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Abstract

In this paper, we develop a method to estimate dynamic treatment e�ects (where the treat-

ment e�ect varies over time) in situations where dynamic selection into treatment may confound

estimates of the treatment e�ect. We contrast various approaches to control for selection in a

static setting and discuss the challenges with extending them to the dynamic setting. Then,

we develop our preferred method which assumes that the unobservables that jointly determine

selection into treatment and the treatment e�ects can be modeled through a factor structure.

We demonstrate how this method recovers a much richer set of counterfactuals than can be

recovered with existing methods. We then apply our method to the study of grade retention

using the Early Childhood Longitudinal Study of Kindergartners. We �nd evidence of dynamic

selection and that the e�ect depends both on the time at which the student is retained and the

time elapsed since retention.
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1 Introduction

Most policy evaluation problems in social science are inherently dynamic in nature. In the case of

the return to an advanced degree like an MBA (e.g. Arcidiacono et al. (2008)), the return may

depend on the number of years that have elapsed since bachelor's completion and this return may

change as time elapses. In the analysis of fertility, the timing and spacing of children is important

(e.g. Heckman et al. (1985), Heckman & Walker (1990)). In the analysis of health outcomes the

time between a negative health shock and treatment receipt is crucial. For example, the total cost

of treatment (or the survival rate) for breast cancer may be di�erent for women who take longer

to get a mastectomy after diagnosis. In the case of grade retention, it is not only whether a child

repeats a grade that may a�ect his test scores but also the grade in which he is retained and/or

whether he has been retained before. Furthermore these e�ects may be di�erent when measured at

di�erent times after treatment.

In this paper, we develop a simple framework for the analysis of models with dynamic treatment

e�ects. Dynamic treatment e�ects arise when the e�ect of treatment varies based on the time it is

received and/or the time elapsed since receipt. Therefore the timing of treatment is an important

part of the decision process. Like in the static framework, the key challenge is to distinguish the

e�ect of treatment from selection of certain types into treatment. The added complication in our

setting is that selection is dynamic and that the treatment e�ect may vary over time. For example,

students who are retained in kindergarten may di�er in unobservable ways from students who

are retained in second grade, leading to dynamic selection, which, in the absence of controls, is

confounded with estimates of the e�ect of retention at a particular grade on achievement.

We consider whether various methods that are applied to control for selection in the static con-

text can be applied to the dynamic setting. We demonstrate that, because of the sequential nature

of the decisions process (i.e., the dynamics) some potentially important counterfactual outcomes are

simply lost with randomized control trials. That is, even in the best case scenario of a repeated ran-

domized experiment (or with some versions of repeated conditional independence, Lechner (2004))

many treatment on the treated type parameters cannot be recovered without invoking stronger as-

sumptions. For instance, we cannot form the counterfactual expected achievement of being retained

in period 1 for students who are retained in period 2 because in period 1 (when the randomization

would need to occur), we do not yet know whether they will be retained in period 2. Thus, random-

ized control trials cannot tell us whether it would have been better to retain in grade 1 a student

who is actually retained in grade 2, unless we make some strong assumptions on the heterogeneity.

We then consider the control function approach, which controls for unobserved heterogeneity

through modelling the dependence of unobservables on observables via the selection equation (see

Heckman & Navarro (2004)). For instance, the observed selection of students into being retained

in di�erent grade levels controls for unobserved student types in order to recover the true e�ect of

retention on test scores.1 Interestingly, we show that applying the control function approach results

1Where we invoke similar assumptions as in the binary treatment frameworks where instrumental variables are
available or certain curvature restrictions are satis�ed such that the treatment choice is not collinear with the outcomes
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in the same set of missing counterfactuals as the repeated randomized control trial.

We also discuss the di�culty with applying widely-used instrumental variables methods to the

dynamic setting. As in the static binary treatment case, when the unobservable (to the econome-

trician) gains to treatment are correlated with treatment selection (�essential heterogeneity� in the

language of Heckman et al. (2006)), one of the more challenging aspects of this strategy is determin-

ing precisely what treatment e�ect is being estimated. While local methods have been designed to

recover parameters of interest when essential heterogeneity is present, like local average treatment

e�ects (Imbens & Angrist (1994)) or regression discontinuity designs (Hahn et al. (2001)), these

types of parameters that compare individuals only at the margins are much harder to interpret

when we add dynamics to the model, even with much stronger assumptions on the degree of het-

erogeneity and types of instruments available. For example, the students who are on the margin of

being retained in kindergarten may not be the marginal students in �rst grade.

