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Abstract

We argue that canonical heterogeneous-agent economies are unable to jointly account for

the observed concentration of consumption, labor income, wealth, and capital income at

the top. We first provide empirical evidence that the distributions of these four variables

exhibit asymptotic power-law behavior with a strict ranking of upper tail inequality in that

order, from least to most unequal. This finding directly contradicts a central implication of

precautionary savings models, in which consumption and capital income are asymptotically

linear in, and therefore as concentrated at the top as, wealth. Mechanisms addressing the

wealth concentration puzzle through return heterogeneity thus lead to a mirror consumption

concentration puzzle. We show analytically and quantitatively that accounting simultane-

ously for the observed concentration of consumption, wealth, and capital income requires a

combination of non-homothetic wealth-dependent preferences and scale-dependent returns

to capital, and we identify the strength of these two mechanisms from the values of the

Pareto tail coefficients. Finally, matching all four tails matters for determining the long-run

elasticity of savings that governs the revenue-maximizing capital tax rate.
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1 Introduction

Over the past thirty years, heterogeneous-agent models pioneered by Bewley (1986); Imro-

horoğlu (1989); Huggett (1993); Aiyagari (1994) have become the workhorse macroeconomic

framework for studying income and wealth dynamics. These models offer an intuitive ac-

count of precautionary saving motives to buffer idiosyncratic income shocks within a rich

aggregate economy. They easily lend themselves to extensions and calibrations that allow us

to understand the forces that shape income and wealth concentration in advanced economies.

Not surprisingly, they have thus been used to account for trends of rising inequality and to in-

form policy debates over the costs and benefits of redistributive income and capital taxation,

among many other applications.

In this paper, we argue that despite its many appealing features, the baseline heteroge-

neous agent model fails to properly account for the consumption and investment decisions

of the rich, i.e., the roughly top 10% of the population. Concretely, the canonical framework

implies that the consumption and capital income of the richest households should be asymp-

totically proportional to their wealth. As a result, the Pareto coefficients of the upper tails

of the consumption, capital income, and wealth distributions should theoretically all coin-

cide. However, we evaluate empirically these measures of top tail inequality and conclude

that they systematically differ—thus rejecting the canonical model. We propose instead a

framework that generalizes the baseline model to replicate these cross-sectional moments

from the data. To match all three Pareto tail coefficients, the model must be such that (i)

on average, wealthier agents earn higher returns on capital; and (ii) they accumulate wealth

for reasons other than funding their own future consumption. We argue that accounting for

these mechanisms matters for the revenue-maximizing top capital tax rate.

We proceed in four steps. First, using the Panel Study of Income Dynamics (PSID) as our

primary dataset, we establish a new empirical fact about the distributions of household-level

consumption, labor income, wealth, and capital income: They all exhibit Pareto tails at the

top, with a strict ranking going from thinnest to thickest, in that order. Specifically, the

consumption tail is the most evenly distributed, with a Pareto coefficient above 3.0. Labor

income is strictly more concentrated than consumption, with a Pareto coefficient around

2.2. Wealth has a strictly thicker tail than labor income, with a Pareto coefficient of 1.4.

Finally, capital income is the most unequal distribution, with a Pareto coefficient around

1.2. Moreover, for all four variables, the best-fitting Pareto tail estimates closely match

the data for the top 10% to top 5% of the population. These findings are robust to using
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different datasets (SCF, CEX, administrative IRS records) and adjusting for under-reporting

and under-representation of the rich in survey data.

In the second part of our analysis, we set up a tractable, continuous-time environment

with idiosyncratic labor productivity and investment return shocks to study theoretically

which class of models is able to replicate these findings. The canonical Aiyagari (1994)

model is notoriously unable to generate the high empirical levels of wealth inequality at

the top of the distribution, giving rise to a wealth concentration puzzle (see, e.g., De Nardi

and Fella (2017) and references therein). Modern versions of the heterogeneous-agent model

were designed to address this puzzle, i.e., to simultaneously match the distributions of labor

income and wealth, typically via a mechanism involving type-dependent returns to capital

(e.g., heterogeneous portfolio investment skills or entrepreneurship). However, this class of

models has two potential shortcomings.

First, type-dependent returns imply—at least in theory—that capital income is asymp-

totically linear in wealth. Thus, the Pareto coefficients of capital income and wealth converge

to the same value as wealth grows arbitrarily large. That is, the model cannot decouple the

two tail coefficients for the richest households. For the discrepancy between these two tails

to persist at sufficiently high levels of wealth, the model must feature scale-dependent re-

turns, i.e., a mechanism by which wealthier agents earn higher returns by virtue of being

wealthy. Capital income then becomes convex in wealth at the top, rather than linear, thus

rationalizing its higher concentration.

Second, and most importantly, allowing the canonical model to replicate the extreme

concentration of wealth among top earners via type-dependent returns generates a far too

high concentration of consumption at the top. In other words, because this modern class of

models retains the fundamental structure whereby consumption is asymptotically linear in

wealth, the mechanisms introduced to solve the wealth concentration puzzle mechanically

create the opposite issue, a consumption concentration puzzle. What is more, introducing

scale-dependent returns, as described above, to decouple the capital income tail from the

wealth tail, aggravates this puzzle—it implies that consumption is convex in, and hence

should be even more concentrated than, wealth. We show that introducing non-homothetic,

wealth-dependent preferences allows us to decouple the consumption tail from the wealth

tail. That is, we assume that for reasons that we do not seek to model explicitly, the rich

draw utility directly from being wealthy. The non-homotheticity implies that the marginal

utility is less steeply declining for wealth than for consumption, or in other words, wealth
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appears to be a luxury good.1 Consumption then becomes concave in wealth at the top,

which rationalizes its lower concentration.

The third part of our paper examines whether these departures from the canonical model

of consumption-saving decisions are quantitatively important. While our theoretical results

focus on the limit as wealth becomes arbitrarily large, Carroll and Kimball (1996) show

that at finite levels of wealth, standard preferences over consumption only, and precaution-

ary saving motives, are sufficient to make consumption concave in—and thus strictly less

concentrated than—wealth. This raises the possibility that our finite sample estimates of

Pareto tail coefficients for consumption are upward-biased, and thus that standard models

could still be consistent with the ordering of estimated Pareto coefficients. Analogously,

type-dependence might bias downwards the estimated Pareto coefficient for capital income

in finite samples, due to a composition effect by which the share of high-return type agents

increases along the wealth distribution. To gauge the importance of these concerns, we struc-

turally estimate the key parameters of a model featuring a skewed labor income distribution,

return heterogeneity—both type- and scale-dependence—and non-homothetic preferences,

and compare its predictions against those of the canonical heterogeneous-agent model. Im-

portantly, we target the Pareto tail coefficients by simulating model-based samples of the

relevant variables in a manner that closely mirrors our empirical analysis.

On the one hand, our model-based estimation confirms that non-homothetic preferences

are key in accounting for the empirical ranking and levels of the Pareto tail coefficients. Con-

cretely, the concavity of consumption implied solely by precautionary saving motives is not

sufficient to generate the relative magnitudes of consumption and wealth concentration at

the top. Absent return heterogeneity, the consumption tail implied by the model—calibrated

to match the concentration of top labor incomes—has the correct magnitude, but wealth is

not concentrated enough. Introducing type- or scale-dependent returns generates the right

magnitudes of income and wealth concentration, but consumption now becomes far too con-

centrated. By contrast, by relaxing the asymptotic linearity of consumption, non-homothetic

preferences can account for the tail properties of all of these variables simultaneously.

On the other hand, we find that the composition effect generated by type-dependent

returns is sufficiently strong to generate enough convexity of capital income in wealth at the

finite levels of wealth observed in PSID, and hence to match quantitatively the ratio of these

two Pareto coefficients estimated in survey data. However, using administrative records

1One interpretation of these preferences is that households face a positive probability of death at each
instant and experience a warm glow utility from transferring their assets to their heirs.
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from Saez and Zucman (2016) that cover a much larger range of wealth and capital income

quantiles allows us to disentangle the relative importance of type- vs. scale-dependent re-

turns. This is because the composition effect becomes negligible at such high wealth levels—

implying that any remaining discrepancy between the two Pareto coefficients estimated at

or above the top 1% can be attributed to scale-dependence. This identification procedure

reveals a strictly positive degree of scale-dependence in the data.

As our fourth and final step, we illustrate the importance of matching all four Pareto

tails by computing revenue-maximizing taxes on capital—i.e., the upper bound of the set of

Pareto efficient top tax rates—under different model alternatives. Non-homothetic prefer-

ences, type- and scale-dependence of asset returns all introduce different additional motives

for taxing or subsidizing capital—or equivalently, they all factor into the elasticity of savings

to after-tax returns. The combined strength of these motives to tax capital is then identified

from the different Pareto tail coefficients. Ignoring any of them thus inevitably biases con-

clusions about optimal taxation. If we were to abstract from matching the Pareto tails on

consumption or capital income, we would conclude that the revenue-maximizing tax on capi-

tal was higher than in our full model. This result stems from two opposing forces. On the one

hand, both scale-dependent returns and non-homothetic preferences lead to convex saving

functions. As such, the Le Châtelier principle raises the long-run capital supply elasticity

and calls for lower top marginal tax rates; see, e.g., Stiglitz (1969); Bourguignon (1981).

On the other hand, non-homothetic preferences deliver additionally a characterization of

wealth as a “luxury good”, which offers a rationale for higher capital taxation in line with

departures from Atkinson and Stiglitz (1976)’s uniform commodity taxation theorem. As a

result, the optimal capital tax depends on the extent to which the convex savings function

is generated by non-homothetic preferences vs. scale-dependent returns, when the model is

calibrated to match the observed Pareto tails. In sum, the distributions of consumption and

capital income inform us about the underlying mechanisms that drive the long-run elasticity

of capital and, therefore, the optimal policy design.

Related Literature. Our paper contributes to an extensive literature that extends the

Bewley-Imrohoroglu-Hugget-Aiyagari model to match the empirical wealth concentration:

e.g., Carroll (1998); Krusell and Smith Jr. (1998); Quadrini (2000); Castaneda et al. (2003);

Cagetti and De Nardi (2006); Benhabib et al. (2011, 2015); Aoki and Nirei (2017); Benhabib

and Bisin (2018). While many recent papers use type-dependent returns to match the upper

tail of the wealth distribution, De Nardi (2004); Straub (2019); Benhabib et al. (2019); Mian

et al. (2021); Lee (2021); Michau et al. (2023) introduce, as we do, non-homothetic wealth-
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dependent preferences. Blanchet (2022) highlights the role of wealth-dependent savings

rates for the evolution of top wealth inequality, while Hubmer et al. (2021) emphasizes the

importance of scale-dependent returns.2

In contrast to all these papers, we study empirically, and match quantitatively, the

joint upper tail concentration of all of the variables that appear in the budget constraint—

consumption, labor income, wealth, and capital income—rather than a strict subset of them

in isolation. Moreover, we derive analytically sharp testable model predictions for the Pareto

coefficients of these four variables, which we then take to the data and use to both reject

the canonical heterogeneous-agent model and identify the required departures, i.e., the un-

derlying degrees of non-homotheticity and scale-dependence. This focus on the upper tails

is critical for separately identifying: (i) the concavity of consumption in wealth that may

result from precautionary savings motives (Carroll and Kimball (1996)) from the role of non-

homothetic wealth-dependent preferences; and (ii) the convexity of capital income in wealth

due to a composition effect under type-dependence from the role of scale-dependence.

Our empirical results are consistent with, extend and strengthen, prior research that

explores the relative concentration of a subset of the four distributions (e.g., Dynan et al.

(2004); Krueger and Perri (2006); Aguiar and Bils (2015); Toda and Walsh (2015); Blundell

et al. (2016); Saez and Zucman (2016); Straub (2019); Lee et al. (2022); Garner et al. (2022);

Buda et al. (2022); Meyer and Sullivan (2023)) or the relative importance of type- and

scale-dependent returns to capital (e.g., Fagereng et al. (2020); Bach et al. (2020); Xavier

(2021); Balloch and Richers (2021)). Methodologically, our estimation applies and builds

upon the techniques of Clauset et al. (2009); Vermeulen (2016), and our theoretical analysis

leverages the continuous-time techniques developed by Moll (2014); Gabaix et al. (2016);

Achdou et al. (2022). Our application to capital taxation underscores the importance of

accurately accounting for the distributions of consumption and capital income to discipline

the savings elasticity, and complements previous papers studying redistributive policies with

non-homothetic preferences or heterogeneous returns: Atkinson (1971); Saez and Stantcheva

(2018); Gerritsen et al. (2020); Gaillard and Wangner (2021); Schulz (2021); Hellwig and

Werquin (2022); Yi (2022); Ferey et al. (2023); Morrison (2023); Guvenen et al. (2023); Boar

and Midrigan (2023).

2Ma and Toda (2021) propose an alternative potential justification for the thin consumption tail, by
showing that homothetic preferences may be consistent with asymptotic MPC converging to zero for a
particular combination of parameters, notably the coefficient of relative risk aversion and the stochastic
process for the discount rate. We evaluate their mechanism quantitatively and show that it cannot match
the four tail parameters in practice for reasonable parameter values.
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Structure of the Paper. Section 2 contains the empirical analysis. Section 3 outlines

the analytical framework and provides theoretical insights on the underlying mechanisms

that generate the accurate ranking of Pareto tails. We set up and estimate the quantita-

tive framework in Section 4, and explore its implications for capital taxation in Section 5.

Additional results and technical details are gathered in Appendices A to C.

2 Empirical Evidence

We begin by examining the upper tails of the distributions of consumption, labor income,

wealth, and capital income in the data. The main results of this section are twofold: (i) all

four tails are well-approximated by Pareto distributions; (ii) these tails obey a strict ranking

from thinnest to thickest, in the order given in the previous sentence. Our analysis proceeds

in several steps. First, in Section 2.1, we lay out the methodology that we use to estimate

the Pareto tails. In Section 2.2, we describe our data and main variables. In Section 2.3, we

propose a procedure to adjust for the potential under-representation and under-reporting in

survey data. In Section 2.4, we present our main empirical results. Finally, we explore the

robustness of our findings in Sections 2.5 and 2.6.

2.1 Methodology

Pareto Distributions. Consider a random variable X with cumulative distribution func-

tion (CDF) FX(x), complementary CDF (CCDF) F̄X(x) = 1−FX(x), and probability density

function (PDF) fX(x). We say that X has a Pareto (or power-law) distribution if there exist

x > 0 and ζX > 0 such that its CCDF satisfies F̄X(x) = (x/x)ζX for all x ≥ x. We say that

X is asymptotically Pareto distributed, or that is has a Pareto tail, if there exists ζX > 0

such that F̄X(x)/x
−ζX converges to a positive constant as x→ ∞. We call the parameter ζX

the Pareto coefficient of the tail of the distribution. A larger value of ζX indicates a thinner

tail, or a more equal distribution.

The traditional approach to attest the existence of a Pareto tail in the data and measure

its thickness is to verify whether the variable displays an approximately log-linear relationship

between its CCDF and its log-values in the upper tail. Figure 1 represents this relationship

for consumption using the first year of our PSID sample (2004), over an interval c ≥ c.

The left panel displays the entire distribution (c = 0), and the right panel focuses on the

top 10 percentiles (c = $78, 000 in 2004 dollars or, as a fraction of the mean consumption,
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Figure 1. Pareto tail estimation of consumption in the 2004 PSID wave.
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c = 1.84). While the relationship appears to be linear in the upper tail, two issues arise.

First, it is a priori unclear where to locate the lower bound of the tail, c. Second, the

relationship departs from linearity at the very top of the sample—we thus need a method

to assess whether such a departure should be interpreted as inevitable finite-sample noise or

is informative about actual underlying changes in the shape of the distribution. To address

these issues, we employ a purely data-driven procedure based on the methodology of Clauset

et al. (2009) to (i) identify a best-fitting Pareto tail for a finite data set; (ii) statistically test

the null hypothesis that the distribution indeed displays a Pareto tail; and (iii) statistically

test whether an alternative distribution—e.g., lognormal or exponential— gives a better fit.

Estimating the Asymptotic Pareto Distribution. Throughout this section, we con-

sider a generic sample of survey data {xi}ni=1 with sample weights {ωi}ni=1, where
∑n

i=1 ωi = 1.

To assess whether the distribution of X has a Pareto tail and estimate the corresponding

coefficient ζX , we proceed as follows. As mentioned above, this hypothesis implies an ap-

proximately linear relationship between ln F̄ (xi) and lnxi for large enough values of xi, say

xi ≥ x. The slope of this linear relationship gives the tail coefficient −ζX . For any given x,

we can thus estimate ζX via maximum-likelihood (MLE) or ordinary least squares (OLS) as

follows:

ζ̂MLE
X (x) =

∑n
i=1 ωi1{xi≥x}∑n

i=1 ωi ln(x/xi)1{xi≥x}
, ζ̂OLSX (x) =

∑n
i=1 ωi ln(x/xi) ln F̄ (xi)1{xi≥x}∑n

i=1 ωi(ln(x/xi))
21{xi≥x}

. (1)

Notice that these estimators depend on the choice of x. Choosing a value that is too low

may result in fitting a power-law model to non-power-law data, while a too high value may

discard valid data points. To find the optimal x, we compute the Kolmogorov-Smirnov (KS)
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statistic:

KS(x, ζ̂X) = sup
x≥x

|F̄ (x)− F̂ (x)|,

where F̄ (x) is the empirical CCDF for the observations with value at least as large as x,

and F̂ (x) is the CCDF of the Pareto distribution that best fits the data—as described in

the previous paragraph—on the sub-sample xi ≥ x. We then choose the value of x that

minimizes the KS statistic:

x̂ = argmin
x∈R+

KS(x, ζ̂X). (2)

This method makes the best-fit power-law distribution as close as possible—in the KS-

statistic sense—to the empirical distribution above x̂.

