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Abstract 
 

 This paper presents a monetary-theoretic model to study the implications of networks’ 
collection of personal identifying data and data security on each other’s incidence and costs of 
identity theft.  To facilitate trade, agents join clubs (networks) that compile and secure data.  Too 
much data collection and too little security arise in equilibrium with noncooperative networks 
compared to the efficient allocation.  A number of potential remedies are analyzed:  (1) 
mandated limits on the amount of data collected, (2) mandated security levels, (3) reallocations 
of data-breach costs, and (4) data sharing through a merger of the networks. 
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1.  Introduction 
 

More and more personal data is being collected as the cost of information technology 

falls.  While collecting such data undoubtedly provides economic benefits, it has proved 

impossible to keep data completely secure against criminal misuse. Survey data suggest that in 

2006 identity thieves obtained about $49.3 billion from U.S. consumer victims.  Add in the time 

and out-of-pocket costs incurred to resolve the crime, and identity theft cost the U.S. economy 

$61 billion in 2006.  Even this estimate, however, omits many contributors to the true economic 

cost.1 

Dollar estimates of the cost of identity theft do not by themselves indicate that too much 

identity theft is occurring.  However, press accounts of data breaches suggest that personal 

identifying data (PID) is being stolen too frequently, and that the data thefts are unduly 

facilitating various kinds of identity theft.2  This view is echoed in the legal literature on identity 

theft and data confidentiality.3  There is also a general sense that “too much” PID is being 

collected, though some suggested policy fixes imply that more, not less, PID should be collected 

as a deterrent against its potential misuse. 

Economists (economic theorists in particular) have remained relatively quiet on issues 

                                                 
1 These estimates are derived in Schreft (2007).  It is difficult to gauge the extent and direction of identity theft from 
available data. The Federal Trade Commission (FTC) has conducted surveys of consumers to determine the 
incidence of identity theft.  A superficial reading of the FTC’s 2006 survey, released November 2007, suggests that 
rates of identity theft might have stabilized in the last few years, but the FTC acknowledges that methodological 
changes to the 2006 survey make the survey’s results noncomparable to those from earlier surveys, thus preventing 
the survey from being used to identify trends in the incidence of identity theft (Synovate, 2007).  Javelin Strategy 
and Research conducted the survey in years when the FTC did not and in 2006, and made the same methodological 
changes in its 2006 survey as did the FTC.  Hence Javelin’s 2006 results are also noncomparable to its earlier survey 
results.   
   Regardless of methodology, the FTC and Javelin surveys, as well as any other surveys of consumers, at best yield 
estimates of acts of identity theft known to consumers.  Acts of identity theft not known to consumers obviously 
cannot be captured by surveys of consumers.  (Schreft 2007, footnotes 13-15) 
2 Recent examples include “To Fight Identity Theft, A Call for Banks to Disclose All Incidents,” New York Times, 
March 21, 2007; “Who’s guarding your data in the Cybervault? ChoicePoint redeemed itself but not all brokers as 
careful,” USA Today, April 2, 2007; “Securing Very Important Data: Your Own,” New York Times, October 7, 2007; 
and many others. 
3 See e.g., LoPucki (2001, 2003), Solove (2003, 2004), Swire (2003), and Chandler (2007). 
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regarding identity theft and data breaches.4  Swire (2003) attributes this lack of interest to the 

commonly held belief among economists that information revelation generally promotes 

efficiency, leading economists to systematically overemphasize the costs and underestimate the 

benefits of data security.  Reliance on economic theory can therefore lead to a serious 

underestimation of the efficient degree of data confidentiality, according to Swire. 

Swire’s argument is a challenge to economists to develop more precise notions of what 

constitutes an efficient level of PID accumulation and security.  This paper is one response to 

this challenge.  The formal model presented below uses contemporary monetary theory to 

evaluate the costs and benefits of amassing and securing PID as key elements of a credit-based 

transactions arrangement.  This framework allows exploration of what is gained and lost through 

the accumulation, sharing, and theft of PID. 

The application of monetary theory is fundamental to this task, as it explicitly delineates 

two key market frictions that might be counteracted through the use of PID:  (1) displacement of 

agents’ consumption demands over time, and (2) a limited ability to force agents to repay debts.  

The economic benefit of a credit-based payment system derives from its ability to counteract 

these frictions, and sufficient knowledge of agents’ identities is indispensable to the provision of 

this benefit—credit is impossible without knowing who the debtor is. 

The environment in this paper extends the model of identity theft developed in Kahn and 

Roberds (2008) to incorporate the possibility of identity theft through data breaches.  The paper 

begins by presenting a game-theoretic model of multiple credit-card networks.  Card networks 

are modeled as club arrangements for the sharing of essential information for intertemporal 

trade:  sufficient knowledge of agents’ identities and credit histories.  Each club must decide how 

much data on its members to assemble into a database, and each also must choose how 
                                                 
4 Some relevant literature is discussed in Section 5 below. 
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thoroughly to secure its database.  Collecting more PID imposes costs on card-network 

participants, but yields a benefit in terms of identifying the most casual, opportunistic, and 

simplistic attempts at fraudulent access to the network.  On the other hand, collecting such data 

can have negative spillover effects, because one network’s data can be stolen and used to open 

an account with another network.  A network can deter data theft (and therefore suppress identity 

fraud) by better securing its database, but it might be cheaper to suppress fraud by increasing the 

amount of PID compiled. 

The paper proceeds to compare the networks’ data and security decisions to the decisions 

that a planner would implement.  Under a mild set of technical conditions, this analysis confirms 

the popular wisdom concerning data breaches:  in equilibrium, too much PID is collected, and 

the data is insufficiently secured.  The paper then considers a number of regulatory remedies for 

this inefficiency. 

The model environment is initially developed for networks of fixed size.  An extension 

allows for networks of variable size.  Merging networks internalizes the benefits of fraud 

deterrence and can reduce the scope for identity theft.  For sufficiently heterogeneous 

preferences, however, it is shown that agents may prefer to separate into multiple networks, even 

when this facilitates identity theft through data breaches.  This analysis, while exploratory, 

illustrates bounds on efficiency gains achievable from consolidation of PID. 

In summary, the approach here allows for explicit calculation of the efficient levels of 

data accumulation and data security, and for straightforward evaluation of policies meant to 

attain efficiency.  More generally, it offers an illustration of how any such calculation should 

balance the costs associated with data misuse against the substantial gains afforded by the 

relaxation of anonymity.  
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2.  Institutional Background 

 This section provides a brief overview of the phenomenon of identity theft and its 

relationship to data security.  More extensive surveys are given in Schreft (2007) and Anderson 

et al. (2008). 

 It is constructive to begin by defining terms.  Identity theft can take many forms in 

practice and need not involve data breaches.  The Federal Trade Commission (2007) divides 

identity theft into two broad categories:  existing-account fraud and new-account fraud.  Existing 

account fraud occurs when a thief steals an existing payment card or similar account information 

(e.g., a checking account number) and uses these to purchase goods and services.  Traditionally, 

new account fraud occurs when a thief uses someone else’s PID to open a new account.  An 

increasingly prevalent type of identity fraud is fictitious or synthetic identity fraud, in which a 

thief combines information taken from a variety of sources with invented information to create a 

new, fictitious identity (Schreft 2007).  Synthetic identity theft is actually a type of new account 

fraud, with the new account being in the name of a real or fictitious person.5  By one recent 

estimate, more than 80 percent of all new-account identity theft has occurred using synthetic 

identities (Coggeshall 2007).  As will be clear below, new-account fraud is the type of identity 

fraud that occurs in the model.   

 Data breaches can facilitate either existing-account fraud (as when credit-card 

                                                 
5 It has been noted that the payment-card industry uses some additional terminology in discussing identity theft.  
Cheney (2005) distinguishes payment-card fraud, which refers to the theft of information about an existing payment 
card and use of the information to make fraudulent card purchases, and account-takeover fraud, where the identity 
thief changes the address on an existing financial account, which allows the thief to more fully control the account 
and to deter capture longer.  Both payment-card fraud and account-takeover fraud are cases of existing account 
fraud under the FTC definition.   
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information is stolen) or new-account fraud (as when PID is stolen).6  There is no definitive 

estimate of how many cases of identity theft have resulted from data breaches.  Certainly, data 

breaches are numerous and increasing:  although no comprehensive surveys are available, the 

information-security website Attrition.org lists 326 reported data breach “incidents” for 2007, 

leading to the compromise of 162 million records of personal data, as compared to 11 reported 

incidents and 6 million compromised records in 2003.  These figures are likely underestimates as 

many breaches are not reported. 

Of course, a data breach is neither a necessary nor a sufficient condition for identity theft.  

Data can be stolen without being used for fraudulent purposes.7  Nevertheless, there seems to be 

widespread recognition that data breaches can promote identity theft, particularly in its more 

costly and pernicious forms.8 

The costs of identity theft must be weighed against the benefits provided by the 

availability of PID, which lie at the heart of modern credit-based systems of exchange.  There are 

no direct estimates of these benefits, but the sheer volume and increasing popularity of services 

such as card-based payments indicates that these are substantial.  In 2005 in the U.S. alone there 

were 43 billion card transactions worth $2.6 trillion (Bank for International Settlements (2007)). 

