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Abstract

Financial markets (and more generally the real economy) display a wide range of

important nonlinearities. This paper focuses on stock returns, which are skewed left

– generating crashes – and have volatility that moves over time, is itself skewed, is

strongly related to the level of prices, and displays long memory. This paper shows

that such behavior is actually almost inevitable when prices are formed by investors

acquiring information about the true, but latent, value of stocks. It studies a general

model of filtering in which agents receive signals about the fundamental value of the

stock market and dynamically update their beliefs (potentially with biases). When

those beliefs are non-normal and investors believe crashes can happen, prices generically

display the range of nonlinearities observed in the data. While the model does not

explain where crashes come from, it shows that investors believing that prices can

crash is sufficient to generate the rich higher-order dynamics observed empirically. In

a simple calibration with iid shocks to fundamentals, the model fits well quantitatively,

and regression-based tests support the model’s mechanism.

1 Introduction

Background and contribution

*Dew-Becker: Federal Reserve Bank of Chicago; Giglio: Yale University; Molavi: Northwestern
University. The views in this paper are those of the authors and do not represent those of the Federal
Reserve System or Board of Governors. We appreciate helpful comments and discussions from Sergei Glebkin,
Jiantao Huang, Paymon Khorrami, Jean-Paul Renne, Larry Schmidt, and seminar participants at the Bank
of Canada, Duke, Stanford, Indiana, Yale, the San Francisco and Chicago Feds, and the Transatlantic Theory,
CEPR Beliefs and the Macroeconomy, INSEAD, FIRS, HKU Macro, and Saieh Fellows conferences.
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Stock market returns are far from normally distributed. The most salient deviation is that

the market sometimes crashes, so that returns are skewed left. Crashes and negative skewness

more generally have been the subject of huge amounts of research trying to understand both

their causes – perhaps the bursting of bubbles, for example – and also their consequences. Do

stock market crashes cause declines in GDP or does the causation run the opposite direction?

Does crash risk explain the equity premium?1

But stock market returns are much more complicated than simply being independent

draws from a negatively skewed distribution. Their volatility fluctuates over time, and those

fluctuations have also been the subject of large literatures in both macroeconomics and

finance.2 Movements in volatility are themselves positively skewed and they have a strong

negative correlation with market returns (about -80%) known as the leverage effect.3 The

strength of that relationship also changes over time and is related to the conditional skewness

of market returns (Neuberger (2012)), which itself moves over time and is related to the state

of the macroeconomy.4 Finally, volatility has nonlinear dynamics: following large increases,

instead of decaying geometrically, it tends to revert relatively quickly in the short-run and

then more slowly.5

The basic contribution of this paper is to show that not only is it not surprising that the

stock market behaves in those ways, but that such behavior is nearly inevitable when its level

is set by investors who are continuously trying to learn about the true value of stocks.6 While

there is work that has studied different aspects of stock return nonlinearity individually, this

paper is the first to propose a joint explanation. Its analysis cannot explain why there are

crashes; instead what it shows is that in a world where crashes happen and investors are

continually acquiring information, those crashes should happen in a consistent way: with

1On bubbles and crashes, among many others, see Abreu and Brunnermeier (2003) and Phillips, Shi and
Yu (2015). For their relationship with GDP, see Reinhart and Rogoff (2009) and Sufi and Taylor (2022). On
crash risk and the equity premium, see Rietz (1988) and Barro (2006).

2E.g. Bloom (2009) studying shocks to the VIX and the subsequent literature that follows. More recently,
see Caldara, Fuentes-Albero, Gilchrist and Zakraǰsek (2016) and Ludvigson, Ma and Ng (2021).

3See Merton (1980), French, Schwert and Stambaugh (1987), and Cont (2001). The term is generally
viewed as a misnomer – while financial leverage can qualitatively generate countercyclical volatility, the effect
would be smaller than what is observed empirically by an order of magnitude.

4For recent work, see Salgado, Guvenen and Bloom (2020), Gormsen and Jensen (2023), Iseringhausen,
Petrella and Theodoridis (2023), Dew-Becker (2024), and Menkhoff (2025).

5E.g. Mandelbrot (1963), Granger (1980), and Mandelbrot, Fisher and Calvet (1997). Cont (2001) gives
a thorough and still relevant review of the facts for volatility dynamics and other nonlinearities in financial
markets.

6For past work on belief dynamics and stock returns, among many others, see David (1997), Veronesi
(1999), Weitzman (2007), David and Veronesi (2013), Collin-Dufresne, Johannes and Lochstoer (2016),
Gennaioli, Shleifer and Vishny (2015), Johannes, Lochstoer and Mou (2016), Kozlowski, Veldkamp and
Venkateswaran (2018), Farmer, Nakamura and Steinsson (2024), Wachter and Zhu (2023), and Orlik and
Veldkamp (2024).
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volatility rising as prices fall and then nonlinearly returning to its mean, and the strength of

that relationship being related to the conditional skewness of returns. Information processing

naturally and almost inevitably creates the pattern of nonlinearities observed in asset prices.

Methods

The paper’s theoretical structure is built around the premise that agents want to know

the discounted value of a security’s cash flows. It uses a very general setup: the net present

value (NPV) follows some arbitrary process, and agents continuously receive signals about

it. Since the NPV process is essentially unconstrained, the analysis nests a wide range of

specifications that have been studied in the literature.

Asset prices in the model are the solution to a filtering problem: agents observe signals

about the true value of stocks and prices depend on their posterior mean. At any given

time, investors in fact have not just a mean but a full posterior distribution over the possible

fundamental value of the stock market.

The paper’s core theoretical tool is a novel result showing that belief dynamics have a

simple recursive structure: the sensitivity of the posterior mean to signals is equal to the

posterior variance multiplied by signal precision, and the sensitivity of the posterior variance

is equal to the posterior third moment times signal precision. The result also yields an

expression for the mean reversion in the posterior variance. In fact nothing about that is

restricted to an asset pricing setting; it is a much more general statement about the dynamics

of beliefs. The methods also do not require full rationality – agents’ beliefs about crash risk,

for example, could be misspecified.

Results

The first important feature of the theoretical results is that they immediately imply

there is a tight relationship between investors’ uncertainty about fundamentals and return

volatility – high uncertainty in the model creates high return volatility, since uncertainty

causes agents to respond strongly to the signals they observe. That then helps understand

the leverage effect – the increase in volatility as prices fall – which is possibly the strongest

and most consistent of the nonlinearities in the data. There is a necessary and sufficient

condition for the leverage effect to appear in the model: agents must have negatively skewed

beliefs about fundamentals. When agents’ subjective distribution over the true value for

fundamentals is negatively skewed, a negative signal – which drives their mean, and hence

prices, down – also raises investor uncertainty, since negative skewness means that the left-

hand side of their distribution is wider than the right. So when investors have negatively

skewed beliefs, negative news both reduces prices and raises uncertainty and therefore price

volatility.
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It is again important to note that the paper has nothing to say about why investors have

negatively skewed beliefs. Naturally that skewness may come from the facts that crashes

do happen and that other features of the economy also display negative skewness.7 But

behavioral biases or a type of ambiguity aversion could also play a role.

Unsurprisingly, the strength of the leverage effect in the model is related to the magnitude

of skewness in beliefs. In a simple empirical analysis looking at the US stock market and

natural gas futures (with the latter selected for having strongly positive skewness in contrast

to the stock market), the leverage effect coefficient lines up strikingly well with the model’s

prediction.

The paper next shows that nonlinear filtering also generically yields long memory in

volatility, i.e. nonlinear decay following shocks. When uncertainty is high, agents put high

weight on the signals they receive, causing them to learn and reduce uncertainty quickly.

But as uncertainty falls, they also naturally give each additional signal less weight, causing

their learning to slow. The result is that following upward jumps, the rate of mean reversion

is high initially and then slows, consistent with the data.

After developing a few more theoretical results, the paper moves on to a quantitative

analysis that examines the model’s predictions from two perspectives. First, since the

theoretical results are primarily qualitative and in many cases rely on certain limits (e.g. very

small time periods), we examine a simple calibration to see whether the model’s mechanisms

are quantitatively realistic. The calibration is set up so that the latent value of stocks

follows an i.i.d. disaster process with jump sizes distributed as in the estimates of Barro

and Jin (2011) for global consumption disasters, while the signal precision is taken as a free

parameter to match the data. Importantly, because fundamentals follow a random walk in

the calibration, without the learning there would be no nonlinearities in returns other than

skewness.

The calibration provides a good fit to the first four moments of returns, volatility, and

changes in volatility, along with volatility’s autocorrelations and its relationship with returns.

The results have two implications: that the filtering mechanism is potentially quantitatively

relevant and that the addition of an extremely simple learning process to a standard disaster

setup (which by itself would have disasters but none of the other real-world nonlinearities)

generates quantitatively significant nonlinearity – enough to match what is observed in stock

return dynamics, even in samples in which there are no large disasters.8

7For empirical work, see Sichel (1993), McKay and Reis (2008), Morley and Piger (2012), Berger, Dew-
Becker and Giglio (2020), and Dupraz, Nakamura and Steinsson (2021). Theoretical work includes Ilut et al.
(2018), Straub and Ulbricht (2019), Kozeniauskas et al. (2018), Gilchrist and Williams (2000), Kocherlakota
(2000), Hansen and Prescott (2005), Bianchi (2011), and Bianchi et al. (2017).

8Again, past work noted above has shown that learning can help explain stock return dynamics. The
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It is also important to note that many of the statistics that the calibration matches are

unconditional. The nonlinear dynamics appear all the time, not just in crashes. The paper’s

observation is that when investors understand that crashes can happen, that influences how

they process information and thus affects the dynamics of prices even in samples in which

no disasters occur.

The second part of the quantitative analysis derives nonparametric predictions from the

model. First, as discussed above, the model has predictions for the relationship between

volatility, its own lag, returns, and conditional skewness, that we test and find hold well in

the data. Second, it is possible to estimate the precision of agents’ signals and their implied

uncertainty about the level of fundamentals, both without knowing the underlying model. In

US stock market data, the data implies investors’ conditional distribution for fundamentals

has on average a standard deviation of 10.4–16.5 percent. In a survey administered by Yale

University since the 1980’s, cross-sectional disagreement about the fundamental value of the

stock market has a standard deviation of 17.0 percent, which provides some independent

support for the model-based estimate (subject to the usual caveat that disagreement and

uncertainty are theoretically distinct).