Because of the challenges with extending these common existing methods to the dynamic setting,

we develop a new approach. We explore a generalization of the semiparametric factor structure of

Carneiro et al. (2003) in which it is assumed that a low dimensional set of unobservables a�ects

all elements of the model. This strategy e�ectively places restrictions on the covariances between

unobservables in the outcome and selection equations. For example, the same unobserved ability

(or abilities) a�ects both the probability of being retained and test scores. While ability is time

invariant, the factor structure we propose is quite general in that the e�ect of ability can vary both

over time and based on treatment. Furthermore, given that we observe cognitive and behavioral

measures, we can generalize to allow for di�erent types of �ability� that might a�ect both the

retention decision and the test scores.2 We can also permit individual unobservable shocks to be

correlated over time, such as multiple draws of a bad teacher.

The factor structure has several appealing aspects. First, it solves the problem of the missing

counterfactuals and is arguably less data hungry than instrumental variable methods (or repeated

randomized control trials). Second, because the unobserved components have an intuitive interpre-

tation, we can determine whether students with lower general, cognitive or behavioral ability are

more likely to be retained and how the treatment e�ect of retention varies by their ability type.

Third, because we are modeling the selection process, we can also provide insight into how to create

better rules for when to retain students. In particular, if we think that retention decisions take into

account observed test outcomes, we can obtain unbiased estimates of how test scores a�ect selection

because we control for ability in the selection equation. This is not possible with other methods.

Our framework is similar to the one used for models with multiple potential treatments. The

key di�erence is that in the dynamic case a treatment is equivalent to being treated at a given time,

i.e., being retained in kindergarten or �rst grade. Secondly, because selection into treatment occurs

sequentially over time the model is closer in spirit to an ordered model (generalized as in Cunha

et al. (2007)). Standard multinomial and ordered choice models generally cannot be applied to our

as in Heckman & Navarro (2007).
2As we show, the factor structure we propose maps directly to our empirical example and so it is very convenient

but other normalizations are possible (Cunha et al. (2006), Robin & Bonhomme (2008)).
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setting, unless the dynamic selection problem can be ignored and the sequence of participation is

determined from the beginning.

Our approach to the study of dynamic treatments is close to that in Heckman & Navarro

(2007) and similar in spirit to the analysis of Eberwein et al. (1997) and Abbring & Van den Berg

(2003). As opposed to Eberwein et al. (1997) we do not focus on numerical problems and estimation

but rather on identi�cation. We share our interest on allowing for unobserved heterogeneity and

dynamic selection. This is in contrast to the analyses of Gill & Robins (2001), Murphy (2003) and

Lechner (2004), which are based on sequential conditional independence assumptions and so rule

out selection on unobservables. Furthermore, our focus is not on the design of optimal treatment

regimes as in Murphy (2003) but rather on the identi�cation of treatment e�ects.

We apply our method to provide new evidence on the e�ect of retention on achievement us-

ing data from the Early Childhood Longitudinal Study of Kindergartners. Existing studies that

deal convincingly with the selection problem and compare the e�ect of grade retention on student

achievement across grades (such as Jacob & Lefgren (2004)) use a regression discontinuity frame-

work, focusing on the treatment e�ects for the marginal students. Our study provides important

new insight into how treatment e�ects vary by students of di�erent abilities as well as by the tim-

ing and time elapsed since retention. We �nd evidence of dynamic selection and heterogeneous

treatment e�ects by unobservable student abilities, supporting the importance of our method. We

provide a much richer picture of the potential consequences of recent accountability policies that

require that students meet a given threshold to be promoted to the next grade. For instance, an

interesting implication of our results is that the higher the achievement threshold for promotion,

the more likely that the policy will improve student achievement, as higher ability students bene�t

more for retention than lower ability students. This may have important implications for reconciling

some of the mixed evidence regarding the e�ects of retention in the literature.3

The paper proceeds as follows. In Section 2, we describe the basic framework and de�ne treat-

ment e�ects for the dynamic case. In Section 3, we show the problems associated with standard

experimental and instrumental variable methods to recover counterfactuals in the dynamic hetero-

geneous case and ways to extend these methods. We then propose to impose a factor structure in

the next section and prove it is semiparametrically identi�ed. We discuss our application in Section

4.