 

3.  The Model 

3.1 Modeling choices 

As discussed in the Introduction, the central policy issue concerning identity theft is 
                                                 
6 Actually, because many credit-card issuers will open accounts for people who present an existing credit card, a 
data breach involving the theft of credit-card information also contributes to new-account fraud.   
7 For example, the Javelin 2008 Identity Fraud Survey Report finds that 7 percent of consumers surveyed who knew 
how their identifying information was stolen reported a data breach as the culprit (Javelin 2008).  However, year 
after year, a large majority of consumers surveyed by Javelin do not know how their identifying information was 
stolen. 
8 Such data breaches include the 2005 breach at TJX Companies, with an estimated total cost in the hundreds of 
millions of dollars (Schreft 2007). 
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whether, under current arrangements, PID is being efficiently collected and secured.  Progress on 

this basic issue requires answering several difficult questions:  Who should bear the costs of 

identity theft?  Should there be limits on how much PID can be compiled and shared?  Is there a 

“market failure”?  Should criminal penalties for identity theft be increased?  These questions, 

however, cannot be meaningfully addressed without reference to efficiency. 

There are two obstacles to analyzing this issue.  The first is that with modern information 

technology, knowledge of PID and control of access to it has been effectively transformed into a 

type of nonrival good, whose efficient allocation is bound to be less straightforward than that of 

standard, rival goods (Varian 1998, 2004).  The second is that in the marketplace, these nonrival 

goods are provided through the interaction of many disparate parties (e.g., consumers, 

merchants, credit bureaus and other information brokers, credit-card issuers, financial 

intermediaries, and firms that provide transaction processing and information-security services) 

whose actions are subject to complex laws, regulations, and contractual obligations. 

To shed some light on the relevant policy questions, the analysis below abstracts from the 

second difficulty to concentrate on the first.  That is, in the model environment, PID is 

accumulated and shared through simple club arrangements.  By forming and dividing across 

multiple clubs, agents can facilitate exchange in the presence of uncertainty about agents’ 

identities.  For concreteness, a club is referred to as a “credit-card network,” and there is 

sufficient homogeneity so that each club qua network can be sustained through straightforward 

agreements among club members.  Collecting and maintaining a database of personal 

information provides benefits to club members by assuring that debts will be repaid and deterring 

frauds.  However, if a club’s database is not adequately secured, it also can facilitate identity 

theft. 
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The model environment does not incorporate existing account fraud.  This is done to 

maintain tractability and concentrate on the more costly varieties of identity theft, i.e., new 

account and synthetic identity theft.  Existing account fraud is actually quite similar to 

counterfeiting, which already has been formally modeled and analyzed in the money literature 

(discussed in Section 5 below). 

 

3.2 Basic environmental features 

The economy exists in continuous time and consists of a continuum of risk-neutral 

agents.  Associated with each agent is a unique fixed vector known as the agent’s identity.  The 

dimension of this vector is sufficiently high as to be effectively infinite.  An agent’s identity is 

private information and never automatically revealed.  Each agent is congenitally either a 

legitimate agent or a fraud (i.e., an identity thief).9  F denotes the fraction of frauds in the 

population.  The next subsection describes frauds in more detail, while this subsection further 

describes legitimate agents. 

A measure one of legitimate agents is of type α , where α  denotes the agents’ 

production types, meaning the consumption good the agents can produce.  It is convenient to 

think of an agent’s type as his “location,” although the model does not rely on geography.  Also, 

the production types fall into two distinct groups, AG  and BG , where A BG G∩ =∅ .  The 

measure of group AG  ( BG ) is given by Aµ  ( Bµ ).  In this section, 1A Bµ µ= = . 

Within each group, production types are distributed uniformly over the unit interval.  

Agents within each group wish to consume the goods of all other agents of the same group.  

Time begins at date 0t = .  During the initial interval [0,1)t∈ , nondurable goods of type y, 

                                                 
9 As modeled here, only certain agents have the option to engage in identity theft.  The environment studied can be 
generalized to allow for endogeneity along this margin (see Kahn and Roberds (2008)). 
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[0,1)y∈ , are available for purchase and consumption at time y, when each type-y agent can 

supply a unit measure of good y.  Intuitively, potential consumers of type y y′ ≠  “journey” to 

location y to purchase and consume good y.  This process is repeated during subsequent unit 

intervals; i.e., at any time 0t ≥ , goods of type a b( )y t t t≡ −  are available for purchase and 

consumption, where a bt  denotes the largest whole number less than or equal to t. 

Over all times 0t ≥ , production within group i imposes an instantaneous disutility of 

( )( )ic y t y dtδ −  on type-y agents, where 0ic >  and δ is Dirac’s delta function.  For type-

y′agents of group i, where [0,1)y′ ∈  and y y′ ≠ , time t consumption of one unit of a type-y 

good yields instantaneous utility iu dt , where 0i iu c> > .  At each time t, potential consumers of 

type ( )y y t′ ≠  are randomly matched with one (and only one) producer within the same group of 

type ( )y t , with i.i.d. matching over time, so that all transactions are between agents without any 

previous contact.10 

Both groups of agents consist of stochastically lived overlapping generations.  At each 

discrete date 0,1,2,n = … , a randomly selected subset of types die and are replaced by newborn 

agents of the same type.  The measure of deaths and births is given by 1 β− , where 0 1β< < .  

The deaths of agents and the identities of the dead immediately become public information, so 

only the living are potential victims of identity theft. 

By construction, barter cannot occur in this economy, and money does not exist.  

                                                 
10 It might be helpful to think of this environment as a limiting version of the following finite economy.  Suppose 
that the economy consists of two groups of NM agents, where agents in each group are distributed over N locations, 
and M agents live at each location.  At each discrete time ( / )t y N+ , where 0,1, ... ,t =  and 0, ... , 1y N= − , each 
type i agent can provide 1N −  goods to agents of type y y′ ≠  who visit location y.  In the limit, ,N M →∞  as 

/ 0M N → .  Credit in the limit economy more closely corresponds to Kocherlakota’s (1998) concept of credit as 
“memory,” which essentially requires that all transactions be between agents who have not encountered one another 
in any previous transaction. 
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Exchange thus depends on the existence of some sort of credit arrangement, and therefore on 

sufficient knowledge of agents’ credit histories (Kocherlakota 1998).11  A difficulty in 

constructing such histories is private information:  in addition to an agent’s identity, an agent’s 

group and type are private information ex ante.  Without some arrangement to overcome these 

frictions, no one would have an incentive to supply a good, and trade would not occur.  

To enable trade to occur in some circumstances, a central authority (or “court”) exists 

with three limited and specific powers.  First, the central authority can observe an agent’s actions 

as a producer (i.e., whether an agent has supplied a unit measure of goods during a time interval 

[0,1), [1,2), … ).  Second, at discrete dates 0,1,2,n = … , the court can publicly announce the 

observed action.12  Third, the court can, when making this announcement, impose a 

nonpecuniary penalty of X > 0 utils on an agent who has refused to supply a good, provided that 

the agent can be identified. 

 

3.3  Benchmark:  exchange without identity theft 

As a benchmark, this subsection considers the case where there are no frauds (F = 0) and 

thus no identity theft.  For ease of comparison, it is shown that the conditions under which 

exchange occurs here are the same as in many well-known models of decentralized exchange 

(e.g., Kiyotaki and Wright (1989) or Diamond (1990); see Kahn and Roberds (forthcoming) for a 

survey). 

An agent’s actions as a consumer (purchases of goods away from the agent’s “home 

                                                 
11 At the cost of considerable added complexity, the model could be modified to allow agents the option of 
transacting with cash as well as by credit.  This generalization is explored in, for example, Martin, Orlando, and 
Skeie (2008) and Monnet and Roberds (forthcoming).  Here it might be useful to think of agents’ utility from 
consumption, u, as their “credit benefit,” i.e., the utility from additional consumption (or convenience) beyond that 
which would be available if cash were the only means of transacting.  The analysis below implicitly assumes that 
this credit benefit outweighs the privacy advantages of using cash (see Kahn et al. (2005)). 
12 In practice, such announcements (or close approximations thereto) are provided by credit bureaus. 
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location”) are not observable by the center.  Exchange will require some arrangement for 

associating the identities of would-be buyers with histories.  These arrangements are modeled as 

clubs for sharing information on buyers’ identities.13  The analysis will initially consider the case 

where one club exists for each group of agents.  Each club i, ,A Bi G G= , is formed at time 0t = .  

An agent joining the club agrees to reveal a subset of his identity, sufficient to distinguish him 

from all other agents.14  Having revealed part of his identity, the agent receives an 

uncounterfeitable credit card that signals his membership in the club. The card can be costlessly 

authenticated by all club members. 

By joining club i, an agent also reveals his group, though not his type.  Club membership 

entitles the agent to a (flow) unit of a consumption good from any other club member in return 

for agreeing to provide a unit measure of his own type of good to other club members, at some 

point during each unit interval of time.  At subsequent discrete dates 1,2,n = … , the center 

publicly announces the default of any club members who have not supplied goods and imposes 

penalty X on them, and they are excluded from the club.  Membership in each club subsequently 

is opened to newborn agents.15 

For an agent of type [0,1)y∈  in group i, the value of club membership during the 

interval [ , 1)t n n∈ +  is given by  

 ( )
1

( ( ) )
n

i i i it n
u c y t y dt u cδ

+

=
− − = −∫  (1) 

for 0,1,2,n = … .  The date n discounted present value of club membership is 

                                                 
13 As in Boyd and Prescott (1987), membership in the clubs will vary over time even as the clubs persist. 
14 Legitimate agents have no talent for obtaining goods through fraudulent activity.  For the purposes of this 
introductory section only, it is assumed that data on legitimate agents can be assembled at a negligible cost. 
15 In a more general setup, the club would need to keep track of each agent’s detailed consumption history as well.  
In the structure considered here, these histories would be essentially identical (differing only in the instants when 
goods are supplied), so that an agent’s history is automatically revealed through his decision to supply goods.  
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 , , 1i n i i i nV u c Vβ += − + . (2) 

In steady state, , , 1i n i n iV V V+= = , which implies 

 ( )1
i i i

rV u c
r
+ = − 

 
, (3) 

where 1 1r β −= − .  Ongoing membership in the club requires that a type-y agent be willing to 

supply a unit measure of goods at time n y+ .  Absent nonpecuniary penalties, this requires that 

the disutility of producing goods be less than the value of continued club membership, i.e., 

 i ic Vβ≤ , (4) 

or equivalently that i iu cβ ≥ .  If a nonpecuniary penalty X is available, condition (4) becomes 

 i ic X Vβ− ≤ , (5) 

which implies that the club can always sustain the efficient allocation, in which everyone trades, 

for X sufficiently large.  The analysis below will assume that condition (5) holds, so that all 

difficulties in organizing exchange stem from the presence of fraud. 

