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Abstract

This paper assesses the performance of Bayesian Vector Autoregression (BVAR) for
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three variables monetary VAR on employment, inflation and interest rate, the seven vari-
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is already obtained with the twenty variables VAR.

JEL Classification: C11, C13, C33, C53

Keywords: Bayesian VAR, Forecasting, Monetary VAR, large cross-sections

∗ We would like to thank our discussants Simon Price, Barbara Rossi and Bob Rasche and seminar participants

at the New York Fed, the Cleveland Fed, the ECB, the Bank of England, Queen Mary University, the second

forecasting conference on empirical econometric methods at Duke University, the 38th Konstanz seminar in

monetary theory and policy. The opinions in this paper are those of the authors and do not necessarily

reflect the views of the European Central Bank. Support by the grants “Action de Recherche Concertée” Nb

02/07-281 and IAP-network in Statistics P5/24 is gratefully acknowledged. Please address any comments to
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1 Introduction

Vector Auto Regressive (VAR) models are standard tools in macroeconomics and are widely

used for structural analysis and forecasting. In the early literature, Litterman (1986) and

Doan, Litterman, and Sims (1984) showed how to specify priors on the coefficients and obtain

successful forecasting performance. More recently, priors have been designed to correspond

to some features of macro models as, for example, in Del Negro and Schorfheide (2004). For

structural analysis, perhaps the most successful application has been the analysis of the effect

of monetary shocks on the economy (e.g. Leeper, Sims, and Zha, 1996; Sims and Zha, 1998).

These applications are typically based on systems of small dimensions, matching the dimension

of the typical structural macroeconomic model. The most common monetary VAR ranges

from three variables (a measure of real activity, a price variable and the policy instrument), to

about ten variables in the richest specification (as, for example, in Christiano, Eichenbaum,

and Evans, 1999). The largest VAR in the literature contains about twenty variables (Leeper,

Sims, and Zha, 1996).

This paper asks the question of whether Bayesian VARs can be estimated on a large number of

variables, say 100 or more, containing not only macroeconomic variables, but also sectoral and

conjunctural information and, if yes, whether the forecasts are more accurate than those ob-

tained by smaller models and the impulse response functions of identified shocks interpretable

and reasonable.

This problem is interesting for many reasons. First, in modelling the aggregate economy, even

when the focus is on few key variables, both the forecast and the structural analysis may be

affected by informational assumptions (on this point, see Forni, Giannone, Lippi, and Reichlin,

2005; Giannone and Reichlin, 2006). For example, when identifying the monetary shock, it is

important to condition on the relevant information set of the central bank, possibly containing

many conjunctural indicators and financial variables. The empirical relevance of taking into

account such information has been shown by Bernanke, Boivin, and Eliasz (2005), Favero,

Marcellino, and Neglia (2005), Giannone, Reichlin, and Sala (2004) and Stock and Watson

(2005b) in frameworks related to factor analysis. The literature based on factor models has

also shown that large information helps in forecasting (Bernanke and Boivin, 2003; Boivin

and Ng, 2005; D’Agostino and Giannone, 2006; Forni, Hallin, Lippi, and Reichlin, 2005, 2003;
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Giannone, Reichlin, and Sala, 2004; Marcellino, Stock, and Watson, 2003; Stock and Watson,

2002a,b). Second, beyond standard macroeconomic modelling, many problems may require

the study of the dynamics of many variables: many countries, sectors, regions. For this

kind of problems the literature has developed different modelling strategies in order to cope

with the curse of dimensionality issue. On one hand, factor models for large cross-sections

introduced by Forni, Hallin, Lippi, and Reichlin (2000); Stock and Watson (2002b) rely on the

assumption that the bulk of dynamic interrelations within a large dataset can be explained

by few common factors. On the other hand, for datasets with a panel structure global VARs

(cf. di Mauro, Smith, Dees, and Pesaran, 2007) and panel VARs (cf. Canova and Ciccarelli,

2004) have been proposed. These approaches differ in the type of restrictions they impose

on the correlation structure of the data. A related literature has explored the performance

of Bayesian model averaging for forecasting (Koop and Potter, 2003; Stock and Watson,

2004, 2005a; Wright, 2003). A natural alternative to cope with the curse of dimensionality is

shrinkage via imposition of priors. Bayesian shrinkage for large datasets have been studied by

De Mol, Giannone, and Reichlin (2006) and Stock and Watson (2005a) but no paper in the

literature has studied the case of a large Bayesian VAR.

The objective of our work is to fill this obvious gap. The paper is a follow up of De Mol,

Giannone, and Reichlin (2006) where the Bayesian regression is analysed both empirically

and asymptotically (as the dimension of the cross section n and that of the sample size T

go to infinity). In that paper, it is shown that, empirically, the forecasts based on Bayesian

regression are as accurate as those based on principal component regression and more accurate

than univariate models, including the naive prior model. From the theoretical point of view

it is shown that, if data are driven by few common factors, then a forecast based on Bayesian

regression converges to the optimal forecast when both the number of predictors and the

sample size T are large, provided that we use a prior that shrinks increasingly all regression

coefficients to zero as the number of predictors rises.

