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Abstract

We consider estimation and inference about the effects of a policy in the
absence of a control group. We obtain unbiased estimators of individual (het-
erogeneous) treatment effects and a consistent and asymptotically normal es-
timator of the average treatment effects, based on forecasting counterfactuals
using a short time series of pre-treatment data. We show that the focus should
be on forecast unbiasedness rather than accuracy. Correct specification of the
forecasting model is not necessary to obtain unbiased estimates of the indi-
vidual treatment effects. Instead, simple basis function (e.g., polynomial time
trends) regressions deliver unbiasedness under a broad class of data-generating
processes for the individual counterfactuals. Basing the forecasts on a model
can introduce misspecification bias and does not necessarily improve perfor-
mance even under correct specification. Consistency and asymptotic normality
of the Forecasted Average Treatment effects (FAT) estimator attains under an
additional assumption that rules out common and unforecastable shocks occur-
ring between the treatment date and the date at which the effect is calculated.
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1 Introduction

Evaluating policies, or treatments, is a central task in economics. Such evaluations
usually require the construction of counterfactuals, i.e. outcomes that the treated
would have gotten had they not received the treatment. The convention in the treat-
ment effects literature is to construct counterfactuals for the treated using observed
data on the control, i.e. individuals who do not receive the treatment and who are
observed at every time period as the treated individuals. This strategy is used for
evaluating policies with partial participation at every point in time.1 When there
is universal participation,2, researchers typically rely on structural econometrics for
policy evaluation.3

In this paper, we introduce a simple framework for the evaluation of policies
with universal participation. Our approach can also be used as a robustness check
when there is a control group, but its validity is uncertain or the assumptions that
existing methods impose may be too strong to justify in the empirical application
considered.4 While our approach does not rely on structural models, it is unique
in its focus on understanding what assumptions on the data-generating processes

1For early work on estimation of the average treatment effect on the treated by imputing or
estimating the counterfactual for individuals in the treatment group by using observations from the
control group, see, e.g., Ashenfelter and Card (1985); Heckman et al. (1997, 1998).

2A partial list of universal policies includes: child care programs targeted at all children (e.g.,
Baker et al. (2008); Cornelissen et al. (2018)), mandatory job search programs targeted at all
unemployed youths in the labor market (e.g., Blundell et al. (2004)), environmental policies targeted
at reducing air pollution and congestion (e.g., Gallego et al. (2013), Chen and Whalley (2012)),
country-level trade agreements such as NAFTA (Trefler (2004)), fiscal policies (Oscar and Taylor
(2016)), state-level texting bans (Abouk and Adams (2013)), and, of course, global pandemics such
as COVID-19.

3For example, Heckman and Vytlacil (2005) discuss how functional form restrictions and support
conditions can be used to substitute for the lack of control individuals.

4For example, estimators for the average treatment effect under unconfoundedness require that
researchers choose both which observed covariates to condition on to guarantee that unconfound-
edness holds (and include them in the propensity score) and the functional form of the propensity
score. Both are fraught with specification uncertainty, see, e.g., Hirano and Imbens (2001); Kita-
gawa and Muris (2016). Likewise, difference-in-differences-type estimators require some sort of
parallel-paths assumption. Although there is work that allows for a variety of robustness and sensi-
tivity analyses, researchers must choose how to construct the control group and the weights placed
on different time periods, c.f. Roth et al. (2023).
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for the counterfactuals are needed to consistently estimate treatment effects. The
treatment effects literature in the presence of a control group does not usually dis-
cuss the data-generating processes, opting instead for high-level assumptions such as
unconfoundedness or parallel paths. Recent literature has illustrated how the par-
allel paths assumption implicitly imposes restrictions on individual dynamic choice
(e.g., Ghanem et al. (2022); Marx et al. (2023)), and our approach can be seen as
reflecting a possibly growing interest in the literature on making the assumptions on
the data-generating process explicit.

Our parameter of interest is the average treatment effect on the treated (ATT).5

Our baseline method uses individual time series of pre-treatment outcomes to forecast
individual counterfactuals. The cross-sectional average of the individual differences
between the observed post-treatment outcome at a particular time and the forecasted
counterfactual is taken as an estimate of the ATT at that time period. We call our
estimator the Forecasted Average Treatment effect (FAT). We show that FAT is a
consistent and asymptotically normal estimator of the ATT, even when the number
of time periods used to forecast the counterfactual is small. This is true under
two high-level assumptions: 1) the forecasts are unbiased on average; and 2) the
average differences between the observed post-treated outcomes and the forecasted
counterfactuals satisfy a central limit theorem. We then proceed to characterize the
class of data generating processes for the individual counterfactuals and the forecast
methods that satisfy these requirements.

The focus on an individual-level forecast analysis has some advantages, e.g. it al-
lows for heterogeneous treatment effects, unbalanced panels and staggered treatment
timing. On the other hand, achieving robustness to the absence of a valid control
group naturally comes at a cost. For example, a key implication of the central limit
theorem assumption is that we will not be able to control for common shocks that
affect all treated individuals between the time of the treatment and the time at which
we compute the effects, unless these shocks are forecastable using pre-treatment data.
A key insight of the paper is that these costs do not however include the strong and

5In the baseline case without a control group, the ATT is the same as the average treatment
effect.
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unrealistic assumption that forecasts are based on correctly specified models for the
individual counterfactuals. All we need, in fact, is the ability to produce forecasts of
the counterfactuals that are unbiased on average across individuals.

Forecast unbiasedness is typically not the main concern in time series and panel
forecasting, which focuses instead on accuracy (e.g., achieving variance reduction at
the cost of some bias). Our first contribution is to show that forecasts based on basis
function regressions on pre-treatment outcomes (e.g., polynomial time trends) are
unbiased estimators of the individual treatment effects, and that the FAT based on
these forecasts is a consistent and asymptotically normal estimator of the ATT. This
is true for a large class of data generating processes that express the counterfactuals
as the sum of, potentially, two individual-specific unobserved components: a mean-
stationary process and a random walk. This flexible class encompasses, e.g., linear
panel models with fixed effects and lagged outcomes with heterogeneous coefficients
or unit roots, and allows for stationarity or stochastic trends. If the data-generating
process for sure includes a deterministic trend, the additional requirement is that
the type of basis function used to produce the forecast is correctly specified and
the number of basis functions is larger than the true one. This result shows that it
is not necessary to model the stochastic component of the counterfactuals to obtain
unbiased forecasts. One should instead focus on correctly specifying the deterministic
trend component (up to its order), if one believes that this component is present.

Basis function regressions are easy to implement and allow for short time series
of pre-treatment data. The length of the estimation window and the order of the
basis function are tuning parameters. Our practical recommendation is to choose
short estimation windows to guard against possible structural instability in pre-
treatment data and to report results for a small range of values for the number of
basis functions. For example, for polynomial regressions of order q and assuming
the same basis functions are used across individuals, one can report FAT based on,
say, q = 0, ..., 3 using an estimation window of length q + 1. If feasible, plotting
the individual time series of pre-treatment data can guide the choice of polynomial
order. For example, if this series shows trending behaviour, one can then decide if
this is plausibly due to a stochastic trend (in which case any choice of q is valid) or a
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polynomial time trend (in which case q should be larger than the true order). If the
panel is balanced and one uses the same basis functions across individuals, the time
series of pre-treatment outcomes averaged across individuals can guide the choice
of basis functions, as in this case the FAT is simply obtained by a basis function
regression on averaged outcomes.

The baseline case considers forecasts that are only based on pre-treatment out-
comes and do not require specifying a model. Covariates could also be incorporated
in the estimation of the FAT, by specifying a model and using it to forecast the
counterfactuals (we call this the model-based FAT). This approach however requires
stronger assumptions, including: correct specification of the model; availability of a
consistent estimator for the coefficients if these coefficients are homogeneous; sym-
metry of the error term if the covariates are lagged outcomes with heterogeneous
coefficients. Under these additional assumptions the model-based FAT is biased but
consistent and asymptotically normal. Our simulations indicate that the model-based
FAT is however sensitive to misspecification bias, and has comparable performance
to the FAT obtained by basis function regression under correct specification. This
suggests that the basis-function approach possesses desirable robustness properties.

Suppose that a control group is available, but that it is not valid from the perspec-
tive of existing approaches such as, e.g., difference in differences (DiD) estimators.
Such a control group could be used to relax the assumption that there are no shocks
that affect all individuals between the treatment and the time at which the FAT is
computed. In practice, this is achieved by computing the FAT for both the treated
and the control and then taking the difference of the two (we call this the DFAT
estimator). For example, this approach allows one to eliminate the effect of an un-
predictable common shocks that has the same average effect on the treated and
control groups, while permitting the data-generating process for the counterfactuals
to contain fully heterogeneous time trends. The heterogeneous time trends would
instead violate the parallel paths assumption required by DiD.
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2 Related literature

Our baseline case considers the absence of a control group and provides a consistent
estimator of ATT based on forecasting counterfactuals. There is a small literature
that discusses forecasting counterfactuals using Bayesian methods. For example,
Brodersen et al. (2015) proposes Bayesian estimation of a time series model based on
trend extrapolation, seasonal effects and covariates. Varian (2014) argues in favor of
such models, stating that "a good predictive model can be better than a randomly-
chosen control group, which is usually thought to be the gold standard." Besides
assuming correct specification of the model, the Bayesian approach typically results
in biased forecasts. In contrast, our approach does not require correct specification
of the model and delivers unbiasedness.