 

3.4  Fraud and frauds 

 In general, a subset of the agents within each group at each date are frauds.  Frauds 

resemble legitimate agents, except in the detail that they are unable (or for unknown reasons 

unwilling) to supply goods to other agents.  However, frauds still enjoy consuming the goods 

produced by others.  Thus, they cannot gain legitimate access to their preferred club without 

incurring penalties and subsequent exclusion.  As a result, they have an incentive to obtain 

consumption goods by posing as legitimate agents.  Within each group, frauds are not distributed 

uniformly over production types but are concentrated over a measurable set of known 

“locations,” where the measure of this set is given by 0F > . 
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For legitimate agents, the presence of frauds reduces the value of club membership.  In 

particular, if all frauds in group i are able to pose as legitimate agents, then the value of 

legitimate membership becomes 

 ( )1 (1 )i i i
rV u F c

r
+ = − − 

 
, (6) 

which is negative for F sufficiently close to one.  A sufficiently high rate of fraud undermines 

legitimate agents’ incentives to participate in a club, which can preclude trade.  Legitimate 

agents thus will have an incentive to exclude frauds from their clubs. 

 

3.5  Identification of agents 

To distinguish legitimate agents from frauds, agents must be reliably identified.  For this 

model, the amount of identifying information disclosed, not the type of information, matters.  

Hence, the information disclosed is represented by ,i nd +∈\ , referring to the number of elements 

an agent must disclose from his identity vector to be identified by club i at discrete dates n.  Each 

club compiles and maintains a database containing the identifying information disclosed by its 

members.  The cost to the two clubs of merging their databases is assumed to be prohibitive.  

(This assumption is relaxed in a subsequent section.) 

 Identification of agents is costly, and there are two components to the cost.  The first 

component is a fixed one-time cost of iK  utils, which is incurred when an agent initially joins 

club i and is borne pro-rata by all legitimate club members.  The second component is a per-

discrete-period, per-member cost of processing and maintaining the data record ,i nd  for each club 

member.  This cost is given by ,i i nk d , where 0ik >  and is also borne by all legitimate club i 

members.  Note that the parameters iK  and ik  reflect physical costs but perhaps also intangible 
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costs associated with the loss of privacy stemming from identity verification.  Also note that ,i nd  

can vary across discrete periods.  That is, a club can vary the amount of identifying data it 

requires from its members from one period to another.  Once a club has collected data at discrete 

dates 0,1,...n = , the data must be maintained until date 1n +  if the club is to avoid paying the 

initial identity verification cost K on all members at time 1n + .16 

 

3.6  Identity theft 

Following the initial verification of an agent’s identity, the agent receives an 

uncounterfeitable credit card.  Credit cards are issued at zero additional cost.  Because credit 

cards are uncounterfeitable, identity theft in the model does not involve the cloning of existing 

cards or use of existing card numbers:  there is no existing account fraud.  Rather, all identity 

theft involves the opening of a new credit-card account in the name of an apparently legitimate 

agent. 

Credit cards issued at discrete dates n have a virtual expiration date of 1n + .  That is, at 

discrete date 0n > , each club receives from the center a list of agents who have supplied goods 

during the preceding interval [ 1, )n n− .  Members who have not supplied goods are revealed as 

frauds, penalized if their identities are known, and removed from the club, while those who have 

supplied goods continue their membership.17  Apart from exclusion from the club, no penalties 

can be applied to impersonators because their real identities are unknown.   

                                                 
16 In other words, data compiled at discrete date n and not needed at n+1 can be costlessly and securely disposed of 
at n+1, but must be held over the interval [n, n+1] to avoid incurring the fixed cost K.  A more general setup could 
incorporate a flexible cost function for secure data disposal. 
17 One can conceive of other arrangements for trade within the club.  For example, each producer could verify each 
buyer’s identity independently, but this would require that each buyer’s verification cost be incurred infinitely often.  
Or, the club could verify members’ identities at the beginning of each discrete period, issue “no-name” credit cards 
valid for only one period, and dispose of all identifying information on its members.  In what follows it is assumed 
that the value of the initial verification cost K is sufficiently high relative to other costs in the model that the use of 
anonymous credit cards is not an attractive option. 
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Discovery of an impersonator in club i imposes a fixed resolution cost of L, which is 

borne equally by all legitimate members of club i.18  L can include various kinds of costs, 

including physical costs, loss of leisure time, inconvenience, and simply loss of privacy.19  Note 

that this cost is in addition to the fraud loss, c, incurred when a fraud illicitly obtains a good.  

To gain access to a club, frauds must convincingly impersonate a legitimate agent.  A 

fraud has two means of obtaining the necessary data:  he can steal (i.e., observe) at least some of 

the data needed for the impersonation, or simply manufacture sufficient data to construct a 

convincing identity.  Because the submission of duplicate PID of an existing club member would 

be automatically revealed as fraudulent (i.e., there is no existing-account fraud in the model), 

data observed in a breach of club j’s database is always used to gain access to club i.   

The amount of data lost through a data breach depends on how well the target club 

secures its database.  Suppose that club i decides to maintain member data , 1i nd −  over the interval 

[ 1, )t n n∈ − , where 1n > .  The club then chooses a variable , 1 0i ns − ≥  that determines, for the 

next discrete date n, the likelihood of a data breach, given the technical skills of the would-be 

data thief. 

More specifically, the variable , 1i ns −  is the technical skill threshold required to access club 

i’s database at discrete date t n= .  The distribution of technical skills s within the population of 

frauds is time invariant, and is given by the probability distribution function ( )sΦ , where 

( ) 1sΦ <  for s < ∞ .  Intuitively, by setting a higher skill threshold, the club can lower the 

proportion of the population of frauds that can potentially gain access to the club’s database.  

                                                 
18 Because all legitimate club members are risk neutral and have the same preferences, there is no loss of generality 
in assuming these costs are equally distributed. 
19 For example, according to Douglas (2008), it costs a card issuer about $25 to reactivate a compromised credit card 
account.  Other, less readily quantifiable costs of resolving identity fraud are catalogued by Anderson et al. (2008), 
and include the time cost of resolution, harassment of victims by debt collectors, denial of utility service, and being 
subject to misplaced civil lawsuits and criminal investigations. 
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Increasing the skill required for database breaches brings with it increased costs, however.  In 

particular, adopting skill threshold , 1i ns −  results in a cost to all legitimate members of club i of 

disutility , 1i ns −A  incurred at discrete date 1n − , where 0>A .  Thus, the possibility of a breach is 

never completely eliminated. 

Frauds lacking the technical skills for data theft can attempt to obtain the necessary data 

for impersonation through other means.  Compiling the data ,i nd  necessary for entry into club i at 

discrete date n involves a utility cost ,i ndε , where 0ε > .  As with the technical skills, the “fraud 

effort cost” ε is assumed to have a time-invariant distribution ( )εΓ  over the population of 

frauds, where Γ is independent of the skill distribution Φ.20 

Frauds who possess sufficient skill may reduce their effort costs by stealing data.  If a 

fraud of group i breaches club j’s date 1n −  database, and obtains data , 1j nd − , then a proportion η 

of this data can be applied to gain membership to club i.  In this case, the net amount of data the 

fraud must synthesize to gain access to club i is 

 { }, , 1max ,0i n j nd dη −− , (7) 

and his net effort cost is given by21 

 { }, , 1max ,0i n j nd dε η −− . (8) 

To summarize, the prevalence and type of identity fraud committed in club i during 

[ , 1)n n +  depends on three factors:  (1) the amount of data ,i nd  needed to gain access to club i at 

discrete date n, (2) the skill threshold , 1j ns − specified by club j at discrete date 1n − , and (3) the 

                                                 
20 Unskilled fraud can occur through opportunistic (low-tech) data theft, data synthesis, or a combination of the two. 
21 Note that skilled data theft always involves the theft of some data, which is then (in general) combined with 
synthesized data to construct a false identity. 
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amount of club j’s data obtainable through a breach at date n, , 1j ndη − . 

 When a club’s data is stolen and used to gain fraudulent access to the other club, the 

members of the first club are subject to a “breach cost” 0B >  borne equally by all members.  As 

with the resolution cost L, B can include physical, time, and intangible costs. 

