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Abstract: This paper introduces a general method for computing aggregate fluctuations in

economies with private information. Instead of the cross-sectional distribution of agents across

individual states, the method uses as a state variable a vector of spline coefficients describing a long

history of past individual decision rules. The model is then linearized with respect to that vector.

Applying the computational method to a Mirrlees RBC economy with known analytical solution

recovers the solution perfectly well. This test provides significant confidence on the accuracy of

the method.
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1 Introduction

This paper introduces a general method for computing aggregate fluctuations of economies with

private information. Economies with private information are difficult to solve because promised
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values are contingent on the realization of the aggregate shocks. This makes one of the endogenous

state variables, the distribution of agents across promised values, not only infinite dimensional but

state-contingent. The computational method described in this paper can handle this case without

difficulty. In addition, the method displays three very attractive features: 1) it keeps track of

the full distribution of agents across individual states, 2) it can handle irregular shapes for this

distribution, and 3) it incorporates the distribution’s exact law of motion. However, the method is

extremely slow compared to other alternatives, discouraging its use as all-purpose computational

method. Where the method excels is with private information economies since not only none of

them have been used to compute such an economy, but it is unclear how they could handle their

state-contingent distributions.

My basic strategy for the computational method is to parametrize individual decision rules

as spline approximations and to keep long histories of the spline coefficients as state variables.2

Starting from the deterministic steady-state distribution, I use the history of decision rules implied

by the spline coefficients to obtain the current distribution of agents across individual states. I do

this by performing Monte Carlo simulations on a large panel of agents. All individual first-order

conditions and aggregate feasibility constraints are then linearized with respect to the history of

spline coefficients. The resulting linear model is then solved using standard methods. I show that

a simple transformation can be applied to this solution in order to handle the case of contingent

endogenous state variables.

In order to facilitate the comprehension of the computational method, and for sake of con-

creteness, I introduce it in the context of a mechanism design problem for a Mirrlees economy

with aggregate shocks.3 The economy, which belongs to the class considered in Veracierto (2021),

is populated by agents that value consumption and leisure using logarithmic utility functions and

which are subject to idiosyncratic shocks to their value of leisure. These shocks take only two pos-

sible values, are i.i.d. over time and across individuals, and are private information. Output, which

can be consumed or invested, is produced using capital and labor as inputs to a Cobb-Douglas pro-

duction function subject to aggregate productivity shocks. The aggregate shocks follow a standard

AR(1) process.

2In practice, I use the monotonicity preserving cubic splines described in Steffen (1990).

3The Appendix describes the computational method in general terms.
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A social planner designs dynamic contracts for the agents in this Mirrlees real business cycle

(RBC) economy. Following the literature, a dynamic contract is given a standard recursive for-

mulation where a promised value to the agent describes its state. Given the current state, the

contract specifies current consumption, current hours worked, and next-period state-contingent

promised values as a function of the value of leisure reported by the agent. Since the model has a

large number of agents and the shocks to the value of leisure are idiosyncratic, the social planner

needs to keep track of the whole distribution of promised values across individuals as a state vari-

able. Given this distribution, the aggregate stock of capital, and the aggregate productivity level,

the social planner seeks to maximize the present discounted utility of agents subject to incentive

compatibility, promise keeping, and aggregate resource feasibility constraints.

Solving this mechanism design problem not only illustrates the computational method by

applying it to a workhorse private information economy in the literature, but provides a strong

test for it. The reason is that in Veracierto (2021) I provide a sharp analytical characterization of

the solution to this mechanism design problem. In particular, I characterize the cyclical behavior of

the consumption and leisure allocation rules across promised values, as well as the optimal amount

of cross-sectional inequality in consumption and leisure over the business cycle. I also show that

all macroeconomic variables in the private information economy are exactly the same as under full

information. This provides an important quantitative test of the computational model, since we

can compare the computed macroeconomic variables of the Mirrlees economy with those from the

representative agent economy. I find that the computational method passes these tests extremely

well: It recovers all the results, both qualitative and quantitative, almost exactly. Since nothing in

the computational method exploits the functional forms or structure of the Mirrlees RBC economy

considered, this provides significant evidence about its accuracy. This finding indicates that the

method should prove useful in a variety of other private information economies.

The paper is closely related to a vast literature on computational methods, but it has salient

differences.4 The seminal papers by Krusell et al. (1998) and Den Haan (1996) summarize the

cross-sectional distribution with a small set of moments. In contrast, the method in this paper

keeps track of the whole distribution. Den Haan (1997) and Algan et al. (2008) also keep track

of the whole distribution but parametrize the distribution with a flexible exponential polynomial

4See Algan et al. (2014) for a survey of computational methods.
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form, allowing them to solve the model using quadrature and projection techniques. For many

applications this may be an accurate and convenient approach, but for economies with odd-shaped

distributions, it may not be. The method in this paper is able to handle odd shapes for the cross-

sectional distribution as long as it is generated by smooth individual decision rules.

In addition to projection methods, the literature has explored perturbation methods, which

are essentially local approximation methods around a deterministic steady state. Early versions

include Campbell (1998), Dotsey et al. (1999), and Veracierto (2002) – the last two in the context

of (S,s) economies.5 Perhaps the most widely known perturbation method is Reiter (2009), which

is closely related to Campbell (1998).6 Instead of parametrizing the cross-sectional distribution as

a polynomial, Reiter (2009) keeps a finite histogram of the distribution as a state variable. While

the perturbation method allows him to greatly reduce the coarseness of the histogram, a limitation

of Reiter’s method is that the law of motion for the distribution needs to be approximated, and

this can be a highly non-linear mapping.7 Instead, my method here embodies the exact law of

motion for the distribution. Winberry (2018) introduces a very interesting perturbation method

which, similarly to Algan et al. (2008), parametrizes the distribution with a flexible exponential

polynomial form. The perturbation method allows him to carry a polynomial of large order as a

5The method in this paper actually generalizes the approach in Veracierto (2002) to economies with general

decision rules and cross-sectional distributions of agents with infinite support.

6The recent method in Ahn et al. (2018) is an adaptation of Reiter’s method to continuous time. Other

perturbation methods in the literature include Preston and Roca (2007) and Mertens and Judd (2018), both of

which perturb a deterministic steady state with no aggregate or idiosyncratic shocks. In contrast, the method in

this paper perturbs a deterministic steady state with no aggregate shocks but positive idiosyncratic uncertainty.

7For instance, consider the Krusell et al. (1998) model. In this model there is generally a mass of agents with

the lowest idiosyncratic income level and zero assets (these agents are at the borrowing constraint). Now consider

the steady state assets level chosen by these agents when they transit to a higher idiosyncratic income level.

Suppose that this assets level falls within the first range of the histogram. Whenever there is a positive aggregate

productivity shock, this choice of assets will generally increase. If the aggregate shock happens to be small enough

that the modified assets level still falls within the first range of the histogram, there will be no effects at all on the

histogram. However, if the shock is large enough that the modified assets level falls within the second range of the

histogram, there will be a discrete reduction in the size of the first bar of the histogram and a discrete increase

in the size of the second bar. Thus, the histogram bars change quite non-linearly with respect to the assets level

chosen. This non-linearity problem can only be exacerbated when reducing the coarseness of the histogram.
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state variable (or, equivalently, a large number of moments), which greatly improves the description

of the distribution. However, his method also relies on an approximation for the law of motion of

the cross-sectional distribution.

Another powerful method has been introduced by Boppart et al. (2018) and improved by

Auclert et al. (2021). This method requires computing transitionary dynamics after an unexpected

aggregate shock, starting from a given deterministic steady state. In most contexts this can be

readily done. However, the approach is ill suited for economies with private information. The

reason is that since the distribution of agents across individual states is state-contingent, when

the shock hits the economy the distribution shifts endogenously. As a consequence, there is no

fixed starting point from which to start the deterministic transitionary dynamics. Ignoring the

endogenous shift in the distribution on impact (assuming that it is fixed at its deterministic steady

state position) would give the wrong results.

In order to see this in a simpler case, consider a full information RBC model with perpetual

youth and identical agents, in which the social planner must design recursive contracts with a

promised value as their state. Depending on the realization of the aggregate productivity shock

and the stock of capital the planner must decide current consumption, current hours worked and

next-period promised values (contingent on the realization of next-period aggregate productivity).

The planner is committed to delivering the promised value of the recursive contract to the old

agents (those born in a previous period) but can choose any value for the young agents (those born

in the current period). Since agents are identical, we know that the optimal allocation must be the

same for all agents of all generations. However, consider computing the transitionary dynamics

after an unexpected positive aggregate shock starting from the deterministic steady state (as in

Auclert et al. (2021)), assuming that the promised value to the initial old agents is fixed at the

deterministic steady-state level. Since the planner is committed to delivering that steady-state

promised value to the initial old agents but is free to choose any allocation for the initial young, this

second group will receive all the benefits from the higher productivity while the first group will be

left behind. This asymmetric treatment of identical agents in different generations is suboptimal

from an ex-ante perspective. The source of the inefficiency is failing to recognize that the promised

value of the initial old should have been contingent on the realization of the aggregate productivity

shock and that this shock cannot have been completely unexpected.

In fact, not only Boppart et al. (2018) and Auclert et al. (2021) have difficulties handling state-
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contingent distributions: none of the other papers cited above have addressed this case.8 On the

contrary, the contribution of this paper is to provide an extension of the perturbation approach

to handle state-contingent distributions. This is crucial for analyzing economies with private

information and aggregate shocks because optimal next-period promised values are contingent on

the realization of next-period aggregate shocks, making the distribution of agents across promised

values state-dependent.

The paper is organized as follows. Section 2 describes the Mirrlees RBC economy with known

solution. Section 3 introduces the computational method in the context of the Mirrlees RBC

economy. Section 4 tests the method’s accuracy. Section 5 discusses its applicability. Finally,

Section 6 concludes the paper. Appendix 8 presents the computational method in general form

while all proofs are provided in an accompanying Technical Appendix.

2 A Mirrlees RBC economy with known solution

The economy is populated by a unit measure of agents subject to stochastic lifetimes. Whenever

an agent dies they are immediately replaced by a newborn, leaving the aggregate population level

constant over time.9 The preferences of an individual born at date T are given by

ET

{
∞∑
t=T

βt−Tσt−T [ln (ct) + αt ln (1− ht)]

}
, (2.1)

where σ is the survival probability, 0 < β < 1 is the discount factor, and αt ∈ {αL, αH} is the

idiosyncratic value of leisure (where αL < αH). Realizations of αt are assumed to be i.i.d. both

across individuals and across time. The probability that αt = αs is given by ψs. A key assumption

is that αt is private information of the individual.

Output, which can be consumed or invested, is produced with the following production func-

tion:

Yt = eztKγ
t−1H

1−γ
t , (2.2)

8This does not mean that none of these other methods could handle state-contingent distributions. In particular,

the method in Krusell et al. (1998) may be flexible enough to do so. However, its implementation details and

computational costs are unclear at this point

9As in Phelan (1994), the stochastic lifetime guarantees that there will be a stationary distribution of agents

across individual states.
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where 0 < γ < 1, Yt is output, zt is aggregate productivity, Kt−1 is capital, and Ht is hours worked.

The aggregate productivity level zt follows a standard AR(1) process given by:

zt+1 = ρzt + εt+1, (2.3)

where 0 < ρ < 1, and εt+1 is normally distributed with mean zero and standard deviation σε.

Capital is accumulated using a standard linear technology given by

Kt = (1− δ)Kt−1 + It, (2.4)

where It is gross investment and 0 < δ < 1.

2.1 The mechanism design problem

In what follows, I will describe the mechanism design problem for this economy. To do this, it

will be convenient to distinguish between two types of agents: young and old. A young agent is

one that has been born at the beginning of the current period. An old agent is one that has been

born in some previous period. The social planner must decide recursive plans for both types of

agents. The state of a recursive plan is the value (i.e., discounted expected utility) that the agent

is entitled to at the beginning of the period. Given this promised value, the recursive plan specifies

the current utility of consumption, the current utility of leisure, and next-period promised values

as functions of the value of leisure currently reported by the agent. The social planner is fully

committed to the recursive plans they choose and agents have no outside opportunities available.

A key difference between the young and the old is in terms of promised values. Since during the

previous period the social planner has already decided on some recursive plan for a currently old

agent, the planner is restricted to delivering the corresponding promised value during the current

period. In contrast, the social planner is free to deliver any value to a currently young agent since

this is the first period they are alive. Reflecting this difference, I will specify the individual state

of an old agent to be their promised value v and their current value of leisure s (henceforth, I

will refer to the value of leisure αs by its subindex s ∈ {L,H}). At date t, their current utility

of consumption, utility of leisure, and next-period promised value are denoted by uost (v), nost (v)

and wos,t+1 (v), respectively, where wos,t+1 (v) is a random variable contingent on the realization

of zt+1. In turn, the individual state of a young agent is solely given by their current value of

leisure s. At date t, the agent’s current utility of consumption, utility of leisure, and next-period
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promised value are denoted by uyst, nyst and wys,t+1 respectively, where wys,t+1 is also contingent

on the realization of zt+1.

The social planner seeks to maximize the weighted sum of the welfare levels of the current

and future generations of young agents, subject to individual incentive compatibility and promise

keeping constraints, as well as aggregate feasibility constraints.10 Veracierto (2021) describes

this economy-wide planning problem in detail. However, for computational purposes, it will be

convenient to decompose that planning problem into a sequence of sub-planning problems and

focus on these problems instead. In each period t, there are two sub-planning problems: one sub-

planning problem concerned with providing insurance and incentives to individuals, and another

sub-planning problem concerned with making production and investment decisions. In these sub-

planning problems, the joint stochastic process for the shadow price of labor (in terms of the

consumption good), qt, and the shadow price of the consumption good (in utiles), λt, are taken

as given. The solutions to these sub-planning problems correspond to that of the economy-wide

planning problem if certain side conditions are satisfied.

The sub-planning problems for individuals differ depending on whether the individual is young

or old. However, both planning problems face a similar trade-off: since agents are risk averse, the

social planners would like to insure them as much as possible. However, full insurance cannot be

provided because the agents would always report to have a high value of leisure (in order to work

less). As a consequence, when an agent reports that they have a high value of leisure the social

planner allows them to work less but punishes them by providing a lower consumption level and

promising to treat them worse in the future. The reason why it is efficient to lower their future

promised values is that it allows the planner to smooth the punishment over time (and agents

value smoother allocations).