In this paper we go beyond simple regression and study the VAR case. We use standard

Litterman priors and perform a forecasting exercise and a structural analysis focused on

the effect of the monetary policy shock on the macroeconomy. We evaluate several models.

Those include a small VAR on employment, inflation and interest rate, a VAR with the seven

variables considered by Christiano, Eichenbaum, and Evans (1999), a twenty variables VAR
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containing additional macro variables, including labor market variables, the exchange rate

and stock prices and finally a VAR with hundred and thirty one variables, containing, beside

macroeconomic information, also sectoral data, several financial variables and conjunctural

information. These are the variables used by Stock and Watson (2005a) for forecasting based

on principal components, but contrary to the factor literature, we model variables in levels to

retain information in the trends. We also consider VARs augmented by factors as in Bernanke,

Boivin, and Eliasz (2005) (FAVAR model).

Our results show that the Bayesian VAR is an appropriate tool for forecasting and structural

analysis when it is desirable to condition on a large information set. Given the progress

in computing power (see Hamilton, 2006, for a discussion), estimation does not present any

numerical problems. For the largest specification with one hundred and thirty variables and

13 lags in the VAR it requires the inversion of a matrix which is about 1700 by 1700.

The paper is organized as follows. In Section 2 we describe the priors for the baseline BVAR

model and the data. In Section 3 we perform the forecast evaluation for all the specifications

and in Section 4 the structural analysis on the effect of the monetary policy shocks. Section 5

concludes and the Appendix provides some more details on the dataset and the specifications.

Finally, the Annex available at http://homepages.ulb.ac.be/∼dgiannon/ contains results for

a number of alternative specifications to verify the robustness of our findings.

2 Setting the priors for the VAR

Let Yt = ( y1,t y2,t . . . yn,t )′ be a potentially large vector of random variables. We consider

the following VAR(p) model:

Yt = c + A1Yt−1 + ... + ApYt−p + ut , (1)

where ut is an n-dimensional Gaussian white noise with covariance matrix Eutu
′
t = Ψ,

c = (c1, ..., cn)′ is an n-dimensional vector of constants and A1, ..., Ap are n× n autoregressive

matrices.

We estimate the model using the Bayesian VAR (BVAR) approach which helps to overcome

the curse of dimensionality via the imposition of prior beliefs on the parameters. In setting the
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prior distributions, we follow standard practice and use the procedure developed in Litterman

(1986) with modifications proposed by Kadiyala and Karlsson (1997) and Sims and Zha (1998).

Litterman (1986) suggests using a prior often referred to as the Minnesota prior. The basic

principle behind it is that all the equations are ”centered” around the random walk with drift,

i.e. the prior mean can be associated with the following representation for Yt:

Yt = c + Yt−1 + ut .

This amounts to shrinking the diagonal elements of A1 toward one and the remaining coef-

ficients in A1, ..., Ap toward zero. In addition, the prior specification incorporates the belief

that the more recent lags should provide more reliable information than the more distant ones

and that own lags should explain more of the variation of a given variable than the lags of

other variables in the equation.

These prior beliefs are imposed by setting the following moments for the prior distribution of

the coefficients:

E[(Ak)ij] =

{
δi , j = i, k = 1
0, otherwise

, V[(Ak)ij] =

{
λ2

k2 , j = i

ϑλ2

k2

σ2
i

σ2
j
, otherwise

. (2)

The coefficients A1, ..., Ap are assumed to be a priori independent and normally distributed.

As for the covariance matrix of the residuals, it is assumed to be diagonal, fixed and known:

Ψ = Σ where Σ = diag(σ2
1, . . . , σ

2
n). Finally, the prior on the intercept is diffuse.

Originally, Litterman sets δi = 1 for all i, reflecting the belief that all the variables are

characterized by high persistence. However, this prior is not appropriate for variables believed

to be characterized by substantial mean reversion. For those we impose the prior belief of

white noise by setting δi = 0.

The hyperparameter λ controls the overall tightness of the prior distribution around the

random walk or white noise and governs the relative importance of the prior beliefs with

respect to the information contained in the data. For λ = 0 the posterior equals the prior and

the data do not influence the estimates. If λ = ∞, on the other hand, posterior expectations

coincide with the Ordinary Least Squares (OLS) estimates. We argue that the overall tightness

governed by λ should be chosen in relation to the size of the system. As the number of variables
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increases the parameters should be shrunk more in order to avoid overfitting. This point has

been shown formally by De Mol, Giannone, and Reichlin (2006).

