess r′ℓ,m, holding exogenous amenities Aτ

ℓ,m

fixed. Households assume this new value of δτℓ,m is fixed forever when making decisions.

3. Simulate the model 99 periods and compute new housing demand in each tract in each

metro, H′
ℓ,m.

4. Update the guess of rental prices and repeat steps 2-3 until rental prices in each tract

clear markets to satisfy

logH′
ℓ,m − logHℓ,m = ψℓ,m

[
log r′ℓ,m − log rℓ,m

]
The housing supply elasticity in each tract ℓ in each metro m, ψℓ,m, is given by the

estimates in Baum-Snow and Han (2022) with a floor value of 0.025.30

5. Once we know rental prices r′ℓ,m that clear housing markets given values of E
[
Sb
ℓ,m

]
and E

[
Sh
ℓ,m

]
from T , compute simulated Black and Hispanic shares in each tract and

call these Sb′

ℓ,m and Sh′

ℓ,m.

6. Set the elements of T ′ equal to Sb′

ℓ,m and Sh′

ℓ,m.

Given our procedure to compute g (T ), we test the stability of the steady state implied

by the data by computing the eigenvalues and eigenvectors of the model at the steady state.

To see why this is useful, suppose we perturb expectations of racial shares at the steady

state – call these perturbed expectations as T ′ – and then measure how expectations evolve

from this perturbed starting point, i.e. T ′′ = g (T ′). We can do this with a first-order linear

approximation:

g (T ′)− g (T ∗) ≈ G · [T ′ − T ∗]

where G is a 2Jm by 2Jm vector of derivatives of g evaluated at T ∗. Once we make appropriate

substitutions, we get

[T ′′ − T ∗] ≈ G · [T ′ − T ∗]

We compute the elements of G at T ∗ using numerical derivatives. Specifically, define T̃ ∗
i

30In a handful of tracts, Baum-Snow and Han (2022) estimate a negative supply elasticity.
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as equal to T ∗ in all elements except for the ith element which we perturb by ∆i units.
31

We set the ith column of G equal to
[
g
(
T̃ ∗
i

)
− T ∗

]
/∆i. For each metro, we repeat this

computation for all i = 1, . . . , 2Jm elements of T ∗ to populate all the columns of G.
Once we have an estimate of G, we compute its eigenvalues to determine whether the

expectations of racial shares move away from or return to the steady-state expectations

implied by the data in response to a tiny perturbation to expectations. In other words, we

ask if the system predicts expectations return to T ∗ if we start our model using expectations

that are nearly but not exactly identical to T ∗. If all the eigenvalues of G are less than 1,

the expectations converge back to the steady state; if at least one eigenvalue is greater than

1, expectations do not converge back to the starting point and if this is the case, we say the

steady state implied by the data is not stable.

The results are shown in Appendix Table C.1 below. Summarizing results shown in

column (6), every metro has at least one eigenvalue greater than 1 and the median metro

has 48% of its eigenvalues greater than 1. Ultimately, the reason that the system is not

stable as measured by these eigenvalues is that households have very strong preferences over

the racial composition of their neighbors. Restated, the racial composition of neighborhoods

at the steady state implied by the current data is unstable because many households want

to live in more segregated neighborhoods. This result is not merely a statement about the

direction of racial preferences; it is more of a statement about the size of these preferences.

To show this, we recompute eigenvalues of G holding δτℓ,m fixed for all tracts ℓ, metros m, and

types τ , but after multiplying all coefficients on race in utility, Θτ
2 = {aτ1, . . . , aτ5}, by 0.25

for all types and then by 0.125 for all types. By holding δτℓ,m fixed, we preserve the relative

desirability of all tracts in the baseline, so any changes to eigenvalues only reflect changes

in the strength of preferences for race. The bottom line is that with these scaled-down

preferences for race, stability for all metros vastly improves. Measured at the median metro,

as shown in column (7) with the rescaling of Θτ
2 by 0.25, 19.3% of a metro’s eigenvalues are

larger than 1, and with the rescaling of Θτ
2 by 0.125, measured at the median metro 0.2% of

a metro’s eigenvalues are larger than 1, shown in column (8).

Appendix Table C.1

Total % Tracts Eigenvalues > 1

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk 0.125aτk
(1) (2) (3) (4) (5) (6) (7) (8)

Springfield, IL 201.4 55 9.6 0.9 48.2 34.5 0.0

31For each element i, we set ∆i equal to 1.0× 10−6.
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Total % Tracts Eigenvalues > 1

Name Pop (000s) Tracts % Black % Hisp Baseline 0.25aτk 0.125aτk
(1) (2) (3) (4) (5) (6) (7) (8)

Spartanburg, SC 253.8 51 21.0 2.7 49.0 45.1 4.9

Norwich, CT 259.1 62 6.5 5.2 51.6 12.9 0.0

Port St. Lucie, FL 319.4 60 11.8 8.0 57.5 25.0 0.8

Charleston, WV 309.6 76 5.0 0.6 42.8 9.9 0.7

Erie, PA 280.8 72 6.8 2.2 48.6 17.4 0.7

Eugene, OR 323.0 78 1.3 4.5 47.4 0.0 0.0

Montgomery, AL 346.5 82 40.7 1.1 45.1 34.1 18.3

Brownsville, TX 335.2 86 0.6 84.5 34.9 1.2 0.0

Salinas, CA 401.8 83 4.4 46.9 69.9 15.7 0.0

Utica, NY 299.9 92 5.1 2.6 45.7 4.9 0.0

Augusta, GA 499.7 95 35.6 2.4 47.4 41.6 15.3

Lansing, MI 447.7 117 9.0 4.7 48.7 31.2 0.0

Charleston, SC 549.0 117 31.0 2.4 48.7 44.4 17.5

Knoxville, TN 616.1 128 6.8 1.1 48.8 18.4 0.4

Greenville, SC 559.9 126 17.3 3.1 49.2 43.7 3.6

Worcester, MA 750.6 163 3.3 6.8 49.1 2.1 0.0

Youngstown, OH 603.0 168 11.2 1.7 44.0 20.8 0.0

Albany, NY 825.6 213 7.0 2.5 48.1 14.3 0.0

Dayton, OH 848.2 208 15.2 1.1 44.5 20.2 1.7

25th Percentile 309.6 76 5.1 1.7 45.7 12.9 0.0

Median 374.1 89 8.0 2.5 48.4 19.3 0.2

75th Percentile 559.9 126 15.2 5.2 49.0 34.1 3.6
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