2 The Framework

Consider the generic problem of evaluating the e�cacy of a treatment. Let P ∈ P = {1, 2, ..., P̄}
index calendar time and i = 1, ..., I index the individual. Since we allow for the treatment to be

taken at di�erent times, we de�ne a random variable T that indicates the time at which treatment

is received. We assume that treatment is taken at most once.4 We let T ∈ T ⊆ P, that is treatment

3See Holmes (1989) and Jimerson (2001) for meta-analyses.
4Extending the framework to allow for the possibility of treatment being taken more than once can be done at

the cost of introducing a lot more notation as shown in Appendix A.2.
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may be received at any time or only in a subset if treatment selection is limited to a subperiod so

T = {T,T + 1, ..., T̄ − 1, T̄} for T ≥ 1 and T̄ ≤ P̄ . We adopt the convention of letting T = 0 for

the �never� treated state.5

The (possibly vector valued) outcome of interest at time P for an individual i who takes treat-

ment at time T is denoted by Yi (P, T ). For notational simplicity, we keep all conditioning on

covariates implicit. Finally, we de�ne a random variable Di (T ) that takes value 1 if an individual

receives treatment at time T and 0 otherwise. For individual i the observed outcome in period P

will be given by

Yi (P ) =
T̄∑

τ=T

Di (τ) [Yi (P, τ)− Yi (P, 0)] + Yi (P, 0) . (1)

As opposed to the standard binary treatment case, we now have many possible potential out-

comes. That is, while the standard case only has the treated and untreated potential states we

have the untreated, the treated at time T, the treated at time T+ 1, etc. Because of the sequential
nature of the problem, by letting Yi (P, T ) depend on treatment time, we allow for the possibility

that the e�ect of treatment is dynamic in the sense that it does not only depend on receipt but the

time treatment was received. It can also be interpreted as depending on the time since treatment

(P − T ), making it straightforward to analyze the outcomes as durations, counts, etc.

Following Abbring & Van den Berg (2003) we also impose that

A-1 (No anticipations) Yi (P, T ) = Yi (P, 0) = Yi (P ) for T ≥ P .

That is, we rule out that potential outcomes that should be the same ex ante di�er because in

the future treatment times will be di�erent. In our application, this means, for example, that

after conditioning on all prior information, the fact that a student will be retained in second grade

does not directly a�ect her performance in �rst grade. Importantly, this assumption should not be

confused with the assumption that individuals are not forward looking, which the name may imply.

Assumption A-1 does not rule out that individuals may predict that they are more likely to get

treated at a particular time T (i.e., have some anticipation as to treatment time).6

We further write the outcomes as

Yi (P, T ) = Φ (P, T ) + εi (P, T ) , (2)

where, because of A-1, we impose Φ (P, T ) = 0 and εi (P, T ) = εi (P ) if T ≥ P .7

5Depending on the situation this case may be more accurately described as the �not treated yet� or �not treated
in the sample period.�

6We follow the literature and refer to A-1 as �no anticipations.� What it rules out is that, after conditioning on
the information available at the pre-T period of interest P , the actual event of getting treated at time T has an e�ect
on pre-time T outcomes. It is in this sense that it is closer to a �no perfect foresight� assumption although this is not
necessary for A-1 to hold. We can accommodate cases in which A-1 does not hold, but we keep the assumption for
simplicity. See Abbring & Van den Berg (2003) and Heckman & Navarro (2007) for a discussion.

7We treat the outcome as continuous for convenience. We can easily work with discrete and mixed dis-
crete/continuous outcomes by de�ning them as random variables arising from other latent variables crossing thresh-
olds. For example, if the outcome were binary, we can de�ne a latent variable Y ∗

i (P, T ) = Φ (P, T )+ εi (P, T ) so that
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We assume that selection into treatment and treatment time are determined by a single spell

duration model that follows a sequential threshold crossing structure as in Heckman & Navarro

(2007). If we de�ne the treatment time speci�c index Vi (T ) = λ (T )+Ui (T ),8 then treatment time

is selected according to

Di (T ) = 1
(
Vi (T ) > 0 | {Vi (τ) < 0}T−1

τ=1

)
= 1

(
Vi (T ) > 0 | {Di (τ) = 0}T−1

τ=1

)
where 1 (a) is an indicator function that takes value 1 if a is true and 0 otherwise. The selection

process is dynamic in the sense that today's choice depends on yesterday's choice: treatment time

T can only be selected if treatment has not been taken before. We describe the generalization to

the case where treatment can be received more than once in Appendix A.2.9

The observed outcome in period P will then be given by

Yi (P ) = Φ(P, 0)+ε(P, 0)+
min{P,T̄}∑

τ=T

Di (τ) (Φ (P, τ)−Φ(P, 0))+
min{P,T̄}∑

τ=T

Di (τ) (εi (P, τ)−ε (P, 0)) .