The factor 1/k2 is the rate at which prior variance decreases with increasing lag length and

σ2
i /σ

2
j accounts for the different scale and variability of the data. The coefficient ϑ ∈ (0, 1)

governs the extent to which the lags of other variables are ”less important” than the own lags.

In the context of the structural analysis we need to take into account possible correlation

among the residual of different variables. Consequently, Litterman’s assumption of fixed and

diagonal covariance matrix is somewhat problematic. To overcome this problem we follow

Kadiyala and Karlsson (1997) and Robertson and Tallman (1999) and impose a Normal in-

verted Wishart prior which retains the principles of the Minnesota prior. This is possible

under the condition that ϑ = 1, which will be assumed in what follows. Let us write the VAR

in (1) as a system of multivariate regressions (see e.g. Kadiyala and Karlsson, 1997):

Y
T×n

= X
T×k

B
k×n

+ U
T×n

, (3)

where Y = (Y1, ..., YT )′, X = (X1, ..., XT )′ with Xt = (Y ′
t−1, ..., Y

′
t−p, 1)′, U = (u1, ..., uT )′, and

B = (A1, ..., Ap, c)
′ is the k×n matrix containing all coefficients and k = np+1. The Normal

inverted Wishart prior has the form:

vec(B)|Ψ ∼ N(vec(B0), Ψ⊗ Ω0) and Ψ ∼ iW (S0, α0) , (4)

where the prior parameters B0, Ω0, S0 and α0 are chosen so that prior expectations and

variances of B coincide with those implied by equation (2) and the expectation of Ψ is equal

to the fixed residual covariance matrix Σ of the Minnesota prior, for details see Kadiyala and

Karlsson (1997).

We implement the prior (4) by adding dummy observations. It can be shown that adding Td

dummy observations Yd and Xd to the system (3) is equivalent to imposing the Normal inverted

Wishart prior with B0 = (X ′
dXd)

−1X ′
dYd, Ω0 = (X ′

dXd)
−1, S0 = (Yd−XdB0)

′(Yd−XdB0) and

α0 = Td − k. In order to match the Minnesota moments, we add the following dummy
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observations:

Yd =




diag(δ1σ1, . . . , δnσn)/λ
0n(p−1)×n

. . . . . . . . . . . . . . . . . . . . . .
diag(σ1, . . . , σn)

. . . . . . . . . . . . . . . . . . . . . .
01×n




Xd =




Jp ⊗ diag(σ1, . . . , σn)/λ 0np×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
0n×np 0n×1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
01×np ε




(5)

where Jp = diag(1, 2, . . . , p). Roughly speaking, the first block of dummies imposes prior

beliefs on the autoregressive coefficients, the second block implements the prior for the covari-

ance matrix and the third block reflects the uninformative prior for the intercept (ε is a very

small number). Although the parameters should in principle be set using only prior knowledge

we follow common practice (see e.g. Litterman, 1986; Sims and Zha, 1998) and set the scale

parameters σ2
i equal the variance of a residual from a univariate autoregressive model of order

p for the variables yit.

Consider now the regression model (3) augmented with the dummies in (5):

Y∗
T∗×n

= X∗
T∗×k

B
k×n

+ U∗
T∗×n

, (6)

where T∗ = T + Td, Y∗ = (Y ′, Y ′
d)
′, X∗ = (X ′, X ′

d) and U∗ = (U ′, U ′
d)
′. To insure the existence

of the prior expectation of Ψ it is necessary to add an improper prior Ψ ∼ |Ψ|−(n+3)/2. In that

case the posterior has the form:

vec(B)|Ψ, Y ∼ N
(
vec(B̃), Ψ⊗ (X ′

∗X∗)−1
)

and Ψ|Y ∼ iW
(
Σ̃, Td + 2 + T − k

)
, (7)

with B̃ = (X ′
∗X∗)−1X ′

∗Y∗ and Σ̃ = (Y∗−X∗B̃)′(Y∗−X∗B̃). Note that the posterior expectation

of the coefficients coincides with the OLS estimates of the regression of Y∗ on X∗. It can be

easily checked that it also coincides with the posterior mean for the Minnesota setup in (2).

From the computational point of view, estimation is feasible since it only requires the inversion

of a square matrix of dimension k = np + 1. For the large data-set of hundred and thirty

variables and thirteen lags k is smaller than 2000.

The dummy variable implementation will prove useful for imposing additional beliefs. We will

exploit this feature in Section 3.3.
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2.1 Data

We use the data set of Stock and Watson (2005a). This data set contains 131 monthly macro

indicators covering broad range of categories including, inter alia, income, industrial pro-

duction, capacity, employment and unemployment, consumer prices, producer prices, wages,

housing starts, inventories and orders, stock prices, interest rates for different maturities, ex-

change rates, money aggregates. The time span is from January 1959 through December

2003. We apply logarithms to most of the series with the exception of those already expressed

in rates. For non-stationary variables, considered in first differences by Stock and Watson

(2005a), we we use the random walk prior, that is we set δi = 1. For stationary variables,

we use the white noise prior, that is δi = 0. The description of the data set, including the

information on the transformations and the specification of δi for each series, is provided in

the Appendix.