This paper forecasts individual counterfactuals using panel data. There is a long
literature on forecasting with panel data, e.g., Baltagi (2013), including some recent
Bayesian approaches for panel data with a short time dimension (Liu et al. (2020)).
The main difference with this literature is their focus on forecast accuracy, whereas
an insight of this paper is that one should focus on forecast unbiasedness if the goal is
forecasting counterfactuals as an ingredient for estimation of the ATT. The literature
typically also assumes correct specification of the model, whereas we show that this
is not necessary for consistent ATT estimation.

Forecast unbiasedness has been studied in the context of time series models.
Fuller and Hasza (1980) show that a correctly specified AR(1) model gives unbiased
forecasts; Dufour (1984) extends the result to possibly misspecified AR(p) models
and Cryer et al. (1990) to possibly misspecified ARIMA(p, d, q) models. Key as-
sumptions in the above literature are a symmetry restriction on the model residuals
and stationarity. A contribution of this paper is to show that we can obtain unbi-
ased forecasts for a much more general class including stationary and nonstationary
data-generating processes. Our result accommodates misspecified models and does
not maintain symmetry or stationarity.

With a short panel, Mavroeidis et al. (2015) consider an AR(1) model with cor-
related random effects and heterogeneous autoregressive parameter. The authors
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propose an MLE-based method that could be used to produce unbiased forecasts,
however both a stationarity and a symmetry assumption on the data generating
process are maintained. To the best of our knowledge, the issue of unbiased fore-
casts with a short panel and parameter heterogeneity has not been considered for
non-stationary processes.

So-called “event studies” in finance (e.g., Brown and Warner (1985); MacKinlay
(1997)) are used to assess the impact on stock returns of firm-specific events. The
methodology used in this literature is a special case of the approach considered here,
since it is based on forecasting stock returns after the event (i.e., counterfactuals)
using either the sample mean of returns before the event (i.e., a basis function regres-
sion of order zero) or a regression model such as the CAPM estimated over pre-event
data. This literature leverages specific characteristics of financial data that are not
generally extendable to other types of data, such as the availability of long time
series and consensus about the plausible data-generating process for the counter-
factuals (e.g., a mean-zero serially uncorrelated process for daily stock returns). In
contrast, this paper addresses the uncertainty about the data-generating process (in
particular in terms of the presence of deterministic and/or stochastic trends) and the
short time dimension that characterize the treatment effects literature in other fields.
An implication of our findings for this literature is that correct specification is not
necessary to produce unbiased forecasts of counterfactuals, implying that the sample
mean is valid under weaker assumptions than those in, e.g., MacKinlay (1997). An-
other implication is that the existing approach can also be applied to stock prices,
since the sample mean is also valid even when the counterfactuals have a unit root.

Interrupted time series analysis (ITS) is a quasi-experimental design sometimes
used in, e.g., health economics and criminology to evaluate the impact of a policy
implemented at the population level. ITS does not require a control group, and
uses time series data on a single treated unit from before the policy to construct the
unit’s counterfactual outcome trend, that is then compared to the unit’s post-policy
outcome trend, see e.g. Bernal et al. (2017), Baiker and Svoronos (2019), Miratrix
(2022). ITS is concerned with an aggregate time series, it models only a linear trend,
and it implicitly makes strong assumptions about the data-generating process for the
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counterfactual.
A prime application of our method uses polynomial regressions to forecast coun-

terfactuals. Polynomial regressions are also used in the literature on regression dis-
continuity (RD), e.g., Cattaneo and Titiunik (2022), Gelman and Imbens (2019).
Event studies that use time as a score variable in RD designs, or “RDD in time," are
often applied in environmental economics to evaluate policies with universal partic-
ipation (see, e.g., Hausman and Rapson (2018); Gillingham et al. (2020); Tu et al.
(2020); Li et al. (2020); Greenstone et al. (2022)) as well as in other fields (e.g., Kuhn
and Shen (2023) and Aguilar et al. (2021)). RDD in time relies on high frequency
data around the treatment time and uses polynomial regressions before and after
the treatment time. In contrast, we consider only polynomial regressions before the
treatment time as a way to forecast counterfactuals, which we then compare with
actual outcomes. As discussed in Hausman and Rapson (2018), the RD in time ap-
proach is problematic since it can mix short and long-run effects of the treatment,
see also Cattaneo and Titiunik (2022).

The synthetic control method has been increasingly used to evaluate the effect of
interventions implemented at an aggregate level (such as a cities, regions, or coun-
tries) on an aggregate outcome, see Abadie (2021) for a recent review. In the conven-
tional setting for synthetic controls, there is only one unit that is treated. However,
there are many untreated units in the donor pool from which pseudo-controls can be
chosen, i.e. these are untreated units selected such that the weighted average of their
past outcomes “resembles” the trajectory of past outcomes of the treated unit. The
counterfactual outcome for the treated unit is then constructed as a weighted average
of the post-treatment outcomes of the selected pseudo-control units. In comparison,
in our baseline setting, all individuals in the population are treated and there are
no control units. The counterfactual outcome for each treated unit is a weighted
average of the unit’s own past outcomes. The properties of our estimator rest on
averaging across many treated units, an advantage of which is standard inference.
Other differences with the synthetic control framework are that we describe the class
of data generating processes that obtains a consistent estimator of the ATT, and
that our results apply even when the number of pre-treatment time periods is small.
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We leverage the cross-sectional dimension for this result, which is not possible in the
conventional synthetic control setting.

Our analysis allows for heterogeneous treatment effects. It is well known that
in this case Ordinary Least Squares or Two Way Fixed Effects estimators in lin-
ear panel data models are generally inconsistent for the average treatment effect,
see, e.g., Wooldridge (2005); Chernozhukov et al. (2013); Imai and Kim (2019);
Sloczyński (2020); de Chaisemartin and D’Haultfoeuille (2020); Goodman-Bacon
(2021). Our approach delivers a consistent estimator of the average treatment effect
(on the treated) in the absence of a control group. All proposed solutions instead
assume the existence of a control group in every period, see, e.g., Cengiz et al. (2019);
Callaway and Sant’Anna (2021); Sun and Abraham (2020); Goodman-Bacon (2021);
Baker et al. (2022); Borusyak et al. (2021); Liu et al. (2023); Chan and Kwok (2022);
Roth et al. (2023). In addition, in order to avoid the incidental parameter problem
when estimating panel models with fixed effects, the maintained assumptions in this
literature are the absence of lagged outcomes when the panel is short and the ho-
mogeneity of the regression coefficients that enter potential outcomes, e.g., Angrist
and Pischke (2009). Our class of data-generating processes instead allows for lagged
dependent outcomes and fully heterogeneous parameters.

Least-squares estimates of treatment effects are often interpreted as consistent
estimates of certain weighted average treatment effects, to allow for the possibility
of model misspecification, see e.g. Theorem 1 in Chernozhukov et al. (2013). The
researcher generally has no control over the weights, which can become negative in
panel data models where fixed effects are included in the estimation. In addition, the
weighted average interpretation does not address the incidental parameter problem,
which occurs even for correctly specified models with homogeneous treatment effects.
By contrast, our results show that, if treatment effects are estimated via averages
over unbiased forecasts of counterfactuals, the correct unweighted treatment effect is
consistently estimated, as long as the average is over a sufficiently large cross-section
of observations. Our method thus signals a shift in focus: rather than trying to
obtain consistent estimates of the model’s parameters, we focus on unbiased forecasts
of counterfactuals. In this way, our method avoids both the incidental parameter
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problem and the negative weighting issue mentioned above.
The idea of imputing missing values in the outcome matrix, i.e. the counterfactual

outcomes, has recently been used by, e.g., Athey et al. (2021); Bai and Ng (2021);
Fernández-Val et al. (2021), where the goal is to control flexibly for complicated
interactions between individual specific and time specific heterogeneity in panel data
models using low-rank matrix approximations. Using language from that literature,
our framework has a thin matrix of outcomes since the cross-sectional dimension is
much larger than the time dimension. In the thin matrix case, missing potential
outcomes in the last period are imputed using control units with similar lagged
outcomes. The main assumption that allows this is unconfoundedness. Since we
do not observe cross-sectional control units, our outcome matrix does not contain
outcomes for control units and we do not appeal to unconfoundedness.

Conceptually, when there exists a control group, our solution resembles difference-
in-differences or, more generally, an “event-study design analysis” as defined by, e.g.,
Borusyak et al. (2021). Although the estimated outcome equations may look similar,
there is an important distinction between these methods and ours. For example, the
extension of FAT to the case of a control group (DFAT) uses control groups to correct
for the effect of a common shock, while the other methods use control groups to
correct for selection into treatment (under different assumptions). Additionally, FAT
allows for heterogeneous time trends as well as for heterogeneous effects of lagged
pre-treatment outcomes. In contrast, there is no straightforward way to control
for pre-treatment lagged outcomes in the specifications of, e.g., Sun and Abraham
(2020); Callaway and Sant’Anna (2021); Borusyak et al. (2021).