Implications

The paper’s core claim is that understanding the wide range of nonlinearities observed

in stock market returns does not require a wide range of models. The behavior is consistent

with a simple setup in which the true value of stocks drifts up over time and faces occasional

large negative shocks, but investors only have noisy signals about that true value. While the

low-frequency behavior of the stock market is driven by deeper economic shocks, the way

those movements play out at daily, weekly, and monthly time scales is consistent with what

would be expected if prices reflect the evolution of investor beliefs as they progressively learn

about the true state of the world.

The tools and analysis developed in this paper are applicable much more generally than

just in the aggregate stock market. They naturally also have implications for the dynamics

of other asset prices, but at a deep level they are really just about how beliefs evolve. The

paper’s methods are therefore relevant much more broadly in economics because they yield

predictions for the evolution of beliefs in generic non-Gaussian settings, even in the presence

of potentially severe behavioral biases. The stock market has very rich data, with both a

long time series and high sampling frequency, so it is a good first setting in which to examine

the relevance of this paper’s type of analysis, but other economic series, such as inflation and

interest rates, also display nonlinearities like skewness and correlated levels and volatility.

point here is that these results are extremely general and robust and not dependent on the specific settings
studied in past work.
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Additional related work

This paper is most closely related to past work studying non-Gaussian filtering problems,

especially as applied to asset prices, including Veronesi (1999), David and Veronesi (2013),

and Kozlowski, Veldkamp and Venkateswaran (2018), among others. The first two papers

study learning about states, while the last is about learning about time-invariant parameters,

but both types of learning are accommodated within this paper’s setup.9

While this paper is most closely related to purely Bayesian models like those above,

the analysis is consistent with a number of deviations from the standard full information

rational expectations setup that have been analyzed in the literature, such as misspecified or

imperfect priors (e.g. Farmer, Nakamura and Steinsson (2024)). Bordalo, Gennaioli, Porta

and Shleifer (2019) model diagnostic expectations as a situation in which agents distort a

standard Bayesian update by treating signals as more precise than they truly are. Section

5.1 shows that this paper’s analysis encompasses such models.10 More generally, what the

paper requires is that agents’ update has the algebraic form of Bayes’ theorem, but any of

the inputs, like the prior or the data-generating processes for the latent state and signal, can

be misspecified.

The quantitative example the paper studies is closely related to work on rare disasters

(e.g. Rietz (1988) and Barro (2006)). Even though the probability of a disaster (here just

a jump in the fundamental value of stocks) is constant, at any given time agents are unsure

whether a disaster has occurred, so their subjective distribution over future returns varies

over time as though the probability of a disaster is time-varying, as in Gabaix (2012) and

Wachter (2013).11

Finally, since a central driving force in this paper’s analysis is the dynamic process

for uncertainty, Altig, Barrero, Bloom, Davis, Meyer and Parker (2022) and Bachmann,

Carstensen, Lautenbacherr, Menkhoff and Schneider (2024) are important recent precursors

to this work for studying, in the context of a survey, not just the level of managers’

uncertainty but how it is updated over time.

Outline

The remainder of the paper is organized as follows. Section 2 presents empirical characteristics

of returns that motivate the analysis. Section 3describes the model structure and gives the

9See also Abel, Eberly and Panageas (2013) and Collin-Dufresne, Johannes and Lochstoer (2016), among
many others.

10Other biases such as excessive extrapolation can also be easily incorporated. It is also straightforward
to allow for multiple priors and ambiguity aversion (e.g. Gilboa and Schmeidler (1989)) – this paper’s
contribution is simply to describe how the Bayesian update of each of the priors is done.

11See also Wachter and Zhu (2023) for a model of learning with rare disasters and Maenhout et al. (2025)
for related work with ambiguity aversion. Baker, Bloom, Davis and Sammon (2025) provide evidence on
what the actual events are that cause jumps in stock prices.
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main theoretical result. Section 4 then examines the theoretical predictions and section 5

studies some extensions and robustness to certain assumptions. Last, sections 6 and 7 take

the model to the data, studying both a calibration and nonparametric tests of the theory,

and section 8 concludes.

2 Motivating facts

We begin with a set of motivating facts.12 All moments for realized returns are for the CRSP

total market return in excess of the risk-free rate (from Kenneth French). Daily volatility is

obtained by forecasting realized volatility using the VIX, so as to remove the time variation

in risk premium.13

Table 1: Stock market return and volatility moments

Stock market —— Volatility ——-
Moment Daily return Level Daily change
Std. dev. 1.14 6.64 1.39
Skewness -0.26 2.19 1.51
Kurtosis 12.68 11.57 30.03
Corr. w/ Rt -0.78

Note: The table reports empirical moments of stock market returns and volatility (level and daily changes).

Volatility is the fitted value of a projection of realized volatility onto the vix.

Table 1 reports the variance, skewness, and excess kurtosis of daily market returns, their

conditional volatility (in annualized standard deviation units), and the daily change in that

conditional volatility. Daily market returns are slightly negatively skewed, while volatility

is highly positively skewed in both levels and changes. All three series have severe excess

kurtosis, consistent with time-variation in their volatilities or the presence of large jumps.

The top-left panel of figure 1 plots the skewness of realized returns over holding periods of

1 to 252 trading days. Skewness becomes significantly more negative as the horizon initially

increases, and then reverts somewhat back towards zero, reaching about -0.8 for annual

returns. Such a hump shape would not arise if returns were independent over time.

12Cont (2001) notes that similar behavior is observed across many different financial markets.
13The regression forecasts is conditional just on what goes into the regression, so errors will arise if the

conditioning set is too small. We do not find that typical cyclical variables provide any additional forecasting
power beyong the VIX.
To be more specific, the conditional volatility of returns is the projection of realized return volatility onto

current option-implied volatility (the VIX index). Conditional skewness is constructed using projections of
realized skewness calculated as in Neuberger (2012).
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Figure 1: Motivating evidence
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The bottom-left panel of figure 1 is a scatter plot of daily market returns against the

daily change in the volatility, showing the strong negative correlation referred to as the

leverage effect. The correlation coefficient in the sample is -0.78. The bottom-right panel

plots estimates of the regression coefficient in every month between 1990 and 2025, showing

that the negative relationship is not isolated to particular episodes – it holds in every month

in the sample except for two, and also has been generally trending downward.

Finally, the top-right panel of figure 1 plots the inverse autocorrelations of volatility,

1/corr (volt, volt−j). The reason to plot the inverse autocorrelations is to help visualize the

deviation from the exponential decay that would be expected if volatility followed an ARMA

process. The fact that corr (volt, volt−j)
−1 grows approximately linearly is consistent with

polynomial decay in the autocorrelations, as in fractionally integrated models such as Ding,

Granger and Engle (1993) and Bollerslev and Mikkelsen (1996).14

The theoretical analysis that follows will show how a simple and general model of

information acquisition can qualitatively generate all of the moments reported in this section.

Section 6 shows that the mechanism is also quantitatively plausible.

3 Model setup and solution

3.1 Model setup

3.1.1 Dynamics of fundamentals

Stocks pay some cash-flow Dt and there is a stochastic discount factor Mt such that,

conditional on an information set It, prices satisfy

Pt (It) = E
[∫ ∞

s=0

Dt+sMt+s

Mt

ds | It

]
(1)

where E is the expectation operator and the notation Pt (It) emphasizes the dependence

of prices on the information set. This specification nests a wide range of models – the

stochastic discount factor encodes risk aversion and any other drivers of state prices and

can, under certain assumptions, also represent distortions in beliefs.15 As a simple example,

a Lucas tree economy generates a pricing equation of this form. Intuitively, the simplest

14Though note that fractional integration is an asymptotic concept and there is an ARMA model that can
match any finite set of autocorrelations.

15It is worth noting here that we are taking the SDF as given. While that will be valid in the context of
the paper’s analysis, more generally it is natural to think that it in fact might change if agents’ information
set changes.
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version of the analysis holds when D and M are exogenous to agents’ information and

we assume that for the baseline results.16

At any given time, the full set of information that an agent could possibly know is

represented by some abstract object θt (which might be a scalar, a vector, a function, or

something more exotic). The fundamental value of the asset is its price conditional on

complete knowledge of θt,

Xt ≡ Pt (θt) (2)

An extreme case is perfect foresight, in which θt contains complete knowledge of all values

of cash flows in the future, but θt can also be coarser.

The model is driven by the dynamics of the state variable θt and the function Pt mapping

from information to asset prices. Assumptions 1–3 in the appendix give the required technical

restrictions on them. The conditions required for the paper’s results to hold are just

those that make filtering possible. Essentially, the first and second moments of Xt (and

its Fourier transform) need to exist and not be too pathological. The jump diffusions and

continuous-time ARMA processes, both in scalar and vector forms, that are typically studied

in economics will be acceptable here. As long as filtering is possible, the paper’s results hold.

Finally, note that one particular case for Xt is that it is the outcome of a learning model.

For example, cash-flows might have a mean growth rate that is unknown, so that expectations

depend on the average growth rate observed up to date t.

3.1.2 Information flows

Agents observe a history of signals denoted by Y t. If the payoff-relevant information in Y t is

a subset of that in θt (i.e. Pt ({Y t, θt}) = Pt (θt)),
17 then by the law of iterated expectations,

Pt

(
Y t
)
= E

[
Xt | Y t

]
(3)

(3) is a standard filtering problem. In principle all that is left is to specify Y . Prices are

a simple expectation here because X itself already includes risk adjustments represented in

state prices via the M process.

The one final wrinkle is that because aggregate stock prices display trend growth, they

16Cases where marginal utility is a function of information either directly (e.g. generalized recursive
preferences or multiplier preferences) or indirectly through a dependence of marginal utility on prices (as in
the CAPM) are significantly more complicated. Section 5.3 discusses the extent to which they can fit into
the paper’s structure.