For every date t, the sub-planning problem for old individuals is as follows:

Pot (v) = max
{uost,nost,wos,t+1}s

∑
s

ψs

{
qth(nost)− c (uost) + θσEt

[
λt+1

λt
Po,t+1 (wos,t+1)

]}
(2.5)

subject to

uoLt + αLnoLt + βσEt [woL,t+1] ≥ uoHt + αLnoHt + βσEt [woH,t+1] , (2.6)

10The welfare levels of the current old agents are predetermined by their promised values at the beginning of the

period.
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v =
∑
s

{uost + αsnost + βσEt [wos,t+1]}ψs, (2.7)

where h (n) are the hours worked implied by the utility of leisure n (i.e. h (n) = 1− en), and c (u)

is the consumption level implied by the utility of consumption u (i.e. c (u) = eu). Observe that

the current “social profits” in equation (2.5) are given by the social value of the hours worked

by the old agent, net of the consumption goods that are transferred to them. Also observe that

the sub-planner discounts the future social profits of the old individual using the social discount

factor θ, the survival probability σ, and the stochastic social discount factor λt+1/λt. The social

discount rate θ is the Pareto weight of the next-period generation of young agents relative to

the Pareto weight of the current generation of young agents.11 Equation (2.6) is the binding

incentive compatibility constraint. It states that the expected value to the individual of truthfully

reporting the low value of leisure L must be at least as large as the expected value to the individual

of misreporting the high value of leisure H.12 Equation (2.7) is the promise-keeping constraint.

It states that the social sub-planner must deliver the expected value v that was promised at the

beginning of the period.13 Hereon, the solution to this sub-planning problem will be denoted as

{uost (v) , nost (v) , wos,t+1 (v)}s, indicating its dependence on the state variable v. This solution

must satisfy the following first-order conditions:

0 = −euoLt(v)ψL + ξot (v) + ηt (v)ψL, (2.8)

0 = −euoHt(v)ψH − ξot (v) + ηt (v)ψH , (2.9)

0 = −qtenoLt(v)ψL + αLξot (v) + ηt (v)αLψL, (2.10)

0 = −qtenoHt(v)ψH − αLξot (v) + ηt (v)αHψH , (2.11)

0 = λtβσξot (v) + λtηt (v) βσψL − θλt+1σψLηt+1 [woL,t+1 (v)] , (2.12)

0 = −λtβσξot (v) + λtηt (v) βσψH − θλt+1σψHηt+1 [woH,t+1 (v)] , (2.13)

11I assume that βσ < θ < 1.

12Implicitly, the planning problem (2.5)-(2.7) only considers one-time deviations to the incentive compatibility

constraint (2.6). There is no loss of generality in doing this because it can be shown that if an agent has lied in the

past it always dominates to tell the truth in the future (see Fernandes and Phelan (2000)). In fact, this is why the

recursive representation in Fernandes and Phelan (2000) is even possible.

13The expectation operator Et [.] in equations (2.5)-(2.7) conditions on the aggregate productivity value zt.
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where λtξot (v) and λtηt (v) are the Lagrange multipliers of equations (2.6) and (2.7), respectively.

For every date t, the sub-planning problem for young individuals is as follows:

Pyt = max
{uyst,nyst,wys,t+1}s

∑
s

ψs

{
uyst + αsnyst + βσEt [wys,t+1]

λt
+ qth(nyst)− c (uyst)

+θσEt

[
λt+1

λt
Po,t+1 (wys,t+1)

]}
(2.14)

subject to

uyLt + αLnyLt + βσEt [wyL,t+1] ≥ uyHt + αLnyHt + βσEt [wyH,t+1] . (2.15)

Observe that in this case the social surplus is given by the expected lifetime utility level of the

young agent (in current consumption units), plus the expected social value of the hours worked

by the agent, net of the expected consumption goods transferred to them. Since, conditional

on surviving the young agent becomes old after one period, the function used to evaluate next-

period continuation values is Po,t+1. The reason why the lifetime utility level of the young agent

enters equation (2.14) but the promised value of an old agent does not enter equation (2.5) is

that the lifetime utility level of a current young agent directly enters into the objective function of

the economy-wide social planner while the promised value to an old agent is a bygone (which the

economy-wide social planner is committed to deliver). The first-order conditions are the following:

0 = ψL − λte
uyLtψL + λtξyt, (2.16)

0 = ψH − λte
uyHtψH − λtξyt, (2.17)

0 = αLψL − λtqte
nyLtψL + αLλtξyt, (2.18)

0 = αHψH − λtqte
nyHtψH − αLλtξyt, (2.19)

0 = βσψL + λtβσξyt − θλt+1σψLηt+1 (wyL,t+1) , (2.20)

0 = βσψH − λtβσξyt − θλt+1σψHηt+1 (wyH,t+1) , (2.21)

where λtξyt is the Lagrange multiplier of equation (2.15).

For every date t, the sub-planning problem for production decisions is

Ppt (Kt−1) = max
{Ht,It}

{
eztKγ

t−1H
1−γ
t − qtHt − It + θEt

[
λt+1

λt
Pp,t+1 ((1− δ)Kt−1 + It)

]}
. (2.22)
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Observe that the social surplus generated by this planning problem is given by output net of the

value of the labor input and the value of investment. Its first order conditions are standard given

the neoclassical growth structure:

0 = qt − eztKγ
t−1 (1− γ)H−γ

t , (2.23)

0 = −λt + θEt

{
λt+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
, (2.24)

The economy-wide distribution of old agents across promised values v at the beginning of period

t is given by a measure µt, while the number of young agents is constant over time and given by

1 − σ.14 Given the stochastic sequence of decision rules [uost, nost, wos,t+1, uyst, nyst, wys,t+1]s that

solve the corresponding sub-planning problems for individuals, the law of motion for µt is given

as follows:

µt+1 (B) = σ
∑
s

∫
{v: wos,t+1(v)∈B}

ψsdµt + (1− σ) σ
∑

s: wys,t+1∈B

ψs, (2.25)

for every Borel set B. Equation (2.25) states that the number of old agents that have a promised

value in the Borel set B at the beginning of the following period is given by the sum of two

terms. The first term sums all currently old agents that receive a next-period promised value

in the set B and do not die. The second term does the same for all currently young agents.

Observe that, since the promised values wos,t+1 and wys,t+1 are contingent on the realization of the

aggregate productivity shock zt+1 at the beginning of period t + 1, the distribution µt+1 is also

state contingent.15

The economy-wide stock of capital at the beginning of period t is equal to Kt−1. Given the

stochastic-process for It that solves the sub-planning production problems, Kt follows a stochastic

process given by

Kt = (1− δ)Kt−1 + It. (2.26)

14Since agents are not fully insured, the social planners generate heterogeneity across agents. In fact, the amount

of inequality increases over time within a same cohort of agents. The reason why there is a well defined cross-

sectional distribution of agents across cohorts is that agents die stochastically and are replaced by newborns, leading

to a strong ”reversion to the mean”.

15The state-contingency of this economy-wide distribution is what makes solving economies with private infor-

mation so different from solving standard problems.
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The side conditions that the stochastic shadow prices {qt, λt}∞t=1 need to satisfy are that

(1− σ)
∑
s

c (uyst)ψs +

∫ ∑
s

c (uost (v))ψsdµt + It = eztKγ
t−1H

1−γ
t , (2.27)

and

Ht = (1− σ)
∑
s

h (nyst)ψs +

∫ ∑
s

h (nost (v))ψsdµt, (2.28)

almost surely at every period t. Equation (2.27) describes the aggregate feasibility constraint

for the consumption good. It states that the total consumption of young and old agents, plus

aggregate investment cannot exceed aggregate output. Equation (2.28) is the aggregate labor

feasibility constraint. It states that the input of hours into the production function cannot exceed

the total hours worked by young and old agents.

3 Computations

This section introduces the computational method by applying it to the Mirrlees economy de-

scribed in the previous section.16 The purpose is to familiarize the reader with the computational

method using a concrete example (the various elements of the method will reappear much more

abstractly in the general specification provided in Appendix 8). Its main features are the following.

Instead of keeping track of the distribution of promised values µ as a state variable, what the com-

putational method keeps track of is a long history of individual decision rules wos and wys. Since

the individual decision rules wos are parametrized as spline approximations, the computational

method only needs to keep track of a long but finite history of spline coefficients. The current

distribution of promised values is then recovered by simulating the evolution of a large number of

agents (and their descendants) over time using the history of individual decision rules kept as state

variables.17 The next period distribution of promised values is then obtained by simply updating

by one period the history of individual decision rules using the decision rules chosen during the

16Technical Appendix 10 provides further implementation details.

17Because of the stochastic lifetimes, the truncation introduced by the finite history of decision rules generates

arbitrarily small approximation errors as the length of the history becomes large. In fact, when this length becomes

large the distribution used for drawing initial promised values for the simulations becomes irrelevant (although, in

practice, I use the invariant distribution of the deterministic steady state).
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current period. All first order conditions and aggregate feasibility constraints are then linearized

with respect to the spline coefficients describing current and past individual decision rules.18 This

delivers a linear rational expectations model which, despite of its high dimensionality, can be

solved for using standard methods.

3.1 Computing the deterministic steady state

While computing the deterministic steady state of the model is completely standard, this section

describes the algorithm in detail since this will introduce objects and notation that will be needed

later on.

Observe that the shadow value of labor q is known from the steady state versions of equations

(2.23) and (2.24). In particular it is given by

q = (1− γ)

{
1

γ

[
1

θ
− 1 + δ

]} γ
1−γ

.

Given this value of q, the steady state decision rules for old agents can then be solved for. To

this end, I find it convenient to use cubic spline approximations and iterate with the steady state

versions of equations (2.8)-(2.13).19 In order to do this, I first restrict the promised values to lie on

a closed interval [vmin, vmax] and define an equidistant vector of grid points (vj)
J
j=1, with v1 = vmin

and vJ = vmax.
20 Given the function η from the previous iteration, which is used to value next

period promised values in the steady state versions of equations (2.12) and (2.13), the values

of [uos (vj) , nos (vj) , wos (vj) , ξo (vj) , η (vj)]
J
j=1 that satisfy the steady state versions of equations

(2.8)-(2.13) are then solved for at the grid points (vj)
J
j=1. Once these values are found, the functions

are extended to the full domain [vmin, vmax] using cubic splines. The iterations continue until the

values for [uos (vj) , nos (vj) , wos (vj) , ξo (vj) , η (vj)]
J
j=1 converge. Observe, that this solution does

not depend on any other endogenous values, so it forms part of the steady state.

18This is the computationally most intensive part of the method. The reason is that we need to take numerical

derivatives with respect to each spline coefficient in the history, and each of these calculations requires simulating

the evolution of a large panel of agents over the entire history of individual decision rules kept as state variables.

19Observe that the shadow value of consumption λ does not appear in the steady state version of these equations,

20When restricting promised values to lie in the interval [vmin, vmax], the first order conditions (2.12)-(2.13) and

(2.20)-(2.21) change by incorporating inequalities that check for corner solutions.
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Given the steady state solution for η, the steady state decisions for young agents can be

solved for next. This is straightforward: conditional on a value for λ, the steady state versions

of equations (2.16)-(2.21) can be solved for the finite numbers of unknowns (uys, nys, wys, ξy) in

one step (no iterations are needed here). Later on I will have to provide the side condition that λ

must satisfy for this to form part of the steady state.

The steady state version of equation (2.25) describes the recursion that the invariant µ has

to satisfy. This equation corresponds to the case of a continuum of agents. However, I find it

convenient to work with a large, but finite number of agents, and perform the recursion for this

case. In particular, consider a large but finite number of agents I and endow them with promised

values in the interval [vmin, vmax]. Using the functions wos and the values wys already obtained,

simulate the evolution of the promised values of these I agents and their descendants for a large

number of periods T . To be precise, if agent i was promised a value v at the beginning of the

current period (conditional on being alive), then his promised value (or his descendant’s, in case

the agent dies) at the beginning of the following period will be given by:

v′ =

 wos (v) , with probability σψs,

wys, with probability (1− σ)ψs,
(3.1)

Simulating the I agents for T periods using equation (3.1) we obtain a realized distribution

(v̄i)
I
i=1 of promised values (conditional on being alive) across the I agents. Observe that the last

iteration of equation (3.1) also gives the corresponding realized values of leisure (ᾱi)
I
i=1 across

the I agents. The joint realized distribution of promised values and values of leisure (v̄i, ᾱi)
I
i=1

can then be used to compute statistics under the invariant distribution. In particular, aggregate

consumption can be obtained as

C = σ
1

I

I∑
i=1

c (uo,s̄i (v̄i)) + (1− σ)
∑
s

c (uys)ψs. (3.2)

To understand this expression, suppose that we are at the beginning of period T + 1. The joint

realized distribution (v̄i, ᾱi)
I
i=1 now corresponds to agents that were alive in the previous period,

and thus a fraction σ of them will have survived and a fraction (1− σ) of them will have died. The

first term in equation (3.2) corresponds to those who have survived. It averages the consumption

of these agents and multiplies the result by the probability of surviving σ. The second term

corresponds to those who have died and thus have been replaced by young agents. It averages the

consumption of young agents and multiplies the result by the probability of dying (1− σ).
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Aggregate hours worked can be similarly computed as

H = σ

∑I
i=1 h (no,s̄i (v̄i))

I
+ (1− σ)

∑
s

h (nys)ψs. (3.3)

Observe that by a law of large numbers equations (3.2) and (3.3) will become arbitrarily good

approximations to the steady state versions of equations (2.27) and (2.28) as I and T tend to

infinity.

Given aggregate hours worked, aggregate capital can be then obtained from the fact that the

social planner equates the marginal productivity of capital to its shadow price. In particular, from

the steady state version of equation (2.24) we have that aggregate capital is given by

K =

(
γ

1
θ
− 1 + δ

) 1
1−γ

H. (3.4)

The last equation that needs to be satisfied is the feasibility condition for consumption,

C + δK = KγH1−γ. (3.5)

This is the side condition mentioned above for the shadow value of consumption λ. The shadow

value of consumption determines the consumption, hours worked and promised values of young

agents, and therefore each of the variables in equation (3.5). Therefore, λ must be changed until

equation (3.5) holds.

