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I.
General comments

1. All of the .do (STATA) files use the STATA data set dataprep2.dta.  I can give you dataprep2.dta if you are interested.  That way you can modify the regressions to your liking. 

2. Many researchers do not have the permanent income (PI) percentile as an argument in their model, but want to either want to think about the relationships near the median of the permanent income distribution, or want to use log income (or medical expenses) instead of PI.  If you want to think about median income, set your PI value to 0.5, and PI squared to 0.52 = 0.25.  If you want to use log income, I once had log income regressions, and can do them again (all I need to do is replace PI=lanninc, PI2=lanninc*lanninc, PIage=age1*lanninc), so just ask.

3. Please contact me if something is unclear.  That way I can improve the documentation, which will help other people using these numbers.

II.
Health Transition Probabilities 


1. Three important files:  (i) the parameters of the health transition matrix (healthprof.out); (ii) the file that created it (healtrans.do – written in STATA); and (iii) a file describing how to map the two-year transition probabilities that we estimate into one-year transition probabilities (two_to_one.pdf). 

2. The following line at the bottom of healtrans.do will help you understand the parameter vectors in healthprof.out: 

order age1 ageshiftFINAL healshift maleshift PIshift bPI2; 

The first column in healthprof.out is age1, which is just an index.  The remaining columns are logit coefficients in the equation:

Pr(healtht = bad | Xt – 2 years) = exp(Xtb)/(1+exp(Xtb)), 

The coefficients are as follows: 


	ageshiftFINAL
	=
	age-specific intercept term

	healshift
	=
	age-specific coefficients for being in bad health 2 years ago (good health is the omitted category)

	maleshift
	=
	age-specific coefficients for being male (female is the omitted category)

	PIshift
	=
	age-specific coefficients on PI, which is measured as the individual’s percentile rank (0 to 1) in the PI distribution 

	bPI2
	=
	coefficients on PI percentile squared.  For now there is no variation across ages, but that can be added.


Suppose you had an 80-year-old male who was in good health and at the 60th percentile of the PI distribution.  The probability that this man will be in bad health at age 82 is: 

Xb = ageshiftFINAL82+maleshift82+PI82*.6+bPI82*.36, 

where the “82” subscript denotes the row with age index number 82.

3. Note that the health transition probabilities are 2-year probabilities.  The document two_to_one.pdf shows how to derive 1-year transition probabilities from 2‑year transition probabilities.  The STATA code in healtrans.do uses these formulas to generate 1‑year probabilities in the file programs genvals and ONEyear.

We can talk this one over if it is not clear.

III.
Survival Probabilities 


1. Two important files:  (i) the parameters of the survival probability transitions (deathprof.out); and (ii) the file that created it (death.do -- written in STATA).

2. The line at the bottom of death.do will help you understand deathprof.out—it works just like healthprof.out: 

order age1 ageshiftFINAL healshift maleshift PIshift bPI2; 


The first column in deathprof.out is age1, which is an index.  The remaining columns are logit coefficients in the equation:

Pr(alive at time t |Xt – 2 years, alive at time t – 2 years) = exp(Xtb)/(1+exp(Xtb)), 

These coefficients are completely analogous to the coefficients of the health transition equation.

3. Note that these are 2-year survival probabilities – take the square root of the 2-year survival probability to get the 1-year survival probability.  

IV.
Income

1. Two important files:  (i) the parameters of the income regression (incprof.out); and (ii) the file that created them (incprof.do – written in STATA).
2. The left-hand variable in the income regression is the log of income.  The right-hand-side variables are just like those for survival and health:

age ageshiftFINAL healshift maleshift PIshift bPI2
V.
Medical Expenses

1. Three important files:  (i) the parameters of the medical expense regression where the left hand side variable is average medical expenses over two years (medexprofX.out); (ii) the the parameters of the medical expense regression, where the left hand side variable is annual medical expenses (medexprof_adj.out); and (iii) the file that created them (medex.do – written in STATA).

2. The list of variables in medexprofX.out and medexprof_adj.out is:

age ageshiftFINAL healshift maleshift PIshift bPI2     vage vheal vmale vPI vPI2

This list contains the results from two regressions.  The first regression is structured identically to the income regression, except that the left-hand-side variable is log medical expenses.  The results of this regression are in the variables

ageshiftFINAL healshift maleshift PIshift bPI2 


which are just as before.  The second regression is a regression of the variance of medical expenses on the same covariates.  The results of this regression are in the variables

vage vheal vmale vPI vPI2

where: “vage” is an age-specific intercept for the (conditional on X) variance of log medical expenditures; "vheal" is the age-specific set of coefficients for being in bad health; and so on.

3. If you wish only to use the coefficients, use medexprof_adj.out.  Items 1-2 provide a complete description.  If, however, you wish to understand how the coefficients relate to the data and the estimation procedure contained in medex.do, some additional explanation is necessary.
4. When calculating average medical expenses by age, it is important to account for the variance.  If ln(m) is distributed N((,(2), then E(m) = exp(( + (2/2).

5. The key issue is that while the medical expense numbers in the data are 2-year averages.  The file medexprofX.out provides estimates from that regression.  However, our model uses 1‑year quantities, which will have a higher (conditional) variance.  The estimation procedure contained in medex.do delivers coefficients for 2-year averages.  Using our results from French and Jones, “On the Distribution and Dynamics of Health Care Costs” (Journal of Applied Econometrics, 2004), we convert the 2-year variances to 1-year variances by multiplying the 2-year variance coefficients by 1.423826.  As item 3 shows, however, changing the variance of a lognormal distribution will affect the mean of the levels.  Because we care more about the mean of medical expenses themselves than the mean of their logs, we therefore need to change the elements of the log-mean regression to reflect the variance adjustment.  In short, we first increase vage, vheal, vmale, vPI, and vPI2, and then make offsetting reductions to ageshiftFINAL, healshift, maleshift, PIshift and bPI2.
To see how this works, consider a homoskedastic case, where vheal, vmale, vPI, and vPI2 are set to zero.  Because the two-year average of medical expenses has an average residual variance of 1.78 (i.e., the residuals from the regression have a variance of 1.78), we calculate the 1-year variance as 1.78(1.423826 = 2.53.  To preserve the mean, we next decrement every element of ageshiftFINAL by (2.53 - 1.78)/2 = .375.  To see how this works, suppose that ln(m) is distributed N(6,1.78).  E(m) will equal exp(6+1.78/2) = 982.2.  Suppose we increase the variance to 2.53.  To preserve the mean of m, we would then reduce the mean of ln(m) from 6 to 5.63.  In this case, E(m) will equal exp(5.63+2.53/2) = 982.2.  When medical expenses are heteroskedastic, we make analogous pairs of adjustments to vheal and healshift, vmale and maleshift, and so on.  

Again, we have made the necessary adjustments – the numbers in medexprof_adj.out are for 1‑year quantities – so you do not need to do them.    
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