17More formally, conditional on θt,
∫∞
s=0

Dt+sMt+s

Mt
ds is independent of Y t. If an agent happened to know

the true state θt, the signal history Y t would contain no additional information.
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are typically modeled in logs. If X is an arithmetic process (which it might be in the case of

inflation or interest rates), we could directly apply (3). To analyze stock prices, which are

typically modeled as a geometric process, we restate the filtering problem in logs,

pt ≡ E
[
xt | Y t

]
(4)

where xt is the log NPV process,

xt ≡ E
[
log

∫ ∞

s=0

Dt+sMt+s

Mt

ds | θt
]

(5)

and pt is the log of the price agents actually pay, given Y t. That act of passing the log through

the expectation is the single approximation step in the analysis. Transformations like this are

not uncommon – analyses of macro-finance models very often rely on the Campbell–Shiller

approximation, for example, and an alternative would be to motivate (4) that way. Appendix

A.3.3 reports analogs to the main results below without applying (4) and shows that they

are similar, and the quantitative analysis in section 6 does not use this approximation.

Finally, for the Y process, we assume that all of the agents’ information is generated via

dYt = xtdt+ σY,tdWt (6)

where σY,t follows some exogenous process (subject to assumption 3 in appendix A.1.1) and

the information set Y t represents the history of Y up to date t. A reasonable benchmark

is that σY,t is constant, but it could also vary over time, giving a form of time-varying

uncertainty. When σY,t = 0, we recover the full-information benchmark, in which pt = xt.

In contrast, when σY,t > 0, stock prices deviate from fundamentals in the short run because

of the noise in investors’ signals. When σY,t is bounded away from zero, the very short-run

fluctuations in prices are dominated by learning dynamics. We maintain this assumption

throughout the paper.

Obviously this is not the only possible information structure. Agents could receive signals

about nonlinear functions of xt, such as its moments, or about θt, which might contain

relevant information about the future path of x. Additionally, they might draw inferences

about θt from realized cash-flows.18 The Y process can be thought of as a simplification that

captures all the information agents receive in a single factor.19 And given that x represents

18Note that in the case of US stocks, cash-flows are strictly pre-determined. Dividends, for example, are
announced well in advance of their payment.

19Note that if agents receive multiple Gaussian signals, then those signals can always be combined in such
a way (weighting by their precisions) that they can be reduced to a single composite signal. Normality of
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how agents would value stocks if they had complete information, it makes a certain amount

of sense to assume that it is what agents learn about. The assumption that information flows

diffusively also matters for the analysis, but it is not completely restrictive – see section 5.2.

The analysis is extremely general in the dynamics for fundamentals, represented by x, but

pays for that generality with this restriction on the information structure. The paper shows

that this setup can match many features of the data on the US stock market, but for other

purposes, one might naturally want a different structure.

Up to equation (6), there is little loss of generality in the analysis other than the restriction

thatM andD are exogenous to information. The choice of the information structure is where

the model is significantly restricted. Section A.4 examines how to get to equation (4) in a

Lucas tree type economy with the information structure in (6).20

Finally, while the setup is motivated by an asset pricing problem, it is much more

general. x is just some latent object of interest – it could be trend inflation, for example.

Then E [xt | Y t] would represent agents’ expectations of trend inflation given their history of

signals. The following results are general statements about nonlinear filtering, not just asset

price dynamics.

3.2 Solution to the filtering problem

The paper’s results primarily involve the first three moments of agents’ posteriors, denoted

here by κ1,t, κ2,t, and κ3,t

Proposition 1 Given (6) and restrictions on xt given in appendix A.1, the posterior mean

(κ1,t) and variance (κ2,t) satisfy

dpt = dκ1,t =
κ2,t

σ2
Y,t

(dYt − Et [xt] dt) + Et [dxt] (7)

d vart [xt] = dκ2,t =
κ3,t

σ2
Y,t

(dYt − Et [xt] dt)−
κ2
2,t

σ2
Y,t

dt

+Et [d ⟨x⟩t] + 2 covt (xt, dxt) (8)

where κ3,t is the posterior third moment, ⟨x⟩ is the total quadratic variation process of x,

and Et [·] ≡ E [· | Y t].

the errors can be motivated by the functional central limit theorem.
20What makes it nonstandard is that the agent uses just the composite signal Y , and not the realization of

dividends, for forming expectations. While we argue that is empirically reasonable – both because the model
captures major features of the data and because empirically dividends are almost entirely predetermined –
it is not completely trivial to apply to a standard setup.
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For the mean, κ1,t, the first term says that the sensitivity to news is equal to current

uncertainty (κ2,t) multiplied by the precision of the signal, while the second term is simply the

current expected drift. The intuition for the gain is simple: κ2,t/σ
2
Y,t = covt (xt, dYt) / vart (dYt)

is the coefficient from a hypothetical local regression of x on dY .

The dynamics of the conditional variance are similar. The gain is now the third moment

times the precision of the signal. That is again because κ3,t = Et

[
(xt − Et [xt])

3] is equal to
covt

(
(xt − Et [xt])

2 , dYt

)
/dt, so κ3,t/σ

2
Y,t is the local regression coefficient. We discuss the

drift term
κ2
2,t

σ2
Y,t
dt further below. Et [d ⟨x⟩t] represents the expected accumulation of variance

in x (i.e. due to shocks), and 2 covt (xt, dxt) is the accumulation of uncertainty due to x

effectively “spreading out” over time.

Remark 1 Prices follow an Itô diffusion and satisfy

dpt = µp,tdt+ σp,tdW̃t (9)

where dW̃t ≡ σ−1
Y,t (dYt − Et [xt] dt)

µp,tdt = Et [dxt] , σp,t = κ2,t/σY,t

and W̃t is a Brownian motion with respect to the agent’s filtration.

Prices follow a completely standard continuous diffusive process. What the model delivers

is simply a very specific structure for the conditional volatility process. All of the predictions

for prices ultimately follow from the dynamics of volatility, which is itself a diffusion driven

by the same Brownian motion W̃ (see corollary 2 below).

3.2.1 General result

While those equations will be enough for the present paper, they suggest a broader result:

the gain coefficients seem to satisfy a recursion. That recursion turns out to hold for the

cumulants of agents’ posteriors, which are the derivatives of the log characteristic function.

The first three cumulants are equal to the first three central moments. Denote the n-th

cumulant of the time-t conditional distribution of xt by κn,t.

Theorem 1 Under the conditions of proposition 1, for all n for which the n+1th cumulant
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exists21

dκk,t =
κk+1,t

σ2
Y,t

(dYt − Et[xt]dt)−
1

2σ2
Y,t

k∑
j=2

(
k

j − 1

)
κj,tκk−j+2,tdt

+
k∑

j=1

(
k

j

)
Bk−j (−κ1,t, . . . ,−κk−j,t)Et[d(x

j
t)] (10)

where Bj denotes the jth complete exponential Bell polynomial.

The result follows from a straightforward application of textbook results in Liptser and

Shiryaev (2013) and Bain and Crisan (2009), but the application to moments and cumulants

is novel to this paper, as far as we can tell.22 The recursion for the gain carries through to all

the cumulants: the gain of the nth cumulant is the (n+ 1)th cumulant times the precision

of the signal.

4 Predictions

This section examines the predictions of proposition 1 for the behavior of returns. Many

of the results pertain to return volatility, which we define as the instantaneous volatility

process for log prices23

volt ≡
(
lim
∆t↓0

E
[
(pt+∆t − Etpt+∆t)

2] /∆t

)1/2

(11)

= κ2,t/σY,t (12)

That is, volt is simply the diffusive volatility of prices from the representation (9). Again, the

conditional volatility of prices depends on agents’ current posterior variance over fundamentals,

κ2,t. So, up to σY,t, price volatility measures uncertainty.

21Since the cumulants are derivatives of a function, if κn+1,t exists then all lower-order cumulants also
exist. Note that the distribution of xt conditional on Y t is necessarily subgaussian, meaning that all moments
and cumulants exist (Guo, Wu, Shamai and Verdú (2011)). So the restriction to n such that the n + 1th
cumulant exists may possibly be satisfied for all n for all processes, but we have not been able to verify that.

22Theorem 1 is closely related to results in Dytso, Poor and Shitz (2022), with two key differences. First,
xt here is dynamic instead of constant. Second, theorem 1 enables the calculation of the evolution of the
conditional cumulants from knowledge only of the priors. Surprisingly, as Dytso, Poor and Shitz (2022)
discuss, there do not appear to be any other earlier precedents to the family of results in their work and
ours, but we find it unlikely that nobody else did a similar calculation at some point.

23For stocks at high frequency, cash flows are predetermined, and in any case the variance of changes in
cash flows for the aggregate US stock market at even the monthly frequency is insignificant compared to
changes in prices. The historical variance of monthly returns 2.85 × 10−3, while the variance of dividend
growth is over 600 times smaller – 4.46×10−6. We therefore treat return volatility as equal to price volatility.
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Combining equations (8) and (7) from proposition 1 yields the following.

Corollary 2 Wvolt follows a diffusion satisfying

d (volt) = σ−1
Y,t

κ3,t

κ2,t

(dpt − Etdpt)︸ ︷︷ ︸
a

− vol2t
σY,t

dt︸ ︷︷ ︸
b

+Et [d ⟨x⟩t] + 2 covt (xt, dxt)− voltσ
−1
Y,tdσY,t (13)

The main predictions arise out of the terms a and b . a determines the joint behavior

of returns and their higher moments, while b generates nonlinearity in the dynamics of

volatility. The terms on the second line again involve the spreading out of xt itself along with

the dynamics of σY,t, both of which are exogenous, as opposed to coming from the learning

that is the paper’s focus.24

A first point to note is that volatility is generically time-varying. It is only when the

model is fully linear and Gaussian that the volatility of prices converges to a constant. If

any of the higher-order cumulants is nonzero, that effectively immediately creates a change

in volatility. Time-varying volatility by itself is enough to generate, qualitatively, the excess

kurtosis observed in stock market returns in table 1.

4.1 The leverage effect

Proposition 2 The instantaneous coefficient in a regression of changes in the conditional

variance of returns on price changes is

cov (dpt, dvolt)

var (dpt)
=

κ3,t

σY,tκ2,t

(14)

The term a in (13) shows that the presence of a leverage effect – the negative

correlation between changes in volatility and prices in table 1 and the bottom panels of

figure 1 – is completely determined by the third moment of agents’ conditional distribution

and the noise in agents’ signals. The necessary and sufficient condition for the existence of

a leverage effect is that κ3,t < 0: there is a leverage effect if and only if agents’ posterior

distribution for fundamentals is negatively skewed. And the fact that we observe a leverage

effect in the aggregate US stock market in nearly all months in the data, including during

severe downturns, then implies that the conditional skewness is negative in essentially all

24In principle, covt (xt, dxt) is related to κ2,t, so it is not completely driven by fundamentals alone.
However, the paper’s focus will be on the case where fundamentals are a martingale, so that conditional
expectations of dxt are always equal to zero, which also makes the covariance zero.
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states of the world observed in our sample. The relationship has additionally strengthened

over time, which would be consistent with a decline in κ3,t.