3.2 Computing business cycle fluctuations

As has already been mentioned, computing business cycle fluctuations requires linearizing the first

order conditions and aggregate feasibility constraints with respect to a convenient set of variables.

Linearizing equations (2.6)-(2.13), (2.15)-(2.21) and (2.23)-(2.28) present different types of issues.

As a consequence, I classify them into different categories.

The first category is constituted by equations that only involve scalar variables. Equations

(2.15)-(2.19), (2.23)-(2.24) and (2.26) fall into this category. For example, consider equation (2.17).

This equation is a function of {λt, uyHt, ξyt}, which are all scalars. Linearizing this equation around

the deterministic steady state values
{
λ̄, ūyHt, ξ̄yt

}
poses no difficulty.21

21Although in this case derivatives can be taken analytically, throughout the section derivatives are assumed to

be numerically obtained.
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The second category is constituted by a continuum of equations that only involve scalar vari-

ables. Equations (2.6)-(2.11) fall into this category. Consider, for example, equation (2.9). This

equation depends on {uoHt (v) , ξot (v) , ηt (v)} which are all scalars. The problem is that there is

one of these equations for every value of v in the interval [vmin, vmax]. In this case the “curse of di-

mensionality” is solved by considering this equation only at the grid points (vj)
J
j=1 that were used

in the computation of the deterministic steady state. It is now straightforward to linearize each

of these J equations with respect to {uoHt (vj) , ξot (vj) , ηt (vj)} at their deterministic steady state

values
{
ūoH (vj) , ξ̄o (vj) , η̄ (vj)

}
. Extending {uoHt (v) , ξot (v) , ηt (v)} to the full domain [vmin, vmax]

using cubic splines will make equation (2.9) hold only approximately outside of the grid points

(vj)
J
j=1. The quality of this approximation will depend on how many grid points J we work with.

The third category is constituted by equations that involve both scalars and functions. Equa-

tions (2.20) and (2.21) fall in this category. For example, consider equation (2.21). This equation

depends on λt, ξyt, λt+1, wyH,t+1 and on the function ηt+1, which is a high dimensional object.

In this case the “curse of dimensionality” is broken by considering that ηt+1 is a spline approxi-

mation and, therefore, is completely determined by the finite set of values {ηt+1 (vj)}Jj=1, i.e. the

value of the function at the grid points. The equation can then be linearized with respect to[
λt, ξyt, λt+1, wyH,t+1, {ηt+1 (vj)}Jj=1

]
at the steady state values

[
λ̄, ξ̄y, λ̄, w̄yH , {η̄ (vj)}Jj=1

]
.

The fourth category is a combination of the previous two: it is constituted by a continuum

of equations that involve both scalars and functions. Equations (2.12) and (2.13) fall in this

category. For example, consider equation (2.13). Similarly to the third category, this equation

depends on the scalars λt, ξot (v), λt+1, woH,t+1 (v) and on the function ηt+1. Similarly to the

second category there is one of these equations for every value of v in the interval [vmin, vmax].

Given these similarities we can use the same strategy. In particular, we can consider this equa-

tion only at the grid points (vj)
J
j=1 and linearize each of these J equations with respect to[

λt, ξot (vj) , λt+1, woH,t+1 (vj) , {ηt+1 (vk)}Jk=1

]
at the deterministic steady state values

[
λ̄, ξ̄o (vj) , λ̄ ,

w̄oH (vj) , {η̄ (vk)}Jk=1

]
.

The fifth category is much more complicated. It is constituted by equations that involve scalars

and integrals of variables with respect to the distribution µt. Equations (2.27) and (2.28) fall in

this category. For example, consider equation (2.27). This equation depends on the real numbers

uyL,t, uyH,t, zt, Kt, Kt−1, and Ht, and on the integrals
∫
c (uost (v)) dµt. To make progress it will

be important to represent these integrals with a convenient finite set of variables. In order to do
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this, I will follow a strategy that is closely related to the one that was used in Section 3.1 for

computing statistics under the invariant distribution. In particular, consider the same large but

finite number of agents I that was used in that section and endow them with the same realized

distribution of promised values (v̄i)
I
i=1 that was obtained when computing the steady state. Now,

assume that these agents populated the economy M time periods ago and consider the history

{woL,t−m, woH,t−m, wyL,t−m, wyH,t−m}Mm=0 ,

which describes the allocation rules for next-period promised values that were chosen during the

last M periods (where t is considered to be the current period). Observe that since woL,t−m and

woH,t−m are spline approximations, this history can be represented by the following finite list of

values: {
[woL,t−m (vj)]

J
j=1 , [woH,t−m (vj)]

J
j=1 , wyL,t−m, wyH,t−m

}M

m=0
. (3.6)

Using the history of allocation rules for next-period promised values, we can simulate the

evolution of promised values for the I agents and their descendants during the lastM time periods

to update the distribution of promised values from the initial (v̄i)
I
i=1 to a current distribution

(vi,t)
I
i=1.

In particular, we can initialize the distribution of promised values at the beginning of period

t−M − 1 as follows:

vi,t−M−1 = v̄i,

for i = 1, ..., I. Given a distribution of promised values at the beginning of period t−m− 1, the

distribution of promised values at period t−m is then obtained from the following equation:

vi,t−m =

 wos,t−m (vi,t−m−1) , with probability σψs,

wys,t−m, with probability (1− σ)ψs,
(3.7)

for i = 1, ..., I. Proceeding recursively for m = M,M − 1, ..., 0, we obtain a realized distribution

of promised values (vi,t)
I
i=1 at the beginning of period t.

Observe that the last iteration of equation (3.7) also gives the corresponding realized values of

leisure (αit)
I
i=1 across the I agents. The joint realized distribution of promised values and values of

leisure (vit, αit)
I
i=1 can then be used to compute statistics under the distribution µt. In particular,

equation (2.27) can be re-written as:

0 = (1− σ) [euyL,tψL + euyH,tψH ] + σ
1

I

I∑
i=1

euosit (vit) +Kt − (1− δ)Kt−1 − eztKγ
t−1H

1−γ
t . (3.8)
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Since uoL,t and uoH,t are splines approximations, they can be summarized by their values at

the grid points (vj)
J
j=1. Therefore, equation (3.8) can be linearized with respect to

zt, Kt, Kt−1, Ht, uyL,t, uyH,t, [uoL,t (vj)]
J
j=1 , [uoH,t (vj)]

J
j=1 , (3.9){

[woL,t−m (vj)]
J
j=1 , [woH,t−m (vj)]

J
j=1 , wyL,t−m, wyH,t−m

}M

m=0

at their deterministic steady state values.

Observe that equation (3.9) provides a large but finite list of variables. In particular, there

are (M + 1) (2J + 2) variables in the second line of equation (3.9). Taking numerical deriva-

tives with respect to each of these variables requires simulating I agents over M periods. As

a consequence, linearizing equation (3.8) requires performing a massive number of Monte Carlo

simulations. While this seems a daunting task it is easily parallelizable. Thus, using massively

parallel computer systems can play an important role in reducing computing times and keeping

the task manageable.22

The last category of equations has only one element: equation (2.25), which describes the

law of motion for the distribution µt. While daunting at first sight, this equation is greatly

simplified by our approach of representing the distribution µt using the history of values given by

equation (3.6). In fact, updating the distribution µt is merely reduced to updating this history. In

particular, the date-(t+1) history can be obtained from the date-t history and the current values

of [woL,t+1 (vj)]
J
j=1, [woH,t+1 (vj)]

J
j=1, wyL,t+1 and wyH,t+1 using the following equations:

[
wos,(t+1)−m (vj)

]J
j=1

=
[
wos,t−(m−1) (vj)

]J
j=1

(3.10)

wys,(t+1)−m = wys,t−(m−1) (3.11)

for s = L,H and m = 1, ...,M . Observe that the law of motion described by equations (3.10) and

(3.11) is already linear, so no further linearization is needed. Also observe that the variables that

areM periods old in the date-t history are dropped from the date-(t+1) history. Thus, the law of

motion described by equations (3.10)-(3.11) introduces a truncation. However, the consequences

of this truncation are expected to be negligible. The reason is that the truncation only affects

the agents that had survived for M consecutive periods, and given a sufficiently small survival

probability σ and/or a sufficiently large M there will be very few of these agents. Aside from this

22In practice, I heavily rely on GPU computing for performing the Monte Carlo simulations.
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negligible truncation there are no further approximations errors in the representation of the law

of motion given by equation (2.25). As has been already stated, this is an important benefit of

using the computational method described here.

3.3 Solving the linearized model

Once all equations have been linearized, we are left with a stochastic linear rational expectations

model with a non-standard feature – namely, that some of the decision variables during the current

period and some of the endogenous states during the next period are contingent on the realization

of the aggregate shocks during the next period. Fortunately, this difficulty can be handled easily.

The reason is that the stochastic state-contingent solution that we seek can be easily constructed

from the solution to the deterministic version of the model, and this version has a standard

structure that can be solved using well known methods. In what follows, I describe the linear

stochastic model in detail and show how to perform this transformation.

Define the following vectors of variables,

x1t =
{
△wyL,t−n,△wyH,t−n, [△woL,t−n (v̄j)]

J2
j=J1

, [△woH,t−n (v̄j)]
J4
j=J3

}N

n=0
(3.12)

x2t−1 = {△ lnKt−1} (3.13)

y1t+1 =
{
△wyL,t+1,△wyH,t+1, [△woL,t+1 (v̄j)]

J2
j=J1

, [△woH,t+1 (v̄j)]
J4
j=J3

}
(3.14)

y2t =
{
△uyL,t,△uyH,t △ nyL,t,△nyH,t △ ln ξyt,△ lnλt,△ ln qt, [△ ln ηt (v̄j)]

J
j=1 , (3.15)

[△uoL,t (v̄j)]Jj=1 , [△uoH,t (v̄j)]
J
j=1 , [△noL,t (v̄j)]

J
j=1 , [△noH,t (v̄j)]

J
j=1 ,

[△ ln ξot (v̄j)]
J
j=1 ,△ lnHt,△It

}
where △ represents the deviation of a variable from its deterministic steady state value, J1 (J2)

is the lowest (largest) grid point j for which the steady-state value woL (v̄j) is interior, and J3 and

J4 are similarly defined for woH .
23 Observe that x1t lists all zt-contingent state variables, x

2
t−1 lists

all non-contingent state variables, y1t+1 lists all zt+1-contingent decision variables, and y2t lists all

non-contingent jump and decision variables.

23If for some grid point j, woL (v̄j) or woH (v̄j) are corner solutions at the deterministic steady, their values are

fixed along the stochastic solution.
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Once the model is linearized as in Section 3.2 it can be written as follows:

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt, (3.16)

0 = A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1, (3.17)

0 = A32x
2
t +B31x

1
t +B32x

2
t−1 + C32y

2
t , (3.18)

0 = H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt, (3.19)

0 = Et

{
F52x

2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 ,

+K52y
2
t + L5zt+1 +M5zt

}
(3.20)

zt+1 = Nzt + εt+1, (3.21)

where (3.16) represents the aggregate feasibility constraints (equations 2.27-2.28), (3.17) is the

law of motion for x1t (equations 3.10-3.11), (3.18) is the law of motion for x2t−1 (equation 2.26),

(3.19) is the first-order conditions for y1t+1 (equations 2.12-2.13 and 2.20-2.21) which must hold

almost surely, and (3.20) represents the IC and PK constraints (equations 2.6-2.7 and 2.15) and

the first-order conditions for y2t (equations 2.8-2.11, 2.16-2.19, and 2.23-2.24), which must hold in

expectation. Equation (3.21) is simply the stochastic equation for zt+1(equation 2.3).24

I seek a recursive solution to equations (3.16)-(3.21) of the following form:

x1t+1 = Ω11x
1
t + Ω12x

2
t−1 +Ψ1zt +Θ1zt+1, (3.22)

x2t = Ω21x
1
t + Ω22x

2
t−1 +Ψ2zt, (3.23)

y1t+1 = Φ11x
1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1, (3.24)

y2t = Φ21x
1
t + Φ22x

2
t−1 + Γ2zt. (3.25)

My strategy will be to construct it from the recursive solution to the deterministic version of

equations (3.16)-(3.21), in which εt+1 is set to zero and the expectations operator is dropped. This

deterministic version has identical structure as the system analyzed in Uhlig (1999) and can be

24Actually, in the Mirrlees economy considered here B22 = B31 = H41 = H42 = M4 = F52 = H51 = 0. They are

solely included in equations (3.16)-(3.21) so that the general computational method described in the Appendix can

refer to this same set of equations.
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solved using identical methods.25 Its solution has the following form:

x1t+1 = P11x
1
t + P12x

2
t−1 +Q1zt, (3.26)

x2t = P21x
1
t + P22x

2
t−1 +Q2zt, (3.27)

y1t+1 = R11x
1
t +R12x

2
t−1 + S1zt, (3.28)

y2t = R21x
1
t +R22x

2
t−1 + S2zt. (3.29)

Proposition 1 Let (3.26)-(3.29) be the solution to the deterministic version of equations (3.16)-

(3.21). Define Ω11 = P11, Ω12 = P12, Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ11 = R11, Φ12 = R12,

Φ21 = R21, Φ22 = R22, Γ2 = S2, and

Θ1 = ΥA−1
21 C21K

−1
41 J42S2, (3.30)

Ψ1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
, (3.31)

Λ1 = −K−1
41 J42R21Θ1 −K−1

41 J42S2, (3.32)

Γ1 = −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4, (3.33)

where

Υ =
[
I − A−1

21 C21K
−1
41 J42R21

]−1
(3.34)

Then, (3.22)-(3.25) solves the stochastic system (3.16)-(3.21).

Proof. The solution is verified using algebraic manipulations and the law of iterated expecta-

tions.26

4 Testing the computational method

The Mirrlees RBC model considered so far provides an ideal test case for the accuracy of the

computational method. The reason is that in Veracierto (2021) I establish key features of the sta-

tionary solution analytically. In particular, I demonstrate that under the logarithmic preferences

assumed here that the following properties hold:

25In fact, I use the same notation as Uhlig (1999), page 38, to facilitate comparisons. The only difference is that

the variables here written as x1t and y1t+1 are there written as x1t−1 and y1t . However, in a deterministic context this

difference is immaterial (it can be considered a simple notational issue).