We analyze VARs of different sizes. We first look at the forecast performance. Then we

identify the monetary policy shock and study impulse response functions as well as variance

decompositions. The variables of special interest include a measure of real economic activity,

a measure of prices and a monetary instrument. As in Christiano, Eichenbaum, and Evans

(1999), we use employment as an indicator of real economic activity measured by the number

of employees on non-farm payrolls (EMPL). The level of prices is measured by the consumer

price index (CPI) and the monetary instrument is the Federal Funds Rate (FFR).

We consider the following VAR specifications:

• SMALL. This is a small monetary VAR including the three key variables;

• CEE. This is the monetary model of Christiano, Eichenbaum, and Evans (1999). In

addition to the key variables in SMALL, this model includes the index of sensitive

material prices (COMM PR) and monetary aggregates: non-borrowed reserves (NBORR

RES), total reserves (TOT RES) and M2 money stock (M2);

• MEDIUM. This VAR extends the CEE model by the following variables: Personal In-

come (INCOME), Real Consumption (CONSUM), Industrial Production (IP), Capac-

ity Utilization (CAP UTIL), Unemployment Rate (UNEMPL), Housing Starts (HOUS
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START), Producer Price Index (PPI), Personal Consumption Expenditures Price De-

flator (PCE DEFL), Average Hourly Earnings (HOUR EARN), M1 Monetary Stock

(M1), Standard and Poor’s Stock Price Index (S&P); Yields on 10 year U.S. Treasury

Bond (TB YIELD) and effective exchange rate (EXR). The system contains in total 20

variables.

• LARGE. This specification includes all the 131 macroeconomic indicators of Stock and

Watson’s dataset.

It is important to stress that since we compare models of different size, we need to have a

strategy for how to set the desired fit as models become larger. As the dimension increases, we

want to shrink more, as suggested by the analysis in De Mol, Giannone, and Reichlin (2006)

and at the same time we want to control for over-fitting. A simple solution is to set the prior

so that all models have the same in-sample fit as the smallest VAR estimated by OLS. By

ensuring that the in-sample fit is constant across models, we can meaningfully compare results

across models.

3 Forecast evaluation

In this section we compare empirically forecasts resulting from different VAR specifications.

We compute point forecasts using the posterior mean of the parameters. We write Â
(λ,m)
j , j =

1, .., p and ĉ(λ,m) for the posterior mean of the autoregressive coefficients and the constant

term of a given model (m) obtained by setting the overall tightness equal to λ. The point

estimates of the h-steps ahead forecasts are denoted by Y
(λ,m)
t+h|t =

(
y

(λ,m)
1,t+h|t, ..., y

(λ,m)
n,t+h|t

)′
, where

n is the number of variables included in model m. The point estimate of the one-step-ahead

forecast is computed as Ŷ
(λ,m)
t+1|t = ĉ(λ,m) + Â

(λ,m)
1 Yt + ...+ Â

(λ,m)
p Yt−p+1. Forecasts h-steps ahead

are computed recursively.

In the case of the benchmark model the prior restriction is imposed exactly, that is λ = 0.

Corresponding forecasts are denoted by Y
(0)
t+h|t and are the same for all the specifications.

Hence we drop the superscript m.

To simulate real-time forecasting we conduct an out-of-sample experiment. Let us denote by
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H the longest forecast horizon to be evaluated, and by T0 and T1 the beginning and the end

of the evaluation sample, respectively. For a given forecast horizon h, in each period T =

T0 + H − h, ..., T1− h, we compute h-step-ahead forecasts, Y
(λ,m)
T+h|T , using only the information

up to time T .

Out-of-sample forecast accuracy is measured in terms of Mean Squared Forecast Error (MSFE):

MSFE
(λ,m)
i,h =

1

T1 − T0 −H + 1

T1−h∑

T=T0+H−h

(
y

(λ,m)
i,T+h|T − yi,T+h

)2

.

We report results for MSFE relative to the benchmark, that is

RMSFE
(λ,m)
i,h =

MSFE
(λ,m)
i,h

MSFE
(0)
i,h

.

Notice that a number smaller than one implies that the VAR model with overall tightness λ

performs better than the naive prior model.