Statistical Tests of the Pareto Hypothesis. To evaluate the goodness-of-fit of the

Pareto distribution, we start by estimating the parameters (x̂, ζ̂X) that best fit the data and

the resulting KS statisticKS(x̂, ζ̂X). We then generate semi-parametrically a large number of

synthetic datasets, indexed by k, as follows. With probability π =
∑n

i=1 ωi1{xi≥x̂}, a random

observation xi is drawn from a Pareto distribution with parameters (x̂, ζ̂X) and sample weight

π/n. With probability 1− π, an observation below the threshold x̂ is randomly chosen from

the initial sample. We then fit each synthetic dataset k individually to its own power-law

model as described in equations (1)-(2), and denote the resulting parameters by (x̂(k), ζ̂
(k)
X )

and the KS-statistic by KS(x̂(k), ζ̂
(k)
X ). We reject the power-law hypothesis if the fraction p

of synthetic data sets for which KS(x̂(k), ζ̂
(k)
X ) > KS(x̂, ζ̂X) is small enough, say p < 0.1.

Finally, to compare the goodness-of-fit of the power-law model (with PDF f̂(xi)) to an

alternative distribution with PDF ĝ(xi) for xi ≥ x̂, we compute the log-likelihood ratio

R =
∑n

i=1 ωi ln(f̂(xi)/ĝ(xi))1{xi≥x}. The power-law distribution outperforms the alternative

distribution if R is statistically strictly positive.3

2.2 Data

2.2.1 Data Sources. Our main analysis uses the 2005–2021 waves of the Panel Study of

Income Dynamics (PSID), since most consumption items are reported from 2005 onward. For

robustness, we complement this analysis with results based on the 1989–2019 waves of the

3The p-value is p = 1 − erf(|R|/(σR
√
2n)), where erf(·) is the Gauss error function and the standard

deviation is σ2
R =

∑n
i=1 ωi[ln(f̂(xi)/ĝ(xi))]

21{xi≥x}−[
∑n

i=1 ωi ln(f̂(xi)/ĝ(xi))1{xi≥x}]
2. If p is small enough,

say p < 0.1, then the measured sign of R is a reliable indicator of which model is the better fit to the data.
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Survey of Consumer Finances (SCF) and the 2001–2017 waves of the Consumer Expenditure

Survey (CEX). For consistency, we construct all of the variables at the household level.4 We

restrict our analysis to households whose head is between 19 and 80 years old, i.e., who

make active consumption and saving decisions. For clearer comparison across surveys, we

normalize all of the variables by their respective mean value.

Using the PSID as our primary dataset brings several advantages over our alternative

datasets. First, it allows us to observe simultaneously the consumption, labor income, wealth,

and capital income of each household, thus enabling a direct comparison of the thickness

of all four tails using the same data. The SCF, known for oversampling at the higher end

of the wealth distribution and having fewer missing observations than the PSID and CEX,

unfortunately only includes data on wealth, income, and food consumption, lacking broader

consumption data. By contrast, the CEX includes all those categories but is notoriously

unreliable at the top end (see, e.g., Attanasio and Pistaferri (2014)). Second, anticipating our

results, we find that the PSID yields estimates of the Pareto coefficients that are consistent

with those obtained from the SCF or admistrative records from Saez and Zucman (2016) for

the variables that they report.

2.2.2 Construction of the Variables. We define “wealth” as the net worth of households,

calculated by subtracting liabilities (mortgages and home equity loans, student loans, medical

debt, legal debt, family loans, credit card debt, and other credits) from the total value

of assets comprising liquid assets (checking accounts, money market funds, certificates of

deposit, government bonds, treasury bills) and illiquid assets (private equity businesses, real

estate properties and vehicles, directly or indirectly held stocks, retirement accounts such as

IRA and 401K, and “other savings or assets” such as cash value in a life insurance policy,

a valuable collection for investment purposes, or rights in a trust or estate). The value of

vehicles is depreciated at a 15% rate per year.

Part of our analysis requires disentangling liquid from illiquid wealth. We follow Kaplan

et al. (2018) and construct “liquid wealth” in the PSID and the SCF as liquid assets net of

revolving consumer credit card debt, and “illiquid wealth” as illiquid assets net of mortgages

and home equity loans. Including stocks as part of liquid, rather than illiquid, wealth is

inconsequential for our results.

“Labor income” is computed gross of taxes, benefits, and employee payroll deductions. It

includes regular wages, bonuses, commissions, worker compensation, the part of business in-

4In Section 2.5, we also report the results obtained by individualizing consumption expenditures.
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come that does not accrue to business assets, and unemployment insurance (social insurance

benefits do not affect top income inequality). “Capital income” includes dividends, interests,

the part of business income that accrues to business assets, rents, trusts and royalties and,

when available, realized capital gains from the sale of assets. We refer to “total income” as

the sum of labor income and capital income.

Finally, “consumption” refers to total expenditures, including various categories such as

electricity, health, nondurables (such as food and gasoline), entertainment, trips, housing

services (i.e., actual and imputed rents, where we follow Blundell et al. (2016) to measure

the latter as 6% of the house value for homeowners), utilities (electricity, internet, water),

transportation, clothing, furniture, vehicle repayments, leasing, maintenance, and repair.

In addition, since 2003, the PSID reports detailed philanthropic donations, spanning vari-

ous categories such as religion, combined purpose funds, basic needs assistance, healthcare

and medical research, education, youth and family services, arts and culture, community

improvement, environmental preservation, international aid, pandemic relief, and other pur-

poses. Our baseline results include these charitable donations in the consumption variable.

We remove observations for which households report not consuming any food. We explore

the robustness of our results to alternative constructions of the consumption variable (such

as including durable goods and individualizing consumption) in Section 2.5.

One might be concerned that the consumption of the richest households is imperfectly

measured—we do not observe, for instance, direct political donations or extreme luxury

goods such as jets, yachts, or artwork—thus possibly biasing our estimates of the Pareto

coefficient upwards. Anticipating our empirical results, however, we find that the Pareto

tails are already clearly apparent at relatively low quantiles—in particular, from the 88th

percentile onwards for consumption. This finding alleviates the need to precisely observe the

behavior of the very richest agents. Nevertheless, the next section describes our procedure to

adjust for under-reporting and under-representation at the top of the consumption, income,

and wealth distributions.

2.3 Adjusting for Under-Reporting and Under-Representation

Methodology. Survey data often suffer from under-reporting of consumption, income,

and wealth, as well as under-representation at the upper end of the distribution due to the

limited survey participation of wealthy individuals.5 One significant concern stems from the

5See, e.g., Koijen et al. (2014). In Appendix A.6, we argue that the alternative approach that consists of
using administrative data to measure consumption as the residual of a budget constraint—if wealth, labor
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observed differences between survey estimates and their counterparts in national accounts.

To address this concern, we employ an iterative adjustment approach.6 Specifically, we align

the aggregate survey values for the subcategories of each variable to their counterparts in

the National Income and Product Accounts (NIPA) from the Bureau of Economic Analysis

(BEA), and the Financial Accounts (FA) from the Board of Governors.

First, we create an under-reporting-adjusted survey by multiplying each subcategory of

consumption (food, recreation, clothing, transportation, etc.), income (labor income, busi-

ness income, dividends, interests, etc.), and wealth (real assets, financial assets, liabilities)

by the category-specific ratio between national account and PSID aggregates. Appendix

A.1 provides the correspondence tables that we use to merge survey categories with the

NIPA and the FA. Although these adjustment factors are uniform across households, het-

erogeneous wealth portfolios, income sources, and consumption patterns lead to distinct

adjustments across the distribution of household’s total wealth, income, and consumption.

For instance, if there is under-reporting of financial assets, the wealthiest households with

a significant share of those assets would experience upward adjustments to their wealth in

comparison to other households. Similarly, under-reported entertainment expenditures have

a greater impact on high-consumption households, who allocate a larger fraction of their

spending towards entertainment.

Second, we adjust for the potential under-representation of wealthy individuals—doing so

reduces the risk that the previous procedure corrects too much for under-reporting in order

to match aggregate quantities. For all of the variables, we reconstruct “missing data” at the

very top based on the fitted Pareto distribution with parameters ζ̂X and x̂ estimated from the

under-reporting-adjusted survey using equations (1) and (2). We can then compute aggregate

consumption, income, and wealth by combining the under-reporting-adjusted survey for

x < x̂ with the reconstructed Pareto distribution for x ≥ x̂. We obtain estimates within

each subcategory of consumption, income, and wealth in the Pareto tail segment by applying

the average share of that subcategory in the overall category in the under-reporting-adjusted

survey above x̂. We then compare the aggregate value of each subcategory of consumption,

income, and wealth to its respective value in the NIPA and the FA. When discrepancies

occur, we update the adjustment factors accordingly and re-estimate the Pareto coefficients.

income, and capital income are observed—has its own pitfalls. In particular, we show that measurement
error in wealth (due to, e.g., offshoring) might lead to a spurious equality between the Pareto coefficients of
measured consumption and measured wealth.

6Vermeulen (2016) employs a similar procedure for wealth using the SCF. Similarly, Jaravel and Lashkari
(2023) adjust for under-reporting in CEX consumption using the BEA aggregates.

11



We iterate this procedure until the implied adjustment factors are invariant. As such, our

data and the aggregate tables not only align in terms of overall quantities, but also across

subcategories.7

Consumption Share Adjustments. For brevity, we report here the resulting adjust-

ments to the distribution of consumption. We provide analogous results for the other vari-

ables in Appendix A.1.8 Figure 2 illustrates how adjusting the consumption data in the

PSID by applying factor adjustments to match these NIPA aggregates alters the consump-

tion profile across the distribution. Particularly noteworthy is the considerable increase in

the share of expenditure for health and recreation components compared to the raw PSID

data. For example, at the 80th percentile, the recreation share rises from 13.5% to 23%, while

the health consumption share jumps from 8.5% to 20%. By contrast, there are reductions in

the shares of nondurables and housing services, which decrease from 19% to 14% and 30%

to 20%, respectively.

Figure 2. Consumption shares by category and percentile of consumption in the PSID.
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(b) Adjusted for underreporting with NIPA

7Note that this iterative procedure imposes that the Pareto distribution suitably represents the very
top—beyond the values observed in our data set—of each distribution. Importantly, the under-representation
adjustment is only meant to improve the accuracy of the corresponding Pareto coefficient estimate and does
not affect the formal tests establishing the existence of such Pareto tails. Under-reporting adjustments can
alternatively be made without any under-representation adjustments, or using different distributions (e.g.,
lognormal). In practice, all of these adjustments yield very similar fixed point estimates.

8Table 5 gives the ratio of consumption in the PSID and in the NIPA tables for each subcategory. Four
of them, namely clothing, entertainment, furniture, and health, are significantly distant from the NIPA
estimates.
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2.4 Estimating the Pareto Coefficients

Throughout this section, we denote the parameters of the consumption, labor income, wealth,

and capital income distributions with the subscripts c, y, a, ra, respectively. Our main results

are based on the MLE estimates and are consistent with those obtain by OLS estimation.

2.4.1 Graphical Evidence: Consumption. The left panel of Figure 3 plots the values

of the consumption Pareto coefficient ζ̂MLE
c (c) obtained via MLE (equation (1)) in 2004

for values of the lower bound parameter c ranging from the 70th to the 99th percentiles.

Intuitively, the best-fit Pareto coefficient ζ̂MLE
c (ĉ) and the optimal lower bound of the Pareto

tail ĉ coincide with the values that they take in the region where ζ̂MLE
c (c) remains stable

when varying the lower bound c of the truncated sample. To confirm this intuition, the

middle panel of Figure 3 plots the KS-criterion (equation (2)) as a function of c, along with

the vertical line that selects the minimum of this KS statistic, obtained for c = ĉ. The

corresponding estimate of the Pareto coefficient ζ̂MLE
c (ĉ) is represented by the horizontal

line in the left panel. The resulting Pareto coefficient is equal to ζ̂MLE
c = 2.99 and the

Pareto tail starts at the 87.5th percentile of the consumption distribution, corresponding to

ĉ = 1.70 (recall that we normalize all variables by their respective mean), or a nominal value

for annual consumption of $78, 000 in 2004 dollars. Finally, as in Figure 1, the right panel

of Figure 3 plots the relationship between ln F̄c(c) and ln c in 2004—but on an interval of

values above the 87.5th percentile of the distribution—along with the best linear trend (black

dashed line) obtained from the MLE estimator ζ̂MLE
c (ĉ). The relationship is very close to

linear. Above the 97th percentile, the data becomes noisier, and the observations tend to lie

below the best Pareto fit, indicating, if anything, that the tail of consumption becomes even

thinner at the very top of the distribution.

Figure 8 in Appendix A applies the same methodology to simulated data from several well-

known parametric distributions: Pareto, lognormal, and double-Pareto-lognormal (DPLN).

Such graphical evidence from distributions that possess or lack Pareto tails by construction

serves as a useful benchmark for our empirical results. The similarity between the results of

Figure 3 and those obtained with simulated DPLN distributions—in particular, the range

of quantiles of c over which the estimated Pareto coefficient ζ̂c(c) remain stable—provides

suggestive graphical evidence that consumption indeed has an upper Pareto tail with a well-

identified slope and lower bound parameter. Finally, Figures 9 to 16 in the Appendix present

graphs analogous to those of Figure 3 for every year in our sample and for the distributions

of labor income, wealth, and capital income.
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Figure 3. Pareto tail estimation for consumption in the 2004 PSID wave.
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2.4.2 Main Result: A Strict Pareto Tail Ordering. Figure 4 presents our main em-

pirical result. In both panels, the thick dotted lines indicate the median estimates, across all

years in the PSID dataset, of the Pareto coefficients of the four variables (consumption, labor

income, wealth, and capital income), as a function of the lower bound parameter x. The four

horizontal lines then give the median optimal Pareto coefficient for each variable, obtained

by the procedure described in Section 2.1. The gray areas represent the median 90% confi-

dence interval at each value of x, obtained by bootstrapping estimates 1000 times for each

wave.9 In the left panel, the resulting Pareto tail estimates are shown without adjustments.

In the right panel, we present the estimates obtained by applying our under-reporting and

under-representation adjustments, as described in Section 2.3.

This figure shows that the Pareto tails of consumption, labor income, wealth, and capital

income follow the strict order ζ̂c > ζ̂y > ζ̂a > ζ̂ra, with smaller coefficients corresponding to

thicker tails, or more unequal distributions. While these coefficients are the medians across

all years, the confidence intervals show furthermore that: (i) the estimates are remarkably

similar across recent years (the intervals are tight around the median), and (ii) the differences

in Pareto coefficients are significant (the intervals do not overlap, with the exception of wealth

and capital income for very high values of x). Recall furthermore that Figures 9 to 16 in

Appendix A give the full set of estimated coefficients in all PSID waves: The respective

ranges of estimates of any two different variables never overlap.

The median estimates for adjusted data across all years are ζ̂c = 3.02, ζ̂y = 2.30, ζ̂a = 1.35,

9The bootstrap procedure generates replicate weights from the PSID using the relevant stratum and
cluster variables.
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Figure 4. Pareto tail estimates of the consumption, labor income, wealth, and capital income dis-
tributions for non-adjusted variables (left panel) and for under-reporting and under-representation
adjusted variables (right panel).
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and ζ̂ra = 1.12. The ranking and relative magnitudes of these coefficient estimates are

broadly preserved by the under-reporting and under-representation adjustments. The me-

dian Pareto coefficient estimate for consumption declines slightly from 3.13 in the unadjusted

data to 3.02 in the adjusted series. Similarly, that of labor income declines from 2.50 to 2.30,

that of wealth declines from 1.42 to 1.35, and that of capital income declines from 1.24 to

1.16. In addition to slightly increasing the measured concentration of consumption, income,

and wealth, these adjustments lead to more precise estimates.10

In sum, while it is well-known in the literature that the tail of the labor income distri-

bution is strictly thinner than that of wealth, our main novel findings are that, using the

same sample of households: (i) the distribution of consumption has a strictly thinner tail

than labor income and, a fortiori, wealth; and (ii) the distribution of capital income has a

thicker tail than wealth.11,12

10Using nonlinear least squares (NLS) estimation leads to similar results; see Appendix A.3.
11Our preferred construction of the variables takes part of the durable goods (vehicle repayments and

housing services) as a component of consumption. An alternative definition in which vehicle repayments and
leases are not part of consumption expenditure yields a very similar MLE coefficient estimate, namely 3.05.