26See Technical Appendix 9 for a complete proof.
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Property 1: uyst, nyst, and wys,t+1 fluctuate over the business cycle by amounts that are

independent of the reported type s,

Property 2: each of the allocation rules uost (v), nost (v), and wos,t+1 (v) are strictly increasing

linear functions that are parallel across reported types,

Property 3: uost (v), nost (v), and wos,t+1 (v) shift over the business cycle while keeping their

slopes constant, and the shifts are independent of the reported type s,

Property 4: the cross-sectional distributions of promised values v, of log-consumption uost,

and of log-leisure nost, shift horizontally over the business cycle while maintaining their shapes,

Property 5: aggregate consumption Ct, aggregate hours worked Ht, and aggregate capital Kt

are exactly the same as in the stationary solution to the following representative agent planning

problem:

V (zt, Kt−1) = max {u (Ct) + ᾱn (1−Ht) + θEt [V (zt+1, Kt)]} (4.1)

subject to

Ct +Kt − (1− δ)Kt−1 ≤ eztKγ
t−1H

1−γ
t , (4.2)

zt+1 = ρzt + εt+1, (4.3)

where ᾱ = αLψL + αHψH .

While Properties 1-4 appear to be qualitative in nature, Property 5 provides a strong quan-

titative test of the computational method.27 The reason is that the optimal allocation of the

representative agent economy can be computed using standard methods and compared with the

aggregate variables of the Mirrlees economy computed with the method described in this paper. In

fact, this also provides a quantitative test of Property 3, since the vertical parallel shifts in Prop-

erty 3 must be exactly those needed to deliver Property 5. The essential reason why Property 5

holds is that the optimal allocations in the Mirrlees economy must satisfy Inverse Euler conditions,

and under logarithmic preferences these Inverse Euler conditions become linear with respect to

individual consumption and leisure. Thus when these Inverse Euler conditions are integrated in

the cross section they deliver the (direct) Euler conditions of the representative agent economy.28

27Property 5 generally does not hold in economies with private information. It would not even hold in the Mirlees

economy considered here if preferences were different from logarithmic (see Veracierto (2021)).

28I refer the reader to Veracierto (2021) for the details.
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In order to show that the computational method recovers the above properties exactly I must

first parametrize the model. Following the RBC literature, I select a labor share 1− γ of 0.64, a

depreciation rate δ of 0.10, a private discount factor β of 0.96, a persistence of aggregate produc-

tivity ρ of 0.95, and a variance of the innovations to aggregate productivity σ2
ε equal to 4×0.0072,

all corresponding to a time period of one year. The social discount factor θ is chosen to be the

same as the private discount factor β. The values of leisure αL and αH are chosen to satisfy two

criteria: That aggregate hours worked H equal 0.31 (a standard target in the RBC literature)

and that the hours worked by old agents with the high value of leisure and the highest possible

promised value noH (vmax) be a small but positive number. The rationale for this second criterion

is that I want to maximize the relevance of the information frictions while keeping an internal

solution for hours worked. The resulting values for αL and αH are 1.643 and 2.177, respectively.

I treat both values of the idiosyncratic shock symmetrically and chose ψL = ψH = 0.50. In terms

of the life-cycle structure, I choose σ = 0.975 to generate an expected lifespan of 40 years.

While the above parameters are structural, there are a number of computational parameters

to be determined. The number of grid points in the spline approximations J , the total number of

agents simulated I, the length of the simulations for computing the invariant distribution T , and

the length of the histories kept as state variables when computing the business cycles N are all

chosen to be as large as possible, while keeping the computational task manageable and results

being robust to non-trivial changes in their values. Their chosen values are 20, 223, 1000, and

273, respectively.29 It turns out that under these computational parameters, the linearized system

(3.16)-(3.21) has about 12, 000 variables (a large system indeed).

Finally, the lower and upper bounds for the range of possible promised values vmin and vmax

were chosen so that the fraction of agents in the intervals [v1, v2] and [vJ−1, vJ ] are each less than

0.01%. Thus, truncating the range of possible values at vmin and vmax should not play an important

role in the results. The chosen values for vmin and vmax are −35.0 and −16.3, respectively.

Before turning to the business cycle results, I illustrate different features of the model at its

deterministic steady state. Figure 1 shows the invariant distribution of promised values across the

29Given the value selected for the survival probability σ, less than 0.1% of individuals survive more than N

periods. Thus, the truncation imposed by keeping track of a finite history of decision rules introduces a very small

approximation error.
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J − 1 intervals [vj, vj+1]
J−1
j=1 , defined by the grid points of the spline approximations. We see that

the invariant distribution puts very little mass at extreme values. In consequence, in what follows

I will report allocation rules only between the 6th and 16th grid points. The reason is not only

that there are too few agents at the tails of the distribution for them to matter, but also that

being close to the artificial bounds vmin and vmax greatly distorts the shape of the allocation rules.

Figure 2.A reports utilities of consumption for old agents uoL (v) and uoH (v) across promised

values v, at the deterministic steady state. We see that both uoL and uoH are strictly increasing in

the promised value v, are linear, and are parallel to each other. Figure 2.B shows the same for the

utilities of leisure noL (v) and noH (v), and Figure 2.C for the next-period promised values woL (v)

and woH (v). Since these figures could be tricking the naked eye, Figure 2.D, depicts the vertical

differences across reported types uoH (v)−uoL (v), noH (v)−noL (v) and woH (v)−woL (v). We see

that the different pairs of functions are indeed parallel to each other. Thus, Figure 2 verifies that

Property 2 holds at the deterministic steady state.

The discussion of business cycle dynamics that follows is centered around the analysis of

the impulse responses of different variables to a one standard deviation increase in aggregate

productivity. Figure 3.A shows the impulse responses of the utility of consumption of young

agents uyL and uyH . We see that the two impulse responses overlap perfectly, thus satisfying

Property 1. Figure 3.B shows the impulse response of the utility of consumption of old agents

with a low value of leisure uoL (v), at each of the eleven grid points (vj)
16
j=6. While the figure shows

eleven impulse responses, only one of them is actually seen because they overlap perfectly. This

means that, in response to the aggregate productivity shock, the linear function uoL depicted in

Figure 2.A shifts vertically over time while keeping its slope constant. Figure 3.C, which does

the same for uoH , is identical to Figure 3.B. Thus, not only uoH shifts over time keeping its slope

constant, but its increments are the same as those of uoL. We have thus verified that uoLt and

uoHt satisfy Property 3. Figure 4 is analogous to Figure 3, except that it depicts the behavior of

the utilities of leisure nyst and [nost (vj)]
16
j=6. Figure 5 is also analogous to Figure 3 but depicts

the behavior of the promised values wys,t+1 and [wos,t+1 (vj)]
16
j=6. A quick inspection verifies that

Figures 4 and 5 have the same characteristics as Figure 3. Thus, Properties 1 and 3 are fully

satisfied.

Figure 6 shows the impulse responses of the cross sectional standard deviations of promised val-

ues, log-consumption and log-leisure. We see that in response to a positive aggregate productivity
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shock, all these standard deviations remain flat. Thus, Property 4 is satisfied.

Finally, Figure 7.A shows the impulse responses of aggregate output Yt, aggregate consumption

Ct, aggregate investment It, aggregate hours worked Ht and aggregate capitalKt−1 for the Mirrlees

RBC economy. Figure 7.B reports the impulse responses for the same variables but for the

representative agent economy planning problem (4.1)-(4.2). We see that Figures 7.A and 7.B are

the same. Figure 7.C verifies this by reporting the differences between the Mirrlees economy and

the representative agent economy, for each of the macro variables considered. Thus, Property 5 is

perfectly satisfied.

We have thus verified that the computational method, when applied to the Mirrlees RBC

economy with logarithmic preferences, reproduces all the properties found in Veracierto (2021)

as well as a crucial quantitative test: That all aggregate variables in the economy with private

information perfectly reproduce the impulse responses of the same variables in the representative

agent economy. Since nothing in the computational method exploits the functional forms or

structure of the economy considered, this provides significant evidence about its accuracy. This

finding indicates that the computational method introduced in this paper should prove useful in

a variety of other private information settings.

5 Applicability

The computational method just described is applicable to a wide variety of economies with private

information, but these models must satisfy certain conditions. A key feature of the computational

method is that it uses a finite history of past decision rules to describe the current cross-sectional

distributions of agents across individual states. For this strategy to work, the model considered

should incorporate a significant life-cycle structure for the non-representative types of agents. In

particular, their expected (or deterministic) lifetimes should be sufficiently short relative to the

model time period. Otherwise, one may have to use prohibitively long histories of past decision

rules in order to characterize the cross-sectional amount of heterogeneity accurately.

Another feature of the computational method is that it uses spline approximations to describe

decision rules. This approach can accommodate a large class of decision rules but could become

quite costly in certain cases. If the decision rules have ranges with sharp non-linearities, describing

them accurately may require adding many grid points at those ranges. This could increase the
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computational costs significantly, since introducing more spline coefficients increases the number

of aggregate state variables in the system (the computational method must keep track of the

history of the additional coefficients). Another reason for the added complexity is that calculating

numerical derivatives accurately at narrowly separated grid points requires having a good definition

of the invariant distribution over the subranges that they define.30 Since the invariant distribution

is obtained by performing Monte Carlo simulations, this may require working with a huge panel

of agents. For these reasons, it is important to inspect the invariant distribution and decision

rules at the deterministic steady state of the model and evaluate if the invariant distribution puts

enough mass on ranges of non-linearities to justify the added complexity.

The spline decision rules will also only approximately describe the critical values at which a

constraint becomes binding. Moreover, the computational method assumes that if a constraint

binds (does not bind) at a given grid point in the deterministic steady state, that it will always

bind (not bind) in the stochastic solution. While this assumption is likely to hold at most grid

points, it may not hold at grid points that are sufficiently close to true critical values. In many

cases these approximation errors will have unimportant consequences for the aggregate dynamics

of the model. For example, if the invariant distribution puts little mass around the computed

critical values, it will be largely irrelevant what happens in those ranges. Even if the invariant

distribution puts significant mass around those critical values, the consequences of missing the

associated constraints by small amounts are likely to be unimportant if the decision rules are

sufficiently smooth. Problems may arise when the invariant distribution puts considerable mass

close to the critical values and the decision rules are sharply non-linear around them. In these cases,

the computational method may fail to capture the aggregate dynamics of the model correctly.

While this paper has applied the computational method to a RBC Mirrlees economy with

logarithmic preferences, in Veracierto (2021) I have used it to compute the solution under more

general CRRA preferences and for preferences with a constant Frisch elasticity of labor supply.

In Veracierto (2022) I also use it to study the optimal provision of unemployment insurance over

the business cycle in an economy with moral hazard. In particular, in that paper I consider

a RBC structure in which all production is performed in a central island, agents get separated

exogenously from that island, and in order to get back they need to search. An unemployed

30Recall the linearization of equation (2.27).
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agent’s probability of arriving to the production island depends on their own search intensity,

which (similarly to Hopenhayn and Nicolini (1997)) is private information. For that framework

I use the computational method described here to solve the economy-wide mechanism design

problem. While I admit that two applications is not a long list, it is certainly a start. I hope that

the reader will appreciate the applicability of the method and be motivated to use it in a variety

of other settings.

6 Conclusions

In this paper I introduced a method for computing aggregate fluctuations of economies with private

information. Its basic strategy is to parametrize individual decision rules as spline approximations

and to keep long histories of the spline coefficients as state variables. The resulting representation

of the model is then linearized at the deterministic steady-state. The computational method has

three attractive features: 1) it keeps track of the full distribution of agents across individual states,

2) it can handle irregular shapes for this distribution, and 3) it incorporates the distribution’s exact

law of motion. However, the main advantage of the computational method is that it is able to

handle cases in which the cross-sectional distribution of agents is state-contingent, which is a

prevalent feature of economies with private information.

The computational method was illustrated using a Mirrlees RBC economy with known an-

alytical solution. Contrasting the numerical solution to the theoretical solution allowed me to

test the accuracy of the computational method. The method passed the test with flying colors:

it reproduced all the qualitative and quantitative properties of the solution perfectly well. This

finding suggests that the computational method should prove useful in a variety of other private

information applications.