The intuition for proposition 2 is straightforward: a negative third moment means that

the right tail of the conditional distribution is shorter than the left. When agents receive

good news about fundamentals, that tells them they are likely on the narrower side of the

distribution, and their conditional uncertainty falls, driving down return volatility.

4.2 Slow decay in volatility

The term b in (13) shows how volatility decays. When volatility is high, vol2tσ
−1
Y,tdt

also grows, pulling volatility back down towards its steady state. Interestingly, though,

unlike standard time-series models (e.g. an AR(1) or Ornstein-Uhlenbeck process), the mean

reversion is quadratic, so that the rate of mean reversion rises more than proportionately

with increases in volatility.

There is a large empirical literature studying nonlinearity in volatility dynamics in

securities markets. The form of mean reversion here is consistent with that literature, in that

the decay is non-exponential.25 When jumps up in volt are large relative to its steady-state

value, its decay after a time ∆t is approximately of the form 1/ (1 + a∆t) for a coefficient a.26

That is exactly the polynomial decay studied in the literature on long memory in volatility,

and it is the inverse linear decay that is also observed in the top-right panel of figure 1.

Intuitively, volatility decays nonlinearly because the degree to which agents respond to

signals (i.e. the magnitude of the gain) is increasing in uncertainty. When uncertainty is

high, agents update strongly in response to signals and learn quickly. As uncertainty falls,

they update less strongly and learning slows. While that phenomenon is well known in linear

Gaussian filtering problems, being a core feature of the Kalman filter, equation (8) shows it

is actually a general feature of filtering problems.

The end result is that when investors are learning about fundamentals dynamically, long

memory is generic, and only disappears in the knife-edge case of a fully linear Gaussian

model, where all higher moments are equal to zero at all times. We examine the model’s

ability to fit detailed data on volatility dynamics in more detail in section 7.

25See Corsi (2009) for a discussion of some of the evidence (going back at least to Ding, Granger and
Engle (1993)) along with the fact that the data is generally consistent both with strict long memory and
also processes that simply approximate it, since formally long memory is defined asymptotically.

26Specifically, if there is a jump at some date t0, then if there are no further shocks to volatility and σY,t

is constant, so that it just deterministically falls, then to leading order yt0+∆t ≈ yt0/
(
1 + σ−1

Y yt0∆t
)
.
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4.3 Skewness in returns

Since the price process, p, is a diffusion, its instantaneous skewness is not well defined

formally. Skewness arises as returns interact with changes in volatility. We get the following

result using a second-order approximation for the third moment of returns, defining skewness

as usual as the scaled third moment:

skewt (pt+∆t) ≡
Et

[
(pt+∆t − Etpt+∆t)

3]
Et

[
(pt+∆t − Etpt+∆t)

2]3/2 (15)

Proposition 3 The local skewness of returns is

lim
∆t↓0

skewt (pt+∆t) (∆t)−1/2 = 3
κ3,t

κ2,t

σ−1
Y,t (16)

That is, the conditional “instantaneous” skewness of returns again depends on the second

and third moments of the posterior. As ∆t → 0, skewness goes to zero – that is the usual

result that returns are locally normal. For small but nonzero values of ∆t, equation (16)

provides a link between the conditional skewness of returns – which is potentially measurable

– and the conditional skewness of fundamentals, skewt (xt), which determines the leverage

effect:

Corollary 3 The leverage effect coefficient as defined in proposition 2 is related to the

skewness of returns via

lim
∆t↓0

skewt (pt+∆t)
1

3
(∆t)−1/2 =

cov (dpt, dvolt)

var (dpt)
(17)

These results show that the model is able to qualitatively match the return skewness

documented in table 1 and the top-left panel of figure 1 again as long as κ3,t is generally

negative. Skewness arises here again due to the term a in equation (13). When κ3,t < 0,

declines in prices raise volatility, leading to a relatively long left tail in returns. Neuberger

(2012) and Neuberger and Payne (2021) study this mechanism in detail.

4.4 Skewness in volatility

Table 1 shows that both the level and daily changes in stock market volatility are also skewed.

The source of that effect can be seen by combining equations (8) and (16) to obtain

std (volt) =
1

3
volt

∣∣∣∣ lim∆t↓0
skewt (pt+∆t) (∆t)−1/2

∣∣∣∣+ o
(
∆t1/2

)
(18)
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Holding the conditional skewness of returns fixed, the volatility of innovations to volt scales

with volt itself. When volt falls towards zero, the volatility of its innovations quickly becomes

much smaller, while they grow when volt rises. That effect creates a long right tail in the level

of volt. Past work (e.g. Bollerslev, Tauchen and Zhou (2009)) has emphasized the importance

of time-varying vol-of-vol. This present model gets it through an endogenous mechanism.

Note also that this variation does not just come from the volatility of fundamentals following

a nonlinear process, as in Cox, Jonathan E. Ingersoll and Ross (1985). Finally, as with

returns, time-varying volatility in volatility mechanically also generates excess kurtosis in

the unconditional distribution of volatility.

4.5 Examples

This section briefly considers two simple examples. Section 6 studies in much more depth a

quantitatively realistic example.

4.5.1 Linear Gaussian process

If fundamentals, x, follow a linear Gaussian process then the model’s solution is the Kalman

filter. pt is a linear function of the history of signals; its gain and hence conditional variance

converge to constants; and its conditional skewness and all higher moments are always equal

to zero. There is then no leverage effect, volatility of volatility, or skewness in prices or their

volatility.

4.5.2 Markov switching process

Veronesi (1999) studies a two-state switching model in which the latent state x switches

between a low and a high value at rates λHL and λLH , respectively, and agents have a

Gaussian signal as required in proposition 1. In this case, the low and high values of xt can

be normalized to 0 and 1 without loss of generality.

Agents’ posterior at any given time has only a single parameter, πt, which is their

posterior probability that xt = 1. The conditional variance and third moment of xt, which

drive price dynamics, are simple functions of πt:

κ2,t = πt (1− πt) (19)

κ3,t = (1− 2πt)× κ2,t (20)

The variance here then is a bell-shaped function of πt, peaking at 1/4 at πt = 1/2 and
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declining to zero on both sides, and sign (κ3,t) = sign
(
1
2
− πt

)
. Economically, when πt is

near 1 so that agents are confident they are in the good state, volatility is low, but the third

moment is strongly negative, so there is a leverage effect. However, when a bad state is

realized and investors have seen enough signals to be confident in that, so that πt is below

1/2, the leverage effect reverses: agents no longer worry as much about the economy getting

worse, so there is relatively more upside and κ3,t > 0.

These results illustrate the importance, in the context of the leverage effect, of agents

continuing to learn in bad states. If learning effectively stops once agents know the economy

is in a recession – in the sense that things cannot continue to get worse – then the leverage

effect disappears or even reverses. That is not what is observed historically in the US stock

market.

5 Extensions and robustness

5.1 How much rationality needs to be assumed here?

At first glance, this model appears to require investors to be strongly rational, applying

Bayes theorem with full knowledge of the dynamics driving fundamentals. While that is the

baseline that we will apply in the simulations below, there is nothing about the analysis that

actually requires it. Proposition 1 and remark 1 hold as long as agents update using the

basic form of Bayes’ rule. In particular, none of the following is required in the derivations:

1. That agents use the correct precision (σ2
t ) in calculating their update (this is the

deviation in the work of Bordalo, Gennaioli, Porta and Shleifer (2019) on diagnostic

expectations)

2. That agents’ assumed dynamics for x are in any sense “correct”

3. That the signals agents observe are truly Gaussian

4. That the agents incorporate all information they receive. They could irrationally or

inefficiently ignore some information, and unreasonably privilege other sources

5. That the agents properly weight all information they receive. Agents might receive

many Gaussian signals, which can be combined into a single value and used for

updating. It is possible that they do that combination incorrectly

6. That agents all receive the same information or share priors. For example, their beliefs

could be affected by different life histories, as in Malmendier and Nagel (2016).
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What is important here is not actually that agents are true Bayesians. The propositions

and corollaries above simply require that they use an updating rule that has the same

algebraic structure as Bayes’ rule. Obviously deviations from rational expectations will mean

that what agents see as a martingale will not appear to be one to an econometrician. But

the nonlinearities the paper focuses on do not hinge on anything like complete rationality.

5.2 Discrete information revelation events

Dytso, Poor and Shitz (2022) prove the following discrete version of theorem 1. Instead

of assuming a diffusive information flow, this result is for a signal with strictly positive

information content (i.e. a positive precision or finite variance), meaning that the moments

also update by discrete amounts.

Proposition 4 [Dytso, Poor, and Shamai (2022), equation (52)] For a random variable xt

and a signal yt ∼ N (xt, σ
2),

d

dy
κj (xt | yt = a) = κj+1 (xt | yt = a) /σ2 (21)

where κj (xt | yt = a) is the jth posterior cumulant of xt conditional on observing yt = a.

Furthermore, for yt in a neighborhood of any a ∈ R,

E (xt | yt) =
∞∑
j=0

κj+1 (xt | yt = a)

j!

(
yt − a

σ2

)j

(22)

and an analogous series holds for all higher cumulants.

Proposition 4 shows that the type of recursion in theorem 1 continues to hold for discrete

revelation events – diffusive information coming in infinitesimal increments in continuous

time is not necessary for the central results. At the same time, it shows that normality is

important – continuity is not essential, but proposition 4 still requires a normally distributed

signal.27 That said, proposition 4 also shows why continuous time is useful here: in (21) the

posterior cumulants, which are precisely what one wants to solve for, determine sensitivity.

So using (21) really requires solving for a fixed point. In continuous time the cumulants

follow continuous processes, so the prior and posterior values are effectively identical, which

simplifies the analysis. Additionally, though, note that theorem 1 does not follow directly

27Dytso and Cardone (2021) explore related results for non-Gaussian variables, but do not derive a power
series result. It is possible to derive a similar result for certain other specific cases, e.g. when the likelihood
is exponential or Poisson.
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from proposition 4. Accounting for dynamics, which is ultimately central to the analysis,

makes the derivations significantly more complicated.