If there is no selection based on unobservables, then the problem becomes quite easy and we can

recover an unbiased estimate of the e�ect of treatment on outcomes. In general this is not the case,

and some of the same unobservables that determine the outcome determine the selection process.

For instance, higher ability students may be less likely to be retained and to have higher test scores.

Our goal in general will be to allow (εi (P, T ) , εi (P ′, T ′′) , Ui (T ′′′) , Ui (T ′′′′)) to be all correlated.

2.1 De�ning Treatment E�ects

Before turning to the identi�cation problem, we �rst consider the problem of de�ning what consti-

tutes �the� e�ect of treatment at the individual level. We can de�ne at least two di�erent candidates

for the individual e�ect of treatment. The �rst parameter

∆1
i

(
P, T, T ′) = Yi (P, T )− Yi

(
P, T ′)

= Φ (P, T )− Φ
(
P, T ′) + εi (P, T )− εi

(
P, T ′) ,

measures the e�ect at period P of receiving treatment at time T versus receiving treatment at time

T ′. If we let T ′ = 0, this parameter would measure the e�ect at P of receiving treatment at time T

the measured outcome Yi (P, T ) would be Yi (P, T ) = 1 (Y ∗
i (P, T ) > 0) where the function 1 (a) takes value 1 if a is

true and 0 if it is not. Furthermore, additive separability in outcomes is not required, it can be relaxed using the
analysis in Matzkin (2003).

8Additive separability is assumed for simplicity and can be relaxed using the analysis in Matzkin (1992).
9As we show in the Appendix, the extension to the case in which treatment can be received more than once

requires a multiple spell model where the whole sequence of prior treatments/no treatments can potentially a�ect
the decision each period. We can easily accommodate such a case at the cost of considerable notation where now T
would be a vector containing the treatment history up to P and an individual would choose treatment every time
the index becomes positive (not only the �rst time).
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versus not receiving treatment at all. An example of this �rst parameter would be the di�erence in

earnings at age 30 for an individual if he repeats �rst grade versus if he repeats third grade.

The second individual parameter of interest

∆2
i

(
τ, T, T ′) = [Yi (T + τ, T )− Yi (T + τ, 0)]−

[
Yi

(
T ′ + τ, T ′)− Yi (T + τ, 0)

]
= Φ (T + τ, T )− Φ

(
T ′ + τ, T ′) + εi (T + τ, T )− εi

(
T ′ + τ, T ′) , for τ > 0

measures the di�erence in the e�ect of receiving treatment versus not receiving treatment τ periods

after treatment time for two di�erent treatment times T and T ′. An example of this parameter

would be the di�erence in test scores one year after taking a training program if the individual takes

the training 3 months after the unemployment spell starts versus 6 months after the spell begins.

Regardless of how one de�nes the e�ect of treatment, we can consider what happens as time

since treatment elapses. The e�ect is potentially individual speci�c even conditional on covariates.

Relative to the static binary case, in the dynamic setting there are many more possible population

average parameters, both of the average treatment e�ect and treatment on the treated type. For

example, we can de�ne the average e�ect of receiving treatment at time T = t versus not receiving

treatment

ATE (P, t) = E (Y (P, t)− Y (P )) = Φ (P, t) ;

the average e�ect of treatment at time T = t for people who receive treatment at time T = t

TT (P, t) = E (Y (P, t)− Y (P ) |T = t)

and so on. In our example, this could be the average e�ect on third grade test scores of being

retained in kindergarten versus not being retained, for those who were retained in kindergarten. We

can also de�ne many more mean treatment parameters like the average e�ect of receiving treatment

at T = t versus receiving treatment at T = t′

ATE
(
P, t, t′

)
= E

(
Y (P, t)− Y

(
P, t′

))
or the e�ect of treatment at T = t versus treatment at T = t′ for people who are actually treated

at time T = t′′

TT
(
P, t, t′, t′′

)
= E

(
Y (P, t)− Y

(
P, t′

)
|T = t′′

)
,

etc. For instance, we may want to know the return to retaining students in kindergarten who were

actually retained in �rst grade.

In general, depending on whether we assume the mean component Φ (P, T ) and/or the unob-

served component of the outcome εi (P, T ) depend on T or not, the e�ect of treatment will be

dynamic. In the same manner, depending on whether εi (P, T ) varies across individuals, the e�ect
will be heterogeneous in the population. While under certain assumptions that limit the hetero-

geneity of treatment e�ects some of these parameters may equal one another, we consider the more
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general case where the treatment e�ect is allowed to vary over time and by unobserved individual

characteristics.