 

3.7  Symmetric steady-state equilibrium 

Suppose that at discrete date 1t n= − , club j decides to maintain data , 1j nd −  on its 

members and specifies a skill threshold , 1j ns − .  For an unskilled fraud (one unable to attempt a 

data breach) from group i, the payoff to committing identity theft at t n=  and gaining access to 

club i over [ , 1)t n n∈ +  is given by 

 ,(1 )i i nu F dε− − . (9) 

From (9), club i’s equilibrium rate of identity theft from unskilled frauds over [ , 1)t n n∈ +  is 

given by 

 , 1
,

(1 )( ) i
j n

i n

u FF s
d−

 −
Φ Γ  

 
. (10) 

For a skilled fraud of group i, the payoff from fraud over [ , 1)t n n∈ +  is given by 

 { }, , 1(1 ) max ,0i i n j nu F d dε η −− − − . (11) 

Hence the set of successful skilled frauds in the population of group i is those for whom 

 
, , 1

, , 1

, , 1

(1 ) , when 0,  

, when 0. 

i
i n j n

i n j n

i n j n

u F d d
d d

d d

η
ηε ε

η

−
−

−

− − > −≤ = 
 ∞ − ≤

 (12) 

If preferences are symmetric across clubs ( A Bu u u= = ; A Bc c c= = ; A BK K K= = ; A Bk k k= = ), 
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then in steady-state equilibrium it must be the case that , , 1 0i n j nd dη −− > .  Hence, for the 

symmetric case, the measure of skilled frauds who gain access to club i at discrete date n can be 

stated as 

 ( ), 1
, , 1

(1 )1 ( ) .j n
i n j n

u FF s
d dη−

−

 −
−Φ Γ  − 

 (13) 

 Each club i chooses a data record length ,i nd  and a skill threshold ,i ns  for each discrete 

date n so as to maximize the discounted future utility of its club members, taking into account the 

choices of the other club.22  Club i’s date-n objective (the continuation value of club 

membership) can be represented as  

 
, ,

0
i n

f m
i n m

m
V Uβ

∞

+
=

= ∑ , (14) 

where ,i nU  gives each legitimate agent’s payoff to membership in club i over [ , 1)n n + , i.e.,  

 ( ) ( ) ( )

( ) ( )

, , ,

, 1 , 1
, , , 1

, 1
, , 1

( )(1 ) (1 )

1 1
( ) ( ) 1 ( ) ( )

1
1 ( ) .

i n i n i n

j n j n
i n i n j n

i n
j n i n

U u c F K kd s

u F u F
F s c L F s c L

d d d

u F
F s B

d d

β

η

η

− −
−

−
−

= − − − − − −

  − −
− Φ Γ + − −Φ Γ +     −   

 −
− −Φ Γ  − 

A

 (15) 

In words, a legitimate agent’s per-period payoff is given by the net benefits of trade, minus the 

costs associated with administering data and keeping it secure, minus the costs associated with 

identity theft by the unskilled and skilled, minus the costs of resolving data breaches. 

A symmetric steady-state allocation in this economy is an ordered pair ( , )d s , where d 

                                                 
22 The equilibrium studied here is that of an “open loop” Nash equilibrium (i.e., an equilibrium in sequences of 
decisions) in a dynamic game between clubs A and B (Başar and Olsder 1998).  The open-loop equilibrium concept 
is appealing here because, by restricting the clubs to relatively simple strategies, it allows for straightforward 
analytical characterization of the strategic interactions between clubs.  This equilibrium is time-consistent in the 
usual sense. 
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gives the data length and s gives the skill threshold for both clubs.  In symmetric steady state, the 

continuation value of membership in each club is given by 

( )

( ) ( )

1
( )(1 ) (1 ) ( ) ( )

1( , )
1

1 ( ) ( )
(1 )

f

u F
u c F K kd s F s c L

drV d s
r u F

F s c L B
d

β

β
η

 − 
− − − − − − − Φ Γ +  

+     =      −  − −Φ Γ + +  −  

A
.  (16) 

 A symmetric steady-state allocation ( , )d s  is incentive compatible if it satisfies the 

following conditions: 

1. Individual rationality, i.e., ( , ) 0fV d s ≥ ; 

2. No defection (legitimate agents in each club have an incentive to produce), i.e., 

( , )fV d s c Xβ ≥ − ; 

3. No exclusion (each club has an incentive to admit new members), i.e., ( , )fV d s V≥ , 

where V  is the value of maintaining the club without admitting new members:  

 2
2

0

( )(1 )( )(1 )
1

n

n

u c FV u c F β
β

∞

=

− −
= − − =

−∑  (17) 

 

 A symmetric steady-state allocation ( *, *)d s  is an equilibrium if 

1. It is incentive compatible, and 

2. The infinite sequence { } { }, , 0
( , ) ( *, *), ( *, *),i n i n n
d s d s d s

∞

=
= …  represents a best response 

for each club in steady state, i.e., { }( *, *), ( *, *),d s d s …  maximizes ,0
f

iV  for each club i, 

when club j also chooses { } { }, , 0
( , ) ( *, *), ( *, *),j n j n n
d s d s d s

∞

=
= … , and both clubs have 

“initial conditions” , 1 , 1( , ) ( *, *)i id s d s− − = . 
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The analysis below considers illustrative equilibria for two candidate distributions for Φ 

and Γ.  In particular, frauds’ skill endowments s are specified to follow the exponential 

distribution ( ) 1 ss e φ−Φ = − , and the distribution ( )εΓ  of frauds’ effort costs is specified as a 

uniform distribution, normalized to [0,1]U .  These choices can be rationalized as follows.  In the 

case of Φ, the set of equilibria considered will be determined by the hazard function 

( )( ) ( ) / 1 ( )f s s s′= Φ −Φ .  The analysis below focuses on the case of a constant hazard rate 

( )f s φ=  , which is equivalent to assuming an exponential distribution for s.  Note that φ 

determines the incremental benefit of a small increase in data security.  In the case of Γ, a 

sufficiently “flat” distribution ( ′′Γ  small) is necessary to ensure the intuitive property that each 

club’s optimal data length d decreases with a falling cost of maintaining such data k.  This 

requirement is clearly satisfied if Γ is uniform.23  Together, these specifications for Φ and Γ can 

be shown to guarantee sufficient concavity of ,
f

i nV  so that each club’s objective is well defined.24 

When Γ is [0,1]U , first-order conditions in ,i nd  and ,i ns  are given by 

 

( )
( )

( )
( )

,

, 1, 1
22

, , 1

,
2

, 1 ,

(1 )( ) 1 ( )(1 )( ) ( )

(1 ) 1 ( )
,

i n

j nj n

i n j n

i n

j n i n

uF F c L suF F c L s
d d d

uF F B s
k

d d

η

β η

η

−−

−

+

− + −Φ− + Φ
+

−

− −Φ
= +

−

 (18) 

and 

 ,

, 1 ,

(1 ) ( )i n

j n i n

uF F B s
d d

β
η+

′− Φ
≤

−
A , (19) 

                                                 
23 This specification is implicit in the model of Kahn and Roberds (2008). 
24 See the proof of Proposition 1 below. 
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respectively, where (19) holds with equality for , 0i ns > .  Note that the left-hand side of 

condition (18) [(19)] gives the marginal benefit of an increase in ,i nd [ ,i ns ] while the right-hand 

side gives its marginal cost.  In symmetric steady state these conditions reduce to  

 ( )( )
( )22 2

1 ( )( ) ( )(1 )
1

c L B sc L suF F k
d d

β η

η

 + − −Φ+ Φ
− + = 

−  
; (20) 

 
( )

(1 ) ( )
1

uF F B s
d

β
η

′− Φ
≤

−
A . (21) 

Thus, for this particular specification, a symmetric steady-state allocation ( , )d s  is an 

equilibrium if it is incentive compatible, and satisfies (20) and (21).  The following proposition 

may now be stated (proofs in this section are given in the Appendix): 

 

Proposition 1.  A unique symmetric steady-state equilibrium ( *, *)d s  exists with * 0s >  under 

the following conditions: 

1. the hazard rate φ of the skill distribution is sufficiently large; 

2. the breach cost B is less than the other costs of identity theft, i.e., B c Lβ < + ; 

3. verification costs , , 0K k >A  are sufficiently small; 

4. β is sufficiently close to unity (agents are sufficiently long-lived). 

 

3.8  Comparison with the efficient allocation 

 The data record length *d  and the skill threshold *s  in the symmetric equilibrium 

allocation can be usefully compared to the values of d and s that would be chosen by a planner.  

The planner operates under the same informational constraints as the decentralized arrangements.  

PID must be freely surrendered and cannot be shared across groups.  A separate club is formed 



21 

for each group, and agents have the option of joining the appropriate club.  Also, allocations 

chosen by the planner are subject to the same incentive-compatibility constraints as in the 

noncooperative allocation. 

The planner’s objective is taken as the steady-state value of legitimate agents’ club 

membership, ( , )fV d s .  A golden-rule allocation is a steady-state allocation ( , )p pd s  that 

maximizes the planner’s objective.  Note that a golden-rule allocation represents a constrained-

efficient allocation because the planner places no weight on either the utility of the initial 

generation of legitimate agents or the utility of frauds. 

First-order conditions for the planner’s problem are given by 

 ( )( )
( )2 2

1 ( )( ) ( )(1 )
1

c L B sc L suF F k
d d

β
η

 + + −Φ+ Φ
− + = − 

, (22) 

 
( )

(1 ) ( )
1

c L c L BuF F s
d d

β
η

 + + + ′− − + Φ ≤  − 
A , (23) 

where (23) holds with equality for 0s > .  These conditions differ from equilibrium conditions 

(20) and (21) because the planner fully internalizes the fraud-suppression benefits of setting both 

the required data length d and the skill threshold s.  The following result is shown in the 

Appendix. 

 

Proposition 2.  Under the conditions of Proposition 1, there is a unique golden-rule allocation 

( , )p pd s  where 0ps > . 