5.3 Allowing marginal utility or cash flows to depend on information

The main results restrict to the case where state prices are not affected by the realization

of the signal that agents observe. In some of the learning models in the literature, there is

an additional mechanism that enters because information is priced (i.e. M depends on the

signal itself). This paper rules that channel out because it adds significant complications to

the analysis and the goal is to focus on the implications that follow directly the learning,

rather than additional price effects.

In particluar, there are two ways that the assumption that information is unpriced can

be relaxed. The first is to allow marginal utility and cash-flows, M and D, to depend on the

signal errors W in a known way. Then the fundamental value X is correlated with W , which

is allowed by the standard filtering results that we use from Liptser and Shiryaev (2013).

There is just a simple a correction to the gain coefficient.

In models in which information is endogenously priced, though, such as under the CAPM

or generalized recursive preferences, that price is not a known exogenous function. Rather,

finding it involves solving a fixed point problem. In the CAPM for example, the response

of prices to a shock depends partly on how future volatility responds. But the response of

future volatility itself depends on how prices respond to shocks.28 While that class of models

is important in the literature, the fixed point adds significant complexity (enough that the

model is no longer solvable by hand)29 and the endogeneity is not necessary for matching

the features of the data that motivate the analysis. There is nothing about that fixed point

structure, though, that appears impossible in principle to incorporate into this paper’s type

of analysis in future work. See appendix A.4.2 for a discussion.

6 Illustrative calibration

This section presents a simple quantitative example. We first use it to illustrate the model’s

core mechanisms with impulse response functions, and then examine the extent to which the

28The information structure from Veronesi (1999) that is studied in section 4.5.2 is a special case of what
is studied here, but the full model in Veronesi (1999) involves exactly this fixed point, which in the end is
solved numerically.

29E.g. see Veronesi (1999).
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qualitative predictions above map into quantitatively reasonable behavior. The example

shows how layering incomplete information over simple dynamics for fundamentals can

generate quantitatively severe nonlinearities that help fit a range of features of empirical

data on aggregate stock returns. That said, it is important to emphasize that the simulation

results are just an example. Their failure to match the data on some dimension does not

mean that there is not a model with the sort of learning analyzed here that would do better,

just that the exact specification detailed in this section is (obviously) imperfect.

6.1 Model setup

Fundamentals have an average growth rate of g with both small Gaussian shocks and

occasional downward jumps:

dxt = (ϕλ+ g) dt− JtdNt + σxdBt (23)

where B is a Brownian motion, N is a Poisson process with constant rate ϕ, and Jt is a

random variable with mean λ. The term ϕλdt ensures that mean price growth is equal to

g.30 The drift g can be thought of (and formally motivated as) coming from a risk premium

on cash flows. It plays no role other than to generate positive average returns.

In the absense of learning, prices are equal to x and hence inherit its dynamics. So without

learning, returns would be skewed due to the jumps, but volatility would be constant and

there would be no leverage effect or long memory.

The free parameters are those determining the distribution of jumps, the diffusive volatility,

and the error variance of the signals (σ2
Y ). For the jumps, we use the calibration of Barro and

Jin (2011) and assume that equities have a leverage of 3 relative to shocks to consumption.31

σx is then chosen to match the standard deviation of US stock returns, and σY = 5.5

(based on the time index corresponding to days) was chosen relatively roughly to match

the dynamics of volatility and skewness. To get a sense of scale, if agents hypothetically

had a prior variance for fundamentals of ∞ and fundamentals were constant, after one year

of observing such signals their posterior standard deviation would be 0.35 in logs. We set

30The reduced-form process for x can easily be generated by assuming that cash-flows follow the same
jump process. Positive risk premia can be generated by assuming the SDF is also driven by the same jumps
(but with the opposite exposure).

31This is high relative to the average debt-to-equity ratio for US stocks. On the other hand, large negative
shocks mechanically raise leverage, so a value of 3 can be seen as representing more how leverage would act
in a disaster state. This value is consistent with that chosen by Bansal and Yaron (2004).
While Barro and Jin (2011) cut their jump distribution off at a minimum of 10.5 percent for consumption,

we find that extending it to zero helps the model fit the data. Barro and Jin (2011) do not rule out the
existence of small jumps but rather just focus on the larger ones.
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g = 0.07 to match the historical equity premium.

It is straightforward to simulate the model by discretizing the state space and then

calculating expectations using Bayes’ theorem.32 In addition, prices are calculated as Pt =

Et exp (xt), so that the simulation does not use the log approximation from equation (4).

6.2 Impulse response functions

This section examines two impulse response functions – to errors in the signal, σY dWt, and

to jumps in fundamentals, JtdNt. Since the model is nonlinear, impulse responses differ

depending on the state of the economy. Impulse responses here are calculated simply as the

population mean (from a 100,000-year simulation) conditional on a shock having occurred

compared to the population mean conditional on a shock not having occurred.

The noise shock is defined as a month with a ±2.4 standard deviation realization in the

total error in the signal over the month, representing a one-in-ten year event.33 Figure 2

plots the response of prices and volatility to the shock. The first month in the figure is the

period in which the shock occurs. First, consider the negative shock. As agents observe the

negative signals, prices fall and uncertainty rises. As uncertainty (and hence volatility) rises,

prices become more sensitive to signals, with the result that the response of prices over the

course of the month is concave, with prices declining progressively faster. When the shock

ends, prices and volatility revert, but the recovery is very slow: volatility only gets close to

its starting point after about a year, and in the same time prices have recovered only about

half of their decline. The fact that prices recover initially quickly and then slowly is again a

consequence of the volatility dynamics: the recovery of volatility and uncertainty itself slows

the recovery in prices because when uncertainty is low, agents update less in response to the

incoming data that is (by assumption) telling them that a disaster did not actually happen.

In the case of a positive noise shock, the effects are smaller. Intuitively, that happens

because of the asymmetry in the fundamentals process: agents understand that it is possible

that a large negative shock has occurred, so they update strongly in response to negative

signals. But since large positive shocks are effectively impossible, they strongly discount

positive signals. That plays out by volatility declining, so that the marginal effects of

additional noise are progressively smaller. The overall effect on prices of a negative noise

32Note that even if x is discrete, the posterior moments (including prices) are continuous, since they place
probabilities (in a continuous interval) on the discrete states. The numerical results are not sensitive to the
discretization choices used here. Specifically, the grid for the state space has increments of one log point and
the time interval is set to a day.

33More specifically, the IRFs are calculated as average behavior following a month in which the cumulative
error was between ±2.35 and ±2.45 standard deviations.
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shock is 20% larger than a positive noise shock, and the effect on volatility is 3.5 times larger.

Figure 2: Response to negative error in the signal
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Note: The left-hand panel plots the IRF for prices – the conditional expectation of x – and the right hand

for the conditional standard deviation of prices. The shock is a one-time unit standard deviation negative

error in the signal (i.e. a negative realization of σY dW ).

The third IRF, in figure 3, represents the average response to a downward jump in

fundamentals. The left-hand plot in figure 3 shows that the decline in prices is again nonlinear

– it accelerates before slowing, with the initial declines on average equal to 0.15 percent per

day, accelerating to 0.20 percent per day at their peak. It takes at least five years on average

for prices to fully incorporate the drop in fundamentals. This is therefore a model in which

disasters take years on average to fully play out. They are not one-time events, but rather

involve rich dynamics.

The right-hand panel shows that the peak in volatility does not come on average until 7-8

months after the shock. That said, because of the nonlinearity of the model, the mean IRF

is not a very good representation of typical behavior. For example, the average maximum of

annualized volatility in the five years after a negative jump is 72 percent, more than twice

as high as the average five-year peak of only 35 percent for periods with no jump.

6.3 Simulation results

The left-hand panel of figure 4 plots an example of a 100-year time-series of fundamentals,

x, and prices, p, from the full simulation. Prices track fundamentals well in the long-run,

but clearly there can be large temporary deviations, and those deviations are skewed left.

In some cases, fundamentals jump down and it takes time for prices to catch up, and there
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Figure 3: Response to a negative realization of fundamentals
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Note: These plots are the same as in the previous figure, except they correspond to the IRF for a negative

realization of fundamentals. Specifically, the IRF for prices is the average path of prices when x = −λ

compared to x = 0, and the right-hand panel is the same for price volatility.

are also clear cases of prices jumping down “erroneously” (based on hindsight or on knowing

the true state) and then recovering, for example around year 50.

The right-hand panel of figure 4 plots the dynamics of prices and conditional volatility

during the crash observed around year 8 in the simulation in the left-hand panel. The crash

displays what can be recognized as common behavior in the data, with the price decline

accelerating and then ending with a large rebound from the bottom. Volatility rises as

prices fall, peaking at the bottom, and then falling as prices recover somewhat.

Table 1 reports moments for returns and their conditional volatility. As discussed in

Barro and Jin (2011), the US has historically had fewer disasters than would be expected

unconditionally. We therefore calculate moments as the average from 100-year samples of

the simulation in which the most negative annual return is no more negative than the most

negative value observed in the US over the past century. That choice leads to somewhat less

skewness in the simulations. Calculating moments on 100-year samples also accounts for any

small-sample bias in the statistics.

Table 1 shows that model broadly matches the data, though skewness and kurtosis for

volatility are somewhat higher than their empirical counterparts. Since the goal of this

section is just to present a parsimonious quantitative example, the good match is fairly

surprising.

Figure 5 compares the model’s behavior to what was shown in figure 1. Return skewness is

very similar to the data, especially at horizons of a month or more. The inverse autocorrelations
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Figure 4: Simulated time series of fundamentals and prices
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Note: “Fundamentals” is the simulated x process, and “prices” is the simulated κ1 process. The mean

growth rate has been removed to help make the figure readable.

of conditional volatility in the model are also essentially identical to the data. The bottom-

left panel shows that the model generates a leverage effect scatter plot similar to the

data, though with too little dispersion when returns are near zero (implying that there

is a component of conditional volatility that is driven by a process that is independent of

returns). Finally, the bottom-right panel shows histograms for volatility in the model and

data demonstrating that the distributions are similar.

The results in this section show that the model is able to match key features of the data

not just qualitatively but also quantitatively.