3 Baseline case: no control group, no covariates

In this section, we introduce the parameter of interest and our proposed estimator.
We first show that our estimator is consistent and asymptotically normal under a
high-level unbiasedness assumption for the forecasts of the counterfactuals. We then
derive sufficient conditions on the class of data-generating processes and the forecast
methods that satisfy the unbiasedeness assumption.
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3.1 Parameter of interest and estimator

Consider a treatment or a policy that is implemented at a time τ . In this section we
consider the case where the treatment affects all individuals in the population at the
same time,6 that is, the treatment indicator of individual i at time t is given by

dit := 1(t > τ) for all i = 1, . . . , n.

We adopt the potential outcomes framework with each individual i having two po-
tential outcomes at each time t: yit(1) if the individual is exposed to the treatment
(or treated) and yit(0) if the individual is not exposed to the treatment (or control).
Under the stable unit treatment value assumption (SUTVA), the observed outcome
of individual i at t is given by:

yit = (1− dit) yit(0) + dit yit(1).

In our baseline setting where all individuals are treated after time τ , the observed
individual outcome yit is

yit =

{
yit(0) for t ≤ τ,

yit(1) for t > τ.
(1)

We follow the literature on heterogeneous treatment effects in defining the average
treatment effect on the treated (ATT)7 h ≥ 1 periods after τ as:

ATTh :=
1

n

∑
i

E [yiτ+h(1)− yiτ+h (0)] (2)

=
1

n

∑
i

E [yiτ+h − yiτ+h (0)] , (3)

6In Section 3.3 we consider the more general case of staggered adoption with the treatment
timing heterogeneous across individuals.

7Since all individuals are treated in our baseline setting, the ATT equals the average treatment
effect (ATE).
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where we used that yiτ+h(1) = yiτ+h for h ≥ 1. Note that with identically and
independently distributed data, the right hand side of (2) reduces to the conventional
E [yiτ+h − yiτ+h (0)].

The challenge in identifying and estimating ATTh is that the counterfactual
yiτ+h (0) is not observed for h ≥ 1. If a control group were available, then the con-
ventional approach would be to impose sufficient assumptions that identify the pa-
rameter of interest from the observed post-treatment outcomes of the control group.
In the absence of a control group, we exploit pre-treatment individual time series to
obtain a forecast for the individual counterfactual yiτ+h (0). We denote this forecast
by ŷiτ+h(0).

We call our proposed estimator for ATTh the forecasted average treatment effect
estimator, defined as:

F̂ATh :=
1

n

n∑
i=1

[yiτ+h − ŷiτ+h (0)] , (4)

where ŷiτ+h(0) is a measurable function of past outcomes {yit}t≤τ .8 Assumption 1
below guarantees that E(F̂ATh) = ATTh. We explain how to obtain the individual-
level forecast ŷiτ+h(0) in the sections that follow below. For now, we note that
ŷiτ+h(0) uses individual-specific pre-treatment outcomes, and since it is individual-
specific, our estimator naturally accommodates unbalanced panels and heterogeneous
treatment effects.

We make the following high-level assumptions.

Assumption 1 (Average unbiasedness). The forecast for time τ + h, h ≥ 1, is
unbiased on average, in the sense that:

1

n

∑
i

E (ŷiτ+h (0)− yiτ+h (0)) = 0. (5)

Let uiτ+h := yiτ+h− ŷiτ+h(0) be the forecasted individual treatment effect, i.e. the
8In the baseline case, the individual forecast depends only on the past outcomes of the treated,

in particular, there are no covariates in the information set.
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individual-specific difference between the observed post-treatment outcome (that is,
the outcome with the treatment) and the forecasted counterfactual at τ + h, h ≥ 1.

Assumption 2 (CLT). Let {uiτ+h} be a sequence of random variables that satisfies
a CLT in the sense that

1√
n

∑
i (uiτ+h−Euiτ+h)

σ̄n
⇒ N (0, 1) , (6)

where σ̄2
n := Var( 1√

n

∑
i uiτ+h) <∞ .

For example, when {uiτ+h} is a sequence of independent but not identically dis-
tributed random variable, Theorem 5.11 in White (2001) gives an asymptotic nor-
mality result.

Note that Assumption 2 allows for weak cross-sectional dependence. It excludes
shocks that affect all individuals after the treatment and that are unforecastable. In
principle, the assumption allows for the possibility that some common shocks could
be captured by the method used to forecast the counterfactuals. We will discuss in
Section 5 how this assumption can be further weakened in the presence of a control
group.

The next result shows that, under Assumptions 1 and 2, our estimator in (4) is
consistent and asymptotically normal.

Lemma 1 (Consistency and asymptotic normality). For each i = 1, . . . , n, let the
forecast ŷiτ+h(0), h ≥ 1, be a function of {yit}t≤τ . Let Assumptions 1 and 2 hold.
Then F̂ATh satisfies:

√
n
(

F̂ATh − ATTh

)
σ̄n

⇒ N (0, 1) .
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Proof. We have

F̂ATh − ATTh =
1

n

n∑
i=1

(yiτ+h − ŷiτ+h (0)− E [yiτ+h − yiτ+h (0)])

=
1

n

n∑
i=1

(yiτ+h − ŷiτ+h (0)− E [yiτ+h − ŷiτ+h (0)])

=
1

n

n∑
i=1

(uiτ+h − Euiτ+h) ,

where we used Assumption 1 to obtain the second equality above. Since our assump-
tions guarantee that (uiτ+h − Euiτ+h) has zero mean and satisfies a CLT, we obtain
the desired result.

In the remainder of the paper, we provide low-level sufficient assumptions, in-
cluding a full description of the class of data generating processes for yit(0) and the
forecast methods which satisfy Assumption 1.

3.2 Unbiased forecasts of counterfactuals

In this section we characterize classes of data generating processes (DGPs) for the
counterfactuals as well as forecasting methods that satisfy the unbiasedness assump-
tion, Assumption 1. Note that the need to discuss the DGP for counterfactuals arises
because of the lack of a control group, which means that we must rely on forecast-
ing counterfactuals from pre-treatment observations. Note that one key difference
with the forecasting literature is that forecasting typically requires knowledge of the
DGP. In contrast, we can allow for a broad class of DGPs because we only require
the ability to produce forecasts that are unbiased on average.

3.2.1 Stationary or stochastic trends DGPs

In this section we consider a class of DGPs such that Assumption 1 is satisfied
generally, namely by any forecast that can be written as a weighted average of pre-
treatment outcomes with weights summing to 1. The class of DGPs expresses the
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counterfactual as the sum of potentially two unobserved stochastic components. This
includes a variety of processes, such as stationary and non-stationary (unit root)
ARMA processes with individual-specific parameters.

Assumption 3 (Stationary or stochastic trends DGPs). For j = 1, 2, let Ij ∈ {0, 1}
be a non-random binary indicator. The potential outcome yit(0) follows the process:

yit(0) = I1y
(1)
it (0) + I2y

(2)
it (0), (7)

where y(1)it (0) is an unobserved mean-stationary process and y(2)it (0) = y
(2)
it−1(0)+uit(0)

is an unobserved random walk process with innovations satisfying Euit(0) = 0, for
all t ≥ 2.

Remark 1. Note that only one of the unobserved components in Assumption 3 is
required to be present. This means that we accommodate stationarity as well as
non-stationarity due to a stochastic trend. The user does not need to take a stand
on whether the outcomes may be stationary or have a stochastic trend, as our method
is robust to both.

Remark 2. When both components in Assumption 3 are present, the assumption is
equivalent to the classical trend-cycle decomposition of macroeconomic time series
with stochastic trends (e.g., Nelson and Plosser (1982); Watson (1986).

Remark 3. This class of DGPs is a plausible assumption for applications where
either: 1) the time series of pre-treatment outcomes does not display a trend; 2)
there is a trend in pre-treatment outcomes that is plausibly stochastic, rather than
deterministic; 3) there is only one pre-treatment observation so a deterministic trend
could never be modelled anyway. Applications where there is a trend in pre-treatment
outcomes that is more plausibly deterministic than stochastic will be better suited
for the class of DGPs that we consider in the next section.

A key insight of this paper is that one does not need a correctly specified model
(beyond satisfying Assumption 3) to obtain unbiased forecasts of the counterfactuals.
In fact, as the next result shows, any forecast expressed as a weighted average of pre-
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treatment observations (with weights summing to one) satisfies the unbiasedness
condition.

Theorem 1 (Unbiasedness for stationary or stochastic trends DGP). Let Assump-
tion 3 hold. Denote by Ti = {τ −Ri + 1, . . . , τ} the set of Ri time periods directly
preceding the treatment date. Consider a weighted average of the pre-treatment out-
comes:

ŷiτ+h(0) =
∑
t∈Ti

wityit, (8)

where wit are non-random weights such that
∑

t∈Ti wit = 1. Then,

E [ŷiτ+h(0)− yiτ+h(0)] = 0. (9)

Proof. It is sufficient to show that for each component y(r)it (0), r ∈ {1, 2},

E

[∑
t∈Ti

wit y
(r)
it − y

(r)
iτ+h(0)

]
= 0. (10)

For both the mean stationary component (r = 1) and the random walk component
(r = 2) we have E

(
y
(r)
it − y

(r)
iτ+h(0)

)
= 0. Multiplying this equation by wit, summing

over t ∈ Ti, and using the fact that the non-random weights wit sum to 1, we obtain
(10) for r = 1 and r = 2.