 

The next two results compare the solution to the planner’s problem to the symmetric 

steady-state equilibrium: 
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Proposition 3.  Under the conditions of Proposition 1, 

1. *s  and ps  are increasing in η (skill thresholds increase as stolen data becomes more 

useful for identity theft); 

2. As 1η →  (stolen data becomes more useful), *s s→ <∞  while ps →∞ , whence 

* ps s<  (the skill threshold in the symmetric equilibrium is lower than that chosen by the 

planner). 

 

Proposition 4.  Under the conditions of Proposition 1, 

1. The amount of data collected by the planner, pd , does not vary with η, while the amount 

of data collected in the symmetric equilibrium, *d , is increasing in η  as 1η → ; 

2. As 1η →  (stolen data becomes more useful), *d →∞ , whence * pd d>  (the planner 

collects less data than is collected in the symmetric equilibrium). 

 

Not surprisingly, rates of identity theft differ across the two allocations.  For a steady-

state allocation ( , )d s , the rate of identity theft (measure of successful frauds) ( , )d sρ  is given 

by the sum of the rate of identity theft by unskilled and skilled frauds, and can be computed as 

 ( )1 ( )( , ) ( ) .
(1 ) (1 )

sd s s
uF F d d
ρ

η
−ΦΦ

= +
− −

 (24) 

 

Proposition 5.  Under the conditions of Proposition 1,  

1. The rate of skilled identity theft is greater in the symmetric equilibrium than under the 

golden-rule allocation; 
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2. As 1η → , the rate of unskilled identity theft is greater under the golden-rule allocation 

than in the symmetric equilibrium; 

3. For / kA  bounded, as 1η →  the total rate of identity theft is greater under the golden-rule 

allocation than in the symmetric allocation. 

 

3.9  Discussion 

 Proposition 3 establishes, under mild conditions, that when each card network 

independently determines the amount and security of data compiled on its members, networks 

insufficiently secure their data relative to the golden-rule allocation.  The clubs attempt to 

compensate for insufficient security by overaccumulating identifying data on their members 

(Proposition 4). 

Insufficient security is applied because each network’s cost of a data breach B is less than 

its social cost c L Bβ+ + .  Lax security leads, in turn, to a suboptimally high rate of identity theft 

by skilled frauds (Proposition 5).  Because each network cannot control the rate of data theft 

from the other network’s database, its best response is to accumulate more PID, thereby 

suppressing the rate of unskilled identity theft, and driving the overall rate of identity theft below 

that of the efficient allocation (Proposition 5).  Despite its lower rate of identity theft, the 

equilibrium allocation is inefficient due to its higher “privacy” costs, i.e., the costs of assembling 

and maintaining personal data necessary to keep fraud in check. 

 

4.  Attaining efficiency 

 This section discusses three means for improving on the inefficient steady-state 

equilibrium allocation:  (1) mandated limits on the amount of data collected and security levels, 
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(2) reallocations of data-breach costs, and (3) data sharing through a merger of the networks. 

 

4.1 Direct regulation 

One possibility would be direct regulation of entities engaged in the collection of 

personal data, such as the clubs in the model.  The strategic interplay between the data compiled 

and its security imposes a high informational burden on this type of regulation.  In practice it 

may be difficult for policymakers to enforce standards along both of these dimensions. 

Consequently, this section analyzes the effects of policies that regulate data collection or data 

security, but not both. 

Suppose, for example, that a regulator observes that excessive PID is being collected, and 

decides to constrain the amount of data that each network collects, i.e., the regulator requires 

*cd d d= < .  Security levels would still be set noncooperatively:  let cs  be the equilibrium skill 

threshold chosen by the clubs under this constraint. 

From the equilibrium condition (21), cs  can be expressed as 

 1 (1 )ln ,
(1 )c

c

BuF Fs
d

φβ
φ η

 −
=  − A

 (25) 

which can be compared to condition (23) evaluated at the solution to planner’s problem 

 ( )( ) ) (1 )1 ln
(1 )p

p

c L B uF F
s

d
φ η β

φ η
 + + −

=   − A
. (26) 

A benevolent regulator who only regulates data length would choose cd to maximize ( , )f
c cV d s  

subject to (25).  The solution to the regulator’s problem is given as (calculations are in the 

Appendix) 
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Proposition 6.  A regulator who can only regulate data length chooses the same data length as its 

golden-rule value, i.e., the regulator sets c pd d= .  Under this policy, as 1η → , clubs choose a 

skill threshold cs  greater than its value in the symmetric equilibrium, but less than its golden-rule 

value, i.e., * c ps s s< < . 

 

Thus, relative to an unregulated outcome, a policy of constraining data collection 

improves welfare by (1) reducing the costs of data collection (including intangible costs) and (2) 

encouraging networks to increase security and therefore make skilled identity theft more 

difficult.  The potential benefit of increased security can be partly undone by two effects, 

however.  First, there is substitution into unskilled identity theft, since unskilled identity theft 

becomes both easier (less PID is required for an impersonation) and more popular, as some 

skilled frauds shift into low-tech forms of identity theft.  Second, for frauds with sufficient 

technical abilities, skilled identity theft becomes easier as it requires less PID.  Relative to the 

efficient allocation, a policy of constraining data collection does not completely correct the 

inefficient pattern observed in the unregulated equilibrium, of over-suppression of unskilled and 

under-suppression of skilled identity theft (cf. Proposition 5). 

Likewise, a regulator might require that networks increase security levels.  Consider the 

case where a regulator requires each network to implement Cs s= , but allows networks to 

privately determine the amount of data that they collect.  Let Cd  be the equilibrium amount of 

data chosen by the clubs under this constraint.  From equilibrium condition (20), Cd  can be 

expressed as 
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 ( )
1

12
2 2

2

(1 ) ( )(1 ) ( ) ( ) 1 ( ) ,
(1 )C C C

uF Fd c L s c L B s
k

η βη
η

 −  = + − Φ + + − −Φ   − 
 (27) 

which can be compared to condition (22) evaluated at the solution to the planner’s problem 

 ( )
1

12
2(1 ) ( )(1 ) ( ) ( ) 1 ( ) .

(1 )p p p
uF Fd c L s c L B s
k

η β
η

 −  = + − Φ + + + −Φ   − 
 (28) 

A benevolent regulator who regulates only security would choose Cs to maximize 

( , )f
C CV d s  subject to (27).  In this case, the solution to the regulator’s problem is given as 

 

Proposition 7.  A regulator who can only regulate skill thresholds chooses a skill threshold 

higher than its golden-rule value as 1η → , i.e., the regulator sets C ps s> .  By Proposition 3, 

*Cs s> . Under this policy, clubs choose a data length less than its symmetric equilibrium value, 

i.e., *Cd d< , but greater than its golden-rule value as 1η → , i.e., C pd d> . 

 

Proposition 7 says that a policy of regulating data security only tends towards 

overcorrection in data security, imposing even higher security standards than a planner would 

choose.  This policy also reduces the amount of data collected by the clubs.  Relative to the 

symmetric equilibrium, a higher rate of unskilled identity theft is tolerated in return for a 

reduction in the costs of collecting and maintaining data. 

  

4.2  Increasing liability for a data breach 

 An alternative regulatory approach would be to increase each network’s costs for a data 

breach so as to better align the private and social costs of a breach, i.e., raising each network’s 
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breach costs to B B π′ = +  where 0π > .  This might occur in a number of ways.  One possibility 

would be to increase each network’s civil legal liability for the costs resulting from theft of its 

data.  Another possibility would be for regulators to levy penalties in the case of a data breach.  

Such penalties have been de facto imposed, for example, by at least 35 state legislatures through 

the passage of laws that require consumers be notified (at some cost to the data collector) when 

their data is subject to unauthorized access (Anderson et al. 2008). 

 There are some significant practical restrictions on this type of policy.  For example, 

under U.S. law it is difficult to establish liability for identity theft because many entities have 

access to payment data, which tends to constrain the use of contractual agreements to allocate the 

risk of harm from identity theft (Schreft 2007).  Awards for damages, when they do occur, are 

limited to the economic loss resulting from a breach, rather than the larger amounts that might 

result from application of a negligence standard (Chandler (forthcoming)). 

 Translating these constraints in the context of the model, an “economic loss standard” 

would require each club to pay a pro-rata share of the losses of the other when it experiences 

identity theft stemming from a data breach.  That is, an economic loss standard would impose a 

penalty 

 (1 ) ( ) .EL r c Lπ π η= = + +  (29) 

An economic loss standard achieves efficiency for the special case where clubs are 

constrained to collect the efficient amount of data ( pd d= ).  To see this, note that if we replace B 

in the clubs’ first-order condition (25) with ELB B π′ = + , this is the same as the planner’s first-

order condition (26) so long as d is identical in both conditions.  Where data length is 

endogenous, however, an economic loss standard does not correct clubs’ incentives in data 

collection (cf. conditions (27) and (28)); hence efficiency does not obtain for the general case. 
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4.3  Numerical Example 

To better gauge the relative efficacy of the various regulatory approaches, allocations 

were computed numerically.  Table 1 below displays some typical results.  Parameter values for 

the example are: 

 
25; 1; .9;

2; .5; 1; .1.
c L B

k
β

φ η
+ = = =
= = = =A

 

Note that these parameter values allow for a moderate spillover ( .5η = ) from one club’s 

data practices to the other’s.  The ratio ( / ) 10k =A  places a relatively high value on the privacy 

of personal information.  To facilitate comparisons, the normalizations 0K =  and (1 ) 1uF F− =  

are adopted.  Columns 1 and 2 of the Table give the numerical values of the allocation ( , )d s  in 

each case.  Column 3 gives the percentage of skilled identity thieves, i.e., the proportion of 

frauds who are able to attempt data breaches.  Column 4 gives the identity theft rate ( , )d sρ  of 

each allocation.  Since uF(1-F) is normalized to one in the examples, the identity theft rates in 

Table 1 do not represent gross identity theft rates, but instead represent the proportion of frauds 

who are successful in their attempts at impersonation.  Column 5 gives the steady-state variable 

cost of identity theft for each allocation, including the cost of data collection and security, i.e. 