7 Estimated volatility dynamics and investor uncertainty

The analytic results in section 4 have specific implications for the dynamics of volatility

and the leverage effect. This section focuses on estimating the regressions motivated by the

model-implied dynamics for volatility. They deliver two key outputs: estimates of the noise

in investors’ signals and tests of overidentifying restrictions.
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Table 2: Model vs data moments

Stock returns Volatility level Volatility change
Moment Data Model Data Model Data Model
Std. dev. 1.14 1.11 6.64 6.74 1.39 0.93
Skewness -0.26 -0.10 2.19 5.11 1.51 1.03
Kurtosis 12.68 4.75 11.57 43.52 30.03 139.05
Corr. w/ Rt -0.78 -0.67

Note: This replicates table 1 for the empirical moments and compares them to the model simulation.

7.1 Regression setup

Combining equations (12), (8), and (16), and assuming the price is a martingale and holding

σY,t constant, we have

d (volt) =

(
1

3
∆t−1/2

)
skewt (pt+∆t) dpt −

1

σY,t

vol2t dt+ Et [d ⟨x⟩t] (24)

If x has independent increments – as in the quantitative model – then the last term reduces

to a constant. We take that as our benchmark in this section.

The model has two predictions for the results of this regression: the coefficient on(
1
3
∆t−1/2

)
skew (pt+∆t) dpt should be equal to 1, and the coefficient on vol2t dt is equal to

σ−1
Y,t. The first represents a test of the model. That relationship in fact holds as long as

prices and volatility follow a joint diffusion driven by a single Brownian motion, and so it

tests that aspect of the model. The second prediction shows that the regression can be used

to identify one of the model’s structural parameters.

7.2 Data

We estimate the regression (24) for two markets. The first, given our focus on the stock

market, is the S&P 500. For that case, we proxy for volt with the same conditional volatility

measure that we have used throughout. For the return dpt we continue to use the log return

on the CRSP total market index. Last, similar to volatility, we construct skewt (pt+∆t) by

directly forecasting the realized second and third moments. The top-left panel of figure 6

plots the measure of conditional volatility and the bottom-left conditional skewness over our

sample period.

The S&P 500 conditional skewness is almost exclusively negative, so for the second market

to use for estimation, we choose natural gas because it is a large and economically significant

market that displays, in contrast, consistently positive skewness. To calculate dpt in this
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Figure 5: Simulation results
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Note: The top left, top right and bottom left panels are the same as in figure 1, overlayed with the

corresponding outputs from a 100-year simulation of the model based on the parameters discussed in the

text. The bottom-right panel shows the estimated density of volatility in the data and in the model.

case we use natural gas futures returns from the CME. We then use options on futures to

estimate the conditional moments in the same way as for the S&P 500.34 The time series

of conditional volatility and skewness for natural gas are plotted in the right-hand panels of

figure 6. Due to the seasonality in natural gas prices, we include contract fixed effects in the

volatility regressions for natural gas.

In addition to the differences in skewness, the S&P 500 is generally viewed as being

significantly more important systematically – since it represents a nontrivial part of aggregate

wealth – so if one was concerned about the results for the S&P 500 being somehow contaminated

34The specific methods are from Dew-Becker (2024).
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Figure 6: Time series of VIX and Skew for S&P 500 and natural gas
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fitted values to account for risk premia in options. All series are monthly averages of the corresponding

daily series.

by risk premia, that might be less of a concern for natural gas.

There are many other underlyings that could be studied, like individual stocks, bonds,

and other commodities. The two markets here are simply meant to illustrate the model’s

core mechanisms and show that in at least two notable cases they map somewhat reasonably

into the data.

7.3 Results

Table 3 reports results of the regression implied by (24). The first and third columns report

the baseline results. The coefficients are highly statistically significant and have the expected

signs.

Under the model, if the various assumptions made to derive the regression setup are true,

the coefficient on 1
3
√
21
skewtdpt should be equal to 1, and in both cases that is a very good
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description of the data. The coefficient is 0.97 with a standard error of 0.03 for the S&P 500

and 0.97 with a standard error of 0.08 for natural gas. There are really two key features of

the model that generate that prediction: that returns and their volatility are jointly driven

by the same shock (i.e. the same Brownian motion), and that they jointly follow a diffusion.

Table 3: Volatility regressions

S&P 500 Natural Gas

(1) (2) (3) (4) (5) (6)

S&P 500 Natural Gas

(1) (2) (3) (4) (5) (6)

V ol2t−1 -0.74*** -0.79 -0.58*** -0.20*** -1.00* -0.20***
[0.16] [0.52] [0.14] [0.07] [0.56] [0.07]

1
3
√
21
skewt−1dpt 0.97*** 0.97*** 0.24*** 0.97*** 0.96*** 0.64***

[0.03] [0.03] [0.04] [0.08] [0.08] [0.15]
V olt−1 0.001 0.056

[0.013] [0.036]
dpt -0.048*** 0.005***

[0.003] [0.002]

R2 0.54 0.54 0.63 0.12 0.12 0.12

Note: Daily regressions of first differences in volatility (for S&P 500 and natural gas) onto different

predictors. Stars indicate statistical significance: * p<.1, ** p<.05, ***p<.01.

To evaluate the relevance of the model-implied nonlinearity in volatility dynamics, the

second and fourth columns of table 3 include both vol2t−1 and volt−1. vol2t−1 does in fact

appear to dominate. In both cases, the t-statistic for vol2t−1 is larger than that on volt−1

indicating that vol2t−1 has greater explanatory power than volt−1. For the S&P the t-statistic

for vol2t−1 is larger than that for volt−1by a factor of more than 10, but it is only marginally

larger for natural gas.

7.4 Estimates of investors’ uncertainty about fundamentals

The coefficients on vol2t−1 give an estimate of σ−1
Y at the daily level (given that these are

daily regressions). Having estimates for σY allows us to then use the volatility and skewness

of stock market returns to reveal the standard deviation and skewness of agents’ posteriors

for fundamentals. Specifically, recall that

volt =
κ2,t

σY,t

∆t1/2 (25)
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⇒ κ
1/2
2,t =

(
voltσY,t∆t−1/2

)1/2
(26)

and that the scaling of the estimates is for a unit time interval being equal to a day.

σY,t is between 0.94 and 2.36, based on the coefficient on vol2t−1 in equation (24). The

first thing to note is that that value is lower than the value that works well in the calibration

studied above, showing that the calibration is at least somewhat misspecified for volatility

dynamics.

Taking equation (26) and inserting the value for σY along with the the historical daily

standard deviation of stock returns in our sample, 1.05 percent, implies that agents’ posterior

standard deviation is between 10.4 and 16.5 percent. The ±2 standard deviation range for

fundamentals around the current price for the aggregate stock market is then between ±20.8

and ±33.0 percent.

Similarly, we can get an estimate of average skewness in beliefs. One-month conditional

return skewness is historically approximately -1. Plugging that into (16) along with the

estimates of κ2 and σY yields an estimate for the skewness of fundamentals between -0.29 and

-1.13. In the time series, the estimate of conditional skewness of fundamentals is proportional

to the conditional skewness of returns divided by the square root of the conditional standard

deviation of returns.

These estimates are both notable because they are independent of the model for x – in

that sense they are model free. What they depend on is just the information structure the

paper assumes, which is that prices are driven by a single composite signal that is Gaussian

conditional on x.

7.5 Comparing to survey data

We have not found a survey that directly measures investors’ uncertainty about fundamentals

and would allow us to validate the estimate of σY – i.e. a survey that asks about probabilities

that the fundamental value might fall in different ranges, as the Survey of Consumer Expectations

and Survey of Professional Forecasters do for inflation and other variables. However, uncertainty

is sometimes proxied for by disagreement – and it is plausible that they are at least somewhat

related – so a survey giving a cross-section of estimates of fundamental value would be one

way to sanity check for the model-implied estimate of average uncertainty.

The Investor Behavior Project at Yale has a survey of institutional investors that asks

the following question: “What do you think would be a sensible level for the Dow Jones

Industrial Average based on your assessment of U.S. corporate strength (fundamentals)?”

We interpret the answer to that question as each investor’s estimate of E [exp (xt) | Y t].
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To calculate cross-sectional dispersion, given that the surveys are completed on different

dates by different respondents, we calculate the average squared log difference between each

investor’s reported fundamental value and the actual value at the time of the survey. The

square root of that average represents a measure of the cross-sectional standard deviation.

The data runs from August, 1993 to July, 2024 and has 8,242 observations. In that

sample, we estimate the cross-sectional standard deviation to be 17.0 percent, which lies just

outside the edge of the confidence bands for κ
1/2
2 . Again, while disagreement and uncertainty

are different concepts, it is plausible that degree of disagreement across people would be of

a similar magnitude to overall uncertainty, and we observe that here.

7.6 Summary

Overall, this section shows that the model’s predictions for volatility dynamics match the

data well, both for the S&P 500 and natural gas futures. The prediction for nonlinear mean

reversion – via a quadratic term in the regression – is well confirmed, and in fact it drives out

a linear mean reversion term. The model’s prediction of a coefficient of 1 on the correctly

scaled interaction of returns with conditional skewness also fits well, showing that conditional

skewness controls the magnitude of the leverage effect over time. Finally, the coefficients

themselves can be mapped into an estimate of σY , the noise in investors’ signals.

8 Conclusion

This paper’s main results are fundamentally about how information affects beliefs in a very

simple but standard Bayesian filtering setting. The analysis is motivated by the highly

nonlinear behavior of the stock market, and it shows that belief dynamics under information

acquisition explain many of those nonlinearities, both qualitatively and quantitatively.

The results are much more broadly applicable, though. Obviously there are many other

financial markets that display different forms of nonlinearity and it is natural to ask how well

the filtering mechanism works in those settings. Discrete information revelation events play

no role in the analysis of this paper, but are certainly much more important for individual

stocks.

But information acquisition problems are pervasive in economics, the assumptions of

linearity and Gaussianity are not always reasonable approximations to the data. Inflation,

for example, has historically been highly skewed, with its volatility being positively correlated

with its level. The analysis here may therefore be useful in understanding the evolution of

inflation expectations in the face of that nonlinearity.
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A.1 Proof of theorem 1

A.1.1 Assumptions

Assumption 1 Let ϕω,t = exp(iωxt) denote the complex exponential of xt. For any ω, there

exists an adapted process Gω,s satisfying, a.s.,
∫ t

0
|Gω,s|ds < ∞ and

∫ t

0
E[G2

ω,s]ds < ∞, such

that ϕω,t − ϕω,0 −
∫ t

0
Gω,sds is a right-continuous martingale.

Assumption 2

∫ t

0

E[x2
s]ds < ∞ and

∫ t

0

|xs|ds < ∞ almost surely.