Remark 4. Note that Theorem 1 shows how to obtain unbiased estimates of the
individual (possibly heterogeneous)treatment effects. This is a stronger result than
the requirement in Assumption 1 that the unbiasedness only holds on average. This
means that under the assumptions of Theorem 1 one can not only obtain consis-
tent and asymptotically normal estimates of the average effects, but also unbiased
estimates of the individual effects.

There are many ways to obtain forecasts that are weighted averages of pre-
treatment data - the sample mean being the most obvious example. In this paper
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we focus on a general class of forecasts obtained via basis function regressions, such
as polynomial time trends regressions. This class has the sample mean as a special
case.

Definition 1 (Forecasts via basis function regressions). Consider a sequence of
linearly independent functions {bk(t)}qik=0, qi ∈ {0, 1, 2, . . . , τ − 1}, on the interval
Ti={τ −Ri + 1, . . . , τ} with Ri ∈ {qi + 1, . . . , τ}, and such that b0(t) = 1 for all t.
For example, polynomial time trends set bk(t) = tk, with qi the order of the poly-
nomial. For each individual i, we forecast the counterfactual via individual-specific
regressions of pre-treatment outcomes on the basis functions {bk(t)}qik=0:

ŷ
(qi,Ri)
iτ+h :=

qi∑
k=0

ĉ
(qi,Ri)
ik bk(τ + h), (11)

ĉi
(qi,Ri) := argmin

c∈Rqi+1

∑
t∈Ti

(
yit −

qi∑
k=0

ck bk (t)

)2

, (12)

where ci = (ci0, . . . , ciqi) is a qi + 1 vector of individual-specific coefficients.9

The definition above makes it clear that for any type of basis function the choice
qi = 0 yields the sample mean of pre-treatment outcomes as the forecast. The
following example illustrates how the weighted average representation can arise quite
naturally.

Example 1. Consider bk(t) = tk. Set Ri = qi + 1 and h = 1. In this case,
ŷ
(qi)
iτ+1(0) := ŷ

(qi,qi+1)
iτ+1 (0) can be defined iteratively as:

ŷ
(qi)
iτ+1(0) =

{
yiτ for qi = 0,

ŷ
(qi−1)
iτ+1 (0)−

[
ŷ
(qi−1)
iτ (0)− yiτ

]
for qi > 0.

(13)

9Note that when qi = τ−1, all pre-treatment outcomes are used in constructing the forecast, i.e.
Ri = τ . However, fewer observations can be used. We discuss the choice of the tuning parameters
qi and Ri in Section 3.2.3.
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This iteration is quite intuitive: the qi-forecast ŷ
(qi)
iτ+1(0) is formed by subtracting

the lagged forecast error ŷ(qi−1)iτ (0) − yiτ from the qi − 1 forecast ŷ(qi−1)iτ+1 (0). Explicit
formulas for this case are given by

ŷ
(0)
iτ+1(0) = yiτ ,

ŷ
(1)
iτ+1(0) = 2yiτ − yiτ−1,

ŷ
(2)
iτ+1(0) = 3yiτ − 3yiτ−1 + yiτ−2,

ŷ
(qi)
iτ+1(0) =

τ∑
t=τ−qi

w
(qi)
it yit, w

(qi)
it = (−1)(τ−t)

(
qi + 1

τ − t+ 1

)
,

where
(
a
b

)
= a!

b!(a−b)! is the binomial coefficient.10 In all cases, the weights sum to 1.

We now show that forecasts obtained by basis function regressions satisfy the
weighted average requirement of Theorem 1.

Lemma 2. For known basis function bk (t) , k = 0, 1, . . . , qi + 1, qi = 0, 1, . . . , τi − 1

that are linearly independent on Ti with b0 (t) = 1, the forecast in (11) can be written
as a weighted average of past outcomes with weights that sum to 1.

Proof. Let Ri = qi + 1 and cs ≡ τi−Ri + s, s = 1, 2, . . . , Ri. Define the Ri× (qi + 1)

alternant matrix Xi and the 1× (qi + 1) vector Hi as, respectively,

Xi ≡


1 b1 (c1) . . . bqi (c1)

1 b1 (c2) . . . bqi (c2)

1 b1 (c3) . . . bqi (c3)

. . . . . . . . . . . .

1 b1 (cτi) . . . bqi (cτi)

 , Hi ≡
[

1 b1 (τ + h) . . . bqi+1 (τ + h)
]
.

(14)
The OLS coefficients from regressing yi = (yiτi−Ri+1, . . . , yiτi) on bk (t) are given

by
α̂(qi,Ri) = (X ′iXi)

−1
X ′iyi,

10Laderman and Laderman (1982) derive a similar expression in the context of forecasting a time
series by polynomial regression using the entire available time series.
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so that the Ri forecast weights are

wi = Hi (X
′
iXi)

−1
X ′i. (15)

Since Xi is a Vandermonde matrix with the first column being a column of ones
(by assumption), it follows that Xie1 = ι. Then

(X ′iXi)
−1
X ′iι = e1 ≡


1

0
...
0

 ,

so that wiι = 1, where ι is the (qi + 1)×1 vector of ones. This proves the statement.

3.2.2 Deterministic trends DGPs

In this section we consider an expanded class of DGPs that is appropriate for appli-
cations where: 1) there is more than one pre-treatment outcome; 2) it makes sense to
model the outcomes as trending over time; 3) the trend is deterministic rather than
(or in addition to) stochastic. We show that the basis function regression considered
in the previous section gives forecasts of the counterfactuals that remain unbiased
for the expanded class of DGPs, under certain conditions.

The expanded class of DGPs always includes a deterministic trend component,
possibly in addition to (either or both) the stochastic components considered in
Assumption 3.

Assumption 4 (Deterministic trend DGPs). For j = 1, 2, let Ij ∈ {0, 1} be a
non-random binary indicator. The potential outcome yit(0) follows the process:

yit(0) = I1y
(1)
it (0) + I2y

(2)
it (0) + y

(3)
it (0), (16)

where y(1)it (0) and y(2)it (0) are as in Assumption 3 and y(3)it (0) is a deterministic time
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trend such that y(3)it (0) =
∑q0i

k=0 c
(3)
ik bk(t) with c(3)i ∈ Rq0i+1 and known basis functions

{bk(t)}q0ik=0, q0i ∈ {0, 1, 2, . . . , τ − 1}.

Theorem 2 below clarifies when forecasts obtained via basis function regressions
satisfy the unbiasedness assumption (Assumption 1) in the presence of deterministic
trends.

Theorem 2 (Unbiasedness for deterministic trend DGPs). Let Assumption 4 hold.
Then,

E
[
ŷ
(qi,Ri)
iτ+h (0)− yiτ+h(0)

]
= 0,

where ŷ(qi,Ri)iτ+h (0) is defined in (11), with qi ≥ q0i.

Proof. It is sufficient to show that for each component y(r)it (0), r ∈ {1, 2, 3},

E

[∑
t∈Ti

w
(qi,Ri)
it y

(r)
it − y

(r)
iτ+h(0)

]
= 0. (17)

For the mean stationary component (r = 1) and the random walk component
(r = 2) we have E

(
y
(r)
it − y

(r)
iτ+h(0)

)
= 0. Multiplying this equation by w

(qi,Ri)
it ,

summing over t ∈ Ti, and using the fact that the non-random weights sum to 1 by
Lemma 2, we obtain (17) for r = 1 and r = 2. To show (17) for the deterministic time
trend component (r = 3), note that by (8),

∑
t∈Ti w

(qi,Ri)
it y

(3)
it =

∑qi
k=0 c̃

(qi,Ri)
ik (τ +h)k,

where

c̃i
(qi,Ri) := argmin

c∈Rqi+1

∑
t∈Ti

(
y
(3)
it −

qi∑
k=0

ck bk(t)

)2

.

Since qi ≥ q0i for all i, the objective function in the last display is minimized (with
value zero) at c̃(qi,Ri)ik = c

(3)
ik , which implies y(3)iτ+h(0) =

∑
t∈Ti w

(qi,Ri)
it y

(3)
it , that is, (17)

holds for r = 3 even without taking the expectation.

Remark 5. While the stochastic components of the counterfactual in Assumption 4
are unobserved, the deterministic time trend component is assumed to be a func-
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tion of the same basis functions used to obtain the forecast. This implies that the
stochastic component of the data-generating process does not need to be correctly
specified, but, if a deterministic trend component is present, the true basis func-
tions must be used in estimation. This is an unusual result from the perspective of
forecasting, where one typically assumes correct specification of both stochastic and
deterministic parts of a model. In the next section, we discuss how the assumption
of correct specification for the deterministic component could in principle be relaxed.

Remark 6. The key requirement of Theorem 2 is that qi, the number of basis functions
used in estimation, be at least q0i, the true number of basis functions in the DGP.
Intuitively, this means that choosing a too small number of basis functions runs the
risk of delivering biased forecasts of the counterfactuals. We discuss the practical
implications of this finding in the next section.