 
( )

( , ) ( )(1 ) (1 )
1

( )( ) 1 ( )
(1 )

.

frC d s V u c F K
r

c L c L Bs s kd s
d d

β

β
η

 = − − − − − − + 
+ + +

= Φ + −Φ + +
−

A
 (30) 
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Table 1:  Comparison of Allocations 

 Personal data 
collected  

d 

Security level 
(skill 

threshold) s 

Percentage of 
skilled frauds 

( )100* 1 ( )s−Φ

Identity theft 
rate 

100* ( , )d sρ  

Steady-state 
costs of ID 

theft ( , )C d s  

1. Golden-
rule 
(efficient) 
allocation: 
( , )p pd s   

5.03 2.53 0.6 20.0 10.3 

2. Symmetric 
equilibrium: 
( *, *)d s  

33.2 0.04 92.3 5.78 34.7 

3. Regulated 
data 
collection: 
( , )c cd s  

5.03 0.984 14.0 22.7 10.8 

4. Regulated 
security level: 
( , )C Cd s  
(approximate) 

5.04 2.5 0.7 20.0 10.3 

5. Economic 
loss standard: 
( *, *)d s  
when 

ELB B π′ = +  

17.3 1.72 3.2 6.00 19.0 

 

 Allocations 1 and 2 illustrate the comparisons derived in Propositions 3, 4, and 5.  In 

symmetric equilibrium, the networks collect over six times as much data as in the efficient 

allocation, and the equilibrium security effort (skill threshold) is very low.  Identity theft is 

effectively suppressed in the symmetric equilibrium, but the welfare cost of this suppression is 

high since so much data is collected. 
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 Of the three regulatory policies, regulation in security levels (i.e., skill levels, allocation 

4) is the most effective, virtually replicating the efficient allocation for this example.  This policy 

is successful because requiring clubs to increase their security efforts simultaneously diminishes 

their incentives to overcollect personal data.  A policy of limiting data collection (allocation 3) 

does nearly as well, since placing limits on PID also improves clubs’ security incentives.  The 

least effective policy is the implementation of an economic loss standard (allocation 5).  While 

this policy increases data security and improves welfare, it does not fully eliminate clubs’ 

incentives to inefficiently substitute data collection for data security. 

 

4.4  Variable network size 

 An alternative method for controlling data breaches is to allow for the sharing of data 

residing in the databases of the two separate clubs (networks).  In the model, sharing data across 

clubs eliminates the incentive for data breaches because any stolen identifying information 

duplicates existing information and is automatically revealed as fraudulent.  Exchanging data 

across clubs can thus be beneficial even though agents in each club never interact in commerce 

with agents of the other group. 

In principle, data sharing could be implemented in a number of ways.  LoPucki (2001) 

proposes the creation of a governmental agency that would manage a consolidated database of 

PID.  Inclusion in the database would be optional.  This section considers an alternative channel 

for data sharing, which is the voluntary preference of agents in the two groups to share data 

across groups.  This is done by a slight generalization in the environment studied in Section 3. 

In this generalized environment, agents have the option of transacting through a single 

club or dual clubs (one for each group of agents).  If agents decide to form a single club, no data 
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breaches can occur in equilibrium, so the club simply compiles data of length d on all its 

members25 to maximize the average per-capita net benefit of legitimate club membership.  That 

is, the single club chooses d to maximize (cf. expression (15)) 

1

(1 ) (1 )( )(1 ) (1 ) ( ) ( ) ,

s

A B
A A B B

rV
r

u F F u F Fu c F K kd c L c L
d d

β µ µ

+ = × 
 

− − − − − − − − + − +  

 (31) 

where the underlines indicate average values, i.e., A A B Bu u uµ µ= +  etc.  Let sd  denote the 

choice of data length that maximizes (31), and let ,A sV  ( ,B sV ) denote the steady-state value of 

legitimate club membership for agents of group AG ( BG ) when PID of length sd  is collected.  A 

steady-state equilibrium with a single club exists when the following incentive constraints are 

satisfied 

1. Individual rationality, , 0 for ,i s A BV i G G≥ = ; 

2. No defection, , for ,i s i A BV c X i G Gβ ≥ − = ; 

3. No exclusion, , ,ii s A BV V for i G G≥ = , where iV  is the value of maintaining the club 

without admitting new members, analogous to (17). 

 If, as in Section 3, agents’ preferences are symmetric across groups, it is immediate that 

an equilibrium with a single club exists whenever a symmetric steady-state equilibrium exists.  

Moreover, the equilibrium with the single-club equilibrium dominates the equilibrium with dual 

clubs.  For any value of d chosen by the dual clubs, the single club can do better with this same 

data because the single club’s database provides a greater benefit in terms of fraud reduction (all 

frauds must now attempt the more costly unskilled identity theft) at a lower cost (since the single 
                                                 
25 Recall that an agent’s group is private information, so the club cannot require different amounts of data from 
agents of different groups.  Note also that the information provided by the court does not allow for separation of 
agents by groups ex post. 
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club incurs no costs of securing data against breaches and no breach costs). 

In the absence of unanimity, however, conflicts of interest can arise as to the amount of 

data the single club should compile and retain.  Sufficient heterogeneity in preferences can limit 

potential efficiency gains achievable through voluntary consolidation of data.  To demonstrate 

this point, consider the following parameterization of the model.  Suppose that the per-unit 

physical cost of compiling and storing data is negligible, so that the cost parameter k reflects 

only intangible costs associated with the loss of privacy.  Agents in the two groups AG  and BG  

have identical preferences, except that agents in group AG  are essentially indifferent to the 

privacy of their stored personal data ( Ak ε= , where 0ε >  is arbitrarily small), while agents in 

group BG  place a higher value on confidentiality ( B Ak k> ).  The two groups are of unequal size:  

group AG  has unit measure as before, while group BG  has measure (0,1)Bµ µ= ∈ . 

Suppose that agents in the two groups decide to form a single club.  The optimal data 

length for the single club is given by 

 (1 )( )
s

uF F c Ld
k

− +
= , (32) 

and the equilibrium per-capita net benefit of club membership for an agent of group i is 

 ,
1 (1 )( )( )(1 ) (1 )

1i s i
r k uF F c LV u c F K k

r k
β

µ

  + − + = − − − − − +     +     
, (33) 

for ,A Bi G G= . 

 Now suppose each group decides to form its own club.  In this case, agents in group A are 

willing to surrender virtually limitless amounts of personal information to club AG , which 

effectively precludes the possibility of fraudulent entry into their club.  Once assembled, 
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however, club AG ’s database is subject to data breaches committed by skilled frauds seeking 

access to club BG .  Thus, with dual clubs, club AG  chooses Ad →∞  as 0Ak →  and chooses As  

to maximize 

 ( ),
1 ( )(1 ) (1 ) 1 ( )A d A A

rV u c F K s F s B
r

β µ β+ = − − − − − − −Φ     
A .  (34) 

For sufficiently large φ, the optimal skill threshold for club AG  will be given by  

 ( )1 ln ( ) /As F Bφ µ β φ−= A , (35) 

which implies that, with dual clubs, the equilibrium net benefit of membership in club AG  is 

given by 

 *
,

1 ( )(1 ) (1 ) ln 1A d
rV u c F K

r FB
β

φ µ φ
     + = − − − − − +       

        

A A . (36) 

 Because the PID stored in club A’s database is so extensive, club BG  cannot control its 

rate of skilled identity theft:  any amount of data Bd  that club BG might require for entry can be 

stolen from club AG  with sufficient skill.  Knowing this, club BG  chooses a data length Bd  that 

balances the benefits of reduced unskilled identity fraud against the costs associated with the loss 

of privacy.  This data does not need to be well secured because data stolen from club BG ’s 

database is insufficient to gain access to club AG ; that is, there are no breach costs for club BG .  

Hence, with dual clubs, club BG ’s problem reduces to choosing Bd  to maximize 

 

( )

,
1

( )(1 )
,(1 )(1 ) ( ) 1 ( ) ( )

B d

B B A
B

rV
r

u c F
uF FK k d c L F s c L

d
β

+ = × 
 
− − − 

 − − − − + − −Φ +
  

 (37) 



34 

which yields 

 (1 )( )
B

B

uF F c Ld
k

− +
= . (38) 

From (35) and (38), the equilibrium per-capita net benefit of membership in club BG  in the case 

of dual clubs is given by 

 

*
,

1

( )(1 ) (1 ) (1 )( ) .

B d

B

rV
r

c Lu c F K k uF F c L
FB

β
φ

+ = × 
 

   + − − − − − − + −   
   

A
 (39) 

For this parameterization, the comparison between the single club and dual clubs is stated as 

 

Proposition 8.  Suppose that groups AG  and BG  have heterogeneous preferences over the 

privacy of stored data ( b ak k>  arbitrarily small) and that the measure of each group is 

1 0A Bµ µ= > > .  Then for φ sufficiently large and , , , 0B BK k µ >A  sufficiently small, 

1. A steady-state equilibrium exists for both the single club and dual clubs; 

2. Legitimate agents in both groups are better off under dual clubs than under the single 

club. 

 

Proof.  The proof of Part 1 follows that of Propositions 1 and 2.  To show Part 2, let / 0φ →A .  