Having said this, I would like to conclude the paper with two caveats. The first one is that,

since linearizing the model with respect to each of the elements in the history of spline coefficients

requires performing a massive number of Monte Carlo simulations, the method turns out to be very

slow.31 This should not be a problem when calibrating the deterministic steady-state of a model,

31Linearizing the Mirlees RBC model under the computational parameters described in Section 4 takes about

four hours in a system equipped with four NVIDIA Tesla V100 GPUs.
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since the computational method needs to be applied only once (after all parameter values have been

determined). However, it makes it impractical for estimating a model using formal econometric

methods. The second caveat is that the computational complexity grows exponentially with the

number of endogenous individual state variables. The reason is that as the spline approximations

are defined over state spaces of increasing dimensionality, the number of spline coefficients in

the system grow accordingly. As a result, models with two or more endogenous individual state

variables could only be handled if the decision rules are sufficiently smooth to be described with

a relatively small number of grid points.
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8 Appendix: The general computational method

This Appendix describes the general method for computing stationary equilibria of economies with

private information and aggregate shocks. While the main features of the method have already

been discussed in the main text, here it is described in general terms to make it applicable to a

wide variety of settings.
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The basic framework is as follows.32 The economy is populated by individual decision makers

that solve maximization problems of the following form at every time period t:

vht(a, x1, x2) =

max
[uh1,t+1(s,a′)]

s,a′
,[uh2t(s,a′)]s,a′

{
Et

[∑
s

Rh(s, a, x1, x2, [uh1,t+1 (s, a
′)]a′ , [uh2t (s, a

′)]a′ , zt, pt, pt+1)ψs

]
+

Et

[∑
s

∑
a′

βh(a, a
′, zt, pt, pt+1)vh,t+1 (a

′, x′1 (s, a
′) , x′2 (s, a

′)) πh [a, a
′, uh1,t+1 (s, a

′) , u2ht (s, a
′)]ψs

]}
(8.1)

subject to

x′1 (s, a
′) = Gh1 (a, x1, x2, s, a

′, uh1,t+1 (s, a
′)) , (8.2)

x′2 (s, a
′) = Gh2 (a, x1, x2, s, a

′, uh2t (s, a
′)) , (8.3)

0 ≤ Et

[
Ch

(
a, x1, x2, [uh1,t+1 (s, a

′)]s,a′ , [uh2t (s, a
′)]s,a′ , zt, pt, pt+1

)]
, (8.4)

where h is the permanent type of the individual (e.g., being a household or a firm), a is a vector of

individual states that take a finite number of values (e.g., persistent idiosyncratic shocks), zt is a

vector of aggregate shocks, x1 is a vector of individual state variables whose values are contingent on

the realizations of a and zt, x2 is a vector of individual state variables whose values are contingent

on the realization of a but independent of zt, s is a vector of i.i.d. idiosyncratic shocks with

distribution ψ, uh1,t+1 (s, a
′) is a vector of (s, a′, zt+1)-contingent decision variables, uh2t (s, a

′)

is a vector of (s, a′)-contingent decision variables, pt is a vector of equilibrium prices (whose

stochastic process is taken as given by the individual), Gh1 and Gh2 define the laws of motion for

x1 and x2, respectively, Ch is a vector valued function defining constraints on [uh1,t+1 (s, a
′)]s,a′ ,

and [uh2t (s, a
′)]s,a′ , βh is a function that describes the discounting of future payoffs (allowing for

idiosyncratic and/or aggregate preference shocks, as well as discounting using market prices), and

πh describes the transition probabilities for a (potentially affected by the individual’s decisions).33

32Hereon I use the convention that a variable is dated t if its value becomes known when the date-t aggregate

shocks realize. If the dating of a variable x is clear from the context, I avoid dating it explicitly and its next period

value will be denoted by x′. In particular, I avoid dating the arguments of individual value functions and decision

rules.

33The [] notation is used for a list of variables. For example, [uh1,t+1 (s, a
′)]s,a′ lists the values of uh1,t+1 (s, a

′)

31



While a and s take a finite number of values, all other variables take real values.34 The solution

to this sequence of maximization problems is a stochastic process for vht, [uh1,t+1 (s, a
′)]s,a′ , and

[uh2t (s, a
′)]s,a′ , which are all functions over (a, x1, x2).

35 The permanent type h implicitly defines

the space in which (a, x1, x2) lie.
36. There is a finite number of different permanent types h in the

economy.37

The distribution of h-type agents across individual states (a, x1, x2) at the beginning of period

t is described by a measure µht. The law of motion for µht is given by the following equation:

µh,t+1 ({a′} × X1 ×X2) (8.5)

= ϕh ({a′} × X1 ×X2) +
∑
s

(∫
B
πh [a, a

′, uh1,t+1 (a, x1, x2, s, a
′) , uh2t (a, x1, x2, s, a

′)] dµht

)
ψs,

for every a′ and Borel sets X1 and X2, where

B = {(a, x1, x2) : Gh1 (a, x1, x2, s, a
′, uh1,t+1 (a, x1, x2, s, a

′)) ∈ X1

and Gh2 (a, x1, x2, s, a
′, uh2t (a, x1, x2, s, a

′)) ∈ X2} . (8.6)

The measure ϕh describes an exogenous endowment of new agents (e.g., to accommodate exogenous

entry of firms in a firm dynamics context or newborns in a households life cycle context), while

across all possible values of s and a′, while [uh1,t+1 (s, a
′)]a′ lists the values of uh1,t+1 (s, a

′) across all possible values

of a′ fixing the value of s.

34The reason I introduce the i.i.d. shocks s explicitly instead of subsuming them in the vector a is because of

the restrictions across realizations of s that equation (8.4) allows for. These cross-restrictions play a crucial role in

certain economies with private information (e.g. representing incentive compatibility constraints).

35While the dependence of [uh1,t+1 (s, a
′)]s,a′ or [uh2t (s, a

′)]s,a′ on a′ is not critical, the dependence of

[uh1,t+1 (s, a
′)]s,a′ on zt+1 is what distinguishes it from [uh2t (s, a

′)]s,a′ . Any decision variable that is not con-

tingent on zt+1 is assumed to be included in [uh2t (s, a
′)]s,a′ . The same assumptions apply to x1 and x2. The

presence of individual state and decision variables that depend on the realization of the aggregate shocks plays a

crucial role in economies with private information, since promised values are contingent on the realization of the

aggregate shocks.

36I avoid introducing a subscript h for these variables in order to simplify notation. However, the context will

always make clear the permanent type h that they correspond to.

37Observe that, similarly to Section 2.1, s refers to the index of an i.i.d. idiosyncratic shock. Thus, similarly to

equation 2.5, the sum across s in equation 8.1 is introduced to take expectations across all possible realizations of

s, each of which takes place with probability ψs.
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the second term describes the endogenous evolution of the distribution. Observe that since uh1,t+1

is contingent on the realization of zt+1, the same is generally true for µh,t+1. I assume that µh1,

ϕh, and πh are such that the total number of h-type agents µht is constant over time and equal to

Γh, independent of the stochastic process {uh1,t+1, uh2t}∞t=1.

In what follows, it will be useful to differentiate the h-type of agents that are infinitely lived

and for which the maximization problem (8.1)-(8.4) is independent of a and s. Henceforth, all

variables corresponding to such “representative” types of agents will be denoted with a subscript

r, while the h subscript will be reserved for heterogeneous types. An important characteristic of

representative types of agents is that the measure µrt describing their distribution across individual

states will have mass at a single point (xr1t, xr2,t−1). Therefore, it will be convenient to replace

µrt with that single point and replace the law of motion (8.5)-(8.6) with

xr1,t+1 = Gr1 (xr1,t, xr2,t−1, ur1,t+1 (xr1,t, xr2,t−1)) , (8.7)

xr2t = Gr2 (xr1t, xr2,t−1, ur2t (xr1,t, xr2,t−1)) . (8.8)

The stochastic process for pt, which is taken as given in the maximization problems (8.1)-(8.4),

is an equilibrium process if for every t,

Q

(
zt,

[∑
s

(∫
Mh(a, x1, x2, [uh2t (a, x1, x2, s, a

′)]a′)dµht

)
ψs

]
h

, [xr1t, xr2,t−1, ur2t (xr1t, xr2,t−1)]r

)
= 0,

(8.9)

almost surely, where Q is a vector valued function (of the same dimensionality as pt) describ-

ing aggregate feasibility and/or market clearing conditions, Mh is a vector valued function that

determines which moments of µht are arguments of Q, and (xr1t, xr2,t−1, ur2t) are the states and

decision functions of the r-type of representative agents. Observe that the zt+1-contingent decision

variables [uh1,t+1 (s, a
′)]s,a′ and ur1,t+1 do not enter Q.

The vector of aggregate shocks zt follows an AR(1) process zt+1 = Nzt+εt+1, where Et [εt+1] =

0.

8.1 Computing the deterministic steady state

In order to compute a steady state, I start by making zt identical to zero and fixing the price vector

at some value p. For each r-type of representative agent, the vector of time invariant state and
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decision variables (x1r, x2r, u1r, u2r) can then be directly obtained from the first-order conditions

of the corresponding maximization problem.

I solve the maximization problems given by equations (8.1)-(8.4) using spline approximations

and value function iterations.38 To start, I restrict each component of the vector of endogenous

individual state variables (x1, x2) for each h-type agent to lie in a closed interval and define a set

of grid points in it that includes the extremes.39 The Cartesian product of all these sets of grid

points defines a finite set of grid points for (x1, x2), which is described by a vector (x̄1j, x̄2j)
Jh
j=1.

Given the value function vh from the previous iteration, which is used to evaluate (x′1, x
′
2) (pos-

sibly outside the grid points), the maximization problem in equations (8.1)-(8.4) is solved for

only at the grid points (x̄1j, x̄2j)
Jh
j=1. Once, the vectors of new values v̄h = [vh (a, x̄1j, x̄2j)]a,j,

ūh1 = [uh1 (a, x̄1j, x̄2j, s, a
′)]a,j,s,a′ , and ūh2 = [uh2 (a, x̄1j, x̄2j, s, a

′)]a,j,s,a′ are obtained, I extend

their values to the full domain of (x1, x2) using splines. These value function iterations continue

until v̄h converges. Observe that the solution obtained depends on the price vector p, which has

been fixed.

For heterogenous agents, the steady state version of equations (8.5)-(8.6) describes the recursion

that the time invariant distribution µh has to satisfy. This equation corresponds to the case of a

continuum of agents. However, I perform the recursion in the case of a large but finite number of

agents. In particular, consider a large but finite number Ih of h-type agents and endow them with

some individual states (a, x1, x2). Using the functions uh1 and uh2 already obtained, I simulate

the evolution of the individual states of these Ih agents for a large number of periods T . To be

precise, if an h-type agent i has the individual state (a, x1, x2) at the beginning of the current

period, then the individual state (a′, x′1, x
′
2) at the beginning of the following period is randomly

38For representative agents with state contingent state variables x1r, it will be important to follow the procedure

described in this paragraph as well since the steady state objects described here will be needed later on.

39When restricting each of these variables to lie in a closed interval, one should modify the steady state maxi-

mization problem (8.1)-(8.4) to incorporate the corresponding constraints on x′1 and x′2. The use of splines is what

requires each component of (x1, x2) to lie in a closed interval.
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determined as follows:

(i) with probability πh [a, a
′, uh1 (a, x1, x2, s, a

′) , uh2 (a, x1, x2, s, a
′)]ψs, it is given by (8.10)

[a′, Gh1 (a, x1, x2, s, a
′, uh1 (a, x1, x2, s, a

′)) , Gh2 (a, x1, x2, s, a
′, uh2 (a, x1, x2, s, a

′))] ,

(ii) with probability 1−
∑
s,a′

π [a, a′, uh1 (a, x1, x2, s, a
′) , uh2 (a, x1, x2, s, a

′)]ψs it is determined by ϕh.

Observe that the transition in (ii) takes place when the individual dies and is replaced by a

newborn whose initial state is unrelated to the state of the predecessor.

Simulating the Ih agents and their descendants for T periods using the law of motion in (8.10),

I obtain a realized distribution (ai, xi1, x
i
2)

Ih
i=1 of individual states across the Ih agents. Doing this

for every h-type, the aggregate feasibility conditions can then be computed as

Q

(
0,

[∑
s

(
Γh

1

Ih

Ih∑
i=1

Mh(a
i, xi1, x

i
2,
[
uh2
(
ai, xi1, x

i
2, s, a

′)]
a′
)

)
ψs

]
h

, [xr1, xr2, ur2]r

)
= 0. (8.11)

Observe that by the law of large numbers, equation (8.11) will become an arbitrarily good ap-

proximation of equation (8.9) as all Ih and T tend to infinity.

If equation (8.11) is not satisfied, the price vector p must be changed until it is. This represents

a standard root finding problem.

8.2 Computing the stationary stochastic solution

Computing the stationary stochastic solution requires linearizing the first-order conditions to the

maximization problems given by equations (8.1)-(8.4), the laws of motion (8.5)-(8.6), the laws of

motion (8.7)-(8.8), and the aggregate feasibility conditions given by equation (8.9) with respect

to a convenient set of variables.

In order to illustrate some of the issues involved in the linearization of the first-order conditions,

I will use equation (8.1) as an example since it represents the most complex type.40 The first issue

40Equation (8.1) enters the set of first order conditions if the transition probabilities πh depend on uh1,t+1 or

uh2t. In this case, the level of vht enters the first order conditions and the definitional equation (8.1) must be

included. If πh does not depend on uh1,t+1 or uh2t, only the derivatives of vht enter the first order conditions.

However, the issues discussed here in the context of equation (8.1) apply to other first-order conditions, including

the definitional equation for the derivatives of vht. For reasons I will explain in Section 8.3, it is important to

write first order conditions using the derivatives of the value function and not as second order stochastic difference

equations.
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is the existence of a continuum of equations (8.1), since (x1, x2) take a continuum of values. I solve

this “curse of dimensionality” by considering the equation only at the grid points (x̄1j, x̄2j)
Jh
j=1 that

were used in the computation of the deterministic steady state. Another issue is that each of this

finite number of equations depends on the infinite dimensional object vh,t+1, since it is a function

of (x′1, x
′
2), and I need to evaluate these variables outside the grid points. In this case, I solve

the “curse of dimensionality” by considering that vh,t+1 is a spline approximation and, therefore,

is completely determined by the vector v̄h,t+1 = [vh,t+1 (a, x̄1j, x̄2j)]a,j, i.e., by the value of the

function at the grid points. Consequently, after substituting equations (8.2)-(8.3) into equation

(8.1) and linearizing at the corresponding steady state values, I am left with the following finite

set of equations:

0 = Et {Lv
h (v̄h,t, ūh1,t+1, ūh2t, zt, pt, pt+1, v̄h,t+1)} , (8.12)

where ūh1,t+1 = [uh1,t+1 (a, x̄1j, x̄2j, s, a
′)]a,j,s,a′ , ūh2t = [uh2t (a, x̄1j, x̄2j, s, a

′)]a,j,s,a′ and Lv
h is a vector

valued linear function with the same dimensionality as v̄ht.

Particular attention should be given to the first-order conditions corresponding to grid points

(a, x̄1j, x̄2j) for which the deterministic steady state choice of some component of x′1 (s, a
′) or

x′2 (s, a
′) hits one of the extremes imposed by the use of spline approximations. At these grid points,

the maximization problem (8.1)-(8.4) should be modified by imposing the constraint that the

corresponding component of equation (8.2) or (8.3) must evaluate to the corresponding extreme.

The first-order conditions used at these grid points should be those of the modified problem. A

consequence of this is that if the optimal choice of some component of x′1 (s, a
′) or x′2 (s, a

′) hits

an extreme in the steady state solution, it will always hit it in the stochastic solution. This

will certainly distort the stochastic decision rules close to the extremes, so in practice one should

choose these extremes far enough that the invariant distribution µh puts little mass close to them

(minimizing the relevance of these distortions).