Assumption 3 The process σY,t is progressively measurable with respect to the natural

filtration of Yt. Furthermore,

P
(∫ t

0

σ2
Y,sds < ∞

)
= 1, (A.1)

0 < σ2 ≤ σ2
Y,t, (A.2)∣∣σY,t − σỸ ,t

∣∣2 ≤ L1

∫ t

0

(Ys − Ỹs)
2dK(s) + L2(Yt − Ỹt)

2, (A.3)

σ2
Y,t ≤ L1

∫ t

0

(1 + Y 2
s )dK(s) + L2(1 + Y 2

t ), (A.4)

where L1 and L2 are non-negative constants and K(t) is a non-decreasing right-continuous

function satisfying 0 ≤ K(t) ≤ 1 for all t < ∞.
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A.1.2 Proof

Lemma 1 Let φx,t(ω) = E[exp(iωxt)|Y t] denote the characteristic function of the posterior

distribution of xt conditional on Y t. If assumptions 1–3 are satisfied, then

dφx,t(ω) = Et[d exp(iωxt)] + covt(xt, exp(iωxt))
dYt − Et[xt]dt

σ2
Y,t

, (A.5)

where Et and covt denote the expectation and covariance operators, respectively, conditional

on Y t.

The lemma follows from theorem 8.1 of Liptser and Shiryaev (2013) by setting ht → ϕω,t,

ξt → Yt, At → xt, and Bt(ξ) → σY,t.
1 We proceed by verifying that conditions (8.1)–(8.9) of

Liptser and Shiryaev (2013) are satisfied.

Equation (8.2) is simply equation (6) of the paper in integral form. Assumption 1 implies

that conditions (8.1) and (8.7) are satisfied. The first part of condition (8.3) and condition

(8.8) are satisfied by assumption 2. The second part of condition (8.3) and conditions

(8.4), (8.5), (8.9) are satisfied by assumption 3. Condition (8.6) is satisfied since ϕω,t is a

bounded function. Finally, applying theorem 8.1 and noting that the Brownian motion Wt

is independent of xt, we get

Et[exp(iωxt)] = E0[exp(iωx0)] +

∫ t

0

Es[Gω,s]ds+

∫ t

0

covs (xs, exp(iωxs))

σY,s

dW s, (A.6)

where

W t =

∫ t

0

dYs − Es[xs]ds

σY,s

. (A.7)

Or equivalently,

dEt[exp(iωxt)] = Et[Gω,t]dt+ covt(xt, exp(iωxt))
dYt − Et[xt]dt

σ2
Y,t

. (A.8)

On the other hand, by the definition of Gω,t,

d exp(iωxt)− Gω,tdt = dMt, (A.9)

where Mt is a right-continuous martingale. Therefore, Et[Gω,t]dt = Et[d exp(iωxt)].

1The result is stated for real-valued functions. However, it can trivially be extended to the complex-valued
function x 7→ exp(iωx) using the identity exp(iωx) = cos(ωx)+ i sin(ωx) and separately considering the real
and imaginary parts of the function.
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Theorem 4 Let κk,t denote the kth cumulant of the posterior distribution of xt conditional

on Y t. Suppose the n + 1th moment of the posterior distribution and Et[d(x
n
t )] both exist,

and assumptions 1–3 are satisfied. Then for every k ≤ n,

dκk,t =
k∑

j=1

(
k

j

)
Bk−j (−κ1,t, . . . ,−κk−j,t)Et[d(x

j
t)] +

κk+1,t

σ2
Y,t

(dYt − Et[xt]dt)

− 1

2σ2
Y,t

k∑
j=2

(
k

j − 1

)
κj,tκk−j+2,tdt, (A.10)

where Bj denotes the jth complete exponential Bell polynomial.

The result follows from applying Itô’s lemma to lemma 1, yielding

d logφx,t(ω) =
Et[d exp(iωxt)]

Et[exp(iωxt)]
+

covt(xt, exp(iωxt))

Et[exp(iωxt)]

dYt − Et[xt]dt

σ2
Y,t

− 1

2σ2
Y,t

(
covt(xt, exp(iωxt))

Et[exp(iωxt)]

)2

dt (A.11)

and then taking derivatives of both sides.

We begin by verifying existence. By assumption, the posterior distribution of xt conditional

on Y t has n+1 moments. Therefore, the posterior also has n+1 cumulants, the corresponding

characteristic function has n+ 1 derivatives at ω = 0, and the cumulants are related to the

derivatives of the characteristic function through

κk,t = i−k dk

dωk
logφx,t(ω)

∣∣∣∣
ω=0

(A.12)

for any k ≤ n + 1.2 Taking the Itô differential of the above equation (and applying the

dominated convergence theorem to switch the order of d and dk/dωk),

dκk,t = i−k dk

dωk

(
d logφx,t(ω)

) ∣∣∣∣
ω=0

. (A.13)

The remainder of the proof calculates the kth derivative of the right-hand side of (A.11)

for k ≤ n+ 1.

For the first term, since xt has nmoments, for any ω in a sufficiently small neighborhood

2All the results on characteristic functions, moments, and cumulants used here can be found in Chapter
2 of Lukacs (1970).
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of the origin,

Et[d exp(iωxt)] =
n+1∑
j=0

(iω)j

j!
Et[d(x

j
t)] + o(ωn+1). (A.14)

Therefore,

dk

dωk
Et[d exp(iωxt)]

∣∣∣∣
ω=0

= ik
n+1∑
j=k

(iω)j−k

(j − k)!
Et[d(x

j
t)]

∣∣∣∣
ω=0

= ikEt[d(x
k
t )]. (A.15)

The Leibniz rule then yields

dk

dωk

Et[d exp(iωxt)]

Et[exp(iωxt)]

∣∣∣∣
ω=0

=
k∑

j=0

(
k

j

)(
dk−j

dωk−j
Et[d exp(iωxt)]

∣∣∣∣
ω=0

)(
dj

dωj
(Et[exp(iωxt)])

−1

∣∣∣∣
ω=0

)
.

(A.16)

Finally, note that (Et[exp(iωxt)])
−1 = exp

(
− logφx,t(ω)

)
, and the complete exponential Bell

polynomials can be used to transform the right-hand side of (A.16) into (see Comtet (1974)

section 3.3)

dk

dωk

Et[d exp(iωxt)]

Et[exp(iωxt)]

∣∣∣∣
ω=0

= ik
k∑

j=0

(
k

j

)
Bj (−κ1,t, . . . ,−κj,t)Et[d(x

k−j
t )] (A.17)

= ik
k∑

j=1

(
k

j

)
Bk−j (−κ1,t, . . . ,−κk−j,t)Et[d(x

j
t)]. (A.18)

For the second term on the right-hand side of (A.11), we have

covt(xt, exp(iωxt))

Et[exp(iωxt)]
=

Et[xt exp(iωxt)]

Et[exp(iωxt)]
− Et[xt] = i−1 d

dω
logφx,t(ω)− Et[xt]. (A.19)

Therefore,

dk

dωk

covt(xt, exp(iωxt))

Et[exp(iωxt)]

∣∣∣∣
ω=0

= i−1 dk+1

dωk+1
logφx,t(ω)

∣∣∣∣
ω=0

= ikκk+1,t, (A.20)

and the kth derivative of the second term in (A.11), evaluated at ω = 0, is given by

ik
κk+1,t

σ2
Y,t

(dYt − Et[xt]dt) . (A.21)

Finally, for the third term in (A.11), the Leibniz rule combined with the results above
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gives

dk

dωk

(
covt(xt, exp(iωxt))

Et[exp(iωxt)]

)2 ∣∣∣∣
ω=0

(A.22)

=
k−1∑
j=1

(
k

j

)(
dj

dωj

covt(xt, exp(iωxt))

Et[exp(iωxt)]

∣∣∣∣
ω=0

)(
dk−j

dωk−j

covt(xt, exp(iωxt))

Et[exp(iωxt)]

∣∣∣∣
ω=0

)
(A.23)

=
k−1∑
j=1

(
k

j

)
ijκj+1,ti

k−jκk−j+1,t (A.24)

= ik
k∑

j=2

(
k

j − 1

)
κj,tκk−j+2,t. (A.25)

Putting everything together and canceling the ik constants completes the proof of the

theorem.

A.2 Proof of proposition 1

The dynamics of the first moment are exactly as in theorem 1. For the second moment, we

simply need to show that

2∑
j=1

(
2

j

)
B2−j (−κ1,t, . . . ,−κ2−j,t)Et[d(x

j
t)] = Et [d ⟨x⟩t] + 2 covt (xt, dxt) . (A.26)

The left-hand side of the above expression is given by

Et[d(x
2
t )]− 2Et[xt]Et[dxt]. (A.27)

Assumption 1 implies that xt is a semimartingale of the form xt = x0 +Mt + At, where Mt

is a right-continuous martingale and At is an absolutely continuous process. By Itô’s lemma

for semimartingales (e.g., Theorem 32 of Protter (2005)),

Et[d(x
2
t )] = 2Et[xt−dxt] + Et [d ⟨x⟩t] , (A.28)

where xt− ≡ lims↑t xs. By assumption 1, xt = xt− + ∆Mt, where ∆Mt denotes the time-t

jump of M . Since Yt is a continuous process, its natural filtration is continuous. Therefore,

Et[∆Mt] = Et[∆Mt|Y t] = Et[∆Mt|Y t− ] = 0, (A.29)
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where the last equality is a consequence of the fact that M is a martingale. Thus, Et[xt] =

Et[xt− ], and so

Et[d(x
2
t )]− 2Et[xt]Et[dxt] = Et [d ⟨x⟩t] + 2 covt (xt, dxt) , (A.30)

where covt (xt, dxt) ≡ Et[xt−dxt]− Et[xt− ]Et[dxt].