12Philanthropic donations exhibit significant concentration, reflected by a Pareto tail similar to that of
wealth at 1.6. When we exclude them from our measurement of consumption, we obtain a slight increase in
the average consumption Pareto tail estimate, which rises to 3.08. This minor change is due to the relatively
small share of donations in total consumption, even at the upper end of the consumption distribution.
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Importantly, the series in Figure 4 show that these Pareto tail coefficients stabilize at

relatively low levels of consumption ($82,000), labor income ($137,000), wealth ($785,000),
and capital income ($9,000) (measured in 2016 dollars), corresponding roughly to the top

10 to 5 percent of households. This can also be seen graphically in Figure 5, which reports

the average KS-statistic across years for each of the four variables—recall that its minimum

indicates the start of the Pareto tail. This finding implies that the PSID sufficiently covers

rich households to observe and accurately measure the upper tails of these distributions.13

Figure 5. KS statistics for each of the four variables.
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Note: The solid line refers to the average across PSID waves. The dashed lines refer to the minimum and
maximum KS statistics for each variable across PSID waves.

2.4.3 Formal Tests of the Pareto Hypothesis. Table 6 in Appendix A reports the re-

sults of the statistical tests described in Section 2.1. It shows that for most of the variables—

except perhaps labor income—the Pareto distribution accurately captures the data in the

upper tail. Based on the MLE estimates, the power law hypothesis is rejected for wealth in

two out of nine PSID waves, for labor income in five out of nine waves, for capital income

in three out of nine waves, and for consumption in only one wave. Moreover, the power

law outperforms the log-normal and exponential distributions for all variables and for most

years. We cannot reject that the log-normal distribution performs at least as well as the

13This result is not spuriously driven by the small size of our data set. Drawing simulated data sets of
much larger size gives exactly the same level and percentile for the bottom of the Pareto tail (estimated
via the minimum of the KS-statistic) as in our smaller sample. The only difference is that with more

observations, the estimated Pareto coefficients ζ̂X(x) become less noisy for values of x far above x̂, so that
the coefficient estimates remain stable over a larger range of quantiles at the very top.
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Pareto distribution for three waves of only the consumption distribution.

2.5 Robustness and Alternative Assumptions

2.5.1 Evidence from the SCF and the CEX. For robustness, we apply the same em-

pirical methodology to the SCF and the CEX. The SCF gives average Pareto tail coefficients

equal to 2.05 for labor income, 1.4 for wealth, and 1.2 for capital income. The SCF reports

food consumption (at home and delivery) since 2004. The coefficient estimates (4.28 and

4.08 using OLS and MLE, respectively) are similar to those obtained in the PSID (4.40 and

4.26). Using the quarterly CEX data compiled by Meyer and Sullivan (2023) from 2001:I to

2017:IV, we find that consumption, total income, and wealth have Pareto tails with average

MLE coefficients 3.4, 2.5, 1.6 respectively (this dataset does not distinguish between labor

and capital income).14 The PSID may thus slightly underestimate the thickness of the labor

income tail, although to a lesser extent than the CEX.15 Overall, however, these results from

alternative data sets confirm the robustness of our coefficient estimates and the ranking of

the four tails. This is because the Pareto tails emerge around or below the 90th percentile

in all of these different surveys, i.e., far below the levels at which the PSID ceases to be

representative. Table 1 summarizes the results obtained from all of the data sets.

2.5.2 Evidence from Tax Records. Administrative records from the Internal Revenue

Service (IRS) provide valuable insights into the upper tails of labor income, wealth, and

capital income, in the United States. Applying our method to the data compiled by Saez

and Zucman (2016), we estimate via MLE a capital income tail coefficient of 1.35 (excluding

capital gains) or 1.28 (including capital gains), both for the optimal KS-criterion and for the

top 0.1% of the sample. The wealth tail, imputed from several capitalization methods, has

a coefficient equal to 1.50 using the KS criterion, and 1.43 within the top 0.1%. The labor

income tail coefficient is equal to 2.08 using the KS criterion, and 1.83 within the top 0.1%.16

14Using unweighted CEX consumption data spanning the 1979-2004 period from Kocherlakota and Pista-
ferri (2009), Toda and Walsh (2015) estimate a Pareto tail coefficient of 3.38. Similarly, converting the
top consumption shares S(p), S(q) at various quantiles p, q estimated by Garner et al. (2022) for the years

2017-2019 into Pareto tail coefficients ζ̂(p, q) = (1− ln(S(p)/S(q))/ ln(p/q))−1, we obtain a stable implied co-
efficient of about 3.4 across years and quantile pairs above the 80th percentile—thus supporting the existence
of a power law at the top.

15Using tabulated income data from the IRS, Lee et al. (2022) compute estimates of the capital and labor
income Pareto tails comparable to those we obtained in the PSID, equal to 1.2 and 2.0, respectively. Updated
series from Piketty and Saez (2003) indicate that the Pareto tail coefficient of individual wage income falls
within the range of 2.0 to 2.1.

16The OLS estimates are 1.35 for the capital income tail excluding capital gains, 1.28 for capital income
including capital gains, 1.51 for wealth using the KS criterion (or 1.40 when focusing on the top 0.1%), and
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Table 1. Top consumption, income, and wealth inequality across surveys (raw data).a

Data Variable Best fit Paretob Gini σ2|ln x 90/50 Ratio

x̂OLS ζ̂OLS x̂MLE ζ̂MLE

PSID

Capital income 0.96 1.22 0.96 1.21 0.93 1.58 3073.2
(0.02) (0.15) (0.02) (0.14) (0.01) (0.20) (2516.7)

Wealth 0.93 1.48 0.92 1.47 0.80 0.55 11.42
(0.03) (0.09) (0.03) (0.09) (0.02) (0.04) (2.27)

Labor income 0.88 2.42 0.89 2.50 0.56 0.18 3.22
(0.04) (0.15) (0.04) (0.13) (0.02) (0.01) (0.21)

Consumption 0.89 3.11 0.90 3.13 0.36 0.11 2.21
(0.04) (0.28) (0.04) (0.20) (0.01) (0.01) (0.06)

Food consumption 0.93 4.40 0.93 4.26 0.38 0.06 2.18
(0.05) (0.33) (0.05) (0.43) (0.01) (0.01) (0.17)

SCF

Capital income 0.96 1.27 0.95 1.10 0.95 1.67 ∞
(0.07) (0.08) (0.08) (0.02) (0.01) (0.24) –

Wealth 0.92 1.43 0.92 1.23 0.82 0.76 9.44
(0.03) (0.10) (0.03) (0.13) (0.03) (0.10) (2.45)

Labor income 0.86 2.01 0.84 2.08 0.52 0.25 2.92
(0.07) (0.15) (0.05) (0.14) (0.02) (0.04) (0.15)

Food consumption 0.91 4.28 0.91 4.08 0.34 0.07 2.07
(0.05) (0.40) (0.05) (0.46) (0.01) (0.01) (0.08)

CEX

Wealth 0.92 1.69 0.91 1.62 0.79 0.45 15.82
(0.03) (0.12) (0.03) (0.16) (0.02) (0.05) (4.84)

Total income 0.83 2.66 0.82 2.50 0.45 0.13 2.69
(0.04) (0.35) (0.03) (0.32) (0.04) (0.02) (0.20)

Consumption 0.88 3.43 0.88 3.38 0.31 0.09 2.02
(0.05) (0.25) (0.05) (0.26) (0.01) (0.01) (0.04)

Food consumption 0.88 3.90 0.87 3.89 0.31 0.07 1.91
(0.05) (0.44) (0.05) (0.39) (0.01) (0.01) (0.05)

a The estimates represent the average value across all waves. Their standard deviation is reported within
parentheses. The variance of lnxi is calculated for xi greater than the 80th percentile.
b The threshold values x̂ are expressed in terms of quantiles of the underlying distribution, e.g., 0.84 refers
to the value of x corresponding to the 84th percentile of the respective distribution.

These estimates are naturally less noisy than in the PSID. They are shown graphically in

Figures 14 and 17 in the Appendix A.

2.5.3 Complementing the PSID with the Forbes Rich List. An alternative way of

accounting for the under-reporting of wealth is to adopt the approach of Vermeulen (2016)

and supplement survey with data from the Forbes 500 rich list. Although this data is not

necessarily consistent with our construction of wealth at the household level, it provides us

with an additional source of information for the very top of the distribution. Using the raw

PSID data, we find that this adjustment does not affect the mean Pareto tail coefficient for

wealth estimated via MLE, while it raises the OLS estimate from 1.38 to 1.50. We provide

1.91 for wealth using the KS criterion (or 1.82 in the top 0.1%).
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the corresponding graphs in Figure 13 in the Appendix A.

2.5.4 Alternative Measures of Inequality. The Pareto coefficients are a powerful and

theoretically appealing metric of top inequality. Nevertheless, to confirm the strict ordering

documented in Section 2.4, we report the Gini coefficient, the variance of logarithmic trans-

formations of the variables above the 80th percentile, and the ratio of the 90th to the 50th

percentiles of the distributions. Our results are collected in the last three columns of Table

1. All of these measures of inequality agree on the same strict ordering of the distributions.

Capital income systematically appears to be the most unequally distributed variable, with

a variance in the upper tail equal to 1.6 in the PSID and the SCF, followed by wealth (0.45-

0.75), labor income (0.18-0.25) and consumption (0.1, unavailable in the SCF). The CEX

seems to systematically underestimate inequality, with a variance of 0.45 for wealth, 0.13 for

total income, and 0.09 for consumption.

2.5.5 Individualizing Variables. We can scale our data by family size to construct mea-

sures of individualized consumption, income, and wealth rather than household-level mea-

sures. Specifically, we apply an equivalence scale recommended by the National Academy of

Sciences (NAS, see Citro et al. (1995)) to our measures, using the formula (Na + 0.7Nk)
0.7,

where Na represents the number of adults in the family, and Nk represents the number

of children. Applying this scaling does not affect the previous ranking and produces very

similar estimates: The median MLE coefficients (ζc, ζy, ζa, ζra) are (3.05, 2.25, 1.34, 1.22) for

individualized consumption, versus (3.02, 2.30, 1.35, 1.12) in the unscaled data.

2.5.6 Age and Life-Cycle Dynamics. The ordering of Pareto tails that we documented

may potentially be driven by the tight link between age, on the one hand, and the dynamics

of consumption, income, and wealth, on the other hand. For instance, older households

might accumulate large stocks of wealth, without any apparent reason to spend it, for bequest

motives or as a buffer against medical hardships. To assess the relevance of these mechanisms,

we remove the effects of age from the consumption, income, and wealth variables by regressing

them on a fifth-order age polynomial and extracting the residuals. The tails of these residuals

(re-centered around the mean of the corresponding variables) have coefficients equal to, in the

above-mentioned order: 3.02, 2.20, 1.28, 1.12. Thus, we find that the part of consumption

that is not explained by age has the same Pareto tail coefficient. That is, age does not

appear to be a critical factor driving our results.

To further validate this observation, Table 8 in the Appendix A.4 presents the resulting

tail estimates for two age groups: 19-45 and 46-80. We observe that for both age groups,
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the ranking and magnitude of the Pareto tail coefficients are preserved. Interestingly, we

find that the Pareto tail coefficients for wealth and capital income tend to increase along

the life cycle, while decreasing for consumption and labor income. Finally, we confirm that

excluding health expenditures, known to substantially increase throughout the life-cycle (see

De Nardi et al. (2017)), keeps the median consumption tail consistent at 3.01.

2.5.7 Time Series Trends. Appendix A.5 details the evolution of the estimated Pareto

tail coefficient for wealth and consumption over time. Using the CEX data, we observe a

decline in consumption tail estimates from 1970 to 1995, falling from above 4 to approxi-

mately 3.5-3.6. Since the 2000s, for the PSID, it has remained stable around 3-3.2, and for

the CEX, between 3.2-3.5. In terms of wealth, the data show a decrease since 1980, dropping

from 1.55 in 1980 to between 1.25-1.4 in 2020.

2.6 Pareto Tails of Other Variables

In this last section of our empirical analysis, we explore the Pareto tails of several other

variables that will help us to further discipline the theoretical and quantitative analysis.

2.6.1 After-Tax Labor Income and Total Income. We first evaluate the role of the

redistributive tax system in reducing top inequality. Using TAXSIM35 from the NBER, we

construct measures of after-tax labor income and total income and compute the correspond-

ing Pareto coefficients. The Pareto coefficient estimate for labor income is 2.52 (2.61) using

OLS (MLE). The estimate for total income is 2.04 (2.10). While these estimates show that

the tax system substantially reduces inequality, the after-tax labor income Pareto coefficient

is still far below that of consumption.

2.6.2 Liquid and Illiquid Wealth. A potential explanation of the theoretically puzzling

fact that consumption is strictly more evenly distributed than wealth might be that the

distribution of consumption reflects that of liquid wealth only. This hypothesis would require

liquid wealth to have a thinner tail than illiquid and, therefore, total wealth. This would

imply in turn that the share of liquid (resp., illiquid) assets in total wealth should converge

to zero (resp., one) for the richest households.

To test this hypothesis, the left panel of Figure 6 plots the share of liquid wealth by

wealth percentile in the PSID and the SCF. The liquid wealth share converges to a strictly

positive constant—about 10 percent—for the richest households. Moreover, this share is

remarkably flat between the 50th and the 99th percentiles. Our baseline measure of liquid
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wealth excludes stocks. Including stocks into our measure of liquid wealth only reinforces this

conclusion. These findings show that, on average, the wealthiest households keep a strictly

positive and constant fraction of their wealth in liquid assets. The Pareto tail coefficients of

liquid and illiquid wealth should therefore coincide. This is indeed confirmed by the right

panel of Figure 6. If anything, liquid wealth has a slightly lower estimated coefficient relative

to that of illiquid wealth, and both are approximately equal to that of total wealth—hence

much lower than that of consumption. As a result, a model in which consumption follows

the behavior of liquid wealth at the top of the distribution would be inconsistent with the

data.

Figure 6. Pareto tail estimation for liquid and illiquid wealth.
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Note: On the left panel, the solid lines are a smooth approximation of the underlying observations. The
right panel performs the same exercises as in the middle panel of Figure 3 using the PSID. The shaded
dashed lines indicate the estimates for the sample year that leads to the lowest and highest coefficients.

2.6.3 Financial vs. Real Wealth and Other Subcategories of Consumption. We

can distinguish real wealth (illiquid wealth net of private equity, i.e., mostly real estate and

durables) from financial wealth (liquid wealth plus private equity), using the Fed Board’s

Balance Sheet of Households table to define these categories. The former may provide

value through flow utility, while the latter should only provide value through the budget

constraint. Note that the elements that compose real wealth are already included in our

consumption variable.17 We report the Pareto tail coefficients of these two variables in

17In particular, recall from Figure 2 that imputed rents account for about 20% of household consumption
at the top. Note also that the PSID has a “housing consumption imputation” variable, which has a Pareto
coefficient of 2.8. Thus, if anything, our imputation is a lower bound to the Pareto tail of real wealth.
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Figure 15 in Appendix A. We obtain a coefficient of 1.9 for real assets, and a significantly

smaller coefficient (a strictly thicker tail) of 1.3 for financial assets.

We can finally compute the Pareto coefficients of the most concentrated subcategories

of consumption. We obtain 2.65 for healthcare, 2.65 for recreation, 2.3 for housing services

(imputed rents). These tails are significantly thicker than that of food (with a coefficient

of above 4 both in the PSID and the SCF). Nevertheless, they are still far thinner than

those of liquid or financial assets. This raises a further puzzle to the literature: Why do rich

households hold large amounts of liquid or other financial assets with seemingly no desire to

consume or invest in durables?

3 Theoretical Analysis

To replicate the empirical thickness of the wealth distribution, modern heterogeneous-agent

incomplete-market models postulate the presence of heterogeneous returns to capital, reflect-

ing for instance persistent idiosyncratic type-dependent portfolio investments or entrepreneur-

ship (Krusell and Smith Jr., 1998; Cagetti and De Nardi, 2006) or ex-post investment luck

(Angeletos and Calvet, 2006; Angeletos, 2007). The analytical results that we derive in this

section, however, show that these models are unable to jointly generate the level and rank-

ing of the consumption and capital income tails observed empirically. We propose instead

a model that resolves this puzzle. Specifically, we incorporate into the canonical framework

two additional features: non-homothetic, wealth-dependent preferences and scale-dependent

returns to capital. The former decouples consumption from wealth at the tail, while the

latter decouples capital income from wealth.

3.1 Analytical Model Environment

Time is continuous and indexed by t. There is a continuum of individuals indexed by i.

Throughout this section, we focus on the stationary equilibrium of the economy, in which

prices are time-invariant.

Preferences. At time t, individual i owns a stock of wealth ait, has labor productivity eit

and investment productivity zit, and consumes cit. Her flow of utility is given by u (cit) +

κU (ait), where κ ≥ 0 and u, U are both strictly increasing and concave. Throughout our

22



analysis, we assume the following parametric functional forms:

u (c) =
1

1− γ
c1−γ, U (a) =

1

1− ν
a1−ν , (3)

with γ > 1 and ν ≤ γ. Preferences are homothetic whenever κ = 0 or ν = γ; they are

non-homothetic whenever κ > 0 and ν < γ.

When κ > 0, wealth enters explicitly individual preferences (3). This reduced-form

specification can be microfounded via, e.g., a warm glow for bequests: If agents die with

some positive probability at every instant and value the amount of wealth that they pass on

to their children, they receive a flow of utility from their stock of assets at each time t.18 The

critical element is that the utility of wealth U (·) can be strictly less concave than the utility

of consumption u (·). Intuitively, if households have a strong enough desire to accumulate

capital for its own sake rather than for future consumption, wealth can be strictly more

concentrated than consumption at the top.