Linearizing the aggregate feasibility conditions described by equation (8.9) presents more com-

plicated issues because of their dependence on the integrals
[∫
Mhdµht

]
h
. In order to do this

linearization I do the following. For each heterogenous type of agent h I consider the same large

but finite number of agents Ih used in Section 3.1 and endow them with the same realized distribu-

tion of individual states (ai, xi1, x
i
2)

Ih
i=1 that was obtained when computing the steady state. Now,

assume that these agents populated the economy N time periods ago and consider the history
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{uh1,t+1−n, uh2,t−n}Nn=1 of decision rules that were realized during the last N periods (where t is

considered to be the current period). Since these decision rules are spline approximations, this

history can be represented by the finite list of values {ūh1,t+1−n, ūh2,t−n}Nn=1. Using this history of

decision rules, I can simulate the evolution of individual states for the Ih agents and their descen-

dants during the last N time periods to update the distribution of individual states from the initial

(ai, xi1, x
i
2)

Ih
i=1 to a current distribution

(
ait, x

i
1t, x

i
2,t−1

)Ih
i=1

. In particular, I can initialize the distribu-

tion of individual states at the beginning of period t−N as
(
ait−N , x

i
1,t−N , x

i
2,t−N−1

)
= (ai, xi1, x

i
2),

for i = 1, ..., Ih. Given a distribution of individual states
[(
ait−n, x

i
1,t−n, x

i
2,t−n−1

)]Ih
i=1

at period

t− n, the individual state
(
ait−n+1, x

i
1,t−n+1, x

i
2,t−n

)
of each agent i at period t− n+1 is randomly

determined as follows:

(i) with probability πh
[
ait−n, a

′, uih1,t+1−n (s, a
′) , uih2,t−n (s, a

′)
]
ψs, it is given by

(
a′, Gi

h1,t+1−n (s, a
′) ,

Gi
h2,t−n (s, a

′)
)
, where

(
uih1,t+1−n (s, a

′) , uih2,t−n (s, a
′) , Gi

h1,t+1−n (s, a
′) , Gi

h2,t−n (a
′)
)
are the

values of (uh1,t+1−n, uh2,t−n, Gh1, Gh2) evaluated at
(
ait−n, a

′, xi1,t−n, x
i
2,t−n−1, s, a

′) ,
(ii) with probability 1−

∑
s,a′

πh
[
ait−n, a

′, uih1,t+1−n (s, a
′) , uih2,t−n (s, a

′)
]
ψs, it is determined by ϕh.

Proceeding recursively for n = N,N − 1, ..., 1, I obtain a realized distribution
(
ait, x

i
1t, x

i
2,t−1

)Ih
i=1

at

the beginning of period t. This distribution can be used to compute statistics under the distribution

µht. In particular, having followed the above procedure for each h-type of heterogeneous agents,

I can rewrite equation (8.9) as

0 = Q

(
zt,

[∑
s

(
Γh

1

Ih

Ih∑
i=1

Mh(a
i
t, x

i
1t, x

i
2,t−1,

[
uh2t

(
ait, x

i
1t, x

i
2,t−1, s, a

′)]
a′
)

)
ψs

]
h

,

, [xr1t, xr2,t−1, ur2t (xr1t, xr2,t−1)]r
)

(8.13)

Since uh2t and ur2t are spline approximations, they can also be summarized by their values at the

grid points ūh2t and ūr2t.
41 As a consequence, equation (8.13) can be linearized at the deterministic

41For simplicity, I assume here that all representative agents have state-contingent states x1r. However, for

representative agents with no state-contingent states, instead of writing equation (8.13) in terms of their decision

rules ur2t, it is often more convenient to write it directly in terms of the values of their type-2 decision variables

at date t. Consequently, for this type of representative agents, ūr2t in equations (8.14) and (8.18) is not a vector

of spline coefficients but a vector of values for type-2 decision variables.
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steady state values to get the following finite set of equations:

0 = LQ
(
zt,
[
{ūh1,t+1−n}Nn=1 , {ūh2,t−n}Nn=0

]
h
, [xr1t, xr2,t−1, ūr2t]r

)
(8.14)

where LQ is a vector valued linear function.42

My approach of representing the distribution µht with a finite history of values greatly simplifies

the description of the law of motion in equations (8.5)-(8.6). In fact, updating the distribution

µht is merely reduced to updating those histories. In particular, the date-(t + 1) histories can

be obtained from the date-t histories and the current values ūh1,t+1 and ūh2t using the following

equations:

ūh1,(t+1)−n = ūh1,t−(n−1) (8.15)

ūh2,(t+1)−n = ūh2,t−(n−1), (8.16)

for n = 1, ..., N . Observe that the law of motion described by equations (8.15)-(8.16) is already

linear, so no further linearization is needed. Also observe that the variables that are N periods

old in the date-t history are dropped from the date-(t + 1) history. Thus, the law of motion

described by these equations introduces a truncation. However, introducing a life cycle structure

to the h-type of heterogenous agents will make the consequences of this truncation negligible. The

reason is that the truncation only affects agents surviving for N consecutive periods and, given

sufficiently small survival probabilities and/or a sufficiently large N , there will be very few of

these agents. Apart from this negligible truncation, there are no further approximations errors

in the representation of the law of motion given by equations (8.5)-(8.6) – a benefit of using the

computational method described in this paper.

Since all ur1t,t+1 and ur2t are also spline approximations they are summarized by their values

42Taking numerical derivatives of equation (8.13) with respect to each spline coefficient in the list[
{ūh1,t+1−n}Nn=1 , {ūh2,t−n}Nn=0

]
h
requires simulating Ih agents over N periods. Thus, obtaining the linear function

LQ requires performing a large number of Monte Carlo simulations. Moreover, minimizing sampling errors requires

a large value for Ih (in practice I work with panels of about 10 million individuals). While this seems a daunting

task, it is easily parallelizable. Thus, using massively parallel computer systems (such as GPU accelerators) can

play an important role in reducing computing times and keeping the task manageable.

38



at the grid points ūr1t,t+1 and ūr2t. The laws of motion (8.7)-(8.8) can then be linearized to obtain

0 = LGr1 (xr1,t+1, xr1t, xr2,t−1, ūr1t,t+1) , (8.17)

0 = LGr2 (xr2t, xr1t, xr2,t−1, ūr2t) , (8.18)

where LGr1 and LGr2 are vector valued linear functions of the same dimensionality as xr1,t+1 and

xr2t, respectively.

8.3 Solving the linearized model

Define the following vectors:

x1t =
[[
{∆ūh1,t+1−n}Nn=1

]
h
, [∆xr1t]r

]
, (8.19)

x2t−1 =
[[
{∆ūh2,t−n}Nn=1

]
h
, [∆xr2,t−1]r

]
, (8.20)

y1t+1 =
[
[∆ūh1,t+1]h , [∆ūr1,t+1]r

]
, (8.21)

y2t =

[[
∆v̄ht,∆

(
∂v̄ht
∂x

)
,∆q̄ht,∆ūh2t

]
h

,

[
∆v̄rt,∆

(
∂v̄rt
∂x

)
,∆q̄rt,∆ūr2t

]
r

,∆pt

]
, (8.22)

where ∆ represents deviations from steady state values. ∂v̄ht/∂x and q̄ht are the derivatives of

vht and the Lagrange multipliers of constraints (8.4), respectively, evaluated at the grid points

of the h-type of heterogeneous agents. ∂v̄rt/∂x and q̄rt are similar objects but for the r-type of

representative agents.

The linearized model can then be written as equations (3.16)-(3.21), where (3.16) represents

the aggregate feasibility constraints (equation 8.14), (3.17) is the law of motion for x1t (equations

8.15 and 8.17), (3.18)is the law of motion for x2t−1 (equations 8.16 and 8.18), (3.19) is the first-order

conditions for uh1,t+1 and ur1,t+1 evaluated at the grid points (which must hold almost surely), and

(3.20) represents the constraints (8.4), the first-order conditions for uh2t and ur2t, the definitions of

v̄ht and v̄rt (e.g., equation 8.12), and the envelope conditions for ∂v̄ht/∂x and ∂v̄rt/∂x, all evaluated

at the grid points (these equations must all hold in expectation).43

The strategy for computing the solution to equations (3.16)-(3.21) is described in Section 3.3.

43Actually, only the constraints in (8.4) that hold with equality are included in the system of equations. Also,

only the Lagrange multipliers of these constraints are included in q̄ht and q̄rt in equation 8.22.
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Figure 1: Invariant distribution of promised values
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Figure 2: Steady state allocation rules
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Figure 3: Impulse responses for consumption utilities
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Figure 4: Impulse responses for leisure utilities
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Figure 5: Impulse responses for promised values
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Figure 6: Cross-sectional heterogeneity
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Figure 7: Macro variables
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9 Proof of Proposition 1

The deterministic version of equations (3.16)-(3.21) is given by:

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt, (9.1)

0 = A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1, (9.2)

0 = A32x
2
t +B31x

1
t +B32x

2
t−1 + C32y

2
t , (9.3)

0 = H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt, (9.4)

0 = F52x
2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt,(9.5)

zt+1 = Nzt. (9.6)

The following Lemmas is used in the proof of Proposition 1.

Lemma 2 : Suppose that equations (3.26)-(3.29) are the recursive solution to equations (9.1)-

(9.6). Then,

P11 = −A−1
21 B21 − A−1

21 C21R11 (9.7)

P12 = −A−1
21 B22 − A−1

21 C21R12 (9.8)

Q1 = −A−1
21 C21S1 (9.9)

R11 = −K−1
41 H41 −K−1

41 J42R21P11 −K−1
41 J42R22P21 −K−1

41 K42R21 (9.10)

R12 = −K−1
41 H42 −K−1

41 J42R21P12 −K−1
41 J42R22P22 −K−1

41 K42R22 (9.11)

S1 = −K−1
41 J42R21Q1 −K−1

41 J42R22Q2 −K−1
41 J42S2N −K−1

41 K42S2 −K−1
41 M4 (9.12)

Also,

0 = [F52P21P11 + F52P22P21 +G52P21 +H51 + J52R21P11 + J52R22P21 +K51R11 +K52R21] x
1
t

+ [F52P21P12 + F52P22P22 +G52P22 +H52 + J52R21P12 + J52R22P22 +K51R12 +K52R22] x
2
t−1

+ [F52P21Q1 + F52P22Q2 + F52Q2N +G52Q2 + J52R21Q1 + J52R22Q2

+ J52S2N +K51S1 +K52S2 + L5N +M5] zt (9.13)
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Proof: From equation (9.2) we have that

x1t+1 = −A−1
21 B21x

1
t − A−1

21 B22x
2
t−1 − A−1

21 C21y
1
t+1 (9.14)

= −A−1
21 B21x

1
t − A−1

21 B22x
2
t−1 − A−1

21 C21

[
R11x

1
t +R12x

2
t−1 + S1zt

]
= −A−1

21 B21x
1
t − A−1

21 B22x
2
t−1 − A−1

21 C21R11x
1
t − A−1

21 C21R12x
2
t−1 − A−1

21 C21S1zt

=
[
−A−1

21 B21 − A−1
21 C21R11

]
x1t +

[
−A−1

21 B22 − A−1
21 C21R12

]
x2t−1 +

[
−A−1

21 C21S1

]
zt

where the second equality uses equation (3.28). Equating coefficients with equation (3.26) gives

equations (9.7)-(9.9).

From equation (9.4) we have that

y1t+1 = −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42y
2
t+1 −K−1

41 K42y
2
t −K−1

41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42
[
R21x

1
t+1 +R22x

2
t + S2zt+1

]
−K−1

41 K42

[
R21x

1
t +R22x

2
t−1 + S2zt

]
−K−1

41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42R21x
1
t+1 −K−1

41 J42R22x
2
t −K−1

41 J42S2Nzt

−K−1
41 K42R21x

1
t −K−1

41 K42R22x
2
t−1 −K−1

41 K42S2zt −K−1
41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
−K−1

41 J42R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
−K−1

41 J42S2Nzt

−K−1
41 K42R21x

1
t −K−1

41 K42R22x
2
t−1 −K−1

41 K42S2zt −K−1
41 M4zt

= −K−1
41 H41x

1
t −K−1

41 H42x
2
t−1 −K−1

41 J42R21P11x
1
t −K−1

41 J42R21P12x
2
t−1 −K−1

41 J42R21Q1zt

−K−1
41 J42R22P21x

1
t −K−1

41 J42R22P22x
2
t−1 −K−1

41 J42R22Q2zt −K−1
41 J42S2Nzt

−K−1
41 K42R21x

1
t −K−1

41 K42R22x
2
t−1 −K−1

41 K42S2zt −K−1
41 M4zt

=
[
−K−1

41 H41 −K−1
41 J42R21P11 −K−1

41 J42R22P21 −K−1
41 K42R21

]
x1t

+
[
−K−1

41 H42 −K−1
41 J42R21P12 −K−1

41 J42R22P22 −K−1
41 K42R22

]
x2t−1

+
[
−K−1

41 J42R21Q1 −K−1
41 J42R22Q2 −K−1

41 J42S2N −K−1
41 K42S2 −K−1

41 M4

]
zt

where the second equality uses equation (3.29), the third equality uses equation (9.6), and the

fourth equality uses equations (3.26) and (3.27). Equating coefficients with equation (3.28) gives

equations (9.10)-(9.12).

ii



Finally, from equations (3.29), (3.26), (3.27), and (9.6) we have

y2t+1 = R21x
1
t+1 +R22x

2
t + S2zt+1 (9.15)

= R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ S2Nzt

= R21P11x
1
t +R21P12x

2
t−1 +R21Q1zt +R22P21x

1
t +R22P22x

2
t−1 +R22Q2zt + S2Nzt

= [R21P11 +R22P21] x
1
t + [R21P12 +R22P22] x

2
t−1 + [R21Q1 +R22Q2 + S2N ] zt

From equations (9.5), (9.15), (3.26), (3.27), (3.28) and (3.29) we then have

0 = F52x
2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

= F52x
2
t+1 +G52x

2
t +H51x

1
t +H52x

2
t−1 + J52

[
R21x

1
t+1 +R22x

2
t + S2zt+1

]
+K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

= F52

[
P21x

1
t+1 + P22x

2
t +Q2zt+1

]
+G52

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+H51x

1
t +H52x

2
t−1

+J52R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ J52R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+J52S2Nzt +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

= F52P21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ F52P22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ F52Q2Nzt

+G52P21x
1
t +G52P22x

2
t−1 +G52Q2zt +H51x

1
t +H52x

2
t−1 + J52 [R21P11 +R22P21] x

1
t

+J52 [R21P12 +R22P22] x
2
t−1 + J52 [R21Q1 +R22Q2 + S2N ] zt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5zt+1 +M5zt

= F52P21P11x
1
t + F52P21P12x

2
t−1 + F52P21Q1zt + F52P22P21x

1
t + F52P22P22x

2
t−1 + F52P22Q2zt

+F52Q2Nzt +G52P21x
1
t +G52P22x

2
t−1 +G52Q2zt +H51x

1
t +H52x

2
t−1 + J52 [R21P11 +R22P21] x

1
t

+J52 [R21P12 +R22P22] x
2
t−1 + J52 [R21Q1 +R22Q2 + S2N ] zt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5zt+1 +M5zt

= [F52P21P11 + F52P22P21 +G52P21 +H51 + J52R21P11 + J52R22P21 +K51R11 +K52R21] x
1
t

+ [F52P21P12 + F52P22P22 +G52P22 +H52 + J52R21P12 + J52R22P22 +K51R12 +K52R22] x
2
t−1

+ [F52P21Q1 + F52P22Q2 + F52Q2N +G52Q2 + J52R21Q1 + J52R22Q2

+ J52S2N +K51S1 +K52S2 + L5N +M5] zt

Thus, equation (9.13) is satisfied.