A.3 Additional derivations

A.3.1 Equation (16)

Doing a second order approximation of the price process using proposition 1,

Et[(pt+∆t − Et[pt+∆t])
2] = κ2

2,tσ
−2
Y,t∆t+O(∆t2), (A.31)

and

Et[(pt+∆t − Et[pt+∆t])
3] = Et

(κ2,tσ
−1
Y,t∆Wt +

κ3,tσ
−1
Y,t

2
(∆W 2

t −∆t)

)3
+O(∆t5/2) (A.32)

= 3κ2
2,tκ3,tσ

−4
Y,t∆t2 +O(∆t5/2). (A.33)

Therefore,

skewt (pt+∆t) (∆t)−1/2 =
Et[(pt+∆t − Et[pt+∆t])

3] (∆t)−1/2(
Et[(pt+∆t − Et[pt+∆t])

2]
)3/2 (A.34)

=
κ3,t

κ2,t

σ−1
Y,t +O(∆t1/2). (A.35)

A.3.2 Equation (24)

Starting from equation (8),
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d

(
κ2,t

σY,t

)
=

1

σY,t

κ3,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2,t

σY,t

)2

dt (A.36)

=
1

σY,t

κ3,t

κ2,t

κ2,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2,t

σY,t

)2

dt (A.37)

=
1

σ2
Y,t

(
skewt→t+∆t (dpt) (∆t)−1/2

) 1

3

κ2,t

σ2
Y,t

(dYt − Et [xt] dt) + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2,t

σY,t

)2

dt

(A.38)

=
1

σ2
Y,t

(
skewt→t+∆t (dpt) (∆t)−1/2

) 1

3
[dpt − Etdxt] + Et

[
d
(
x2
t

)]
− 1

σY,t

(
κ2,t

σY,t

)2

dt,

(A.39)

where the third line uses equation (16) and the fourth line inserts the formula for dpt = dκ1,t.

A.3.3 Solving the filtering problem in logs

This section analyzes the filtering problem without applying the approximation in equation

(4) (and we note here again that the simulation in section 6 does not use equation (4) either).

Specifically, instead of assuming pt = Et [xt], we set pt ≡ logEt [exp(xt)]. Then we obtain

the following counterpart to corollary 2.

Proposition 5 When σY,t is constant, volt follows a diffusion satisfying

d (volt) =
1

σY,t

∞∑
k=2

1

(k − 1)!

k∑
j=1

(
k

j

)
Bk−j (−κ1,t, . . . ,−κk−j,t)Et[d(x

j
t)]

+
1

σ3
Y,t

∞∑
k=2

κk+1,t

(k − 1)!
(dYt − Et[xt]dt)

− 1

2σ3
Y,t

∞∑
k=2

1

(k − 1)!

k∑
j=2

(
k

j − 1

)
κj,tκk−j+2,tdt. (A.40)

In this case, instead of just depending on the third moment, the sign of the leverage effect

is more complicated. In particular, the analog to proposition 2 is

cov (dpt, dvolt)

var (dpt)
=

∑∞
k=2

κk+1,t

(k−1)!∑∞
k=1

κk+1,t

k!

σ−1
Y,t (A.41)
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and the equation in proposition 3 then becomes

lim
∆t↓0

skewt (pt+∆t) (∆t)−1/2 = 3

∑∞
k=2

κk+1,t

(k−1)!∑∞
k=1

κk+1,t

k!

σ−1
Y,t (A.42)

What is in the main text has only the leading terms from the two power series. Note also

that these together immediately imply that corollary 3 holds without any changes.

In moving on to the empirical analysis, we have the following modification.

Corollary 5 The analog to equation (24) is

d (volt) =

(
1

3
∆t−1/2

)
skewt (pt+∆t) (dpt − Et[dpt])

− vol2t

(
κ2,t

σ2
Y,tvolt

+

(
1

3
∆t−1/2

)
skewt (pt+∆t)

)
dt

+
1

σY,t

∞∑
k=2

1

(k − 1)!

k∑
j=1

(
k

j

)
Bk−j (−κ1,t, . . . ,−κk−j,t)Et[d(x

j
t)]. (A.43)

The first term is identical to the first term in regression (24). In other words, the

pt = E [xt | Y t] approximation has no bearing for the relationship between the leverage effect

and return skewness. The second and third terms are different than those in (24). However,

assuming that κk,t is small for all k ≥ 4, the price is a martingale, and xt has stationary and

independent increments, we have

d (volt) ≈
(
1

3
∆t−1/2

)
skewt (pt+∆t) dpt −

1

σY,t

(
1 + σY,t

(
1

6
∆t−1/2

)
skewt (pt+∆t)

)
vol2t dt

+ constant · dt, (A.44)

which is identical to (24), except for the σY,t

(
1
6
∆t−1/2

)
skewt (pt+∆t) correction in the coefficient

of vol2t . The pt = Et [xt] approximation introduces a Jensen’s inequality error term that

has an expansion in the cumulants; σY,t

(
1
6
∆t−1/2

)
skewt (pt+∆t) is the leading term in that

expansion.
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A.4 Accommodating the information structure in an

equilibrium model

This section has two parts. First, it shows how to derive equations (4) and (5) in a Lucas

tree economy in which agents price assets based on a single signal, Y . The basic setup in

equation (1) holds in such models, but the restriction to a single signal in the completely

general case is less obvious. Second, it gives a description of how the information structure

assumed in section 3 can be incorporated into more general models.

A.4.1 Lucas tree economy

There is a single tree with a cash-flow of Dt. Agents are all identical. They are endowed

with a unit claim on the tree, which pays Dt in each period. Their date-t budget constraint

is

Et

∫ ∞

j=0

Mt+jCt+jdj = MtPt + Et

∫ ∞

j=0

Mt+jDt+jdj (A.45)

where Mt+j is the price of a date-t+ j Arrow–Debreu security.

The agents’ objective is

maxEt

[∫ ∞

j=0

βju (Ct+j) dj | Y t

]
(A.46)

where u represents utility over consumption, C, and Y t is the history of the signal process

up to date t. We assume that agents’ trading decision on date t, as represented by their

holdings of claims on the tree, must be measurable with respect to Y t. Their consumption

is then a residual.

Consider a perturbation at the optimum that purchases one additional (infinitesimal)

unit of the tree on date t – raising consumption in proportion to Dt+j on all future dates,

and reducing consumption in proportion to Pt on date t. At the optimum, it must be the

case that

E
[
Ptu

′ (Ct) | Y t
]
= E

[∫ ∞

j=0

u′ (Ct+j)Dt+jdj | Y t

]
(A.47)

The interpretation of the right-hand side is standard. The left-hand side is more subtle.

It says that the cost of the purchase of an additional unit of the tree is equal to the

expected marginal utility of consumption conditional on the value of Y t, since it will reduce

consumption by Pt in all states of the world in which Y t takes on that particular value.
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Rearranging and noting that Pt can only be a function of Y t,

Pt =
E
[∫∞

j=0
u′ (Ct+j)Dt+jdj | Y t

]
E [u′ (Ct) | Y t]

(A.48)

As a first observation note that if cash-flows are pre-determined and thus measurable

with respect to Y t, then E [u′ (Ct) | Y t] = u′ (Ct) and equation (A.48) reduces to equation

(1) with Mt ≡ u′ (Ct) and hence (4) and (5) follow immediately.

Alternatively, suppose cash-flows are not predetermined. Then consider equation (5)

with Mt ≡ u′ (Ct):

xt = E
[
log

∫ ∞

s=0

Dt+sMt+s

Mt

ds | θt
]

(A.49)

= E
[
log

∫ ∞

s=0

Dt+su
′ (Ct+s) ds | θt

]
− E [log u′ (Ct) | θt] (A.50)

Taking the log of (A.48),

logPt = logE
[∫ ∞

j=0

u′ (Ct+j)Dt+jdj | Y t

]
− logE

[
u′ (Ct) | Y t

]
(A.51)

As in the main text, passing the log through the expectation yields

pt = E
[
log

∫ ∞

j=0

u′ (Ct+j)Dt+jdj | Y t

]
− E

[
log u′ (Ct) | Y t

]
(A.52)

= E
[
xt | Y t

]
(A.53)

A.4.2 General setup

For a general model, we retain equation (1),

Pt = E
[∫ ∞

0

Mt+sDt+sds

Mt

| Ft

]
(A.54)

where F here represents the natural filtration induced by Y t (i.e. Ft is the sigma-field

induced by Y t). Instead of the θ notation, for consistency here, denote a second filtration,

Gt, such that Ft is coarser than Gt. Then define

Xt ≡ E
[∫ ∞

0

Mt+sDt+sds

Mt

| Gt

]
(A.55)

dYt = Xtdt+ σY,tdWt (A.56)
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and set Mt to be the equilibrium state price process given the filtration Ft. Note that in

general models state prices may depend on information, either via endogenous consumption

decisions or because information itself affects marginal utility (as in recursive preferences,

for example).

We then have, by the law of iterated expectations and the assumption that Ft is coarser

than Gt,

Pt = E [Xt | Ft] (A.57)

as in the main text. The equations, however, define a fixed point – F depends on Y , which

depends on X, which depends on M , which depends on F .

Such a fixed point obviously need not necessarily exist or be unique in any given setting.

The analysis in the paper is not meant to fully specify the model but rather to essentially

study properties of any model that happens to satisfy (A.57) where F is the filtration induced

by the Y in (A.56).

A.5 Numerical analysis

A.5.1 Solution of the numerical example

For the numerical example, we use the exact filtering equation, rather than the infinite

recursion in theorem 1. To do so, we constrain the state xt to lie on a discrete grid and

time to increment in discrete steps. It then has a fixed set of transition probabilities. The

component coming from the exponential jump we treat as geometrically distributed, while

the component from the diffusion is single step up or down in the grid.

x is therefore a Markov chain, and we treat the signal as yt ∼ N
(
xt, σ

2
y/∆t

)
. Standard

formulas then give the update for the posterior distribution over time. We calculate the VIX

in the model as the instantaneous conditional volatility, using the formula from proposition

1.

A.5.2 Moments for parameter selection

The first set of moments are unconditional moments of returns: the unconditional standard

deviation and kurtosis and skewness at horizons of returns at one-, five-, 10-, and 20-day

horizons.

The second is the same, but for returns scaled by lagged volatility, which we proxy for

with the VIX. That is, we calculate the same unconditional moments for Rt/V IXt−1.
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The third set of moments is for daily changes in the VIX: their skewness, kurtosis, and

correlation with market returns. Finally, the fourth set of moments is the 10-, 20-, and

60-day autocorrelations of the VIX.
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