3.2.3 Choice of basis functions and tuning parameters

Our proposed method for forecasting counterfactuals in Definition 1 requires choos-
ing: 1) the type of basis functions bk(t); 2) the number of basis functions qi; and
3) the number Ri of pre-treatment periods used for the estimation. We discuss
the tradeoffs that these choices create and offer some practical recommendations for
empirical researchers.

Regarding the choice of basis functions, an implication of Theorems 1 and 2 is
that this choice only matters when one is certain that the DGP has a deterministic
time trend, in which case the basis functions need to be correctly specified to ensure
unbiasedness (up to the order, which only needs to be larger than the true one).
When the DGP is possibly stationary or possibly has a stochastic trend, the choice
of basis functions does not matter for unbiasedness.

Basis functions may be chosen based on the time series properties of pre-treatment
outcomes. For example, periodicity could be captured by Fourier basis functions.

Polynomial time trends appear to be a natural choice of basis functions for DGPs
with deterministic trends. In DiD models it is typical to assume the presence of
time trends (mostly linear) that are common between control and treatment groups.
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Our results make it clear that a linear time trend can only be dealt with by either
using a control group (which leads to standard DiD) or, when a control group is
not available, by using (at least two) pre-treatment time periods to model the trend
(which leads to our polynomial regression).

An advantage of polynomial basis functions is that it is in principle possible to
relax the assumption that the basis functions are correctly specified, assuming instead
that y(3)it (0) in Assumption 4 is a continuous (but unknown) function of time. Since
time in our setting is defined on a compact interval and the deterministic trend is a
continuous function, y(3)it (0) can be approximated arbitrarily well by a polynomial in
time. In fact, by the Weierstrass Approximation Theorem, the approximation error
approaches zero as the order of the polynomial goes to infinity. Under additional
smoothness assumptions on the deterministic trend, an approximation theorem could
then be used (e.g. the Polynomial Approximation Error Theorem) to derive a bound
on the approximation error of y(3)it (0) by the polynomial regression. The forecast of
yiτ+h(0) is biased, but we conjecture that it may be possible to do bias-correction
given an expression for the bias obtained via the approximation theorem.

Our practical recommendation for empirical researchers is thus to consider poly-
nomial basis functions, obtained by letting bk(t) = tk in Definition 1. This is also
what we focus on in the remainder of the paper.

Regarding the choice of number of basis functions qi used for the estimation,
again this only matters if the DGP has a deterministic trend component. For DGPs
without a deterministic trend component, any qi ensures unbiasedness. In one of
the simulations in Section 6 we investigate the finite-sample bias and variance of
the estimator for these DGPs, and find that the choice of a qi > 0 has small costs
in terms of variance but can help control the bias resulting from a non-stationary
initial condition. If the DGP has a deterministic trend component, then qi cannot be
smaller than the true order of this trend. The true order is unknown and cannot be
consistently estimated, so a trade-off emerges where a large qi ensures unbiasedness
but comes at the cost of higher variance. Cross-validation methods on pre-treatment
data cannot help choose qi if they only target accuracy, because of the necessity
to ensure unbiasedness in our context. It may be possible to devise bias-correction
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within cross-validation methods to select qi, but we leave this endeavour for future
work.

Our practical recommendation is to report results for a small range of values for qi,
e.g., qi = 0, 1, 2, 3. In addition, plotting the time series of pre-treatment observations
can provide some informal guidance on how to choose this range (for example, if the
pre-treatment outcomes display a linear time trend, a polynomial of order 0 can be
ruled out as it is likely to deliver a biased estimator; if the pre-treatment outcomes
appear stationary, any choice of qi is valid).

Regarding the choice of pre-treatment outcomes used for the estimation, Ri, there
are several factors at play. Under mean stationarity, it makes sense to choose Ri as
large as possible. On the other hand, a short Ri can guard against violation of
stationarity due to parameter change. In one of the simulations in Section 6 we
show that it may be advisable to select a short Ri even in the absence of parameter
change. Our practical recommendation is thus to select short estimation windows,
for example by letting Ri = qi + 1.

3.3 Individual-specific treatment time

Note that the treatment timing τ can be individual-specific as long as it is exogenous
to the potential outcomes. In this sense our approach applies to a staggered adoption
setting with exogenous treatment timing. Additionally, it is possible to allow for
the presence of treatment anticipation, as long as it is limited. In this case, one
simply modifies the pre-treatment estimation window Ti in Definition 1 to include
observations only up to the time τ − δi at which it is still reasonable to assume that
there was no treatment anticipation, that is, Ti ≡ {τ − δi −Ri + 1, . . . , τ − δi} (and
h is adjusted accordingly).

3.4 Balanced panel and pooled estimation

Assume that R = Ri and q = qi are constant across i and focus on polynomial basis
functions in Definition 1. The first alternative way to obtain an estimator for the ATT
in our baseline setting is to consider the cross-sectional averages yt = 1

n

∑n
i=1 yit of
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the observed outcomes in time period t. Due to linearity of the forecasting procedure,
we can rewrite F̂ATh as as

F̂ATh = yτ+h −
q∑

k=0

αk (τ + h)k, α := argmin
α∈Rq+1

∑
t∈T

(
yt −

q∑
k=0

αk t
k

)2

, (18)

where T = {τ − R + 1, . . . , τ}, and we suppress the dependence on τ , q, R. Here,
the cross-sectional averages for t ≤ τ are used to obtain a forecast of the average
counterfactual for t = τ+h, which is then subtracted from the cross-sectional average
observed at that time period.

The second alternative is to consider a pooled regression estimator, namely
F̂ATh = β̂h, where

(
β̂, α̂

)
= argmin{

β∈Rh, α∈Rn×(q+1)
} n∑

i=1

τ+h∑
t=τ−R+1

(
yit −

h∑
k=1

1{t = τ + k} βk −
q∑

k=0

αik t
k

)2

,

(19)

which is the OLS estimator obtained from regressing yit on a set of time dummies
1(t = τ + k), for k ∈ {1, . . . , h}, and individual-specific time trends.11

The alternative estimation strategies in (18) and (19) provide algebraically iden-
tical treatment effect estimates in the case of our baseline setting with R = Ri and
q = qi. In a more general setting, however, it is possible to show that these alterna-
tive estimation strategies do not give the same treatment effect estimator, and may
indeed give inconsistent estimates for ATT if applied incorrectly.

4 Extension: no control group, covariates

This section considers how one could incorporate covariates, including lagged out-
comes, in the estimation of the FAT. We show results that prove consistency and

11It actually does not matter for β̂ here whether we make the coefficients α on the time trend
individual-specific or not.
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asymptotic normality of F̂ATh. We focus throughout on the case of polynomial time
trends.

4.1 Homogeneous coefficients

Suppose one considers a linear model for yit(0), with an individual-specific polynomial
time trend of order qi and homogeneous coefficients for the covariates:

yit(0) = x′it β +

qi∑
k=0

cikt
k + εit, (20)

where xit ∈ Rdimxit is a vector of covariates (possibly including lagged outcomes),
β ∈ Rdimxit and cik ∈ R are unknown parameters and εit ∈ R is such that

E
[
εit
∣∣xit, xit−1, . . . , εit−1, εit−2] = 0. (21)

Assume that we have estimates β̂ for the common parameters β that are consistent
as n→∞ under correct model specification.12

Model (20) can be used to forecast the individual counterfactuals as follows:

ŷ
(qi,Ri)
iτ+h (β̂) := x′iτ+h β̂ +

qi∑
k=0

(τ + h)k ĉ
(qiRi)
ik (β̂), (22)

ĉ
(qi,Ri)
i (β̂) := argmin

c∈Rqi+1

∑
t∈Ti

(
yit − x′it β̂ −

qi∑
k=0

tk ck

)2

, (23)

where ci = (ci,0, . . . , ci,qi) is a qi + 1 vector, and Ti = {τ − Ri + 1, . . . , τ} is the
set of the Ri time periods directly preceding the treatment date. The parameter

12For example, when qi = 0 and xit = (yit−1, z
′
it)
′, a consistent estimator for β = (ρ, θ′)′ can be

obtained by applying an IV regression to the first-differenced model

yit − yit−1 = [yit−1 − yit−2] ρ+ [zit − zit−1]′ θ + εit − εit−1,

using, for example, yit−2 and zit−1 as instruments. In the Monte Carlo simulations we further
extend this case to qi = 1.
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Ri ∈ {qi + 1, . . . , τ} is chosen by the researcher.
Once the individual-specific forecasts are obtained, the forecasted average treat-

ment effect estimator is given by

F̂AT
MB

h =
1

n

n∑
i=1

[
yiτ+h − ŷ(qi,Ri)iτ+h (β̂)

]
. (24)

Here, the superscript MB refers to model-based.
Theorem 3 in the Appendix derives sufficient conditions for the consistency and

asymptotic normality of F̂AT
MB

h . It is easy to verify that the same result of consis-
tency and asymptotic normality of the model-based estimator can be obtained if one
assumes that the vector process for the counterfactual outcomes and covariates can
be written as the sum of potentially three components: a mean stationary process, a
random walk and a polynomial time trend of order no greater than the order qi used
for the estimation.

4.2 Heterogeneous coefficients

In this section we discuss some examples of models with heterogeneous coefficients for
the covariates for which one can obtain unbiased estimators of the counterfactuals.