Labor Productivity Dynamics. The labor income of agent i at time t is w · yit, where
w denotes an aggregate time-invariant wage rate. Labor productivity yit is subject to id-

iosyncratic shocks. Specifically, we suppose that yit > 0 evolves exogenously according to a

geometric Brownian motion:

dyit = µy yit dt+ σy yit dBit, (4)

with mean growth rate µy > 0 and volatility σ2
y > 0. The assumption of a random growth

process for labor productivity is the most natural way of generating a Pareto tail for the

cross-sectional distribution of labor income.

Investment Productivity Dynamics. The expected return on capital of agent i at time

t is given by µrR(zit, ait), where the function R is specified below. Let µr ≡ (1− τK)r, where
τK is a constant capital income tax rate and r is an aggregate time-invariant interest rate.

Investment productivity zit is subject to persistent idiosyncratic shocks. Specifically, we

suppose that zit evolves exogenously according to a continuous-time Markov chain with two

18See, e.g., Atkinson (1971) or De Nardi (2004). Another possible interpretation of these preferences is a
status-seeking motive, if we express alternatively the utility as a function of the individual’s wealth relative
to average wealth in the economy (as in the quantitative model of Section 4), a/A. Saez and Stantcheva
(2018); Straub (2019); Mian et al. (2021) provide overviews of the various micro-foundations of wealth in
the utility.
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states zH > zL > 0 and transition rates:19

qLH ·R (zL, ait) and qHL ·R (zH , ait) . (5)

The parameter qLH > 0 gives the instantaneous probability that the investment productivity

jumps from the low state zL to the high state zH , and conversely for qHL > 0.

Notice that the speed of transition from one productivity state to another rises propor-

tionally to R (zit, ait). That is, agents with higher expected returns also face more risk. In

contrast to the ex-post investment risk introduced below, we refer to this source of uncer-

tainty as ex-ante investment risk since the agent knows her current productivity type zit at

the time she makes her consumption and saving decisions.

Type- and Scale-Dependence. We suppose that R(zit, ait) is given by

R(zit, ait) = zit S (ait) , where S (ait) = 1 + ψaηit , (6)

with ψ ≥ 0 and η ≥ 0. The dependence of R(zit, ait) on the agent’s idiosyncratic in-

vestment productivity zit is called type dependence. This property, whereby some agents

(“entrepreneurs”) have access to higher-return technologies, on average, than others (“work-

ers”), allows the model to replicate the empirical thickness of the Pareto tail of wealth.20 In

addition, R(zit, ait) is also directly increasing in the agent’s wealth ait whenever ψ > 0 and

η > 0. This property is called scale dependence and plays a central role in our analysis to

generate a strictly thicker tail for capital income than for wealth.21

Budget Constraint. The budget constraint of agent i at time t reads:

dait = [wyit − T (wyit)− cit] dt+ aitdrit, (7)

where T (·) is a time-invariant labor income tax schedule. The realized returns to capital

evolve according to the following process:

drit = µr ·R(zit, ait)dt+ σr
√
R(zit, ait)dWit, (8)

19In Appendix B, we extend our analysis to the case of general Markov chains for zit.
20See, e.g., Quadrini (2000) and Cagetti and De Nardi (2006).
21See Fagereng et al. (2020), Bach et al. (2020) or Balloch and Richers (2021) for empirical evidence on

the relative importance of type- and scale-dependence.
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where σr ≥ 0 and Wit is a standard Brownian motion. The borrowing limit is ait ≥ 0.

If the volatility parameter σr is strictly positive, agents experience ex-post investment

risk around their mean return µrR(zit, ait).
22 Notice that the volatility of the return process

(8) is proportional to the mean return; that is, agents with higher expected returns also face

more capital income risk. Although not strictly necessary for our purposes, the assumption

that both ex-ante and ex-post capital income risk scale up proportionally to the mean return

ensures that scale dependence does not dwarf type dependence or capital income volatil-

ity for the wealthiest agents—thus allowing all three channels to jointly shape the Pareto

distributions of wealth and capital income.

Death and Expropriation. Agents have finite lives. We suppose that each agent dies at

a constant Poisson rate ξ1 > 0. Upon death, she is replaced by a newborn (“child”) with

initial labor productivity y0 > 0. The child inherits the wealth left by her deceased parent.

In addition, we introduce expropriation (or dissipation) shocks. Specifically, upon re-

ceiving such a shock, the wealth of an agent dissipates infinitely fast—although she survives

and her labor income does not jump.23 These shocks are independent of the death shocks

and occur at a constant Poisson rate that is proportional to the agent’s expected return,

i.e., ξ2 · R (zit, ait) with ξ2 > 0. Thus, the wealthier the agent and the more productive her

investments, the more likely she is to be expropriated. The death and expropriation shocks

ensure that the cross-sectional distributions of both labor income and wealth converge to

stationary distributions.

Government. We suppose that the labor income tax T (·) has a parametric functional

form with a constant rate of progressivity (CRP):

T (wy) = wy − 1− τ0
1− τL

(wy)1−τL , (9)

with τ0 ∈ R and τL ∈ (−∞, 1). The rate of progressivity τL is equal to (minus) the elasticity

of the retention rate 1−T ′ (y) with respect to labor income y. If τL > 0 (respectively, τL = 0,

τL < 0), the tax schedule is progressive (resp., linear, regressive).24

22This form of investment risk is introduced in, e.g., Angeletos and Calvet (2006); Angeletos (2007). By
allowing for both ex-ante and ex-post capital income risk, our model combines features from this incomplete
market growth literature and from that on entrepreneurship.

23See, e.g., Appendix C in Moll et al. (2022) for various micro-foundations of these shocks.
24The CRP tax code is a good representation of the U.S. income tax system (see, e.g., Heathcote et al.

(2017)) and allows us to rationalize the ratio of after-tax to pre-tax labor incomes in the data.
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Value Function and Stationary Distribution. Individuals maximize the present dis-

counted value of their utility, subject to their budget constraint and the borrowing limit at

each instant t. They discount the future at rate ξ0. The death and expropriation shocks

both amount to raising the agent’s effective discount rate to ξ(z, a) ≡ ξ0 + ξ1 + ξ2R (z, a).

We denote by V (y, zn, a) the value function of an agent with labor productivity y ∈ R+,

investment productivity zn ∈ {zL, zH}, and wealth a ∈ R+. This value function satisfies the

Hamilton-Jacobi-Bellman equation:

ξ(zn, a)V (y, zn, a) =max
c

c1−γ

1− γ
+ κ

a1−ν

1− ν
+ µy y

∂V

∂y
(y, zn, a) +

1

2
σ2
y y

2 ∂
2V

∂y2
(y, zn, a)

+ [wy − T (wy) + µrR (zn, a) a− c]
∂V

∂a
(y, zn, a) +

1

2
σ2
r R(zn, a)a

2∂
2V

∂a2
(y, zn, a)

+ qnmR (zn, a) [V (y, zm, a)− V (y, zn, a)] ,

(10)

for any y, zn, a, where m ̸= n. Let c (y, zn, a) denote the corresponding policy function. The

resulting stationary joint distribution of labor productivity, investment productivity, and

wealth, f (y, zn, a), satisfies a Kolmogorov-forward equation given in Appendix B.

3.2 The Case of Wealth-Independent Preferences

We start by characterizing the consumption and capital income of the wealthiest agents in

the canonical model with wealth-independent, homothetic preferences.

Proposition 1 (Wealth-Independent Preferences). Suppose that κ = 0. Let ξ2 >

(1−χ)[µr−χσ2
r/2] with χ ≡ (1 + η) γ. The consumption policy function satisfies c (y, zn, a) ∼

C
−1/γ
n ·a1+η for some constant Cn > 0. The distributions of wealth, consumption, and capital

income have asymptotic Pareto tails with coefficients ζc = ζra = ζa/(1 + η).

Consider first the case of scale-independent returns, i.e., η = 0. Proposition 1 shows that,

under homothetic preferences, consumption is then asymptotically linear in wealth for any

value of the labor and investment productivities.25 Moreover, mean returns µrR(zn, a) are

independent of wealth, so that capital income is also asymptotically linear in wealth. This

implies in turn that all three variables must be equally concentrated at the top: ζc = ζra = ζa.

Consider next the case of scale-dependent returns, η > 0. Capital income is then strictly

convex in wealth by equation (6). This leads to a thicker tail of capital income than wealth

25This linearity property is well-known and plays a key role in macroeconomics; see, e.g., Krusell and
Smith Jr. (1998) or Achdou et al. (2022).
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in the stationary distribution: ζra < ζa. However, consumption is then also strictly convex

in wealth, with a cross-sectional elasticity 1 + η. Intuitively, the higher returns earned by

wealthier agents allow them to consume larger fractions of their wealth. That is, consumption

inherits the concentration of the capital income tail, ζc = ζra, and is therefore strictly more

unevenly distributed than wealth. This is a manifestation of the fact that consumption is

driven by permanent income, not wealth, which for the richest households corresponds to

capital income. Thus, matching the concentration of the capital income tail does not help

to resolve the consumption concentration puzzle—it makes it even worse.

Note that the condition ξ2 > (1 − χ)[µr − χσ2
r/2] under which we stated Proposition

1 ensures that the constants CL, CH are positive. This restriction can be violated in the

presence of ex-post capital income risk (σr > 0) if, for a given ξ2, the risk-aversion coefficient

γ is sufficiently large. Under scale-independent returns, Ma and Toda (2021) show that

the asymptotic MPC is equal to zero in this case, so that CL = CH = 0. As a result,

consumption might be strictly concave in, and therefore less concentrated than, wealth. In

Section 4, however, we evaluate this argument quantitatively and show that matching the

ratio of consumption and wealth tail parameters that we observe in the data would require

an implausibly large risk-aversion coefficient under homothetic preferences.

3.3 General Preferences: Individual Behavior and Pareto Tails

We now study the general case of wealth-dependent preferences. We characterize analytically

the individual policy functions in Proposition 2, and the tails of the stationary distributions

of consumption, labor income, wealth, and capital income in Proposition 3.

Proposition 2 (Asymptotic Policy Function). Suppose that κ > 0 and ν /∈ (1 − η, 1).

Let ξ2 > (1−χ)[µr−χσ2
r/2], with χ ≡ ν+η. The consumption policy function and the mean

capital income satisfy

c (y, zn, a) ∼
a→∞

C−1/γ
n · a(ν+η)/γ and µrR(zn, a)a ∼

a→∞
µr ψ zn a

1+η (11)

where CL > CH > 0 are positive constants. Therefore, consumption is asymptotically linear

in wealth iff ν + η = γ, convex iff ν + η > γ, and concave iff ν + η < γ. Capital income is

asymptotically convex in wealth iff η > 0.

To understand Proposition 2, consider first the case where preferences are homothetic,

that is, ν = γ. In this case, equation (11) implies that consumption is asymptotically either
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linear (if η = 0) or convex (if η > 0) in wealth. This result is similar to that of Proposition

1, except that the constants CL, CH are slightly different and the elasticity of consumption

to wealth under scale-dependence is now 1 + η/γ rather than 1 + η.

Suppose now that preferences are non-homothetic, ν < γ. Equation (11) then shows that

consumption can be asymptotically linear, convex, or concave in wealth, depending on the

relative strength of the non-homotheticity and the scale-dependence elasticities. If η = 0,

consumption is strictly concave, with cross-sectional elasticity ν/γ < 1. Intuitively, the

individual accumulates assets up to the point where the marginal utilities of consumption

and wealth are of the same order, so that c−γ ∝ a−ν . The smaller the risk-aversion ν relative

to γ, the less the individual consumes and the more she saves out of wealth. We show below

that this concavity property is critical to yield a strictly thinner tail of consumption than

wealth. However, absent scale-dependence in returns, capital income remains asymptotically

linear in wealth. Letting η > 0 delivers both strictly concave consumption behavior and

strictly convex capital income whenever ν + η < γ.26

Our next proposition establishes that the convexity (respectively, concavity) of capital

income (resp., consumption) in wealth translates into a strictly higher (lower) upper tail

inequality than for wealth. Importantly, while intuitive, this result is not immediate. If

there was no type-dependence, so that zL = zH , there would be a one-to-one map between

capital income and wealth, and the ratio of their Pareto tails would be directly inherited

from the linearity or the convexity of this relationship (equation (11)). However, under

type-dependence, the share of high-return agents in a given wealth percentile increases with

wealth. Thus, even with η = 0, capital income would grow faster than linearly along the

wealth distribution due to this composition effect, and its distribution would be strictly more

concentrated than that of wealth. Analogously, the constants CL and CH in equation (11)

satisfy CL > CH , so that high-return types have a higher marginal propensity to consume

than low-return types. Since the fraction of high types grows along the wealth distribution,

again a composition effect might alter the resulting concavity of consumption along the

wealth distribution. Nevertheless, Proposition 3 shows that, as wealth becomes arbitrarily

large, these composition effects become negligible, because the share of high productivity-

type agents converges to a constant that is independent of wealth.27 Hence, the type-

26Note that the condition ξ2 > (1− χ)[µr − χσ2
r/2] generalizes that of Proposition 1 to non-homothetic,

wealth-dependent preferences and ensures that CL, CH > 0.
27Formally, the proof of Proposition 3 shows that the density function f(y, zn, a) becomes multiplicatively

separable as a → ∞. This property no longer holds at finite levels of wealth, and hence these composition
effects play a key role in our quantitative analysis of Section 4.
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dependence of returns alone is unable to decouple the tails of capital income and consumption

from that of wealth at the top. Any discrepancy between their Pareto coefficients must arise

from the scale-dependence and the non-homotheticity channels that map into the power

function in equation (11).28

Proposition 3 (Asymptotic Pareto Coefficients). Suppose that the assumptions of

Proposition 2 are satisfied, and let ξ2 > µr.

(a) Pre-tax and after-tax labor income are asymptotically Pareto distributed with respective

coefficients ζy and ζnety = (1− τL) ζy, where

ζy = −
(
µy
σ2
y

− 1

2

)
+

√(
µy
σ2
y

− 1

2

)2

+
2ξ1
σ2
y

.

(b) Wealth is asymptotically Pareto distributed with coefficient ζa = η + ξ2/µr if σr = 0

and, if σr > 0,

ζa = η −
(
µr
σ2
r

− 1

2

)
+

√(
µr
σ2
r

− 1

2

)2

+
2ξ2
σ2
r

.

(c) Consumption and capital income are asymptotically Pareto distributed with respective

Pareto coefficients ζc and ζra given by:

ζc =
γ

ν + η
ζa and ζra =

1

1 + η
ζa. (12)

Proposition 3 derives in closed form the Pareto coefficients of the four tails in the model

with non-homothetic preferences and scale-dependent returns. Note first that the Pareto

tails of before- and after-tax labor income depend on variables that are independent of those

driving the other three tails: the drift and volatility of labor productivity, the progressivity of

the labor income tax schedule, and the death rate. Intuitively, these parameters do not affect

the other tails as labor income becomes irrelevant for the wealthiest individuals. Analogously,

the Pareto coefficient of wealth depends on the volatility of the ex-post investment risk, the

28In our model, because agents switch stochastically from one investment productivity to another, the
two conditional wealth distributions—for low-type and high-type agents—have the same tail thickness in the
stationary equilibrium. We could instead model the returns process with an absorbing type, to allow the
two conditional distributions to have different tail parameters. But then the distributions of capital income,
consumption, and wealth would be driven by the behavior of the highest-type agents—so that at the top,
the model would again reduce to one with a single investment type. Either way, we need scale-dependence
to generate a discrepancy between the Pareto tails of capital income and wealth.
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capital income tax rate, the expropriation rate, and the degree of scale-dependence. In

particular, ζa increases—the wealth tail becomes thinner—when the capital tax rate τK

increases or the volatility σ2
r falls.29

Equation (12) is the main result of this section. It shows that (i) the ratio of Pareto

coefficients of consumption and wealth inherits the concavity of the consumption policy

function, and (ii) the ratio of Pareto coefficients of capital income and wealth inherits the

convexity of expected capital income. Hence, a positive degree of scale-dependence (η >

0) allows us to match the ratio of Pareto tail coefficients of wealth and capital income

ζra/ζa < 1 that we measured empirically in Section 2.4. Furthermore, preferences must

be non-homothetic (ν < γ) to rationalize the empirical ratio of the Pareto coefficients of

consumption and wealth, ζc/ζa > 1. The underlying degree of non-homotheticity must be

large enough to overcome the impact of scale-dependence, which tends to make consumption

convex rather than concave; namely, we must have ν = γζa/ζc − η.

4 Quantitative Analysis

The theoretical analysis of Section 3 focuses on the limits as wealth becomes arbitrarily large.