Proof of Proposition 1: By assumption, equations (9.1) and (9.3) are satisfied by equations

iii



(3.27) and (3.29). Since Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ21 = R21, Φ22 = R22, Γ2 = S2, equations

(3.16) and (3.18) are then satisfied by equations (3.23) and (3.25).

Observe that equation (3.17) evaluates as follows:

A21x
1
t+1 +B21x

1
t +B22x

2
t−1 + C21y

1
t+1 (9.16)

= A21

[
Ω11x

1
t + Ω12x

2
t−1 +Ψ1zt +Θ1zt+1

]
+B21x

1
t +B22x

2
t−1

+C21

[
Φ11x

1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1

]
= A21P11x

1
t + A21P12x

2
t−1 + A21Ψ1zt + A21Θ1zt+1 +B21x

1
t +B22x

2
t−1

+C21R11x
1
t + C21R12x

2
t−1 + C21Γ1zt + C21Λ1zt+1

= [A21P11 +B21 + C21R11] x
1
t + [A21P12 +B22 + C21R12] x

2
t−1

+ [A21Ψ1 + C21Γ1] zt + [A21Θ1 + C21Λ1] [Nzt + εt+1]

= [A21P11 +B21 + C21R11] x
1
t + [A21P12 +B22 + C21R12] x

2
t−1

+ [A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N ] zt + [A21Θ1 + C21Λ1] εt+1

= [−B21 − C21R11 +B21 + C21R11] x
1
t + [−B22 − C21R12 +B22 + C21R12] x

2
t−1

+ [A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N ] zt + [A21Θ1 + C21Λ1] εt+1

= [A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N ] zt + [A21Θ1 + C21Λ1] εt+1

where the first equality uses equations (3.22) and (3.24), the second equality uses the fact that

Ω11 = P11, Ω12, Φ11 = R11, Φ12 = R12, Φ21 = R21, Φ22 = R22, and Γ2 = S2, the third equality uses

equation (3.21), and the fifth equality uses equations (9.7) and (9.8).

Observe that

A21Θ1 + C21Λ1 = A21Θ1 − C21K
−1
41 J42R21Θ1 − C21K

−1
41 J42S2 (9.17)

= A21

[
I − A−1

21 C21K
−1
41 J42R21

]
Θ1 − C21K

−1
41 J42S2

= A21

[
I − A−1

21 C21K
−1
41 J42R21

] [
I − A−1

21 C21K
−1
41 J42R21

]−1
A−1

21 C21K
−1
41 J42S2

−C21K
−1
41 J42S2

= A21A
−1
21 C21K

−1
41 J42S2 − C21K

−1
41 J42S2

= C21K
−1
41 J42S2 − C21K

−1
41 J42S2

= 0

where the first equality uses equation (3.32), and the third equality uses equations (3.30) and

iv



(3.34).

Also observe that

A21Ψ1 + C21Γ1 + A21Θ1N + C21Λ1N (9.18)

= A21Ψ1 + C21Γ1

= A21Ψ1 − C21K
−1
41 J42R21Ψ1 − C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= A21

[
I − A−1

21 C21K
−1
41 J42R21

]
Ψ1 − C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= A21

[
I − A−1

21 C21K
−1
41 J42R21

]
Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
−C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= A21

[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
−C21K

−1
41 J42R22Q2 − C21K

−1
41 K42S2 − C21K

−1
41 M4

= C21K
−1
41 J42R22Q2 + C21K

−1
41 K42S2 + C21K

−1
41 M4 − C21K

−1
41 J42R22Q2

−C21K
−1
41 K42S2 − C21K

−1
41 M4

= 0

where the first equality uses equation (9.17), the second equality uses equation (3.33), the fourth

equality uses equation (3.31) and the fifth equality uses equation (3.34).

From equations (9.16), (9.17) and (9.18) it follows that equation (3.17) is satisfied.
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Observe that equation (3.19) evaluates as follows:

H41x
1
t +H42x

2
t−1 + J42y

2
t+1 +K41y

1
t+1 +K42y

2
t +M4zt (9.19)

= H41x
1
t +H42x

2
t−1 + J42

[
Φ21x

1
t+1 + Φ22x

2
t + Γ2zt+1

]
+K41

[
Φ11x

1
t + Φ12x

2
t−1 + Γ1zt + Λ1zt+1

]
+K42

[
Φ21x

1
t + Φ22x

2
t−1 + Γ2zt

]
+M4zt

= H41x
1
t +H42x

2
t−1 + J42R21x

1
t+1 + J42R22x

2
t + J42S2zt+1 +K41R11x

1
t +K41R12x

2
t−1

+K41Γ1zt +K41Λ1zt+1 +K42R21x
1
t +K42R22x

2
t−1 +K42S2zt +M4zt

= H41x
1
t +H42x

2
t−1 + J42R21

[
Ω11x

1
t + Ω12x

2
t−1 +Ψ1zt +Θ1zt+1

]
+J42R22

[
Ω21x

1
t + Ω22x

2
t−1 +Ψ2zt

]
+ J42S2zt+1 +K41R11x

1
t +K41R12x

2
t−1 +K41Γ1zt

+K41Λ1zt+1 +K42R21x
1
t +K42R22x

2
t−1 +K42S2zt +M4zt

= H41x
1
t +H42x

2
t−1 + J42R21P11x

1
t + J42R21P12x

2
t−1 + J42R21Ψ1zt + J42R21Θ1zt+1

+J42R22P21x
1
t + J42R22P22x

2
t−1 + J42R22Q2zt + J42S2zt+1 +K41R11x

1
t +K41R12x

2
t−1

+K41Γ1zt +K41Λ1zt+1 +K42R21x
1
t +K42R22x

2
t−1 +K42S2zt +M4zt

= [H41 + J42R21P11 + J42R22P21 +K41R11 +K42R21] x
1
t

+ [H42 + J42R21P12 + J42R22P22 +K41R12 +K42R22] x
2
t−1

+ [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

= [H41 + J42R21P11 + J42R22P21 +

K41

(
−K−1

41 H41 −K−1
41 J42R21P11 −K−1

41 J42R22P21 −K−1
41 K42R21

)
+K42R21]x

1
t

+[H42 + J42R21P12 + J42R22P22

+K41

(
−K−1

41 H42 −K−1
41 J42R21P12 −K−1

41 J42R22P22 −K−1
41 K42R22

)
+K42R22]x

2
t−1

+ [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

= [H41 + J42R21P11 + J42R22P21 −H41 − J42R21P11 − J42R22P21 −K42R21 +K42R21] x
1
t

+ [H42 + J42R21P12 + J42R22P22 −H42 − J42R21P12 − J42R22P22 −K42R22 +K42R22] x
2
t−1

+ [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

= [J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4] zt + [J42R21Θ1 + J42S2 +K41Λ1] zt+1

where the first equality uses equations (3.25) and (3.24), the second equality uses the fact that

Φ11 = R11, Φ12 = R12, Φ21 = R21, Φ22 = R22, and Γ2 = S2, the third equality uses equations (3.22)

and (3.23), the fourth equality uses the fact that Ω11 = P11, Ω12 = P12, Ω21 = P21, Ω22 = P22,

vi



Ψ2 = Q2, where the sixth equality uses equations (9.10) and (9.11),

Observe that

J42R21Θ1 + J42S2 +K41Λ1 = J42R21Θ1 + J42S2 − J42R21Θ1 − J42S2 (9.20)

= 0

where the first equality uses equation (3.32).

Also observe that

J42R21Ψ1 + J42R22Q2 +K41Γ1 +K42S2 +M4 (9.21)

= J42R21Ψ1 + J42R22Q2 − J42R21Ψ1 − J42R22Q2 −K42S2 −M4 +K42S2 +M4

= 0

where the first equality uses equation (3.33).

From equations (9.19), (9.20) and (9.21) it follows that equation (3.19) is satisfied.

It remains to show that equation (3.20) holds.

Applying conditional expectations to equations (3.22)-(3.25) and using the fact that Ω11 = P11,

Ω12 = P12, Ω21 = P21, Ω22 = P22, Ψ2 = Q2, Φ11 = R11, Φ12 = R12, Φ21 = R21, Φ22 = R22, Γ2 = S2,

we have

Et

(
x1t+1

)
= P11x

1
t + P12x

2
t−1 + [Ψ1 +Θ1N ] zt, (9.22)

Et

(
x2t
)

= P21x
1
t + P22x

2
t−1 +Q2zt, (9.23)

Et

(
y1t+1

)
= R11x

1
t +R12x

2
t−1 + [Γ1 + Λ1N ] zt, (9.24)

Et

(
y2t
)

= R21x
1
t +R22x

2
t−1 + S2zt. (9.25)

From equations (9.9) and (9.12) we have that

Q1 = −A−1
21 C21S1

= A−1
21 C21K

−1
41 J42R21Q1 + A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 J42S2N

+A−1
21 C21K

−1
41 K42S2 + A−1

21 C21K
−1
41 M4

Hence,[
I − A−1

21 C21K
−1
41 J42R21

]
Q1 = A−1

21 C21K
−1
41 J42R22Q2

+A−1
21 C21K

−1
41 J42S2N + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

vii



Using equations (3.34), (3.31) and (3.30) we then get that

Q1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 J42S2N + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
= Υ

[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2 + A−1

21 C21K
−1
41 M4

]
+ΥA−1

21 C21K
−1
41 J42S2N

= Ψ1 +Θ1N (9.26)

Also, using equations (3.33), (3.32), (9.26) and (9.12) we have that

Γ1 + Λ1N (9.27)

= −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4 −K−1
41 J42R21Θ1N −K−1

41 J42S2N

= −K−1
41 J42R21 [Ψ1 +Θ1N ]−K−1

41 J42R22Q2 −K−1
41 K42S2 −K−1

41 M4 −K−1
41 J42S2N

= S1

Using equations (9.26) and (9.27) we can then write equations (9.22)-(9.25) as follows:

Et

(
x1t+1

)
= P11x

1
t + P12x

2
t−1 +Q1zt, (9.28)

Et

(
x2t
)

= P21x
1
t + P22x

2
t−1 +Q2zt, (9.29)

Et

(
y1t+1

)
= R11x

1
t +R12x

2
t−1 + S1zt, (9.30)

Et

(
y2t
)

= R21x
1
t +R22x

2
t−1 + S2zt. (9.31)

From equation (9.31) we have

Et+1

(
y2t+1

)
= R21x

1
t+1 +R22x

2
t + S2zt+1

Using the Law of Iterated expectations and equations (9.28) and (9.29) we then get

Et

(
y2t+1

)
= R21Et

(
x1t+1

)
+R22Et

(
x2t
)
+ S2Et (zt+1) (9.32)

= R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ S2Nzt

Also, from equation (9.29) we have

Et+1

(
x2t+1

)
= P21x

1
t+1 + P22x

2
t +Q2zt+1

Using the Law of Iterated expectations and equations (9.28) and (9.29) we then get

Et

(
x2t+1

)
= P21Et

(
x1t+1

)
+ P22Et

(
x2t
)
+Q2Et (zt+1) (9.33)

= P21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+P22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+Q2Nzt
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Observe that equation (3.20) evaluates as follows

F52Et

(
x2t+1

)
+G52Et

(
x2t
)
+H51x

1
t +H52x

2
t−1 + J52Et

(
y2t+1

)
+K51Et

(
y1t+1

)
+K52Et

(
y2t
)

+L5Nzt +M5zt

= F52P21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ F52P22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ F52Q2Nzt

+G52

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+H51x

1
t +H52x

2
t−1 + J52R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+J52R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ J52S2Nzt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5Nzt +M5zt

= F52P21P11x
1
t + F52P21P12x

2
t−1 + F52P21Q1zt + F52P22P21x

1
t + F52P22P22x

2
t−1 + F52P22Q2zt

+F52Q2Nzt +G52

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+H51x

1
t +H52x

2
t−1

+J52R21

[
P11x

1
t + P12x

2
t−1 +Q1zt

]
+ J52R22

[
P21x

1
t + P22x

2
t−1 +Q2zt

]
+ J52S2Nzt

+K51

[
R11x

1
t +R12x

2
t−1 + S1zt

]
+K52

[
R21x

1
t +R22x

2
t−1 + S2zt

]
+ L5Nzt +M5zt

= [F52P21P11 + F52P22P21 +G52P21 +H51 + J52R21P11 + J52R22P21 +K51R11 +K52R21] x
1
t

+ [F52P21P12 + F52P22P22 +G52P22 +H52 + J52R21P12 + J52R22P22 +K51R12 +K52R22] x
2
t−1

+ [F52P21Q1 + F52P22Q2 + F52Q2N +G52Q2 + J52R21Q1 + J52R22Q2

+ J52S2N +K51S1 +K52S2 + L5N +M5] zt

= 0

where the first equality uses equations (9.33), (9.32), (9.30) and (9.31), and the third equality uses

equation (9.13). Thus equation (3.20) is satisfied
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10 Mirrlees economy: Linearization

This appendix first lists each of the first order conditions for the Mirrlees RBC economy, describes

the arguments involved in each first order condition, and states the total number of each first order

condition. The appendix then classifies each of the variables involved into the vectors defined by

equations (8.19)-(8.22), classifies each first order condition into one of the five types given by

equations (3.16)-(3.20), and provides the total number of equations of each type as well as the

total number of variables. Finally, the appendix shows how the general linearized model (3.16)-

(3.21) simplifies in the Mirrlees RBC economy, as well as the corresponding transformation given

by equations (3.30)-(3.34).