If the model for the counterfactuals is an AR(p) with heterogeneous parameters,
for example, the time series literature (e.g., Fuller and Hasza (1980), Dufour (1984),
Magnus and Pesaran (1991)), has derived conditions under which forecasts from an
individual AR(p) model are unbiased. The maintained assumptions are stationarity
of the initial condition and symmetry of the error term.

A second example is that of strictly exogenous regressors with heterogeneous
coefficients. For example, suppose that the h = 1 period forecast of yiτ+1 (0) is given
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by

ŷ
(qi,Ri)
iτ+1 :=

qi∑
k=0

ĉ
(qi,Ri)
k (τ + 1) k + β̂(i)xiτ+1, (25)

(
ĉ(qi,Ri), β̂(i)

)
:= argmin

α∈Rqi+1,β∈Rx

∑
t∈Ti

(
yit −

qi∑
k=0

ck t
k − βxit

)2

. (26)

The forecast (26) is unbiased provided that a Vandermonde matrix which includes
functions of (τ −Ri + s)j , j = 0, . . . , qi, s = 1, 2, . . . , Ri and the covariates xiτ−Ri+s, s =

1, 2, . . . , Ri, is invertible. This invertibility condition imposes constraints on how the
covariates can change over time.

5 Extension: control group

In this section we discuss how to modify our baseline procedure when a group of
individuals not exposed to the treatment is available.

Without a control group, Section 3 derived sufficient conditions ensuring that
FATh defined in (4) is a consistent and asymptotically normal estimator of ATTh de-
fined in (2). These conditions are the ability to obtain forecasts of the counterfactuals
using pre-treatment data that are on average unbiased (Assumption 1) and the valid-
ity of a central limit theorem (Assumption 2). As discussed above, these conditions
exclude the presence of time effects such as macro shocks that affect all individuals
between times τ and τ + h, h ≥ 1, and that are unforecastable using pre-treatment
data. The presence of a control group allows us to weaken this assumption.

Suppose that all individuals are untreated before the implementation of the treat-
ment at time τ and that some individuals remain untreated after τ . Let Di = 1 if
individual i is untreated before and after τ . The observed outcome of individual i at
time t is then

yit = Di [1 (t ≤ τ) yit (0) + 1 (t > τ) yit (1)] + (1−Di) yit (0) . (27)
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As before, the parameter of interest is the average treatment effect on the treated h
periods after the implementation of the treatment:

ATTh =
1

n

n∑
i=1

E (yiτ+h (1)− yiτ+h (0)|Di = 1) . (28)

Our proposed estimator is defined as:

D̂FATh =
1

n1

∑
i:Di=1

(yiτ+h − ŷiτ+h(0))− 1

n0

∑
i:Di=0

(yiτ+h − ŷiτ+h(0)) , (29)

where n1 is the number of treated individuals at time τ + h, n0 is the number of
control individuals at time τ + h, and yiτ+h is the observed outcome at τ + h given
by (27).

Note that under (30) below, E(D̂FATh) = ATTh in (28):

1

n

n∑
i=1

E (yiτ+h (0)− ŷiτ+h(0)|Di = 1) =
1

n

n∑
i=1

E (yiτ+h (0)− ŷiτ+h(0)|Di = 0) .

(30)
Unlike in the baseline case, the forecast ŷiτ+h(0) can be biased, as long as the

average bias for the treated group equals the average bias for the control group. As
a consequence, the DGP for yit(0) can contain additive time effects that are common
across individuals such as additive macro shocks that affect both treated and control
groups in the same way.

The presence of a control group allows us to substitute Assumption 4 to allow for
a common shock that is not necessarily polynomial, e.g., yit (0) = ỹit(0) + γt, where
ỹit(0) satisfies Assumption 4. Then, under assumptions similar to Assumptions 1
and 2, it is possible to show consistency and asymptotic normality of (29).

As in Section 3, we suggest using ŷ(qi,Ri)iτ+h (0) as an estimator for ŷiτ+h(0) in (29).
Here, the parameters qi, Ri do not necessarily have to be the same for the treated
and control units.
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5.1 Comparison with Difference-in-Differences

Despite the apparent similarity with the difference-in-differences (DiD) framework,
our method in the presence of a control group allows for DGPs for potential outcomes
with more general forms of latent heterogeneity. For example, our approach allows for
potential outcomes that follow fully heterogeneous autoregressive processes and/or
unit root processes. In addition, it allows for the DGPs to have additive individual-
specific time trends, as long as the deterministic time trend is either known or can
be approximated by, e.g., a polynomial.

To see this, consider for example the following data-generating process for the
potential outcomes:

yit (0) = ρyit−1 (0) + γt + kit+ εit,E (εit) = 0,

where ρ ∈ [0, 1], γt is a common shock, ki is an individual-specific time trend coeffi-
cient. DiD can accommodate such specification as long as the assumption of parallel-
paths holds, which requires restricting the heterogeneity of both the initial condition
of the process, i.e., 1

n

∑n
i=1 E(yi0(0)|Di = 1) = 1

n

∑n
i=1E(yi0(0)|Di = 0) and the

time trend coefficients, i.e., 1
n

∑n
i=1 kiI (Di = 1) = 1

n

∑n
i=1 kiI (Di = 0), where I(·)

is the indicator function. In contrast, DFATh does not require restricting the un-
observed individual heterogeneity, and allows for fully heterogeneous parameters ki.
In addition, it is straightforward to include lagged pre-treatment covariates with a
homogeneous autoregressive prarameter or a heterogeneous one ρi, which is not a
possibility for difference-in-differences methods.
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6 Simulation study

Throughout this section, we set bk(t) = tk in Definition 1, so that

ŷPRiτ+h :=

qi∑
k=0

ĉ
(qi,Ri)
ik (τ + h)k,

ĉi
(qi,Ri) := argmin

c∈Rqi+1

∑
t∈Ti

(
yit −

qi∑
k=0

ck t
k

)2

,

where we suppressed the dependence on (qi, Ri) of ŷPRiτ+h.
We refer to the associated estimator as the polynomial-regression FAT:

F̂AT
PR

h :=
1

n

n∑
i=1

(
yiτ+h − ŷPRiτ+h

)
. (31)

6.1 Polynomial-regression versus model-based FAT under mis-

specification

In this section, we compare the performance of the polynomial-regression estimator
(31) to that of the model-based estimator (24), both under correct specification and
under misspecification.

The DGP we consider here specifies the potential outcome for i = 1, . . . , N as:

yit(0) = y
(1)
it (0) + y

(3)
it (0), t = 1, . . . , T,

y
(1)
it (0) = µi + ρyit−1 + uit, t ≥ 1

y
(1)
i0 (0) ∼ N (1, 2) ,

y
(3)
it (0) = δit,

µi ∼ U [−1, 1] , uit ∼ N (0, 1) ,

ρ ∈ {0.2, 0.9} , δi = 1,

where y(1)it (0) is an autoregressive process with the initial condition not drawn from
the stationary distribution, and y

(3)
it (0) is a deterministic linear time trend with
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homogeneous coefficients.13 Here, yit(1) = yit(0) at t = τ + 1, so ATTiτ+1 = 0.
We consider the case of a balanced panel with T = 6 periods, with τ = 5, so that

the first 5 periods are the “pre-treatment,” and the last period is the “post-treatment”
period. Hence, h = 1. We focus on the h = 1 case since most applications focus on
the ATT one period after the implementation of the treatment. We show results for
two sample sizes N ∈ {50, 1000}.

The polynomial-regression estimator (31) is computed as described in Section 3.
For each i, we regress {yit}5t=1 on a polynomial in t of order q ≤ T − 2, and then we
compute the forecast ŷPRi6 (0) =

∑q
k=0 ĉ

(q,q+1)
ik 6k. We then use this individual forecast

to compute F̂AT
PR

1 as in (31).
The model-based estimator (24) is computed as described in Section 4.1, where

the common AR parameter ρ is first estimated via Anderson-Hsiao. We estimate
ρ in two different ways. We use (1) yit−3 as an instrument when the linear time
trend is correctly accounted for, and (2) yit−2 as an instrument when the linear
time trend is not accounted for. Given the estimate ρ̂, for each i, we then regress
{yit − ρ̂yit−1}5t=1 on a polynomial in t of order q ≤ T − 2, and then compute the
forecast ŷMB

i6 (0) = ρ̂yi5 +
∑q

k=0 ĉ
(q,q+1)
ik 6k. F̂AT

MB

1 is then computed as in (24).
The set-up described in this subsection is a misspecification study: the initial

condition y(1)i0 (0) is not drawn from the stationary distribution so that Assumption 4
does not hold (i.e., the DGP for the polynomial-regression FAT is misspecified), and
the linear time trend is not accounted for when the model-based estimator uses the
incorrect instruments for the computation of ρ in the first step.

Table 1 shows the bias and the standard error of the polynomial-regression FAT
and of the model-based estimator that is correctly specified (MB) and that is mis-
specified by using the incorrect instruments in the estimation of the autoregressive
parameter (MB missp.). The results show that the model-based estimator is sensi-
tive to model specification and that it does not outperform the polynomial-regression
estimator, even under correct model specification. The latter happens because of es-

13Note that here µi is not correlated with the initial condition. Additional Monte Carlo results,
available upon request, show similar findings when the fixed effects are correlated with the initial
condition.
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ρ = 0.2 q = 0 q = 1 q = 2 q = 3

N = 50 PR 1.25
(0.19)

0.02
(0.31)

0.003
(0.54)

0.01
(0.99)

MB 1.25
(1.26)

0.01
(0.37)

0.02
(0.54)

0.03
(0.89)

MB
missp.