In practice, however, the values of wealth or consumption that we observe in the data are

finite. Therefore, the standard model with homothetic preferences and scale-independent

returns to capital might be able to match the empirical evidence from Section 2.4 at the em-

pirically relevant levels of consumption, wealth, and capital income. In particular, Carroll

and Kimball (1996) show that in a general class of heterogeneous agents models, consump-

tion is concave in, and thus strictly less concentrated than, wealth. Moreover, the composi-

tion effects discussed in the previous section—caused by the increasing share of high-return

type agents along the wealth distribution—could account for some of the observed concen-

tration of capital income or consumption without the need to introduce non-homothetic,

wealth-dependent preferences or scale-dependent returns. That is, our finite-sample esti-

mates of Pareto tail coefficients for consumption (resp., capital income) may be upwards

(resp., downwards) biased, so that the canonical model could still be consistent with the

empirical ordering of Pareto coefficients. In this section, we evaluate these arguments quan-

29Interestingly, ex-ante entrepreneurial risk, i.e., the transition rates between types (qHL, qLH), leaves the
Pareto coefficient unaffected: They only shift the tail of the wealth distribution uniformly. This result is
due the particular scaling of the transition rates qLH and qHL by zL and zH , respectively. The joint density
then behaves asymptotically as f(y, zn, a) ∼ g(y)Fna

−ζa−1 for a→ ∞, with Fn/Fm = (zmqmn)/(znqnm) for
m,n ∈ {L,H}. Under different modeling assumptions (e.g., uniform scaling), ζa would depend directly on
the transition rates.
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titatively and study which class of models is able to match the data.

4.1 Quantitative Model Environment

In our quantitative analysis, we set up a discrete-time model that we use to sample distinct

waves of a finite but large number of households. This approach is designed to mirror the

PSID data collection process, thereby ensuring that our quantitative and empirical analysis

closely align.

Households. In each period t, households consume c and save a′, subject to the borrowing

limit a′ ≥ 0.30 They derive utility from consumption and wealth, as explained in Section

3.1, and discount future periods at rate β ∈ (0, 1). Additionally, households are subject to a

death shock that occurs at a constant rate ξ ∈ (0, 1).

Analogous to Section 3, labor productivity is equal to y = e · h, where e (resp., h) is

the transitory (resp., persistent) component of the agent’s idiosyncratic labor productivity.

Capital returns are equal to r(z, a) = r · z · S(a), where r is the interest rate, z is the

idiosyncratic investment skill, and S(a) is given by (6). We assume that h and z follow

independent Markov processes described by the respective transition probabilities P (h′|h),
and P (z′|z), while e is iid. We write P (y′|y) the resulting markov chain for overall labor

productivity. Upon death, children inherit their parents’ wealth that is subject to an estate

tax τB, and draw new realizations of h′ and z′ from their respective invariant distributions.

The household’s maximization problem is given by

V (y, z, a) = max
c,a′≥a

c1−γ

1− γ
+ κ

(a/A)1−ν

1− ν
+ β(1− ξ)

∑
y′∈Y

∑
z′∈Z

P (y′|y)P (z′|z)V (y′, z′, a′)

s.t. c+ a′ = wy − T (wy) + (1− τK)rzS(a)a+ a ,

(13)

where the wage rate w and the interest rate r are determined in equilibrium. Note that

we now assume that the utility of wealth arises relative to the average wealth A in the

economy.31 To ensure the stationarity of the equilibrium distributions, we assume that the

government fully expropriates bequests, i.e., τB = 1.32

30If anything, the no-borrowing assumption makes consumption more concave in wealth and labor income
than any other borrowing constraint, amplifying the Carroll and Kimball (1996) effect quantitatively.

31This assumption does not affect the results, but makes the model consistent with a balanced growth
path.

32This assumption plays an analogous role as the expropriation (or dissipation) shocks in the theoretical
model of Section 3. Alternatively, we could use random bequests to ensure the stationarity of the wealth
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Government. The government balances its budget at each instant:∫
(y,z,a)

[T (wy) + τKrzS (a) a+ τBξa
′(y, z, a)] dF (y, z, a) = G, (14)

where F (y, z, a) is the joint distribution of households over labor productivity, investment

productivity, and wealth. In equilibrium, the level of expenditures G adjusts to ensure that

(14) holds given the tax rates.

Production. There is a representative firm that produces the final good using labor and

physical capital as inputs according to a Cobb-Douglas production function:

Y = KαL1−α, (15)

where K and L are aggregate efficiency units of capital and labor, respectively. The depre-

ciation rate of capital is δ ∈ (0, 1).

Equilibrium. We now formally define a stationary equilibrium of this economy.

Definition 1 (Stationary Recursive Equilibrium (SRE)). An SRE consists of a

value function V (y, z, a), a policy function c (y, z, a), an invariant distribution of households

F (y, z, a), prices (w, r) and taxes (T, τK , τB), such that the following conditions hold:

1. The value function V (y, z, a) and policy function c (y, z, a) solve the household maxi-

mization problem (13), taking prices (w, r) as given.

2. The capital market clears, i.e., K = A ≡
∫
zS(a)adF (y, z, a). The labor market clears,

i.e., L =
∫
ydF (y, z, a). Equilibrium prices are equal to the marginal products, that is,

r = αKα−1L1−α − δ and w = (1− α)KαL−α.

3. The government balances its budget, i.e., (14) holds.

4.2 Calibration

We use the theoretical insights of Section 3.3 to calibrate the model and replicate the tail

concentration of consumption, labor income, wealth, and capital income. First, we fix a

set of external parameters. Second, we estimate the remaining parameters internally by

matching key targeted model-implied moments with their empirical counterparts using the

method of simulated moments (MSM).

distribution, as in De Nardi (2004) and Straub (2019).
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4.2.1 Externally Fixed Parameters. The model period is a year. We set β = 0.90

and ξ = 0.02. The inverse intertemporal elasticity of substitution is set to γ = 2, which is

standard in the literature. Moreover, we set the capital income share of the Cobb-Douglas

technology to α = 0.33 and the depreciation rate to δ = 8%. Consistent with the current

U.S. tax schedule, we impose a labor income tax progressivity of τL = 0.14; this value

matches almost exactly the gap between the after-tax and pre-tax labor income Pareto tails

(see Proposition 3 (a)). The parameter τ0 targets an average labor income tax rate in the

economy of 30%. The linear capital income tax is set to τK = 0.15.

We follow Hubmer et al. (2021) and assume that the labor income process is governed

by a mixture of a log-normal and a Pareto distribution. Specifically, if the persistent labor

productivity component ht falls in the bottom qh percentiles of its distribution, it satisfies

lnht+1 = ρh lnht + εht , with εht ∼ N (0, σ2
h) .

If instead ht falls in the top 1 − qh percentiles, it is distributed according to a power law,

with a slope ζh set to match the labor income Pareto tail and a lower bound xh set to ensure

continuity at the qh
th percentile of the distribution. Following Storesletten et al. (2004), the

persistent labor productivity process is parameterized by ρh = 0.95 and σ2
h = 0.026. We set

the threshold of the Pareto distribution to the 90th percentile (i.e., qh = 0.9), and the Pareto

coefficient to ζh = 2.25, following our estimates in Section 2.4. Finally, the transitory labor

productivity process is parameterized with a variance of σ2
e = 0.04.

We model return heterogeneity following the worker–entrepreneur dichotomy as in Quadrini

(2000) and Cagetti and De Nardi (2006). To do so, we assume that agents can have two

types, z ∈ {zL, zH}. The low productivity type is associated with workers with no specific

investment skill; thus, we let zL = 1. By contrast, the high productivity type is associated

with entrepreneurs; we calibrate zH internally. Moreover, we calibrate the probability to

switch from the entrepreneurial type to the worker type to the rate of exiting entrepreneur-

ship in the PSID, which is qHL = 0.2. Analogously, we calibrate the probability to become

an entrepreneur to the entry rate into entrepreneurship in the PSID, i.e., qLH = 0.02.

4.2.2 Internally Estimated Parameters. We endogenously estimate the remaining pa-

rameters. The MSM involves:33

(1) Estimating the two parameters governing the non-homotheticity of preferences, the

33This MSM procedure is standard. Its objective function minimizes the distance, given a matrix of
weights, between the observed and the model-generated moments, for a given weighting matrix.
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high-return type, and the two parameters driving the scale-dependence of returns:

that is, θ = {κ, ν, zH , ψ, η};

(2.a) Targeting the Pareto tail coefficients of the three remaining distributions, evaluated

at the lower bound x optimally selected by the KS criterion. Namely, we target a

ratio of capital income to wealth tail coefficients ζra/ζa = 0.87, a ratio of consumption

to wealth tail coefficients ζc/ζa = 2.24, and a ratio of wealth to labor income tail

coefficients ζa/ζy = 0.61. We additionally target the ratio of the capital income to

wealth tail coefficients evaluated within the top 1% of their respective distribution in

the Saez and Zucman (2016) dataset, ζra(0.99)/ζa(0.99) = 0.90.

(2.b) Targeting aggregate moments in order to be consistent with national accounts and the

level of wealth concentration in the U.S.: the wealth-income ratio K/Y = 3.8 and the

top 1% wealth share.34

Our baseline model is, therefore, over-identified: We internally estimate 5 parameters to

target 6 moments.

To ensure a meaningful comparison between the model and the data, we estimate the

Pareto tails within the model using the exact same methodology as in the empirical Section

2. Specifically, we first draw 10 model-generated data samples (PSID-like waves) of 10,000

households, each from the stationary distribution, in order to replicate the 10 waves of PSID

data that we used empirically. While these draws are representative of the overall population,

they are subject to noise due to their finite sample properties. Within each of these samples,

we estimate the Pareto tail coefficient using both OLS and MLE estimators from equation

(1), and we select the optimal lower bound parameter x using the KS-criterion defined in

equation (2). We use the median value of these statistics for our quantitative analysis.

Finally, when comparing the ratio of capital income to wealth tail coefficients within the top

1%, we use a finite sample of 55,000 observations, which corresponds to the annual number

of observations in Saez and Zucman (2016).

4.2.3 Estimation Results Table 2 displays the MSM parameter estimates. The point

estimates indicate significant degrees of non-homotheticity with ν = 0.76 < γ = 2, of type-

heterogeneity in capital returns with zH = 4.3 > zL = 1, and of scale-dependence in capital

34In the model, κ controls the scale of the economy, akin to the role of β in models without wealth in the
utility. Models with homothetic preferences and return heterogeneity exhibit similar properties whether we
use β or κ to scale the economy. That is, using the model with κ = 0 or the model with κ > 0 and ν = γ as
our benchmark homothetic environment is inconsequential for our results.
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returns with η = 0.24 > 0.

Table 2. Parameter estimates: baseline model.

κ ν zH η ψ

0.14 0.76 4.10 0.24 0.15

These estimates are consistent with a back-of-the-envelope calculation based on the theo-

retical results of Section 3. Using the closed-form expressions of Proposition 3, the parameter

values of Table 2 imply asymptotic ratios of tail coefficients equal to ζc/ζa = γ/(ν+ η) ≈ 2.0

and ζra/ζa = 1/(1 + η) ≈ 0.81. These values are close to their empirical counterparts,

ζc/ζa = 2.24 and ζra/ζa = 0.87, respectively. Interestingly, our estimated degree of non-

homotheticity is in line with those obtained in other papers using panel data on wealth

mobility and individual consumption behavior (see, e.g., Straub (2019); Benhabib et al.

(2019)), but without targeting the Pareto tails for their calibration. Moreover, the presence

of both type- and scale-dependence echoes the recent empirical findings of Fagereng et al.

(2020); Bach et al. (2020); Balloch and Richers (2021).

Figure 18 in Appendix A shows the coefficient estimates for consumption, wealth, and

capital income obtained by simulating 10 PSID-like samples, in order to compare them with

the corresponding empirical results in Figures 9 to 16. Three key observations stand out.

First, the Pareto tails emerge, as in the data, around the 90% quantile. Second, these model-

based estimates closely mirror our empirical findings. The point estimates are remarkably

stable within the top 10%, followed by significant uncertainty at the highest percentiles.

Third, applying the Pareto test of Section 2.1 to the model-generated samples confirms the

validity of the power law, and reveals that the Pareto distribution consistently provides a

better fit than both lognormal and exponential distributions.

Finally, the conditional distributions of the variables implied by the model are aligned

with those in the data, as shown in Appendix C.2. The cross-sectional relationship between

log-consumption and log-wealth is a straight line with a slope of 0.36 in the model, compared

to 0.31 in the data. Additionally, the slope of the relationship between log-capital income

and log-wealth is equal to 1.08 in the model, compared to 1.13 in the data.

4.3 Decomposing the Mechanisms

In this section, we evaluate the contribution of the key mechanisms of our model in repli-

cating the magnitude and ranking of the four Pareto tails, and assess their identification
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power. We study six distinct counterfactual economies. Our baseline economy, (1), is a

standard Aiyagari (1994) model with bequests and a thick-tailed earnings distribution, but

with homothetic preferences and type- and scale-independent returns to capital. We then

successively add to this model the following channels: (2) type-dependence in returns; (3)

scale-dependence in returns; (4) type- and scale-dependence in returns; (5) non-homothetic

preferences with type-dependent returns; (6) non-homothetic preferences with type- and

scale-dependent returns. In all of these different models, we keep targeting the six mo-

ments mentioned above. The resulting parameter estimates are reported in Table 3, and the

corresponding Pareto tails are presented in Table 4.

Table 3. Parameter estimates: counterfactual economies.

κ ν zH η ψ

Homothetic preferences
(1) Homogeneous returns 0.670 2.000 1.000 0.000 0.000
(2) Type-dependence 0.007 2.000 12.10 0.000 0.000
(3) Scale-dependence 0.000 2.000 0.000 0.190 1.290
(4) Type- and Scale-dependence 0.001 2.000 4.900 0.600 0.110

Non-homothetic preferences
(5) Type-dependence 0.215 0.793 4.450 0.000 0.000
(6) Type- and scale-dependence 0.140 0.763 4.100 0.240 0.150

Consider first the standard Aiyagari (1994) model with homothetic preferences (ν = γ),

no type-dependence (zH = zL = 1), no scale-dependence (η = ψ = 0), and a persistent–

transitory process for labor income augmented with a Pareto distribution at the top. As

shown in the first row of Table 4, this workhorse model is capable of replicating the proper

ranking and magnitudes of the tails of consumption and labor income, i.e., ζc > ζy. This

suggests in particular that the permanent income hypothesis is a powerful way to generate a

less uneven distribution of consumption than current labor income. Moreover, consumption

has a larger tail coefficient than wealth ζc = 3.04 > ζa = 2.41. This finding is consistent

with Carroll and Kimball (1996) who show that under CRRA preferences, a borrowing

constraint, and income uncertainty, consumption is generally concave in—and hence strictly

more evenly distributed than—wealth. However, as is well known, this model generate far

too little wealth concentration: ζa = 2.41, for a targeted Pareto coefficient of 1.4. This is

because, in this class of models, the wealth distribution inherits the tail of the after-tax labor

income distribution. Furthermore, this model fails to significantly disentangle the capital

income tail from the wealth tail (ζra/ζa = 1).

In the second row of Table 4, we add heterogeneous—type-dependent—asset returns,
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Table 4. Counterfactual models and selected moments.

Data/Model Pareto tails: mean MLE estimatea Top 1%
wealth

Wealth
income
ratioζc ζy ζnety ζa ζra

Adjusted PSID (2005–2021) 3.06 2.25 2.57 1.38 1.20 0.35 3.8

Homothetic preferences
(1) Homogeneous returns 3.04 2.25 2.57 2.42 2.42 0.09 3.8
(2) Type-dependence 2.65 2.25 2.57 1.32 1.02 0.29 3.7
(3) Scale-dependence 2.56 2.25 2.57 1.30 1.16 0.32 3.7
(4) Type- and scale-dependence 2.65 2.25 2.57 1.34 1.08 0.35 3.6

Non-homothetic preferences
(5) Type-dependence 3.08 2.25 2.57 1.37 1.19 0.34 3.7
(6) Type- and scale-dependence 3.06 2.25 2.57 1.36 1.18 0.35 3.8

Pareto tails, mean MLE estimate: fixed threshold x percentileb

ζc ζa ζra
95th 98th 99th 95th 98th 99th 95th 98th 99th

Adjusted PSID (2005–2021) 3.21 3.44 3.30 1.35 1.48 1.56 1.00 1.27 1.36
Saez and Zucman (2016) – – – 1.50 1.49 1.55 1.27 1.28 1.28

Homothetic preferences
(1) Homogeneous returns 3.08 2.97 2.84 2.47 2.34 2.35 2.47 2.34 2.35
(2) Type-dependence 2.65 2.50 2.32 1.33 1.44 1.67 0.99 1.17 1.22
(3) Scale-dependence 2.51 2.35 2.40 1.29 1.49 1.78 1.14 1.31 1.55
(4) Type- and scale-dependence 2.57 2.41 2.30 1.32 1.47 1.67 1.11 1.26 1.41

Non-homothetic preferences
(5) Type-dependence 3.17 3.11 3.40 1.40 1.43 1.56 1.24 1.37 1.56
(6) Type- and scale-dependence 3.10 3.01 3.25 1.35 1.37 1.47 1.17 1.25 1.39

a The Pareto tails are estimated within the model using a sample of 10,000 observations to compare them
with the tails obtained using the same method as in the PSID.
b The Pareto tails are estimated within the model using a sample of 55,000 observations to compare the
upper tails with those obtained from the Saez and Zucman (2016) dataset.

captured by zH > zL. Unsurprisingly, this augmented model is now able to replicate the

magnitude and ranking of the Pareto coefficients of both labor income and wealth. Interest-

ingly, it is also able to reproduce the fact that the tail of capital income is strictly thicker

than that of wealth. This is due to a composition effect: at finite levels of wealth, the fraction

of high return-types is larger among wealthier agents, so that average returns conditional

on wealth are increasing and capital income is convex in wealth. This contrasts with our

theoretical analysis of Section 3, which focused on the limits as wealth grew to infinity. In

this case, type-dependence alone was unable to decouple these two tails at arbitrarily high

levels of wealth, because the share of high return-types conditional on wealth converges to a

constant at the limit. The composition effect was then negligible, resulting in a distribution

of capital income that was just as concentrated as that of wealth.
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Importantly, this quantitative model also does generate a strictly thinner tail for con-

sumption (ζc = 2.65) than for wealth (ζa = 1.32) in finite samples, consistent with Carroll

and Kimball (1996). However, and this is crucial for our purposes, the concavity of con-

sumption implied by the model is far too small to replicate the thinness of the consumption

tail that we observe in the data (3.09). In other words, the standard model correctly gen-

erates concavity in consumption, but simply not enough to rationalize the distribution of

consumption among the top 10% richest households. This finding is of course driven by the

same logic as that underlying the theoretical results of Section 3, according to which, as

wealth grows to infinity, consumption should become asymptotically linear in wealth in this

model. In fact, the convergence of the consumption Pareto coefficient to the same level as

the wealth Pareto coefficient becomes evident in the second part of Table 4 as we estimate

these tails in the quantitative model for several fixed levels of the lower bound parameter

x. The Pareto coefficient for consumption falls to 2.32 within the top 1%, while it rises

to 1.67 for wealth, corresponding to a ratio ζc/ζa equal to 1.39 (compared to 2.10 in the

PSID). In addition, the quantitative model generates an excessively thick capital income

tail relative to that of wealth (ζra = 1.02). In other words, adding heterogeneous returns

to the baseline Aiyagari framework solved the wealth concentration puzzle, but this came at

the expense of introducing a mirror consumption concentration puzzle as well as a capital

income concentration puzzle.