We evaluate the forecast performance of the VARs for the three key series included in all VAR

specifications (Employment, CPI and the Federal Funds Rate) over the period going from

T0 = Jan70 until T1 = Dec03 and for forecast horizons up to one year (H = 12). The order

of the VAR is set to p = 13 and parameters are estimated using for each T the observations

from the most recent 10 years (rolling scheme).1

The overall tightness is set to yield a desired average fit for the three variables of interest in

the pre-evaluation period going from Jan60 (t = 1) until Dec69 (t = T0 − 1) and then kept

fixed for the entire evaluation period. In other words for a desired Fit, λ is chosen as

λm(Fit) = arg min
λ

∣∣∣∣∣∣
Fit− 1

3

∑

i∈{EMPL,CPI,FFR}

msfe
(λ,m)
i

msfe
(0)
i

∣∣∣∣∣∣
,

where msfe
(λ,m)
i is an in-sample one-step-ahead mean squared forecast error evaluated using

1Using all the available observations up to time T (recursive scheme) does not change the qualitative results.
Qualitative results remain the same also if we set p = 6.
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the training sample t = 1, ..., T0 − 12. More precisely:

msfe
(λ,m)
i =

1

T0 − p− 1

T0−2∑
t=p

(y
(λ,m)
i,t+1|t − yi,t+1)

2 ,

where the parameters are computed using the same sample t = 1, ..., T0 − 1.

In the main text we report the results where the desired fit coincides with the one obtained

by OLS estimation on the small model with p = 13, that is for

Fit =
1

3

∑

i∈{EMPL,CPI,FFR}

msfe
(λ,m)
i

msfe
(0)
i

∣∣∣∣∣∣
λ=∞,m=SMALL

.

In the Annex we present the results for a range of in-sample fits and show that they are

qualitatively the same provided that the fit is not below 50%.

Table 1 presents the relative MSFE for forecast horizons h = 1, 3, 6 and 12. The specifications

are listed in order of increasing size and the last row indicates the value of the shrinkage

hyperparameter λ. This has been set so as to maintain the in-sample fit fixed, which requires

the degree of shrinkage, 1/λ, to be larger the larger is the size of the model.

Three main results emerge from the Table. First, adding information helps to improve the

forecast for all variables included in the table and across all horizons. However, and this

is a second important result, good performance is already obtained with the medium size

model containing twenty variables. This suggests that for macroeconomic forecasting, there

is no need to use many sectoral and conjunctural information, beyond the twenty important

macroeconomic variables since results do not improve significantly although they do not get

worse3. Third, the forecast of the federal funds rate does not improve over the simple random

walk model beyond the first quarter. We will see later that by adding additional priors on the

sum of the coefficients these results, and in particular those for the federal funds rate, can be

substantially improved.

2To obtain the desired magnitude of fit the search is performed over a grid for λ. Division by msfe(0)
i

accounts for differences in scale between the series.
3However, due to their timeliness, conjunctural information, may be important for improving early estimates

of variables in the current quarter as argued by Giannone, Reichlin, and Small (2005). This is an issue which
we do not explore in this paper.
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Table 1: BVAR, Relative MSFE, 1971-2003

SMALL CEE MEDIUM LARGE

EMPL 1.14 0.67 0.54 0.46
h=1 CPI 0.89 0.52 0.50 0.50

FFR 1.86 0.89 0.78 0.75

EMPL 0.95 0.65 0.51 0.38
h=3 CPI 0.66 0.41 0.41 0.40

FFR 1.77 1.07 0.95 0.94

EMPL 1.11 0.78 0.66 0.50
h=6 CPI 0.64 0.41 0.40 0.40

FFR 2.08 1.30 1.30 1.29

EMPL 1.02 1.21 0.86 0.78
h=12 CPI 0.83 0.57 0.47 0.44

FFR 2.59 1.71 1.48 1.93

λ ∞ 0.262 0.108 0.035

3.1 Parsimony by lags selection

In VAR analysis there are alternative procedures to obtain parsimony. One alternative method

to the BVAR approach is to implement information criteria for lag selection and then estimate

the model by OLS. In what follows we will compare results obtained using these criteria to

those obtained from the BVARs.

Table 2 presents the results for SMALL and CEE. We report results for p = 13 lags and for

the number of lags p selected by the BIC criterion. For comparison, we also recall from Table

1 the results for the Bayesian estimation of the model of the same size. We do not report

estimates for p = 13 and BIC selection for the large model since for that size the estimation

by OLS and p = 13 is unfeasible. However, we recall in the last column the results for the

large model estimated by Bayesian approach.

These results show that for the model SMALL, BIC selection results in the best forecast

accuracy. For the larger CEE model, the classical VAR with lags selected by BIC and the

BVAR perform similarly. Both specifications are, however, outperformed by the large Bayesian

VAR.
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Table 2: OLS and BVAR, Relative MSFE, 1971-2003