41.95
(1292.09)

−0.86
(22.45)

−0.14
(2.13)

−0.47
(6.77)

N = 1000 PR 1.25
(0.04)

0.001
(0.07)

0
(0.12)

0.01
(0.24)

MB 1.00
(0.19)

0.001
(0.08)

−0.01
(0.14)

0.003
(0.27)

MB
missp.

0.23
(0.1)

−0.003
(0.11)

0
(0.21)

−0.02
(0.41)

ρ = 0.9

N = 50 PR 4.69
(0.16)

0.61
(0.21)

−0.06
(0.36)

0.01
(0.65)

MB 1.03
(3.38)

−0.04
(0.69)

−0.17
(0.75)

−0.25
(1.42)

MB
missp.

186.7
(5905.57)

2.36
(86.1)

0.2
(10.98)

−0.42
(15.9)

N = 1000 PR 4.69
(0.03)

0.59
(0.05)

−0.06
(0.08)

0.01
(0.15)

MB 1.03
(0.43)

−0.003
(0.14)

−0.01
(0.14)

−0.01
(0.28)

MB
missp.

0.96
(45.95)

−4.58
(157.56)

0.12
(2.27)

−4.21
(135.57)

Table 1: Bias and standard error (in parentheses) for the polynomial-regression FAT
(PR), the model-based FAT that takes account of the linear time trend and uses the
correct instruments in the first step (MB), and the model-based FAT that uses the
incorrect instrument in the first step (MB missp.). The results are presented across
different polynomial orders q and sample sizes N .

timation error in ρ̂, which induces more bias the more persistent is the process.

6.2 Choice of tuning parameters for polynomial-regression

FAT

In this section, we compare the finite-sample performance of the polynomial-regression
FAT estimator across different tuning parameters: the polynomial order, q, and the
estimation window, R (the pre-treatment periods used in the polynomial regression)
for different specifications of the DGP. All specifications satisfy Assumption 4, where
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the process for the potential outcome is specified as the sum of up to three different
components. That is, for each i = 1, . . . , N :

yit(0) = I1y
(1)
it (0) + I2y

(2)
it (0) + I3y

(3)
it (0), t = 1, . . . , T,

y
(1)
it (0) = µi + ρy

(1)
it−1(0) + uit, t ≥ 1,

y
(1)
i0 (0) ∼ N

(
µi

1− ρ
,

1

1− ρ2

)
,

y
(2)
it (0) = y

(2)
it−1(0) + εit, t ≥ 1,

y
(2)
i0 (0) = 0,

y
(3)
it (0) = δit,

µi ∼ U [−1, 1] , uit ∼ N (0, 1) , εit ∼ N (0, 1),

ρ = 0.2, δi = 1,

and T = 6, τ = 5, h = 1, N = 1000.
Note that the initial observation, y(1)i0 (0), is drawn from the stationary distribution

of the AR(1) process y(1)it (0), and that the time trend component, y(3)it (0), is linear and
homogeneous across individuals, so that it can be interpreted as a common shock.

Table 2 shows results for the bias and standard error of F̂AT
PR

1 across different
tuning parameters. The table shows that when the potential outcome process is mean
stationary (first panel) or when it is the sum of a mean stationary and a random
walk (second panel), the estimator is robust to the choice of tuning parameters, in the
sense that the bias and standard error of the estimator do not vary across different
values of the tuning parameters. When the potential outcome process contains a
linear time trend component we observe bias when the polynomial-order q is less
than the true order of the time trend, that is, for q = 0. In this case, however, a
smaller estimation window R obtains a smaller bias. When q ≥ 1, the performance
of the estimator in terms of bias is again robust to the choice of tuning parameters
(with decreasing standard errors for increasing values of R).
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R

q + 1 q + 2 q + 3 q + 4 q + 5

Stationary AR(1)
I1 = 1, I2 = 0 = I3

q = 0

bias -0.0002 -0.0005 -0.0003 -0.0001 0.0005
s.e. 0.0397 0.036 0.0354 0.0346 0.0341

q = 1

bias 0.0047 0.0003 0.0009 0.0008
s.e. 0.0709 0.0565 0.0476 0.0448

q = 2

bias 0.0112 0.0023 0.0015
s.e. 0.1225 0.0907 0.0726

Stationary AR(1)
+ unit root

I1 = 1 = I2, I3 = 0

q = 0

bias -0.0029 -0.0041 -0.0045 -0.005 -0.005
s.e. 0.0516 0.0512 0.0525 0.0547 0.0577

q = 1

bias -0.0004 -0.0023 -0.0023 -0.0033
s.e. 0.082 0.0664 0.0625 0.0606

q = 2

bias 0.0025 -0.0011 -0.0002
s.e. 0.1454 0.0997 0.0868

Stationary AR(1)
+ linear trend

I1 = 1 = I3, I2 = 0

q = 0

bias 0.9998 1.4995 1.9997 2.4999 3.0005
s.e. 0.0397 0.036 0.0354 0.0346 0.0341

q = 1

bias -0.0027 -0.0024 -0.0008 -0.001
s.e. 0.068 0.0536 0.0466 0.0442

q = 2

bias -0.0032 -0.0051 -0.0022
s.e. 0.1225 0.0839 0.0698

Stationary AR(1)
+ linear trend
+ unit root

I1 = I2 = I3 = 1

q = 0

bias 0.9971 1.4959 1.9955 2.4950 2.9950
s.e. 0.0516 0.0512 0.0525 0.0547 0.577

q = 1

bias 0.0005 -0.0015 0.001 0.0014
s.e. 0.0831 0.0659 0.0608 0.0621

q = 2

bias 0.001 -0.0047 -0.0018
s.e. 0.1447 0.1024 0.0873

Table 2: Bias and standard error (s.e.) for the polynomial-regression FAT when the
potential outcome is specified as indicated in the left-most column.
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6.3 Heterogeneous coefficients

In this section, we compare the finite-sample behavior of the polynomial-regression
FAT when the potential outcome process satisfies Assumption 4 with heterogeneous
coefficients ρi and δi. That is, we consider the same specification of yit(0) as in the
previous subsection with I1 = I2 = I3 = 1, with the only changes being that ρi and
δi vary across individuals.

Table 3 presents the results from specifying δi ∼ U [0, 2] with a homogeneous au-
toregressive parameter ρ = 0.2 (top panel) and with a heterogeneous autoregressive
parameter ρi ∼ U [0, 0.99] (bottom panel). We can see that the presence of het-
erogeneous parameters does not change the conclusions that we derived from Table
2.

7 Empirical illustrations

In this section, we replicate two analyses on the effects of different treatments. One
analysis uses a standard difference-in-differences design and the other applies to a
staggered adoption setting. We show that our approach can replicate the results,
either numerically or qualitatively, of both empirical analyses.

Replication 1: Staggered adoption, overdose mortality and le-

galized medical cannabis laws

We use data from Shover et al. (2019), which analyzes the effect of legalized medical
cannabis laws on opioid overdose mortality in the U.S. Shover et al. (2019) contributes
to the debate about whether the adoption of such laws has decreased overdose mor-
tality, see, e.g., Bachhuber et al. (2014). This is a staggered adoption setting: the
unit of observation is at the level of state-year, with states slowly adopting legal-
ized medical cannabis laws from 1999 to 2017. Our analysis includes 9 states that
legalized medical cannabis before 2010 and 30 states that legalized medical cannabis
between 2010 and 2017. The outcome of interest is the log mortality rate.
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Ri

q + 1 q + 2 q + 3 q + 4 q + 5

Stationary AR(1)
I1 = I2 = I3 = 1
with δi ∼ U [0, 2]

q = 0

bias 0.999 1.4987 2.0003 2.5012 3.0015
s.e. 0.0544 0.0585 0.0655 0.0739 0.0826

q = 1

bias 0.0013 0.0038 0.0009 0
s.e. 0.0793 0.0666 0.0646 0.0635

q = 2

bias -0.0024 0.0065 0.0045
s.e. 0.1437 0.0971 0.0846

Stationary AR(1)
I1 = I2 = I3 = 1
with δi ∼ U [0, 2]

and ρi ∼ U [0, 0.99]

q = 0

bias 0.9967 1.4961 1.9963 2.4958 2.9947
s.e. 0.0554 0.0613 0.0693 0.078 0.0861

q = 1

bias -0.0002 0.001 0.0027 0.0035
s.e. 0.0717 0.0629 0.0643 0.0672

q = 2

bias 0.0019 -0.0023 -0.0005
s.e. 0.1264 0.0929 0.0801

Table 3: Bias and standard error (s.e.) for the polynomial-regression FAT when the
potential outcome is specified as in the left-most column. The time trend compo-
nent is heterogeneous across individuals (top panel), with the addition of a cross-
sectionally heterogeneous autoregressive component (bottom panel). Stationary ini-
tial condition for the AR(1) component for each i.
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The original analyses in Bachhuber et al. (2014) and Shover et al. (2019) use a
two-way fixed-effects estimator, which we know produces biased results in a stag-
gered adoption setting, e.g. Goodman-Bacon (2021). We first redo the analysis to
remove the bias of the original studies by using various methods, such as the stag-
gered DiD approach of Callaway and Sant’Anna (2021) and the generalized synthetic
control method of Xu (2017). The results can be found in Appendix B. We find an
initial increase in overdose mortality and then a reversal, but neither is statistically
significant.