Next, consider in the third row of Table 4 the model with only scale-dependence (η > 0),

assuming again homothetic preferences (ν = γ). In this case, the model does a better job

at replicating simultaneously the empirical magnitudes of the labor income, wealth, and

capital income tails. However, it does not help generating a thin consumption tail: ζc = 2.56

in the model. In fact, consistent with our theoretical findings of Section 3, this model

leads to an even thicker consumption tail than the model with only type-dependence, since

consumption is then strictly convex in wealth. Finally, incorporating scale-dependence into

a model already featuring type-dependence (fourth row of Table 4) continues to fall short of

accurately replicating the data.

These results imply that we must introduce an additional mechanism to decouple the

upper tails of consumption and wealth, or equivalently, to generate much more concavity in

the consumption function of the richest households. We do so in the last two rows of Table

4 by studying non-homothetic preferences. In the fifth row, we first assume that returns

are only type-dependent. In this case, the model successfully replicates the thinness of the

consumption tail observed in the data (ζc > 3), and its Pareto coefficient does not converge
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to that of wealth at higher values of the lower bound parameter x. This is again consistent

with our theoretical results of Section 3, according to which non-homothetic preferences are

able to generate consumption behavior that is asymptotically concave in wealth.

Interestingly, note that the model with solely type-dependence is already able to generate

the correct wealth and capital income tails at the optimal lower bound x obtained using the

KS criterion. Adding scale-dependent returns in the sixth row of the table does not improve

the ability of the model to match these moments. This suggests that, at the optimal KS

criterion at which we estimated our Pareto coefficients, the tails of the four cross-sectional

distributions do not carry sufficient information to allow us to disentangle type- from scale-

dependence. Nevertheless, our theoretical results imply that data covering higher quantiles

of wealth than the PSID would allow us to potentially identify these two mechanisms: Any

discrepancy that remains between the capital income and wealth tails at very high levels

of wealth—at which the composition effect due to type-dependence becomes negligible—

can be attributed to, and precisely identifies, the scale-dependence elasticity η. Indeed,

the results in the lower part of Table 4 reveal that, absent scale-dependence, the ratio of

the Pareto coefficients of wealth and capital income converges to 1 within the top 1% in

the non-homothetic model.35 By contrast, incorporating scale-dependence into this model

consistently generates a decoupling of the two tails (ζra = 1.39 < ζa = 1.47). We view this

identification of type- vs. scale-dependence, based on the ratio of tail coefficients at high

levels of wealth, as a simple way to address the empirical debate regarding the respective

importance of these two kinds of return heterogeneity in the data (see, e.g., Fagereng et al.

(2020); Balloch and Richers (2021)).36

4.4 Robustness and Alternative Explanations

We conclude this section by briefly exploring potential alternative mechanisms that could

rationalize the ranking and magnitudes of the four tail coefficients.

35Interestingly, this is not the case in the homothetic model with only type-dependence—this is because
the degree of type-dependence zH required to match wealth inequality is significantly lower in the non-
homothetic model, accelerating the dissipation of the composition effect.

36While such identification may not be generalized to every return process, the composition effects should
vanish at the very top. Therefore, using an even higher level of scale might be required. To this, the IRS data
used by Saez and Stantcheva (2018) cover much higher levels of wealth. They show that the Pareto coefficient
for capital income converges to a value of 1.38. The Forbes rich list we used in Section 2 implies a Pareto
coefficient for wealth of 1.5. These values suggest a positive amount of scale dependence η = ζa/ζra − 1 =
0.087. Using the Saez and Zucman (2016) dataset, we find a ratio of η = ζa/ζra − 1 = 1.43/1.28− 1 = 0.12
at the top 0.1%.
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Labor Income Risk. First, following the logic of Carroll and Kimball (1996), we keep

preferences homothetic and consider whether a higher amount of idiosyncratic income risk

might lead to larger precautionary saving motives, and hence a thinner consumption tail.

We explore this mechanism by raising the volatility of the persistent labor income shocks to

σ2
h = 0.25 and reducing their persistence to ρh = 0.90. While this calibration requires greater

return heterogeneity to generate a tail coefficient for wealth of 1.4, it is still insufficient to

account for the empirical magnitude of the consumption tail coefficient, which remains too

low in the model at 2.60. Similarly, increasing the variance of the transitory component from

σ2
e = 0.04 to σ2

e = 0.25 does not help in generating the disconnect between the consumption

and wealth tails. Therefore, variables that we did not explicitly model and that would affect

the budget constraint, such as health shocks, would not significantly affect our analysis.

Finally, adding an unemployment state with a 2% probability and a 60% re-employment

rate, consistent with the U.S. labor market data, has only minor effects on our results.

The Role of Taxes. Next, we examine the impact on the consumption tail of a progressive

capital income tax schedule, by levying the CRP tax function (9) on total income. In that

case, the necessary level of return heterogeneity is much higher. However, this does not

lead to a thinner consumption tail under homothetic preferences, but it does decouple the

wealth and capital income tails—the latter being lower than 0.9. Finally, note that the

labor income CRP tax schedule plays an important role. Applying a constant top tax rate

would seriously worsen the ability of the homothetic model to replicate the data. Absent

return heterogeneity, the wealth tail would inherit the coefficient of the labor income tail

(2.2). Under return heterogeneity, the consumption tail would be more concentrated, with

a coefficient around 2.35 based on the KS-optimal subsample.

Higher Risk Aversion. As we discussed in Section 3, Ma and Toda (2021) argue that

there exists a range of parameters under which the model with homothetic preferences yields

a marginal propensity to consume that converges to 0 at the tail, and hence a strictly thinner

tail for consumption than for wealth. To address this potential mechanism, we recalibrate

our model with homothetic preferences and a higher coefficient of relative risk aversion γ in

order to reproduce the ratio of Pareto coefficients ζc/ζa that we observe empirically. We find

that, regardless of the persistence of the return-type process, we would need to assume γ > 6

to generate the thinness of the consumption tail in partial equilibrium. Such implausibly

large values imply that the decay of asymptotic MPCs alone is far too weak to rationalize

the empirical evidence on Pareto tails. This conclusion is reinforced by noting that raising
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the risk-aversion coefficient must be accompanied by a reduction in the discount factor β to

match the economy’s capital-income ratio K/Y , which further reduces the Pareto coefficient

of consumption in the model.

Life-Cycle. Augmenting the model with overlapping generations (OLG) and age as a

state variable does not alter the main conclusion of this paper. Return heterogeneity, which

enables us to match the wealth Pareto tail, comes at the expense of excessive consumption

concentration. Incorporating wealth into the utility function resolves this tension.

5 Revenue-Maximizing Top Capital Tax Rate

In this final section, we explore the implications of jointly matching the Pareto tail coeffi-

cients of consumption, labor income, wealth, and capital income for the revenue-maximizing

long-run tax rate on capital—the top of the Laffer curve—levied on the top 1% richest

households.37 Our key result is that replicating only three (or fewer) of these tail coefficients

delivers incorrect evaluations of the long-run elasticity of savings with respect to the tax

rate, and hence of the revenue-maximizing top tax rate.38 In other words, the distributions

of wealth and capital income are not sufficient statistics for the revenue-maximizing capi-

tal tax rate; matching the consumption distribution provides additional information that is

necessary to properly design policy.

Non-Linear Capital Tax Schedule. We modify the baseline quantitative model as fol-

lows. The capital tax schedule is progressive and takes a piece-wise linear form:

ta = τa(a− a∗)1{a≥a∗}

for some a∗ > 0 that represents the threshold of the top wealth bracket. We focus on a

marginal tax rate levied on the richest households above a threshold a∗ that coincides with

the top 1%. At this threshold, the marginal tax rate jumps from 0 to τa.

Laffer Curve for Top Wealth. As our main quantitative experiment, we compute the

revenue-maximizing tax rate τ ∗a and report the results in Figure 7.

37This revenue maximization objective gives the upper bound of the set of Pareto efficient top tax rates,
and avoids dealing with difficult issues of social welfare comparisons between models with standard vs.
non-homothetic wealth-dependent preferences.

38In Appendix B.2, we complement this analysis with numerical simulations of the long-run capital supply
elasticity based on the theoretical framework of Section 3.
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Figure 7. Laffer curves in alternative models.
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Consider first the canonical model with skewed earnings and type-dependent returns—

allowing us to match the Pareto tails of labor income and wealth—but homothetic preferences

and scale-independent returns. The Laffer curve is represented by the green line in Figure

7. In this case, the revenue-maximizing top marginal tax rate is high, around 5%.

Second, consider the model with homothetic preferences and scale-dependent returns,

allowing us to match the Pareto tails of labor income, wealth, and capital income, represented

by the dashed blue line in the figure. In this setting, the revenue-maximizing top tax rate is

much lower, with τ ∗a ≈ 1.2%. This is because, under scale-dependent returns, savings are a

convex function of wealth. This convexity implies, following the Le Châtelier principle, that

the elasticity of wealth to the tax rate is larger than in the canonical model that has a linear

savings function. Intuitively, taxing capital reduces savings, which consequently yield lower

returns, thus amplifying the initial fall in savings, and so on. This larger elasticity implies a

smaller revenue-maximizing top tax rate compared to the canonical type-dependent model,

aligning with theoretical and quantitative findings by Gerritsen et al. (2020); Schulz (2021),

and Gaillard and Wangner (2021).

Third, consider the case of non-homothetic preferences with only type-dependent returns.

In this case, the model can match the tail distributions of consumption, labor income, and

wealth. Again, the revenue-maximizing top tax rate is lower than in the canonical model,

with τ ∗a = 0.8%. This is because non-homothetic preferences also convexify the savings

policy function, leading again to a higher savings elasticity. This convexity is stronger than

that implied by the estimated scale-dependent model.

In other words, while both scale-dependent returns and non-homothetic preferences are

able to match the same wealth distribution, they predict different long-run capital elasticities,
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as illustrated in the right panel of Figure 7. The key difference between these two polar

models is that the former (scale-dependent returns) implies a convex consumption function,

while the latter (non-homothetic preferences) implies a concave consumption function. These

two ways of generating a convex savings policy function predict distinct revenue-maximizing

top capital tax rates.

The “correct” tax rate, at the peak of the black line in Figure 7, is obtained under the

baseline model (black solid line), at τ ∗a ≈ 1%. Both non-homotheticity and scale-dependence

are operational in our setting and are essential for simultaneously aligning the Pareto co-

efficients of all four tails. However, the extent of scale-dependence is relatively moderate,

and does not materialize in a significant shift of the revenue-maximizing tax rate to the left.

Moreover, due to scale-dependence, the model assigns a lower weight to the wealth compo-

nent in the utility function. This leads to a higher revenue-maximizing tax rate compared to

the type-dependent non-homothetic model. In conclusion, matching only three of the four

tails—and, most importantly, failing to properly target the consumption tail coefficient—

would lead to incorrect policy recommendations. This is because the consumption and cap-

ital income tails discipline the strength of the underlying mechanisms—non-homotheticity

of preferences and scale-dependence of returns—that generate a convex savings rate. Thus,

both tails provide us with additional information that is critical to properly model the saving

behavior and correctly evaluate the long-run capital supply elasticity.

6 Conclusion

This paper establishes that the cross-sectional distributions of consumption, labor income,

wealth, and capital income follow asymptotic Pareto distributions in the upper tails with a

strict ordering of their tail parameters. Specifically, consumption exhibits a thinner Pareto

tail than labor income, which in turn has a thinner Pareto tail than wealth and capital in-

come. We demonstrate that replicating the ranking and magnitude of these four tails consti-

tutes a challenge for the canonical heterogeneous-agent models. Introducing non-homothetic

preferences and scale-dependent asset returns allows the model to simultaneoously replicate

the behavior of all four tails: The former (respectively, the latter) channel decouples the

consumption (resp., capital income) tail from the wealth tail. The central take-away of our

analysis is that the rich appear to save for reasons other than funding future consumption
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needs. Whether such behavior is driven by bequest motives, status-seeking concerns,39 or

other fundamental reasons that future research should explore and model, we believe that it

should be more systematically incorporated into the workhorse heterogeneous-agent model

in macroeconomics.
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A Empirical Appendix

Figure 8. Simulated Data: Pareto tail coefficient estimates for three parametric distributions.
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Figure 9. Consumption: log-log plots and Pareto tail coefficient estimates.
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Figure 10. Labor income: log-log plots and Pareto tail coefficient estimates.
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Figure 11. After-tax labor income: log-log plots and Pareto tail coefficient estimates.
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Figure 12. Wealth: log-log plots and Pareto tail coefficient estimates.
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Figure 13. Wealth: log-log plots and Pareto tail coefficient estimates from the PSID augmented
by the Forbes rich list.
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Figure 14. Labor income and wealth: data from Saez and Zucman (2016).
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Figure 15. Real vs. financial wealth.
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Figure 16. Capital income: log-log plots and Pareto tail coefficient estimates.
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Figure 17. Capital income: data from Saez and Zucman (2016), excluding (top) or including
(bottom) capital gains.
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Figure 18. Pareto tail coefficient estimates generated by the quantitative model.
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A.1 Under-Reporting and Under-Representation Adjustments

Table 5. Correspondence Table – PSID consumption and NIPAa.

PSID subcategory Corresponding NIPA subcategoriesb Ratio (2019)

Nondurable goods: food (excl.
outside food), food stamp, gaso-
line

Food and beverages purchased for off-premises
consumption (71), Gasoline and other energy
goods (111)

0.83

Clothing Clothing and footwear (102), Clothing and
footwear services (309)

0.40

Entertainment: recreation,
trips, food outside

Recreation services (207), Recreational goods
and vehicles (36), Recreational items (parts of
80, 92, and 93) (124), Magazines, newspapers,
and stationery (part of 90) (140), Net expendi-
tures abroad by U.S. residents (131) (143), For-
eign travel by U.S. residents (129) (332), Food
services and accommodations (232)

0.31

Transportation: car insurance,
car repair, parking, bus fare,
taxi fare, other transports

Transportation services (188), Net motor vehicle
and other transportation insurance (116) (277)

0.63

Health: nurse, doctor, precrip-
tion, health insurance

Net health insurance (112) (273), Health care
(170) (excl. Hospitals (51) (181)), Pharmaceu-
tical and other medical products (40 and 41)
(119)

0.28

Furniture Furnishings and durable household equipment 0.34
Education: tuition, other school
expenditures, childcare

Education services (288), Educational books
(96) (67)

0.78

Vehicle Motor vehicles and parts (4) 0.94
Housing service: rent and im-
puted rent

Rental of tenant-occupied nonfarm housing (20)
(152), Imputed rental of owner-occupied non-
farm housing (21) (158), Rental value of farm
dwellings (22) (161), Group housing (23) (162)

0.88

Housing maintenance: water,
heating, electric, property in-
surance, misc. utilities, home
repair

Household utilities (163), Household supplies
(parts of 32 and 36) (129), Communication
(279), Household maintenance (parts of 31, 33,
and 36) (325)

1.06

Total consumption Personal consumption expenditures (1) 0.47
Total consumption (excl. hous-
ing services)

Personal consumption expenditures (1) (excl.
housing service categories)

0.53

a The ratio is computed as the ratio of the total expenditure in the survey relative to the NIPA counterpart.
b We use the U.S. Bureau of Economic Analysis, “Table 2.4.5U. Personal Consumption Expenditures by Type
of Product”.
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A.2 Testing the Pareto Hypothesis

Table 6. How plausible is the power-law hypothesis?