Then, comparing (33) and (36), *
, ,A d A sV V>  for 0Bµ >  sufficiently small.  Comparing (33) and 

(39), *
, ,B d B sV V>  under the same conditions. 

 

 Intuitively, Proposition 3 says that, given sufficient heterogeneity, agents may prefer to 
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tolerate a certain amount of data theft, as occurs under dual clubs, rather than attempt to 

eliminate the problem entirely by forming a single club.  Agents who place little value on 

privacy allow their club to compile large amounts of personal data, since this deters fraud, even 

though this data is subject to occasional breaches and misuse.  By contrast, agents who place a 

higher value on privacy will tolerate a higher rate of identity theft, including theft that arises 

through data breaches, as the cost of keeping more of their PID private.  Merging the two clubs 

can result in a level of personal data collection that seems excessive to the high-privacy group 

but insufficient to the low-privacy group. 

 More generally, Proposition 8 illustrates how heterogeneity can limit the efficiency gains 

from consolidation of PID.  So long as this information is shared through voluntary associations 

(rather than mandatory participation in a single arrangement), disparate groups of agents in an 

economy may prefer to sort into separate alliances with differing levels of personal privacy and 

data security. 

 

5.  Relationship to the Literature 

The above analysis builds on well-known models of exchange in search-theoretic 

environments.  Numerous papers in this literature allow for the possibility of fraudulent 

transactions, both through counterfeit currency (Green and Weber (1996), Kultti (1996), Monnet 

(2005), Williamson (2002), Nosal and Wallace (2007), Cavalcanti and Nosal (2007)) and 

through various types of fraud in credit-based payments (Camera and Li (2003), Kahn et al. 

(2005), Kahn and Roberds (2008)).  What is new here is the consideration of a new, empirically 

significant, type of transactions fraud stemming from the theft of identifying data. 

 The framework presented also shares features with some papers in the literature on the 
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economics of information security (surveyed in Anderson and Moore (2006)).  Varian (2004) 

presents a game-theoretic model in which “system reliability” (here, corresponding roughly to 

deterrence of identity theft) is modeled as a public good produced by the interaction between 

individual efforts at reliability provision (corresponding to PID collection and storage).  The 

Varian model is extended by Grossklags et al. (2008) to allow for individual efforts at insurance 

(corresponding to setting skill thresholds) against system failures. 

The environment above is similar to these models, in the sense that knowledge of PID 

functions as a nonrival good within each group of agents, supplying a club-wide level of 

deterrence against identity theft.  Here, unanimity of preferences ensures that public-goods 

problems do not arise within groups.  Instead the focus is on potential negative spillovers across 

groups: provision of the same good (data) that suppresses identity theft for one club increases the 

likelihood of identity theft for the other.  Efficient management of personal data therefore 

involves a balance between its positive (within-club) and negative (cross-club) effects. 

 

6.  Conclusion 

 This paper has presented a formal model in which identity theft arises endogenously and 

the concept of an efficient degree of confidentiality for personal identifying information (PID) 

has meaning.  An allocation provides efficient confidentiality if the amount of PID shared for 

identity verification and the security of that data allow groups of agents to engage in beneficial 

transactions at minimal cost.  In noncooperative settings, inefficiencies can arise due to 

spillovers from one group of agents’ decisions along these dimensions to another’s.  

Interventions such as direct regulation of security practices can increase efficiency, but the 

multidimensional nature of the security problem means that attaining full efficiency may be 
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problematic.  Sharing data across groups also can improve efficiency, but heterogeneity in 

preferences may limit welfare gains attainable through this channel. 

 These results have been developed in the context of a particular methodology, one that 

abstracts from many of the complexities of modern institutions.  However, the basic idea behind 

this approach—that the exchange of PID, despite its risks and costs, can enable otherwise 

infeasible intertemporal exchanges of goods—can be generalized and should provide impetus for 

further research. 
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Appendix:  Proofs. 

Proof of Proposition 1. 

The proof proceeds in three steps.  First, we show that any solution ( , )d s  to conditions 

(20) and (21) at equality represents a locally optimal and unique response by each club when the 

other club plays { }( , )d s .  Second, we first show that under the hypotheses of the Proposition, 

there is only one such solution ( *, *)d s , so that this solution satisfies the second requirement for 

an equilibrium.  Third, we verify that ( *, *)d s  is incentive compatible. 

Step 1.  In an open-loop Nash equilibrium, at each discrete date n, each club i maximizes 

its objective ,
f

i nV { }, ,( , )i n i nd s  by choosing a strategy { }, , 0
( , )i n m i n m m
d s C

∞

+ + =
∈ , taking the strategy of 

the other club { }, , 0
( , )j n m j n m m
d s

∞

+ + =
 as given.  Each club’s strategy space C is the product space 

{ }( ) ( ) ...D S D S× × × × , where D and S are the set of feasible choices for d and s at each discrete 

time period.  To guarantee that this problem is well-defined take ( , )D d d=  and ( , )S s s=  for 

“small” , 0d s >  and “large” ,d s < ∞ . 

In general, necessary conditions for an interior optimum for club i’s problem are given by 

functional (i.e., difference) equations (18) and (19) at equality (e.g., Luenberger (1969), chapter 

7).  But in symmetric steady state, each club i knows that the other club will play a time-invariant 

strategy, which implies, from (18) and (19), that club i’s best response will also be time 

invariant.  Club i’s optimization problem can therefore be reduced to the following ordinary 

calculus problem:  choose ( , )i id s  to minimize club i’s steady-state cost of identity theft, given 

( , )j jd s , i.e., choose ( , )i id s  to minimize 
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( )

( )

(1 ) (1 )( ) ( ) 1 ( ) ( )

(1 )1 ( ) .

i i j j
i i j

i
j i

u F u Fkd s F s c L F s c L
d d d

u FF s B
d d

η

β
η

  − −
+ + Φ + + −Φ +    −   

 −
+ −Φ   − 

A

 (40) 

For φ sufficiently large, first-order conditions for the simplified problem are given by 

 
( )

( )

2 2

2

(1 ) (1 )( ) ( ) 1 ( ) ( )
( )

(1 )1 ( ) 0,
( )

j j
i i j

i
j i

u F u Fk F s c L F s c L
d d d

u FF s B
d d

η

βη
η

  − −
− Φ + − −Φ +    −   

 −
+ −Φ =  − 

 (41) 

 (1 ) ( ) 0 ,i

j i

BuF F s
d d

β
η

′− Φ
− =

−
A  (42) 

which correspond to (20) and (21) when i jd d= .  Second-order conditions are given by 

 
( )

3 3

2 1 ( ) ( )2 ( )( )
0,

( )
jj

i i j

s c Ls c L
d d dη

−Φ +Φ +
+ >

−
 (43) 

 ( ) 0,i

j i

B s
d d
β

η
′′Φ

<
−

 (44) 

 
( ) 2

3 3 2

2 1 ( ( )2 ( )( ) ( ) ( ) 0.
( ) ( ) ( )

jj i i

i i j j i j i

s c Ls c L B s B s
d d d d d d d

β β
η η η

 −Φ +    Φ + ′′ ′Φ Φ
+ + <     

− − −         
 (45) 

Conditions (43) and (44) are readily seen to hold when ( , ) ( , )i i j jd s d s= .  Sufficient conditions 

for (45) to hold are symmetry and 2( )B c Lβ < + , which is implied by B c Lβ < + . 

Step 2.  Under the assumption of a constant hazard rate for Φ, rewrite (21) at equality as 

 ( )
( )

(1 ) 1 ( )
( ) .

1
uF F B s

d D s
β φ

η
− −Φ

= ≡
−A

 (46) 

Substituting (46) into (20) and rearranging gives the following quadratic equation 
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 2
0 1 2( ) (1 ) 0Q z A z A z A z≡ − + + = , (47) 

where 1 ( )z s= −Φ  and  

 0A c L= + , (48) 

 1 2(1 )
c L BA β η

η
+ −

=
−

, (49) 

 
2

2 (1 )
(1 )

BA kuF F β φ
η

 
= − −  − A

. (50) 

From the above, 0(0) 0Q A= >  and 1 2(1) 0Q A A= + <  for φ sufficiently large.  ( )Q z  therefore 

has a unique root * (0,1)z ∈ ; in particular, *z =  

( )
2

22 2

2

(1 ) ( ) (1 ) ( ) 4( ) (1 )
.

2 (1 )

Bc L B c L c L B c L c L kuF F

BkuF F

β φβ η η β η η

β φ

 + − − − + + + − − − + + + −  
 

 −  
 

A

A

 

 (51) 

Now define 

 ( )( )1 1( *, *) (1 *) , (1 *)d s D z z− −= Φ − Φ − . (52) 

By construction, ( *, *)d s  satisfies (20) and (21), and * 0s > . 

 Step 3. To show incentive compatibility, suppose initially that 0F = , so that fV V=  

where V is given in (3).  Then the individual-rationality, no-defection, and no-exclusion 

conditions are clearly satisfied with strict inequality for β sufficiently close to unity.  Now, for 

0F > , let , ,K k  and A approach zero; more specifically let ( , , )K k θ<A  where 0θ >  and i  is 

the sup norm. Then it can be shown that as 0θ → , *d  and *s  as defined in (52) are bounded 

by 1/ 2θ −  and lnθ− , respectively.  This, in turn, implies that ( *, *)fV d s V→  as 0θ → , as fraud 
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rates and all costs of fraud deterrence are driven to zero.  Hence, by continuity, incentive 

compatibility must hold for , ,K k  and A  all positive and sufficiently small. 

 

Proof of Proposition 2. 