SMALL CEE LARGE
p = 13 p = BIC BVAR p = 13 p = BIC BVAR BVAR

h=1 EMPL 1.14 0.73 1.14 7.56 0.76 0.67 0.46
CPI 0.89 0.55 0.89 5.61 0.55 0.52 0.50
FFR 1.86 0.99 1.86 6.39 1.21 0.89 0.75

h=3 EMPL 0.95 0.76 0.95 5.11 0.75 0.65 0.38
CPI 0.66 0.49 0.66 4.52 0.45 0.41 0.40
FFR 1.77 1.29 1.77 6.92 1.27 1.07 0.94

h=6 EML 1.11 0.90 1.11 7.79 0.78 0.78 0.50
CPI 0.64 0.51 0.64 4.80 0.44 0.41 0.40
FFR 2.08 1.51 2.08 15.9 1.48 1.30 1.29

h=12 EMPL 1.02 1.15 1.02 22.3 0.82 1.21 0.78
CPI 0.83 0.56 0.83 21.0 0.53 0.57 0.44
FFR 2.59 1.59 2.59 47.1 1.62 1.71 1.93

3.2 The Bayesian VAR and the Factor Augmented VAR (FAVAR)

Factor models have been shown to be successful at forecasting macroeconomic variables with a

large number of predictors. It is therefore natural to compare forecasting results based on the

Bayesian VAR with those produced by factor models where factors are estimated by principal

components.

A comparison of forecasts based, alternatively, on Bayesian regression and principal compo-

nents regression has recently been performed by De Mol, Giannone, and Reichlin (2006) and

Giacomini and White (2006). In those exercises, variables are transformed to stationarity as

is standard practice in the principal components literature. Moreover, the Bayesian regression

is estimated as a single equation.

Here we want to perform an exercise in which factor models are compared with the standard

VAR specification in the macroeconomic literature where variables are treated in levels and

the model is estimated as a system rather than as a set of single equations. Therefore, for

comparison with the VAR, rather than considering principal components regression, we will

use a small VAR (with variables in levels) augmented by principal components extracted from

the panel (in differences). This is the FAVAR method advocated by Bernanke, Boivin, and

Eliasz (2005) and discussed by Stock and Watson (2005b).

13



More precisely, principal components are extracted from the large panel of 131 variables.

Variables are first made stationary by taking first differences wherever we have imposed a

random walk prior δi = 1. Then, as principal components are not scale invariant, variables

are standardized and the factors are computed on standardized variables, recursively at each

point T in the evaluation sample.

We consider specifications with one and three factors and look at different lag selection for

the VAR. We set p = 13, as in Bernanke, Boivin, and Eliasz (2005) and we also consider the

p selected by the BIC criterion. Moreover, we consider Bayesian estimation of the FAVAR

(BFAVAR), taking p = 13 and choosing the shrinkage hyperparameter λ that results in the

same in-sample fit as in the exercise summarized in Table 1.

Results are reported in Table 3 (the last column recalls results from the large Bayesian VAR

for comparison).

Table 3: FAVAR, Relative MSFE, 1971-2003

FAVAR 1 factor FAVAR 3 factors LARGE
p = 13 p = BIC BVAR p = 13 p = BIC BVAR BVAR

h=1 EMPL 1.36 0.54 0.70 3.02 0.52 0.65 0.46
CPI 1.10 0.57 0.65 2.39 0.52 0.58 0.50
FFR 1.86 0.98 0.89 2.40 0.97 0.85 0.75

h=3 EMPL 1.13 0.55 0.68 2.11 0.50 0.61 0.38
CPI 0.80 0.49 0.55 1.44 0.44 0.49 0.40
FFR 1.62 1.12 1.03 3.08 1.16 0.99 0.94

h=6 EMPL 1.33 0.73 0.87 2.52 0.63 0.77 0.50
CPI 0.74 0.52 0.55 1.18 0.46 0.50 0.40
FFR 2.07 1.31 1.40 3.28 1.45 1.27 1.29

h=12 EMPL 1.15 0.98 0.92 3.16 0.84 0.83 0.78
CPI 0.95 0.58 0.70 1.98 0.54 0.64 0.44
FFR 2.69 1.43 1.93 7.09 1.46 1.69 1.93

The Table shows that the FAVAR is in general outperformed by the BVAR of large size and

that therefore Bayesian VAR is a valid alternative to factor based forecasts, at least to those

based on the FAVAR method.4 We should also note that BIC lag selection generates the best

4De Mol, Giannone, and Reichlin (2006) show that for regressions based on stationary variables, principal
components and Bayesian approach lead to comparable results in terms of forecast accuracy.
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results for the FAVAR while the original specification of Bernanke, Boivin, and Eliasz (2005)

with p = 13 performs very poorly due to its lack of parsimony.

3.3 Prior on the sum of coefficients

The literature has suggested that improvement in forecasting performance can be obtained by

imposing additional priors that constrain the sum of coefficients (see e.g. Sims, 1992; Sims and

Zha, 1998; Robertson and Tallman, 1999). This is the same as imposing “inexact differencing”

and it is a simple modification of the Minnesota prior involving linear combinations of the

VAR coefficients, cf. Doan, Litterman, and Sims (1984).