Data Variable Pareto rejecteda Pareto > LN b Pareto > Expb

OLS MLE OLS MLE OLS MLE

PSID

Wealth 2/9 2/9 9—9/9 9—9/9 9—9/9 9—9/9
Labor Income 6/9 5/9 9—9/9 9—9/9 9—9/9 9—9/9
Capital income 2/9 3/9 9—9/9 9—9/9 9—9/9 9—9/9
Total income 3/9 2/9 9—9/9 9—9/9 9—9/9 9—9/9
Consumption 1/9 1/9 9—6/9 9—6/9 9—9/9 9—9/9

a The power-law hypothesis is rejected with a p-value smaller than 0.1. The tests are performed with 500
bootstrap draws for each year.
b We present the statistical findings as X|Y/Z, where X is the number of occurrences with R > 0, Y counts
the times where R is statistically different from zero, and Z is the total number of periods.

A.3 Non-linear Least Squares

Table 7. Mean KS-optimal Pareto coefficient: non-linear least squares.

Data Consumption Wealth Labor income Capital income
OLS MLE NLS OLS MLE NLS OLS MLE NLS OLS MLE NLS

PSID 3.11 3.06 3.00 1.38 1.37 1.32 2.23 2.30 2.37 1.17 1.15 1.12

A.4 Pareto Tails along the Life-Cycle

Table 8. Pareto tails over the life-cycle in the PSID.

Head’s age group Mean KS-Optimal Pareto coefficient

Consumption Wealth Labor income Capital income
OLS MLE OLS MLE OLS MLE OLS MLE

All population (age ∈ [19-80]) 3.11 3.06 1.38 1.37 2.23 2.30 1.17 1.15
Age ∈ [19-45] 3.35 3.30 1.26 1.25 2.35 2.41 0.88 0.89
Age ∈ ]45-80] 2.96 2.97 1.40 1.41 2.17 2.27 1.26 1.26

A.5 Dynamics of the Pareto Tails
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Figure 19. Evolution of Pareto tails over time.
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A.6 Using Administrative Data to Measure Consumption

An alternative approach to measuring consumption is based on administrative panel data

that are often advocated as being more accurate than survey data. The idea consists of

backing out consumption as the residual from the budget constraint, if measures of wealth,

labor income, and capital income are available—the main challenge being to evaluate the

change in the valuation of assets to infer the change in the value of the stock. For the question

we are interested in, however, this approach may not be as compelling as one might hope.

To see this, suppose that the data reports labor and capital income correctly (call their sum

yt+ rtat), but that wealth is systematically under-reported by a factor 1/(1+ θ) < 1 due to,

e.g., tax evasion and offshoring. That is, for reported wealth ât, true wealth is at = (1+θ)ât.

Consumption is measured as ĉt = yt+rtat−(ât− ât−1), i.e., as total income net of the change

in wealth. Simple algebra then shows that ĉt/ât = ct/at + θ(yt + rtat)/at. In other words, if

there is systematic under-reporting of wealth, then there will be a systematic upwards bias

in estimated consumption-to-wealth ratios from administrative data. Furthermore, if the

income-to-wealth ratio does not converge to zero at the top (i.e., if the average return on

wealth is strictly positive), then we would necessarily conclude that consumption-to-wealth

ratios are bounded away from zero. Hence, we would mechanically conclude that measured

consumption must have the same Pareto coefficient as measured wealth (or as capital income

if returns are scale-dependent). That is, we would never be able to correctly detect the true

Pareto tail for consumption.
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B Theoretical Appendix

B.1 Proofs and Technical Details

Proof of Proposition 2. This proof, which follows Achdou et al. (2022), nests the deriva-

tion of the policy function given in Proposition 1. We proceed in two steps. First, we derive

the solution to the HJB equation without labor income. Second, we show that this solution

continues to characterize the asymptotic optimum in the general model with labor income

because labor income becomes irrelevant relative to wealth as a→ ∞.

1. Model without labor income

Suppose that investment productivity follows a general Markov chain with transition matrix

Q ·R (zit, ait) , where Q = (qnm)1≤n,m≤N with qnn = −
∑
m ̸=n

qnm.

For any n ∈ {1, . . . , N}, the parameter qnn ∈ R− gives (minus) the holding time in state

zn. That is, the probability that agent i’s investment productivity jumps from zn to another

state at time t follows an exponential distribution with intensity −qnn > 0. For any m ̸= n,

the probability that agent i’s investment productivity jumps from zn to zm at time t follows

an exponential distribution with intensity qnm > 0.

The FOC for consumption in (10) reads c (zn, a) = (Va (zn, a))
−1/γ, where Va denotes the

derivative of the value function with respect to wealth a. The HJB equation in state zn for

n ∈ {1, . . . , N} can thus be rewritten as

(ξ0 + ξ1 + ξ2R (zn, a))V (zn, a) =
γ

1− γ
(Va (zn, a))

γ−1
γ +

κ

1− ν
a1−ν

+
∑
m ̸=n

qnmR (zn, a) [V (zm, a)− V (zn, a)]

+ µrR (zn, a) aVa (zn, a) +
1

2
σ2
rR(zn, a)a

2Vaa (zn, a) .

We guess and verify that the solution to this problem behaves asymptotically as

V (zn, a) =
Cn

1−B
a1−B ,
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for some constant Cn > 0 and B > 0. Substituting this guess into the HJB leads to

Cn
1−B

[
(ξ0 + ξ1 + ξ2zn) a

1−B + ξ2znψa
1−B+η

]
=

γ

1− γ
(Cn)

γ−1
γ a−B

(γ−1)
γ +

κ

1− ν
a1−ν +

∑
m̸=n

qnmzn (Cm − Cn)
1

1−B
(a1−B + ψa1−B+η)

+ µrznCn(a
1−B + ψa1−B+η)− 1

2
σ2
rznCnB(a1−B + ψa1−B+η),

which can finally be rearranged as[
(ξ0 + ξ1 + ξ2zn)Cn − (1−B)

(
µr −

1

2
σ2
rB

)
znCn −

∑
m ̸=n

qnmzn (Cm − Cn)

]
a1−B

1−B

+

[
ξ2znCn − (1−B)

(
µr −

1

2
σ2
rB

)
znCn −

∑
m̸=n

qnmzn (Cm − Cn)

]
ψ
a1−B+η

1−B

=
γ

1− γ
(Cn)

γ−1
γ a−B

(γ−1)
γ +

κ

1− ν
a1−ν . (16)

Recall that we impose κ ≥ 0, γ > 1, ν ≤ γ, and ν /∈ [1 − η, 1] throughout the analysis. To

solve for Cn, we consider several cases in turn.

(1a) Homothetic preferences and scale-independent returns. First, we consider the bench-

mark case of homothetic preferences, with either κ = 0 or ν = γ, and scale-independent

returns η = 0. In this case, we guess that B = γ, so that 1−γ
γ
B = 1− γ. Thus, all the

terms in equation (16) are proportional to a1−γ. Therefore, we must have[
ξ0+ξ1

(1+ψ)zn
+ ξ2 − qnn − (1− γ)

(
µr − 1

2
σ2
rγ
)]
Cn − γ

(1+ψ)zn
(Cn)

γ−1
γ −

∑
m ̸=n

qnmCm = κ
(1+ψ)zn

.

Consider in particular the case N = 2. This system of equations reads:[
ξ0+ξ1

(1+ψ)zL
+ ξ2 + qLH + (γ − 1)

(
µr − 1

2
σ2
rγ
)]
CL − γ

(1+ψ)zL
(CL)

γ−1
γ − qLHCH = κ

(1+ψ)zL

and[
ξ0+ξ1

(1+ψ)zH
+ ξ2 + qHL − (1− γ)

(
µr − 1

2
σ2
rγ
)]
CH − γ

(1+ψ)zH
(CH)

γ−1
γ − qHLCL = κ

(1+ψ)zH
.

65



Subtracting one equation from the other leads to[
ξ0 + ξ1
1 + ψ

+

{
ξ2 + qLH + qHL + (γ − 1)

(
µr −

1

2
σ2
rγ

)}
zL

]
CL − γ

1 + ψ
(CL)

γ−1
γ

=

[
ξ0 + ξ1
1 + ψ

+

{
ξ2 + qLH + qHL − (1− γ)

(
µr −

1

2
σ2
rγ

)}
zH

]
CH − γ

1 + ψ
(CH)

γ−1
γ .

Define

h (C, z) = (α0 + α1z)C − γ

1 + ψ
C

γ−1
γ ,

where α0 ≡ (ξ0 + ξ1) / (1 + ψ) and α1 ≡ ξ2 + qLH + qHL + (γ − 1) (µr − σ2
rγ/2) are

positive constants under the assumptions of Proposition 2. For a fixed z, the function

C 7→ h (C, z) is U-shaped and crosses each positive value A > 0 once. That is, the

equation h (C, z) = A has a unique solution C (A, z) as long as A > 0. Moreover,

C (A, zL) > C (A, zH) > 0 whenever zL < zH . Ignoring the trivial solution C (0, z) = 0,

we have

C (0, z) =

[
γ

(1 + ψ) (α0 + α1z)

]γ
.

Finally, the function A 7→ C (A, z) defined on R+ is continuous, strictly increasing,

and unbounded in A.

Now, using the first equation of the original system, a solution (CL, CH) ∈ R2
+ must

also satisfy[
ξ0 + ξ1
1 + ψ

+

{
ξ2 + qLH + qHL + (γ − 1)

(
µr −

1

2
σ2
rγ

)}
zL

]
CL − γ

1 + ψ
(CL)

γ−1
γ

=
κ

1 + ψ
+ (qHLCL + qLHCH) zL ≡ A.

We must therefore verify that there exists A > 0 such that

g (A) ≡ qHLzLC (A, zL) + qLHzLC (A, zH)− A+
κ

1 + ψ
= 0,

where C (A, zL) , C (A, zH) are as described above. Now, note first that g (0) > 0 since

C (0, zL) , C (0, zH) > 0, and κ ≥ 0. Since g is continuous, we must therefore show that

there exists A > 0 such that g (A) < 0, and that g(·) crosses 0 only once. To see this,
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apply the implicit function theorem to compute ∂C (A, z) /∂A. Recall that

(α0 + α1z)C (A, z)− γ

1 + ψ
(C (A, z))

γ−1
γ = A

so that

∂C (A, z)

∂A
=

1

(α0 + α1z)− γ−1
1+ψ

(C (A, z))−
1
γ

.

We thus obtain

g′ (A) =
qHLzL

(α0 + α1zL)− γ−1
1+ψ

(C (A, zL))
− 1

γ

+
qLHzL

(α0 + α1zH)− γ−1
1+ψ

(C (A, zH))
− 1

γ

− 1 .

Fix ε > 0. As A→ ∞, we have C (A, zL) , C (A, zH) → ∞. Hence, there exists Ā (ε) >

0 such that, for any A > Ā (ε), 0 < γ−1
1+ψ

(C (A, zH))
− 1

γ < ε and 0 < γ−1
1+ψ

(C (A, zL))
− 1

γ <

ε. It follows that

g′ (A) <
qHLzL

α0 + α1zL − ε
+

qLHzL
α0 + α1zH − ε

− 1 .

Since zL < zH , we can then write

g′ (A) <
(qHL + qLH)zL
α0 + α1zL − ε

− 1 =
1

1 +D
− 1 ,

where

D ≡
ξ0+ξ1
1+ψ

+
{
ξ2 + (γ − 1)

(
µr − 1

2
σ2
rγ
)}
zL − ε

(qHL + qLH) zL
. (17)

Now, for ε small enough, we have D > 0 and bounded away from 0. Hence g′ (A) < 0

and g (A) < 0 for A large enough. Finally, note that if g′(A∗) < 0 for some A∗ > 0,

then g′(A) < 0 for all A > A∗, since C(A, z) is monotonically increasing. Therefore,

there exists a unique solution to the system. This concludes the proof.

(1b) Homothetic preferences and scale-dependent returns. Consider first the case of wealth-

independent preferences, κ = 0, and suppose that η > 0. In this case, we guess that

B = (1 + η) γ, so that the dominant terms in the HJB equation (16) as a → ∞ are

those in 1−B + η = −B(γ − 1)/γ = (1 + η) (1− γ). We must therefore have

[
ξ2 + |qnn| − (1− (1 + η) γ)

(
µr − 1

2
σ2
r (1 + η) γ

)]
Cn − ((1+η)γ−1)γ

(γ−1)ψzn
(Cn)

γ−1
γ −

∑
m ̸=n qnmCm = 0.
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The proof then follows a reasoning analogous to that of Case (1a). Consider next the

case of wealth-dependent preferences, κ > 0, with ν = γ. In this case, we guess that

B = γ+ η, so that 1−B+ η = 1− γ > −γ−1
γ
B, where the last inequality is equivalent

to η > 0. Hence, the dominant term in the right-hand side of equation (16) as a→ ∞
is the term in a1−γ. We must therefore have[

ξ2 − (1− γ − η)

(
µr −

1

2
σ2
r (γ + η)

)
− qnn

]
znCn −

∑
m ̸=n

qnmznCm =
(1− γ − η)κ

(1− γ)ψ

for all n ∈ {1, . . . , N}. The proof then follows a reasoning identical to that of Case

(1d) below, with ν = γ.

(1c) Non-homothetic preferences and scale-independent returns. Second, consider the case

ν < γ and η = 0. We guess that B = ν. We then have 1−γ
γ
B < 1 − ν, since this

inequality is equivalent to ν < γ. Hence, the dominant term in the right-hand side of

equation (16) as a→ ∞ is the term in a1−ν . We must therefore have[
ξ0 + ξ1
1 + ψ

+

{
ξ2 − qnn − (1− ν)

(
µr −

1

2
σ2
rν

)}
zn

]
Cn −

∑
m ̸=n

qnmznCm =
κ

1 + ψ
,

for all n ∈ {1, . . . , N}. This is indeed a solution to the HJB equation as long as all of

the constants Cn that solve this linear system are positive. In particular, in the case

of N = 2, we obtain

CL =

ξ0+ξ1
1+ψ

+ [ξ2 − (1− ν) (µr − νσ2
r/2)] zH + qLHzL + qHLzH[

ξ0+ξ1
1+ψ

+ {ξ2 − (1− ν) (µr − νσ2
r/2)} zL + qLHzL

] [
ξ0+ξ1
1+ψ

+ {ξ2 − (1− ν) (µr − νσ2
r/2)} zH + qHLzH

]
− qLHzLqHLzH

κ

1 + ψ
,

CH =

ξ0+ξ1
1+ψ

+ [ξ2 − (1− ν) (µr − νσ2
r/2)] zL + qLHzL + qHLzH[

ξ0+ξ1
1+ψ

+ {ξ2 − (1− ν) (µr − νσ2
r/2)} zL + qLHzL

] [
ξ0+ξ1
1+ψ

+ {ξ2 − (1− ν) (µr − νσ2
r/2)} zH + qHLzH

]
− qLHzLqHLzH

κ

1 + ψ
.

It is straightforward to see that a sufficient condition for CL and CH to be strictly

positive is ξ2 > (1− ν) (µr − νσ2
r/2).

(1d) Non-homothetic preferences and scale-dependent returns. Third, we consider the case

of non-homothetic preferences, ν < γ, and scale-dependent returns, η > 0. In this

case, the dominant terms in the left-hand side of equation (16) as a→ ∞ are those in

a1−B+η. We guess that B = ν + η, so that 1−B + η = 1− ν > −γ−1
γ
B, where the last

inequality is equivalent to ν < γ + (γ − 1) η and is thus satisfied as γ > 1. Thus, the

dominant term in the right-hand side of equation (16) as a → ∞ is the term in a1−ν .
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We must therefore have[
ξ2 − (1− ν − η)

(
µr −

1

2
σ2
r (ν + η)

)
− qnn

]
znCn −

∑
m ̸=n

qnmznCm =
(1− ν − η)κ

(1− ν)ψ

for all n ∈ {1, . . . , N}. This is indeed a solution to the HJB equation as long as all of

the constants Cn are positive. In particular, in the case of N = 2, we obtain

zLzHCL =
1− ν − η

1− ν

κ

ψ

[
ξ2 − (1− ν − η)

(
µr − 1

2
σ2
r (ν + η)

)]
zH + qLHzL + qHLzH[

ξ2 − (1− ν − η)
(
µr − 1

2
σ2
r (ν + η)

)
+ qLH

] [
ξ2 − (1− ν − η)

(
µr − 1

2
σ2
r (ν + η)

)
+ qHL

]
− qLHqHL

,

zLzHCH =
1− ν − η

1− ν

κ

ψ

[
ξ2 − (1− ν − η)

(
µr − 1

2
σ2
r (ν + η)

)]
zL + qLHzL + qHLzH[

ξ2 − (1− ν − η)
(
µr − 1

2
σ2
r (ν + η)

)
+ qLH

] [
ξ2 − (1− ν − η)

(
µr − 1

2
σ2
r (ν + η)

)
+ qHL

]
− qLHqHL

.

Note first that (1 − ν − η)/(1 − ν) > 0, since we assumed that either ν > 1 or

ν < 1 − η. We then easily obtain that CL and CH are strictly positive whenever

ξ2 > (1− ν − η) (µr − (ν + η)σ2
r/2). Moreover, this condition also implies CL > CH .

2. Model with labor income

For any λ > 0, define an auxiliary value function Vλ by

V (y, zn, a) = λ1−ν−ηVλ

(
y, zn,

a

λ

)
.