We then implement FAT. Since this is a balanced panel, we start with a plot of the
log mortality rate averaged across states as a function of time-to-adoption, see Figure
1, in order to get a sense for the time series properties of the outcome of interest.
Given the apparent nonstationarity of the mortality rate, we choose the smallest
possible estimation window for computing FAT as in (31). That is, we let R = q+ 1.
Our estimates for the ATT are stable across different polynomial orders and our
results show a slight increase in mortality rates that is not statistically significant,
see Figure 2. Our results corroborate those from the approaches of Callaway and
Sant’Anna (2021) and Xu (2017).

Replication 2: Difference-in-Differences, refugees and far-right

support

In this replication exercise, we use data from Dinas et al. (2019) which examines
the relationship between refugee arrivals and support for the far right. Dinas et al.
(2019) consider the case of Greece, and make use of the fact that some Greek islands
(those close to the Turkish border) witnessed sudden and unexpected increases in
the number of refugees during the summer of 2015, while other nearby Greek islands
saw much more moderate inflows of refugees. The municipalities in the former Greek
islands are considered treated, while the municipalities in the latter are considered
control. The authors use a standard DiD analysis to assess whether the treated mu-
nicipalites were more supportive of the far-right Golden Dawn party in the September
2015 general election. The original data set contains a total of 96 municipalities, 48
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Figure 1: Log mortality rate averaged across states as a function of time-to-adoption.
The blue line is a third order polynomial fit.
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Figure 2: FAT with variable number of pre-treatment time periods. The red dots
correspond to estimates of FAT for the early adopters, the blue dots to estimates
of FAT for the late adopters, and the black dots to estimates of FAT for the entire
sample. The gray intervals are the 95% confidence intervals corresponding to the
black dots. The green dots are FAT estimates based on an AR(1) model; their
corresponding 95% confidence intervals are shown in yellow.
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Figure 3: Vote share for Golden Dawn averaged across municipalities before and
after 2015 for municipalities that were treated (red) and control (blue).

of which were treated, and data on four elections: three elections pre-treatment in
2012, 2013, 2015, and one post-treatment in 2016. The outcome of interest is the
vote share for Golden Dawn (GD). Figure 3 shows the vote share for GD averaged
across municipalities, treated and control, before and after the treatment time.

We use data on both the treated and the control municipalities to compute D̂FATh

with h = 1 and show that our estimate replicates the original DiD estimates. This
application can be viewed as a “worst-case” scenario for our proposed estimator since
the number of treated units is very small. We show results that use all three pre-
treatment elections, in which case the order of the polynomial is qi = q ∈ {0, 1, 2},
and results that use only the 2013 and 2015 pre-treatment elections, in which case the
order of the polynomial is qi = q ∈ {0, 1}. Note that we perform municipality-specific
polynomial regressions to compute the forecasted vote share – the counterfactual
outcome of interest, using the same polynomial order across all municipalities.
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FAT Treated FAT Control DFAT

Polynomial order 2013-2015

q = 0
0.029
(0.016)

0.008
(0.009) 0.021

q = 1
0.054
(0.028)

0.032
(0.026) 0.022

2012-2015

q = 0
0.027
(0.012)

0.006
(0.011) 0.021

q = 1
0.038
(0.025)

0.017
(0.016) 0.019

q = 2
0.053
(0.036)

0.030
(0.027) 0.023

Table 4: DFAT under different polynomial orders and pre-treatment periods.

As Table 4 shows, our DFAT results are comparable with those in the original
paper. The DiD estimates in the original paper are 0.0206 and 0.0208 when using
2013 and 2015 as pre-treatment periods and all pre-treatment periods, respectively.
The two-way fixed-effects estimate is 0.021 with a standard error of 0.0393.

8 Conclusion

This paper proposed estimating average treatment effects (ATT) in the absence of a
control group by forecasting individual counterfactuals using basis function regres-
sions over a (short) time series of pre-treatment data. Forecast unbiasedness is a key
requirement that is satisfied by our approach under a broad class of data-generating
processes that express the individuals counterfactuals as the sum of up to three un-
observed components: a stationary process, a stochastic trend and a deterministic
trend. Forecasting counterfactuals using a model - even a correctly specified one
- does not necessarily result in improved properties of the ATT estimator and is
sensitive to misspecification bias in short time series.
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A Appendix. Proofs and additional results

A.1 Theorems and proofs for Section 4.1

Consider

F̂AT
MB

h =
1

n

n∑
i=1

[
yiτ+h − ŷh(β̂, yi, xi)

]
,

where instead of ŷ(qi,Ri)iτ+h (β̂) we write ŷh(β̂, yi, xi), making the dependence of the fore-
cast on yi and xi explicit.

Theorem 3. Assume that

(i) The forecast is unbiased when evaluated at the true parameter value β0, i.e.,

E [ŷh(β0, yi, xi)− yiτ+h (0)] = 0.

(ii) The function ŷh(β, yi, xi) is twice continuously differentiable such that ∂ŷh(β0,yi,xi)
∂β

has finite second moments, and for some δ > 0 we have

Rn := sup
{β : ‖β−β0‖≤δ}

∥∥∥∥∥ 1

n

n∑
i=1

∂2ŷh(β, yi, xi)

∂β∂β′

∥∥∥∥∥ = oP (n1/2).

(iii) The estimator β̂ satisfies

β̂ − β0 =
1

n

n∑
i=1

ψ(yi, xi) + rn, (32)

where ψ(yi, xi) has zero mean and finite variance, and rn = oP (n−1/2). Together
with assumption (i) this implies that β̂ − β0 = OP (n−1/2).

42



(iv) The sequence of random variables

u∗iτ+h := yiτ+h − ŷh(β0, yi, xi)−
1

n

n∑
j=1

E
[
∂ŷh(β0, yj, xj)

∂β′

]
ψ(yi, xi) (33)

satisfies a CLT in the sense that

1√
n

∑
i

(
u∗iτ+h − Eu∗iτ+h

)
σ̄∗n

⇒ N (0, 1) ,

where σ̄∗2n := V ar( 1√
n

∑
i u
∗
iτ+h) <∞.

Then we have that

√
n

F̂AT
MB

h − ATTh

σ̄∗n
⇒ N (0, 1) .
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Proof. We have

F̂AT
MB

h − ATTh

=
1

n

n∑
i=1

(
yiτ+h − ŷh(β̂, yi, xi)− E [yiτ+h − yiτ+h (0)]

)

=
1

n

n∑
i=1

yiτ+h − ŷh(β̂, yi, xi)− E [yiτ+h − ŷh(β0, yi, xi)]︸ ︷︷ ︸
=E[u∗iτ+h]


=

1

n

n∑
i=1

[
yiτ+h − ŷh(β0, yi, xi)−

∂ŷh(β0, yi, xi)

∂β′

(
β̂ − β0

)]
− E

[
u∗iτ+h

]
+O

(
Rn

∥∥∥β̂ − β0∥∥∥2)
=

1

n

n∑
i=1

u∗iτ+h − E
[
u∗iτ+h

]
+O

(
Rn

∥∥∥β̂ − β0∥∥∥2)

−

{
1

n

n∑
i=1

∂ŷh(β0, yi, xi)

∂β′
− 1

n

∑
j

E
[
∂ŷh(β0, yj, xj)

∂β′

]}(
β̂ − β0

)
− 1

n

∑
j

E
[
∂ŷh(β0, yj, xj)

∂β′

]
rn

=
1

n

n∑
i=1

u∗iτ+h − E
[
u∗iτ+h

]
+ oP (n−1/2)

Here, in the first step, we plugged in the definitions of F̂AT
MB

h and ATTh. In the
second step, we used the unbiasedness of the forecast, definition (33), and assumption
(iii) that E (ψ(yi, xi)) = 0. In the third step, given assumption (ii), we employed a
Taylor expansion of ŷh(β, yi, xi) in β around β0. In the fourth step we decomposed
∂ŷh(β0,yi,xi)

∂β′
into its expectation and its deviation from the expectation, and used

β̂−β0 = 1
n

∑n
i=1 ψ(yi, xi)+ rn and the definition of u∗iτ+h in (33). In the final step we

used our assumptions to conclude that the various remainder terms are all of order
oP (n−1/2). By an application of a standard cross-sectional CLT we then obtain the
conclusion of the thereom.
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B Replication 1: Overdose mortality with control

units

We show here results using the data from Shover et al. (2019) from an analysis using
the methods of Callaway and Sant’Anna (2021) and Xu (2017) that use some sort
of control group to obtain an estimate of the ATT. Figure 4 uses the method of
Callaway and Sant’Anna (2021) with not-yet-treated-states as control units, while
Figure 5 uses the method of Xu (2017) to impute counterfactuals for each treated
unit using a linear two-way fixed effects regression.
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