Begin by solving for ( , )p pd s .  Rewrite (23) at equality as 

 ( ) ( )
( )

(1 ) ( ) ( )(1 ) 1 ( )
( ) .

1
uF F c L B c L s

d D s
β η φ

η
− + + − + − −Φ

= ≡
−A

 (53) 

Substituting (53) into (22) and rearranging gives the following quadratic equation 

 2
0 1 2( ) (1 ) 0Q z A z A z A z≡ − + + = , (54) 

where 1 ( )z s= −Φ  and  

 0A c L= + , (55) 

 1 1
c L BA β

η
+ +

=
−

, (56) 

 ( ) 2

2

( ) ( )(1 )
(1 )

(1 )
c L B c L

A kuF F
φ β η

η
+ + − + − 

= − −  − A
. (57) 

Again proceeding as in the proof of Proposition 1, ( )Q z  has a unique root pz  in (0,1)  for φ 

sufficiently large.  In particular, pz =  

 

2

2

(1 ) 1 1 4( ) (1 )

2 (1 )
p

c L kuF F

z
kuF F

φη

φ

   − + + + −     =
 −  
 

A

A

 (58) 

The golden-rule allocation is then given as ( )( )1 1( , ) (1 ) , (1 )p p p pd s D z z− −= Φ − Φ − . 

Second-order conditions for the planner’s problem are given by 
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 ( )
3 3

2( ) 1 ( )2( ) ( ) 0 ,
(1 )

c L B sc L s
d d

β
η

+ + −Φ+ Φ
+ >

−
 (59) 

 ( ) 0 ,
(1 )

c L c L B s
d d η

 + + + ′′− + Φ > − 
 (60) 

 

( ) ( )

( ) ( )

4 2

2 2

4 2

(1 )( ) ( ) ( ) 1 ( )
2 ( ) ( )

(1 )

( ) ( )
0 ,

(1 )

c L s c L B s
c L B s

d

c L B s
d

η
η

η

η
η

− + Φ + + + −Φ 
′′+ + Φ + − 

′+ + Φ
<

−

 (61) 

which can be shown to hold for all positive d and s and hence for ( , )p pd s . 

Incentive compatibility of ( , )p pd s  follows from the same arguments as given in the proof 

of Proposition 1. 

 

Proof of Proposition 3. 

Part 1.  From (51) and (58), both *z  and pz  are clearly decreasing in η, so skill 

thresholds *s  and ps  must be increasing in η. 

Part 2. From (51) and (58), as 1η → , 0pz →  while *z  converges to  

 
( )

2
2

2

4( ) (1 )
0 .

(1 )

Bc L B c L B c L kuF F
z

BkuF F

β φβ β

β φ

 + − + + − + + −  
 ≡ >

 −  
 

A

A

 (62) 

Hence, as 1η → , 1* (1 )s s z−→ = Φ −  while ps  diverges. 

 

Proof of Proposition 4. 
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To compare pd  and *d , first invert ( )D s  in (46) and substitute into first-order condition 

(20) to obtain the following condition in d: 

 2
0 1 2( ) 0R d R R d R d= + + = , (63) 

where 

 0 (1 )( )R uF F c L= − + , (64) 

 
2

1
( ) (1 ) ( )

(1 )
c L B c LR

B
βη η
β φ η

 + − − − +
=  − 
A , (65) 

 2 .R k= −  (66) 

Similarly, invert ( )D s  in (53) and substitute into the planner’s first-order condition, (22), 

to obtain the condition 

 2
0 1 2( ) 0R d R R d R d= + + = , (67) 

where 0 0R R= , 2 2R R= , and 

 1R
φ

=
A . (68) 

Evidently, *d  and pd  may be expressed as (positive) roots of ( )R d  and ( )R d , respectively.  In 

particular, *d  is given by 

 
( ) 1

2

22 2
2

2 (1 )

( ) (1 ) ( )

,
( ) (1 ) ( ) 4 (1 )( )(1 )

k

c L B c L
B

c L B c L kuF F c L
B

η

β η η
φ β

β η η η
φ β

−− ×

    + − − − +
+   

   
 

   + − − − + + − + −       

A

A

 (69) 

and 



44 

 ( )
2

12 4 (1 )( ) .pd k kuF F c L
φ φ

−
     = + + − +        

A A  (70) 

 

Part 1.  From (70), pd  does not depend on η.  From (69), *d  grows as 

 ( ) 1 ( )(1 ) ,c L Bd k
B
β ηη

φ β
−    + −

= −    
   

A�  (71) 

as 1η → , which is increasing in η for c L Bβ+ > . 

 Part 2.  From (71), d →∞�  as 1η → , whence *d  also diverges. 

 

Proof of Proposition 5. 

(The calculations in this section simplify notation by setting (1 ) 1uF F− = .) 

Part 1.  From first-order condition (21), the rate of skilled identity theft in the symmetric 

equilibrium is 

 ( )1 ( *)
( *)
s

B s Bβ β φ
−Φ

=
′Φ

A A . (72) 

Similarly, the rate of skilled identity theft in the golden-rule allocation can be calculated using 

(23): 

 
[ ]

1 ( )
(1 ) ( )

p

p

s
d c L Bη φ η β
−Φ

=
− + +

A . (73) 

Comparing (72) and (73), skilled identity theft must be lower under the golden-rule allocation. 

 Part 2.  The rate of unskilled identity theft in the symmetric equilibrium is given by 

( *) / *s dΦ .  From the Propositions 3 and 4, ( *) ( ) 0s sΦ →Φ >  and *d →∞  as 1η → , implying 

that unskilled identity theft is driven to zero as 1η → . 
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The rate of unskilled identity theft under the golden-rule allocation is given by 

( ) /p ps dΦ .  From the proof of Proposition 2, ( ) 1psΦ →  as 1η →  but pd  is positive and does 

not depend on η.  Hence the rate of unskilled identity theft converges to 1/ 0pd >  as 1η → . 

 Part 3.  The calculations in parts 1 and 2 show that, as 1η → , ( *, *) ( , )p pd s d sρ ρ<  iff 

 1 .
( )pB d c L Bφβ φ β

< +
+ +

A A  (74) 

Substituting for pd from the proof of Proposition 2, inequality (74) reduces to 

 
2

2 2

2 ,
( )4( )
c L

k B c L Bc L k
φ

βφ
+ >   + + + + +

A
A A

 (75) 

which must hold for / kA  bounded and , 0k >A  sufficiently small. 

 

Calculations for Section 4.1: 

 (Again we simplify notation by setting (1 ) 1uF F− = .) 

Proof of Proposition 6. 

A regulator who can only determine data length sets d to maximize ( , )fV d s  subject to 

the clubs’ first-order condition in s, which in symmetric equilibrium is given by (21) or 

equivalently (25).  Using (21) we can eliminate s and simplify the regulator’s problem to the 

following: choose d to minimize the steady-state fraud costs, i.e., choose cd  to maximize 

 ln constant terms>f c LV kd d
dφ
+

= − + − + <
A  (76) 

which has solution c pd d= . 
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Evaluating (25) at c pd d=  and comparing to (26), it follows that c ps s< .  From (25) and 

the fact that *pd d<  (Proposition 4), it follows that *cs s> . 

 

Proof of Proposition 7. 

 Again let 1 ( )z s= −Φ .  The problem of a regulator who only chooses s is equivalent to 

the following:  minimize steady-state fraud costs over (0,1)z∈  

 ,
( )(1 ) ( ) ln

(1 )
c L z c L B z kd z

d d
β
η φ

+ − + +
+ + −

−
A  (77) 

subject to (27), which we write as ( )d G z=  where 

 
1

2 21( ) ( )(1 ) (1 ) ( ) .
(1 )

G z c L z c L B z
k

η βη
η

 = + − − + + − −
 (78) 

This regulator’s problem may be compared to the planner’s problem, which is equivalent to 

minimizing (77) over (0,1)z∈  subject to (28), which we write as ( )d P z=  where 

 [ ]
1
2

1( ) ( )(1 )(1 ) ( ) .
(1 )

P z c L z c L B z
k

η β
η

= + − − + + +
−

 (79) 

Substituting (78) into (77) and simplifying, the regulator’s problem is to minimize 

 ( )2( )
( ) ln ,

( )
P z

k kG z z
G z φ

+ −
A  (80) 

and substituting (79) into (77), the planner minimizes 

 ( )2( )
( ) ln 2 ( ) ln .

( )
P z

k kP z z kP z z
P z φ φ

+ − = −
A A  (81) 

From Proposition 2, (81) is minimized at pz z= .  Also, as 1η → , ( ) / ( )P z G z e→  where 

 (1 )( ) ,c L Be
c L B
η β

βη
− + +

=
+ −

 (82) 
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and the regulator’s minimand (80) is approximately 

 1( ) ( ) ln .k e e P z z
φ

−+ −
A  (83) 

Since , as 1η → , 1( ) 2e e−+ > , it follows that C pz z<  and *C ps s s> > .  From (27) it then 

follows that *Cd d< . 

 To compare *d  and pd , note that from (83), we can approximate Cz  by replacing φ in 

equation (58) with  

 1

2 ,
e e

φφ −
′ =

+
 (84) 

from which we deduce that Cz  goes to zero at a rate 
3
2(1 )η−  as 1η → .  From (27), 2

Cd  is given 

by 

 1
2

( )( )(1 )
(1 )C C

c L Bk c L z zβη
η

−  + −
+ − + − 

 (85) 

Now, the first term of (85) converges to c L+  as 1η →  while the last term eventually grows as 

1
2(1 )η

−
− , whence C pd d> . 
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