We then have the following equalities:

∂V

∂a
(y, zn, a) = λ−(ν+η)∂Vλ

∂a

(
y, zn,

a

λ

)
,

∂2V

∂a2
(y, zn, a) = λ−(ν+η)−1∂

2Vλ
∂a2

(
y, zn,

a

λ

)
,

∂V

∂y
(y, zn, a) = λ1−ν−η

∂Vλ
∂y

(
y, zn,

a

λ

)
,

∂2V

∂y2
(y, zn, a) = λ1−ν−η

∂2Vλ
∂y2

(
y, zn,

a

λ

)
.

Let us define H(x) ≡ maxc
1

1−γ c
1−γ − x · c = γ

1−γx
γ−1
γ . We can then write

H

(
∂V

∂a
(y, zn, a)

)
= λ−(ν+η) γ−1

γ H

(
∂Vλ
∂a

(
y, zn,

a

λ

))
.

Substituting into equation (10) and dividing through by λ1−ν , we obtain that Vλ satisfies the
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following HJB equation:[
ξ0 + ξ1 + ξ2zn

λη
+ ξ2znψ

(a
λ

)η]
Vλ

(
y, zn,

a

λ

)
= max

c
λ−(1−ν) c

1−γ

1− γ
− λ−(1+η)c

∂Vλ
∂a

(
y, zn,

a

λ

)
+κ

( a
λ
)1−ν

1− ν
+

[
wy − T (wy)

λ1+η
+ µrzn

a

λ

1

λη
+ µrznψ

(a
λ

)1+η
]
∂Vλ
∂a

(
y, zn,

a

λ

)
+
1

2
σ2
rzn

[(a
λ

)2 1

λη
+ ψ

(a
λ

)2+η
]
∂2Vλ
∂a2

(
y, zn,

a

λ

)
+
µyy

λη
∂Vλ
∂y

(
y, zn,

a

λ

)
+

1

2

σ2
yy

2

λη
∂2Vλ
∂y2

(
y, zn,

a

λ

)
+
qnmzn
λη

[
Vλ

(
y, zm,

a

λ

)
− Vλ

(
y, zn,

a

λ

)]
+ qnmznψ

(a
λ

)η [
Vλ

(
y, zm,

a

λ

)
− Vλ

(
y, zn,

a

λ

)]
.

The FOC for consumption in this problem reads:

cλ

(
y, zn,

a

λ

)
= λ

ν+η
γ

(
∂Vλ
∂a

(
y, zn,

a

λ

))− 1
γ

.

Hence, the HJB equation can be rewritten as:[
ξ0 + ξ1 + ξ2zn

λη
+ ξ2znψ

(a
λ

)η]
Vλ

(
y, zn,

a

λ

)
= λ

η+ν
γ

−(1+η)H

(
∂Vλ
∂a

(
y, zn,

a

λ

))
+ κ

( a
λ
)1−ν

1− ν
+

[
wy − T (wy)

λ1+η
+ µrzn

a

λ

1

λη
+ µrznψ

(a
λ

)1+η
]
∂Vλ
∂a

(
y, zn,

a

λ

)
+

1

2
σ2
rzn

[(a
λ

)2 1

λη
+ ψ

(a
λ

)2+η
]
∂2Vλ
∂a2

(
y, zn,

a

λ

)
+
µyy

λη
∂Vλ
∂y

(
y, zn,

a

λ

)
+

1

2

σ2
yy

2

λη
∂2Vλ
∂y2

(
y, zn,

a

λ

)
+
qnmzn
λη

[
Vλ

(
y, zm,

a

λ

)
− Vλ

(
y, zn,

a

λ

)]
+ qnmznψ

(a
λ

)η [
Vλ

(
y, zm,

a

λ

)
− Vλ

(
y, zn,

a

λ

)]
.

The policy function of the original problem c (y, zn, a) satisfies:

c (y, zn, a) =

(
∂V

∂a
(y, zn, a)

)−1/γ

= λ
ν+η
γ

(
∂Vλ
∂a

(
y, zn,

a

λ

))− 1
γ

= cλ

(
y, zn,

a

λ

)
.

In particular, for λ = a, we get

c (y, zn, a)

a(ν+η)/γ
=

(
∂Vλ
∂a

(y, zn, 1)

)− 1
γ

.

Hence, letting a→ ∞ leads to

lim
a→∞

c (y, zn, a)

a(ν+η)/γ
= lim

λ→∞

(
∂Vλ
∂a

(y, zn, 1)

)− 1
γ

.

We now show that as λ → ∞, (∂Vλ(y, zn, 1)/∂a)
−1/γ converges to a constant that is

70



independent of labor productivity y. Letting λ → ∞ in the previous HJB equation and

noting that (η + ν) < (1 + η)γ, we obtain that the solution Vλ to this problem is given by

the function V that satisfies, for any ã ≡ a/λ:

ξ2znψã
ηV (zn, ã) =

κ

1− ν
ã1−ν + µrznψã

1+ηVa(zn, ã) +
1

2
σ2
rznψã

2+ηVaa(zn, ã)

+ qnmznψã
η [V (zm, ã)− V (zn, ã)] .

We already saw that the solution to this equation is given by V (zn, ã) =
Cn

1−ν−η ã
1−ν−η for a

constant Cn > 0 derived above in the case N = 2. As a result, we obtain

lim
λ→∞

(
∂Vλ
∂a

(y, zn, 1)

)− 1
γ

= (Cn)
− 1

γ .

This concludes the proof.

Proof of Proposition 3.

1. Pareto Coefficient of the Labor Income Tail

The law of motion of labor productivity is exogenous and independent of wealth. The

stationary Kolmogorov-forward equation (KFE) for its marginal distribution reads

0 = − ∂

∂y
[µyyfy (y)] +

∂2

∂y2

[
1

2
σ2
yy

2fy (y)

]
− ξ1fy (y) ,

for all y ̸= y0. We guess and verify that fy (·) is Pareto distributed on (y0,∞), i.e.,

fy (y) = Gy−ζy−1

for some constants G > 0 and ζy > 1. Substituting into the KFE leads to

0 =
1

2
σyζ

2
y +

(
µy −

1

2
σ2
y

)
ζy − ξ1.

This is indeed a solution if

ζy = −
(
µy
σ2
y

− 1

2

)
+

√(
µy
σ2
y

− 1

2

)2

+
2ξ1
σ2
y

.
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Note that ζy > 1 whenever ξ1 > µy. Since w is constant, the distribution of labor income is

also Pareto with corresponding tail ζy. Moreover, the distribution of after-tax labor income

then follows by a change of variable, i.e., ynet = 1−τ0
1−τL

y1−τL such that its corresponding Pareto

tail is ζnety = (1− τL)ζy.

2. Pareto Coefficient of the Wealth Tail

The stationary joint distribution of labor productivity, investment productivity, and wealth,

f (y, zn, a), if it exists, satisfies the following KFE:

0 =− ∂

∂a

[(
wy − T (wy) + µrR(zn, a)a− c(y, zn, a)

)
f (y, zn, a)

]
+

1

2
σ2
r

∂2

∂a2
[
R(zn, a)a

2f(y, zn, a)
]
− ∂

∂y
[µyyf (y, zn, a)] +

1

2
σ2
y

∂2

∂y2
[
y2f (y, zn, a)

]
+

∑
m ̸=n

qmnR(zm, a)f(y, zm, a)−
(
ξ1 + [|qnn|+ ξ2]R(zn, a)

)
f (y, zn, a) .

We guess and verify that wealth is asymptotically Pareto distributed and independent of

labor productivity and investment productivity as a→ ∞, that is,

f (y, zn, a) ∼
a→∞

fy (y)Fn a
−ζa−1

for some constants Fn > 0 and ζa > 1. Substituting this expression along with the asymptotic

policy function c(y, zn, a) = C
−1/γ
n a(ν+η)/γ if κ > 0 into the KFE gives

0 = fy (y)Fn

{
− ∂

∂a

[
µrzn

(
a−ζa + ψa−ζa+η

)
− C−1/γ

n a
ν+η
γ

−ζa−1
]
+

1

2
σ2
rzn

∂2

∂a2
[
a−ζa+1 + ψa−ζa+1+η

]}
+

{
− ∂

∂y
[µyyfy (y)] +

1

2
σ2
y

∂2

∂y2
[
y2fy (y)

]
− ξ1fy (y)

}
Fna

−ζa−1

+fy (y)

[∑
m̸=n

qmnzmFm

] (
a−ζa−1 + ψa−ζa−1+η

)
− fy (y)Fn (|qnn|+ ξ2) zn

(
a−ζa−1 + ψa−ζa−1+η

)
.

Using the KFE for fy(y), dividing through by znFna
−ζa+η−1 and letting a→ ∞ leads to

0 = − (−ζa + η)µr +
1

2
σ2
r (−ζa + 1 + η) (−ζa + η)− (|qnn|+ ξ2) +

[∑
m ̸=n

qmn
zm
zn

Fm
Fn

]
.

where we used that ν + η < (1 + η)γ. Let us now define ζ̃a ≡ ζa − η. The previous equation
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can be rewritten as

0 =
1

2
σ2
r ζ̃

2
a +

(
µr −

1

2
σ2
r

)
ζ̃a +

[∑
m ̸=n

qmn
zm
zn

Fm
Fn

−|qnn| − ξ2

]
. (18)

Let {Fn}n=1,...,N be such that
∑
m̸=n

qmnzmFm = znFn
∑
m ̸=n

qnm = znFn|qnn|. For N = 2, this

implies FH/FL = (zLqLH)/(zHqHL). The previous equation then has the solution ζ̃a = ξ2/µr

if σr = 0, and

ζ̃a = −
(
µr
σ2
r

− 1

2

)
+

√(
µr
σ2
r

− 1

2

)2

+
2ξ2
σ2
r

if σr > 0. It is straightforward to show that ζ̃a > 1 iff ξ2 > µr. Now consider the case κ = 0,

and use instead the policy function c(y, zn, a) = C
−1/γ
n a1+η. We obtain, if η > 0, the same

equation as (18) except that µr in the second term in the right-hand side is now replaced by

µr − C
−1/γ
n /(znψ). The case η = 0 can be treated analogously.

3. Pareto Coefficients of the Consumption and Capital Income Tails

Let π (zn) denotes the stationary mass of investment productivity zn and π (zn|a) the con-

ditional distribution at a given wealth level a. The derivations of the Pareto coefficients for

consumption in the cases κ = 0 and κ > 0 follow similar steps, using the relevant policy

functions; for simplicity we only focus on the case κ > 0 here. For any C > 0, we have

P (c ≥ C) =

∫ ∞

0

[
N∑
n=1

π (zn|a)1{cn(a)≥C}

]
f (a) da

=

∫ ∞

0

[
N∑
n=1

π (zn|a)1{a≥C1/(ν+η)
n Cγ/(ν+η)}

]
f (a) da

=
N∑
n=1

∫ ∞

C
1

ν+η
n C

γ
ν+η

π (zn|a) f (a) da

=
N∑
n=1

∫ ∞

C
1

ν+η
n C

γ
ν+η

π (zn) f (a|zn) da,
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where the last equality uses Bayes’ rule. Letting C → ∞, one can rewrite this expression as

P (c ≥ C) =
N∑
n=1

π (zn)

∫ ∞

C
1

ν+η
n C

γ
ν+η

Fna
−ζa−1da

=
1

ζa

N∑
n=1

π (zn)Fn

[
C

1
ν+η
n C

γ
ν+η

]−ζa
=

[
1

ζa

N∑
n=1

π (zn)FnC
−ζa 1

ν+η
n

]
C−ζa γ

ν+η .

Similarly, the distribution of pre-tax capital income satisfies, for any R > 0,

P (r ≥ R) =

∫ ∞

0

[
N∑
n=1

π (zn|a)1{a+ψa1+η≥R/(rzn)}

]
f (a) da.

As a→ ∞, this expression can be rewritten as

P (r ≥ R) =

∫ ∞

0

N∑
n=1

[
π (zn|a)1{a≥[R/(ψrzn)]

1/(1+η)}

]
f (a) da

=
N∑
n=1

∫ ∞

[R/(ψrzn)]
1/(1+η)

π (zn) f (a|zn) da

=
N∑
n=1

∫ ∞

[R/(ψrzn)]
1/(1+η)

π (zn)Fna
−ζa−1da

=

[
1

ζa

N∑
n=1

π (zn)Fn (ψrzn)
ζa/(1+η)

]
R−ζa 1

1+η ,

which concludes the proof.

B.2 Simulations of the Capital Supply Elasticity

In this section, we use the analytical model to simulate the time path of the average capital

supply elasticity to an unanticipated capital tax reform at time s = 0 under four model

variants: (a) homothetic, wealth-independent preferences, (b) non-homothetic preferences,

(c) homothetic, wealth dependent preferences and scale-dependent returns, and (d) non-

homohtetic preferences and scale-dependent returns. Specifically, we draw a sample of 100000

observations from a Pareto distribution for wealth that starts at the scale a of one million.

We discretize the continuous time stochastic differential equation and simulate the economy
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for 20 years over 10000 time increments. For parsimony reasons, we abstract from type-

dependent ex-ante return heterogeneity. The calibration across different model variants is

shown in Table 9.

Table 9. Capital supply elasticity: calibrated parameters for various models.

Environment Calibration

γ κ ν ψ η

a. Homothetic Preferences 2 0 0 0.0025 0

b. Non-Homothetic Preferences 2 10 0.93 0.0025 0

c. WIU Homothetic Preferences + Scale 2 10 2.00 0.0025 0.22

d. Non-Homothetic Preferences + Scale 2 10 0.72 0.0025 0.22

Across all model variants, we assume a standard time discount rate of ξ0 = 0.04 and an

inverse EIS of γ = 2. Regarding the labor productivity process, we assume that w = 1,

σ2
y = 0.02, and µy = 0.0001. To match a labor income tail of ζ̂y = 2.2, we choose an implied

death rate of ξ1 = 0.0266. Moreover, we assume that the volatility of ex-post idiosyncratic

investment risk is σr = 0.175 and the scale-dependent intercept equals ψ = 0.0025. For a

baseline return of µr = 0.06, the latter implies an additional 0.028 mean return difference

between households with wealth close to the scale lower bound and the richest ones in the

sample. For all model variants, we choose the expropriation risk ξ2 to match a wealth tail

of ζ̂a = 1.4. In the other model variants, η and ν are chosen to match a consumption tail of

ζ̂c = 3.0 and a capital income tail of ζ̂ra = 1.15.

In Table 10, we report the time path of the average capital supply elasticity across our

sample of households to an unanticipated tax reform at period s = 0. The benchmark econ-

omy with homothetic preferences yields the lowest elasticity at every time instant, which is

roughly half of the one of the non-homothetic economy as γ = 2. That is, the non-homothetic

model yields a higher average capital supply elasticity than the homothetic model if and only

if γ > 1. Interestingly, the model with wealth-dependent, homothetic preferences and scale-

dependent capital returns provides a comparable time path of capital supply elasticities

relative to the non-homothetic model. This finding depends on the choice of the wealth

utility shifter κ and the degree of scale-dependence as captured by ψ. Higher values of κ and

ψ both increase the elasticity in models with scale-dependent returns relative to the pure

non-homothetic preference economy. Finally, a model that features both non-homothetic

preferences and scale-dependent capital returns generates the highest capital supply elastic-

ities at every instant. In particular, as time goes by, there arises a strong complementary
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between non-homothetic preferences and scale-dependence: A convex saving function that

jointly arises from a convex capital income and a concave consumption function yields a

capital supply elasticity that is roughly 5 times larger than a model that has only a convex

capital income function or a concave consumption function. In other words, such a model

allows the unbounded (and nonlinear) effects of scale-dependence to take off at much earlier

stages of time.

Table 10. Capital supply elasticity: time path to tax reform at period s = 0 for various models.

Environment Elasticity

εa,µr |1 years εa,µr |5 years εa,µr |10 years εa,µr |20 years
Unanticipated Tax Reform

a. Homothetic Preferences 0.12 0.60 1.21 2.43

b. Non-Homothetic Preferences 0.24 1.21 2.43 4.93

c. WIU Homothetic Preferences + Scale 0.23 1.11 2.22 4.30

d. Non-Homothetic Preferences + Scale 0.28 1.41 3.70 27.47

C Quantitative Appendix

C.1 Estimation

Method of Simulated Moments Formally, consider a set of n = 1, . . . , N moments.

Let θ be the parameter vector to be estimated. Moreover, let mn denote a generic empirical

moment and m̂n(θ) the corresponding model-generated moment for a given parameter vector

θ. The MSM minimizes the difference between each empirical moment and its corresponding

simulated model-implied moment. We define Gn(θ) ≡ m̂n(θ) − mn for all n. The MSM

objective is:

argmin
θ

G(θ)′WG(θ), (19)

where W is a weighting matrix and G(θ) is a column vector in which all moment conditions

are stacked, i.e., G(θ) = [G1(θ), . . . , GN(θ)]
T . In our baseline estimation, we assume that

W is a diagonal matrix with uniform weights for all moments.40

40In practice, the objective function is highly non-linear. We therefore utilize a global control random
search algorithm in the estimation process.
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C.2 Model Validation: Conditional Distributions

Figure 20. Conditional distribution: data (top panels) and model (bottom panels).
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