Let us rewrite the VAR of equation (1) in its error correction form:

∆Yt = c− (In − A1 − · · · − Ap)Yt−1 + B1∆Yt−1 + · · ·+ Bp−1∆Yt−p+1 + ut . (8)

A VAR in first differences implies the restriction (In − A1 − · · · − Ap) = 0. We follow Doan,

Litterman, and Sims (1984) and set a prior that shrinks Π = (In−A1−· · ·−Ap) to zero. This

can be understood as “inexact differencing” and in the literature it is usually implemented by

adding the following dummy observations (cf. Section 2):

Yd = diag(δ1µ1, . . . , δnµn)/τ Xd =
(

(1 2 . . . p)⊗ diag(δ1µ1, . . . , δnµn)/τ 0n×1

)
. (9)

The hyperparameter τ controls for the degree of shrinkage: as τ goes to zero we approach

the case of exact differences and, as τ goes to ∞, we approach the case of no shrinkage. The

parameter µi aims at capturing the average level of variable yit. Although the parameters

should in principle be set using only prior knowledge, we follow common practice5 and set

the parameter equal to the sample average of yit. Our approach is to set a loose prior with

τ = 10λ. The overall shrinkage λ is again selected so as to match the fit of the small

specification estimated by OLS.

Table 4 reports results from the forecast evaluation of the specification with the sum of

coefficient prior. They show that, qualitatively, results do not change for the smaller models,

but improve significantly for the MEDIUM and LARGE specifications. In particular, the poor

5See for example Sims and Zha (1998).
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Table 4: BVAR, Relative MSFE, 1971-2003, τ = 10λ

SMALL CEE MEDIUM LARGE

EMPL 1.14 0.68 0.53 0.44
h=1 CPI 0.89 0.57 0.49 0.49

FFR 1.86 0.97 0.75 0.74
EMPL 0.95 0.60 0.49 0.36

h=3 CPI 0.66 0.44 0.39 0.37
FFR 1.77 1.28 0.85 0.82

EMPL 1.11 0.65 0.58 0.44
h=6 CPI 0.64 0.45 0.37 0.36

FFR 2.08 1.40 0.96 0.92
EMPL 1.02 0.65 0.60 0.50

h=12 CPI 0.83 0.55 0.43 0.40
FFR 2.59 1.61 0.93 0.92

results for the federal funds rate discussed in Table 1 are now improved. Both the MEDIUM

and LARGE models outperform the random walk forecasts at all the horizons considered.

Overall, the sum of coefficient prior improves forecast accuracy, confirming the findings of

Robertson and Tallman (1999).

4 Structural analysis: impulse response functions and

variance decomposition

We now turn to the structural analysis and estimate, on the basis of BVARs of different size,

the impulse responses of different variables to a monetary policy shock.

To this purpose, we identify the money shock by using a recursive identification scheme

adapted to a large number of variables. We follow Bernanke, Boivin, and Eliasz (2005),

Christiano, Eichenbaum, and Evans (1999) and Stock and Watson (2005b) and divide the

variables in the panel into two categories: slow- and fast-moving. Roughly speaking the for-

mer group contains real variables and prices while the latter consists of financial variables

(the precise classification is given in the Appendix). The identifying assumption is that slow-

moving variables do not respond contemporaneously to a monetary policy shock and that

the information set of the monetary authority contains only past values of the fast-moving
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variables.

The monetary policy shock is identified as follows. We order the variables as Yt = (Xt, rt, Zt)
′,

where Xt contains the n1 slowly moving variables, rt is the monetary policy instrument and

Zt contains the n2 fast moving variables and we assume that the monetary policy shock is

orthogonal to all other shocks driving the economy. Let B = CD1/2 be the n × n lower

diagonal Cholesky matrix of the covariance of the residuals of the reduced form VAR, that is

CDC ′ = E[utu
′
t] = Ψ and D = diag(Ψ).

Let et be the following linear transformation of the VAR residuals: et = (e1t, ..., ent)
′ = C−1ut.

The monetary policy shock is the row of et corresponding to the position of rt, that is en1+1,t.

The Structural VAR can hence be written as

A0Yt = ν +A1Yt−1 + ... +ApYt−p + et, et ∼ WN(0, D) ,

where ν = C−1c, A0 = C−1 and Aj = C−1Aj, j = 1, ..., p.

Our experiment consists in increasing contemporaneously the federal funds rate by one hun-

dred basis points.

Since we have just identification, the impulse response functions are easily computed following

Canova (1991) and Gordon and Leeper (1994) by generating draws from the posterior of

(A1, ..., Ap, Ψ). For each draw Ψ we compute B and C and we can then calculate Aj, j =

0, ..., p.

We report the results for the same overall shrinkage as given in Table 4. Estimation is based

on the sample 1961-2002. The number of lags remains 13. Results are reported for the

specification including sum of coefficients priors since it is the one providing the best forecast

accuracy and also because, for the LARGE model, without sum of coefficients prior, the

posterior coverage intervals of the impulse response functions become very wide for horizons

beyond two years, eventually becoming explosive (cf. the Annex). For the other specifications,

the additional prior does not change the results.