Similarly to equations (8.19)-(8.22), J denotes the total number of grid points used in the spline

approximations. However, given that promised values must lie in a closed interval, the functions

woLt (v) and woLt (v) may hit the limits of those intervals when v is close to those limits. In what

follows, I denote by J1 the lowest grid point for which woLt (v̄j) is larger than the low limit and J2

the largest grid point for which woLt (v̄j) is smaller than the high limit. Similarly, I denote by J3

the lowest grid point for which woHt (v̄j) is larger than the low limit and J4 the largest grid point

for which woHt (v̄j) is smaller than the high limit.

10.1 First order conditions

1) Equation

0 = ψL − λt [(1− φ)uyLt + 1]
1

1−φ
−1 ψL + λtξyt

becomes

0 = LuyL
(△uyL,t,△ ln ξyt,△ lnλt)

Number of equations: 1

2) Equation

0 = ψH − λt [(1− φ)uyHt + 1]
1

1−φ
−1 ψH − λtξyt

becomes

0 = LuyH
(△uyH,t,△ ln ξyt,△ lnλt)

Number of equations: 1
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3) Equation

0 = αLψL − λtqt [(1− π)nyLt + 1]
1

1−π
−1 ψL + λtαLξyt

becomes

0 = LnyL
(△nyL,t,△ ln ξyt,△ lnλt,△ ln qt)

Number of equations: 1

4) Equation

0 = αHψH − λtqt [(1− π)nyHt + 1]
1

1−π
−1 ψH − λtαLξyt

becomes

0 = LnyH
(△nyH,t,△ ln ξyt,△ lnλt,△ ln qt)

Number of equations: 1

5) Equation

0 = βσψL + λtβσξyt − θλt+1σψLηt+1 (wyL,t+1)

becomes

0 = LwyL

(
△ ln ξyt,△ lnλt,△ lnλt+1, [△ ln ηt+1 (v̄j)]

J
j=1 ,△wyL,t+1

)
Number of equations: 1

6) Equation

0 = βσψH − λtβσξyt − θλt+1σψHηt+1 (wyH,t+1)

becomes

0 = LwyH

(
△ ln ξyt,△ lnλt,△ lnλt+1, [△ ln ηt+1 (v̄j)]

J
j=1 ,△wyH,t+1

)
Number of equations: 1

7) Equation

0 = − [(1− φ)uoLt (v) + 1]
1

1−φ
−1 ψL + ξot (v) + ηt (v)ψL

becomes

0 = LuoL(v̄i) (△uoL,t (v̄i) ,△ ln ξot (v̄i) ,△ ln ηt (v̄i))

for i = 1, ..., J .

Number of equations: J

8) Equation

0 = − [(1− φ)uoHt (v) + 1]
1

1−φ
−1 ψH − ξot (v) + ηt (v)ψH
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becomes

0 = LuoH(v̄i) (△uoH,t (v̄i) ,△ ln ξot (v̄i) ,△ ln ηt (v̄i))

for i = 1, ..., J .

Number of equations: J

9) Equation

0 = −qt [(1− π)noLt (v) + 1]
1

1−π
−1 ψL + αLξot (v) + ηt (v)αLψL

becomes

0 = LnoL(v̄i) (△noL,t (v̄i) ,△ ln ξot (v̄i) ,△ ln ηt (v̄i) ,△ ln qt)

for i = 1, ..., J .

Number of equations: J

10) Equation

0 = −qt [(1− π)noHt (v) + 1]
1

1−π
−1 ψH − αLξot (v) + ηt (v)αHψH

becomes

0 = LnoH(v̄i) (△noH,t (v̄i) ,△ ln ξot (v̄i) ,△ ln ηt (v̄i) ,△ ln qt)

for i = 1, ..., J .

Number of equations: J

11) Equation

0 = λtβσξot (v) + λtηt (v) βσψL − θλt+1σψLηt+1 [woL,t+1 (v)]

becomes

0 = LwoL(v̄i)

(
△ ln ξot (v̄i) ,△ lnλt,△ ln ηt (v̄i) ,△ lnλt+1, [△ ln ηt+1 (v̄j)]

J
j=1 ,△woL,t+1 (v̄i)

)
for i = J1, ..., J2.

Number of equations: J2 − J1 + 1

12) Equation

0 = −λtβσξot (v) + λtηt (v) βσψH − θλt+1σψHηt+1 [woH,t+1 (v)]
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becomes

0 = LwoH(v̄i)

(
△ ln ξot (v̄i) ,△ lnλt,△ ln ηt (v̄i) ,△ lnλt+1, [△ ln ηt+1 (v̄j)]

J
j=1 ,△woH,t+1 (v̄i)

)
for i = J3, ..., J4.

Number of equations: J4 − J3 + 1

13) Equation

0 = uyLt + αLnyLt + βσEt [wyL,t+1]− {uyHt + αLnyHt + βσEt [wyH,t+1]}

becomes

0 = Et [LICy (△uyL,t,△nyL,t,△wyL,t+1,△uyH,t,△nyH,t,△wyH,t+1)]

Number of equations: 1

14) Equation

0 = uoLt (v) + αLnoLt (v) + βσEt [woL,t+1 (v)]− {uoHt (v) + αLnoHt (v) + βσEt [woH,t+1 (v)]}

becomes

0 = Et

[
LICo(v̄i) (△uoL,t (v̄i) ,△noL,t (v̄i) ,△woL,t+1 (v̄i) ,△uoH,t (v̄i) ,△noH,t (v̄i) ,△woH,t+1 (v̄i))

]
for i = 1, ..., J .

Number of equations: J

15) Equation

0 = v − {uoLt (v) + αLnoLt (v) + βσEt [woL,t+1 (v)]}ψL

− {uoHt (v) + αHnoHt (v) + βσEt [woH,t+1 (v)]}ψH

becomes

0 = Et

[
LPKo(v̄i) (△uoL,t (v̄i) ,△noL,t (v̄i) ,△woL,t+1 (v̄i) ,△uoH,t (v̄i) ,△noH,t (v̄i) ,△woH,t+1 (v̄i))

]
Number of equations: J

16) Equation

0 = qt − eztKγ
t−1 (1− γ)H−γ

t

becomes

0 = Lq (△ ln qt,△ lnKt−1,△ lnHt,△zt)
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Number of equations: 1

17) Equation

0 = −λt + θEt

{
λt+1

[
ezt+1γKγ−1

t H1−γ
t+1 + 1− δ

]}
becomes

0 = Et [Lλ (△ lnλt,△ lnKt,△ lnλt+1,△ lnHt+1,△zt+1)]

Number of equations: 1

18) Equation

0 = (1− σ) [(1− φ)uyLt + 1]
1

1−φ ψL + (1− σ) [(1− φ)uyHt + 1]
1

1−φ ψH

+

∫
[(1− α)uoLt (v) + 1]

1
1−α ψLdµt +

∫
[(1− α)uoHt (v) + 1]

1
1−α ψHdµt

+ It − eztKγ
t−1H

1−γ
t

becomes

0 = LY

(
△uyL,t,△uyH,t, [△uoL,t (v̄j)]Jj=1 , [△uoH,t (v̄j)]

J
j=1 ,△ ln It,△ lnKt−1,

△ lnHt,△zt,
{
△wyL,t−n,△wyH,t−n, [△woL,t−n (v̄j)]

J2
j=J1

, [△woH,t−n (v̄j)]
J4
i=J3

}N

n=0

)
Observe that this linear approximation must be done numerically using Monte Carlo simula-

tions.

Number of equations: 1

19) Equation

0 = (1− σ)
{
1− [(1− π)nyLt + 1]

1
1−π

}
ψL + (1− σ)

{
1− [(1− π)nyHt + 1]

1
1−π

}
ψH

+

∫ {
1− [(1− π)noLt (v) + 1]

1
1−π

}
ψLdµt +

∫ {
1− [(1− π)noHt (v) + 1]

1
1−π

}
ψHdµt −Ht

becomes

0 = LH

(
△nyL,t,△nyH,t, [△noL,t (v̄j)]

J
j=1 , [△noH,t (v̄j)]

J
j=1 ,△ lnHt,{

△wyL,t−j,△wyH,t−n, [△woL,t−n (v̄j)]
J2
j=J1

, [△woH,t−n (v̄j)]
J4
j=J3

}N

n=0

)
Observe that this linear approximation also must be done numerically, using Monte Carlo

simulations.

Number of equations: 1
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20) Equation

0 = Kt − (1− δ)Kt−1 − It

becomes

LI (△ lnKt,△ lnKt−1,△ ln It)

Number of equations: 1

21) Equation[
△wyL,t+1−n,△wyH,t+1−n, [△woL,t+1−n (v̄j)]

J2
j=J1

, [△woH,t+1−n (v̄j)]
J4
j=J3

]N
n=0

= △wyL,t+1,△wyH,t+1, [△woL,t+1 (v̄j)]
J2
j=J1

, [△woH,t+1 (v̄j)]
J4
j=J3

,[
△wyL,t−n,△wyH,t−n, [△woL,t−n (v̄j)]

J2
j=J1

, [△woH,t−n (v̄j)]
J4
j=J3

]N−1

n=0

becomes

0 = Lµ

 △wyL,t+1,△wyH,t+1, [△woL,t+1 (v̄j)]
J2
j=J1

, [△woH,t+1 (v̄j)]
J4
j=J3

,[
△wyL,t−n,△wyH,t−n, [△woL,t−n (v̄j)]

J2
j=J1

, [△woH,t−n (v̄j)]
J4
j=J3

]N−1

n=0


Number of equations: (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

10.2 Classification of variables and equations

Classify the variables as follows:

x1t =
{
△wyL,t−n,△wyH,t−n, [△woL,t−n (v̄j)]

J2
j=J1

, [△woH,t−n (v̄j)]
J4
j=J3

}N

n=0
(10.1)

x2t−1 = {△ lnKt−1} (10.2)

y1t+1 =
{
△wyL,t+1,△wyH,t+1, [△woL,t+1 (v̄j)]

J2
j=J1

, [△woH,t+1 (v̄j)]
J4
j=J3

}
(10.3)

y2t =
{
△uyL,t,△uyH,t △ nyL,t,△nyH,t △ ln ξyt,△ lnλt,△ ln qt, [△ ln ηt (v̄j)]

J
j=1 , (10.4)

[△uoL,t (v̄j)]Jj=1 , [△uoH,t (v̄j)]
J
j=1 , [△noL,t (v̄j)]

J
j=1 , [△noH,t (v̄j)]

J
j=1 ,

[△ ln ξot (v̄j)]
J
j=1 ,△ lnHt,△It

}
The following Table classifies the different equations into five types. Types 1-5 correspond to

equations (3.16)-(3.20), respectively.
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Equation # Equation name # of equations Type (1,2,3,4 or 5)

1 LuyL
1 5

2 LuyH
1 5

3 LnyL
1 5

4 LnyH
1 5

5 LwyL
1 4

6 LwyH
1 4

7 LuoL(v̄i) J 5

8 LuoH(v̄i) J 5

9 LnoL(v̄i) J 5

10 LnoH(v̄i) J 5

11 LwoL(v̄i) J2 − J1 + 1 4

12 LwoH(v̄i) J4 − J3 + 1 4

13 LICy 1 5

14 LICo(v̄i) J 5

15 LPKo(v̄i) J 5

16 Lq 1 5

17 Lλ 1 5

18 LY 1 1

19 LH 1 1

20 LI 1 3

21 Lµ (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)] 2

Total number of equations:

12 + 6J + (J2 − J1 + 1) + (J4 − J3 + 1) + (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

Total number of Type 1 equations: 2

Total number of Type 2 equations: (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

Total number of Type 3 equations: 1

Total number of Type 4 equations: 2 + (J2 − J1 + 1) + (J4 − J3 + 1)

Total number of Type 5 equations: 7 + 6J
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The following is the dimensionality of the different variables:

dim
(
x1t−1

)
= (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]

dim
(
x2t−1

)
= 1

dim
(
y1t
)
= 2 + (J2 − J1 + 1) + (J4 − J3 + 1)

dim
(
y21
)
= 9 + 6J

dim (zt) = 1

Total number of endogenous variables: (N + 1) [2 + (J2 − J1 + 1) + (J4 − J3 + 1)]+12+(J2 − J1 + 1)+

(J4 − J3 + 1) + 6J (same as number of equations).

10.3 Simplified linear system

Under the classifications of the previous section, the linearized model given by equations (3.16)-

(3.21) simplifies to the following:

0 = B11x
1
t +B12x

2
t−1 + C12y

2
t +D1zt

0 = A21x
1
t+1 +B21x

1
t + C21y

1
t+1

0 = A32x
2
t +B32x

2
t−1 + C32y

2
t

0 = J42y
2
t+1 +K41y

1
t+1 +K42y

2
t

0 = Et

{
G52x

2
t +H52x

2
t−1 + J52y

2
t+1 +K51y

1
t+1 +K52y

2
t + L5zt+1 +M5zt

}
and the transformation given by equations (3.30)-(3.34) simplifies to:

Θ1 = ΥA−1
21 C21K

−1
41 J42S2, (10.5)

Ψ1 = Υ
[
A−1

21 C21K
−1
41 J42R22Q2 + A−1

21 C21K
−1
41 K42S2

]
, (10.6)

Λ1 = −K−1
41 J42R21Θ1 −K−1

41 J42S2, (10.7)

Γ1 = −K−1
41 J42R21Ψ1 −K−1

41 J42R22Q2 −K−1
41 K42S2, (10.8)

where

Υ =
[
I − A−1

21 C21K
−1
41 J42R21

]−1
(10.9)
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