Figure 1 displays the impulse response functions for the four models under consideration

and for the three key variables. The shaded regions indicate the posterior coverage intervals

corresponding to 90 and 68 percent confidence levels. Table 5 reports the percentage share of
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the monetary policy shock in the forecast error variance for chosen forecast horizons.

Figure 1: BVAR, Impulse response functions, τ = 10λ
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Results show that, as we add information, impulse response functions slightly change in shape

which suggests that conditioning on realistic informational assumptions is important for struc-

tural analysis as well as for forecasting. In particular, it is confirmed that adding variables

helps in resolving the price puzzle (on this point see also Bernanke and Boivin, 2003; Chris-

tiano, Eichenbaum, and Evans, 1999). Moreover, for larger models the effect of monetary

policy on employment becomes less persistent, reaching a peak at about one year horizon.

For the large model, the non-systematic component of monetary policy becomes very small,

confirming results in Giannone, Reichlin, and Sala (2004) obtained on the basis of a factor

model. It is also important to stress that impulse responses maintain the expected sign for
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all specifications.

The same features can be seen from the variance decomposition, reported in Table 5. As the

size of the model increases, the size of the monetary shock decreases. This is not surprising,

given the fact that the forecast accuracy improves with size, but it highlights an important

point. If realistic informational assumptions are not taken into consideration, we may mix

structural shocks with miss-specification errors. Clearly, the assessment of the importance

of the systematic component of monetary policy depends on the conditioning information set

used by the econometrician and this may differ from that which is relevant for policy decisions.

Once the realistic feature of large information is taken into account by the econometrician,

the estimate of the size of the non-systematic component decreases.

Table 5: BVAR, Variance Decomposition, 1961-2002, τ = 10λ

Hor SMALL CEE MEDIUM LARGE

EMPL 1 0 0 0 0
3 0 0 0 0
6 1 1 2 2
12 5 7 7 5
24 12 14 13 8
36 18 19 14 7
48 23 23 12 6

CPI 1 0 0 0 0
3 3 2 1 2
6 7 5 3 3
12 6 3 1 1
24 2 1 1 1
36 1 2 3 2
48 1 3 5 3

FFR 1 99 97 93 51
3 90 84 71 33
6 74 66 49 21
12 46 39 30 14
24 26 21 18 9
36 21 17 16 7
48 18 15 16 7

Let us now comment on the impulse response functions of the monetary policy shock on

all the twenty variables considered in the MEDIUM model. Impulse responses and variance
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decomposition for all the variables and models are reported in the Annex.

Figure 2 reports the impulses for both the MEDIUM and LARGE model as well as the posterior

coverage intervals produced by the LARGE model.

Let us first remark that the impulse responses are very similar for the two specifications and

in most cases those produced by the MEDIUM model are within the coverage intervals of the

LARGE model. This reinforces our conjecture that a VAR with 20 variables is sufficient to

capture the relevant shocks and the extra information is redundant.

Responses have the expected sign. First of all, a monetary contraction has a negative effect

on real economic activity. Beside employment, consumption, industrial production and ca-

pacity utilization respond negatively for two years and beyond. By contrast, the effect on

all nominal variables is negative. Since the model contains more than the standard nominal

and real variables, we can also study the effect of monetary shocks on housing starts, stock

prices and exchange rate. The impact on housing starts is very large and negative and it

lasts about one year. The effect on stock prices is significantly negative for about one year.

Lastly, the exchange rate appreciation is persistent in both nominal and real terms as found

in Eichenbaum and Evans (1995).

5 Summary and conclusions

This paper assesses the performance of Bayesian VAR for monetary models of different size.

We consider standard specifications in the literature with three and seven macroeconomic

variables and also study a VARs with twenty and a hundred and thirty variables. The latter

considers sectoral and conjunctural information in addition to macroeconomic information.

We examine both forecasting accuracy and structural analysis of the effect of a monetary

policy shock.

The setting of the prior follows standard recommendations in the Bayesian literature except

for the fact that the overall tightness hyperparameter is set in relation to the model size.

As the model becomes larger, we increase the overall shrinkage so as to maintain the same

in-sample fit across models and guarantee a meaningful model comparison.
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Figure 2: BVAR, Impulse response function for model MEDIUM and LARGE (with coverage
intervals of LARGE), τ = 10λ
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Overall, results show that a standard Bayesian VAR model is an appropriate tool for large

panels of data. Not only a Bayesian VAR estimated over one hundred variables is feasible,

but it produces better forecasting results than the typical seven variables VAR considered in

the literature. The structural analysis on the effect of the monetary shock shows that a VAR

based on twenty variables produces results that remain robust when the model is enlarged

further.
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