3 Identi�cation

The primary challenge to identifying treatment e�ects in the static framework lies in the fact that

individuals di�er in unobservable ways that help determine both selection into treatment and the

e�ect of treatment. For instance, lower ability students are more likely to be retained and may also

learn at a slower rate than a higher ability student leading to a di�erent e�ect of grade repetition.

The challenge is similar in our dynamic setting, with the added challenge that selection is dynamic

and that treatment e�ects vary both by unobservable type of individual and over time. To illustrate

the challenges associated with identifying treatment e�ects in a dynamic context, we begin by

considering what treatment e�ects can be recovered with experimental data, where the selection

problem is eliminated by randomly assigning individuals to treatment. We then turn to the case

of observational data. We consider how to extend several approaches that are used in the static

framework to account for selection, namely control function and instrumental variable methods, and

some of the shortcomings of these methods. Finally, we discuss an alternative approach of modeling

the selection process by imposing a factor structure.

3.1 Experimental Data

Consider designing an experiment to recover some of the di�erent population average parameters

described above.10 Consider �rst the case in which we are interested in estimates of ATE-type

parameters. In this case, we can simply randomize people at the beginning of the �rst period into

receiving treatment at each di�erent possible treatment time (or not at all). While straightforward

to recover, for the case of grade retention and arguably in many other applications as well, ATE-

type parameters may not be particularly interesting from a policy perspective. For instance, in

practice students who are retained are likely to have a higher potential bene�t than the average

student. Focusing on the average treatment e�ect would then bias us away from �nding a positive

e�ect of retention, even though it may be bene�cial for lower-type students.

Treatment parameters that condition on the selection process (treatment on the treated and

treatment on the untreated type parameters) are less straightforward to recover through random

assignment to treatment and control groups. To illustrate we consider an example where treatment

can be taken either of the �rst 2 periods T = {1, 2}, i.e., students can be retained in kindergarten

or �rst grade. The policy is evaluated according to its e�ect on some ex-post outcome measured at

period 3: Y (3, T ), e.g., third grade test scores. Let Ri = 0 if an individual is randomized into not

receiving treatment and Ri = T if the individual is randomized into receiving treatment at time T .

Table 1 summarizes the experimental design for this case.

10While we focus on the binary treatment case, all of the points we make apply mutatis mutandis for the case in
which, at any point in time, multiple treatments are possible.

8



In period 1 individuals are selected into treatment or go on to the next period without treatment

according to whatever selection process operates regularly (i.e. according to whether V (1) > 0 or

V (1) < 0). Then, we take the individuals who would under normal circumstances receive treatment

T = 1 (i.e. V (1) > 0) and randomize them into receiving treatment at P = 1, at P = 2 or

not receiving treatment. In terms of our example, we observe children who would be retained

in kindergarten and who would not according to some decision rule. Then, we take the students

who would have been retained in kindergarten and randomly assign them to being retained in

kindergarten, retained in �rst grade, or not being retained. From this randomization we are able to

form all of the counterfactual outcomes conditional on T = 1 (V (1) > 0).
We then go on to next period and we let those individuals who were not selected into treatment

at 1 (V (1) < 0) be selected into either T = 2 (V (2) > 0) or into no treatment (V (2) < 0). We then

randomize them into either receiving treatment or not. We cannot randomize people into getting

treatment T = 1 (elements in bold in Table 1) since that can only be done in period 1, but at period
1 we did not know whether they would be selected into T = 2 or T = 0. In other words, for a

student who is selected to be retained in �rst grade, we cannot go back in time and randomly assign

her to being retained in kindergarten and similarly for a student who is not selected into being

retained in �rst grade. These mean outcomes are information that cannot be recovered because

of the sequential nature (i.e. the dynamics) of the selection process. This means that we cannot

address whether a student who is retained in �rst grade would have performed better if retained in

kindergarten instead.

What this simple example shows is that, even in the scenario in which we can design an experi-

ment to estimate mean treatment parameters, potentially policy-relevant information is lost. Some

counterfactuals are lost because of the sequential nature of the selection process. Furthermore, the

data requirements are much larger than in the static case, due to sample size requirements (i.e. the

many randomizations across subgroups over time), and they get worse as the number of periods

and/or the number of treatments is increased.

3.2 Observational Data

The randomized control trial provides a helpful starting point for considering how methods applied

to account for selection in observational data in the static setting can be extended to a dynamic

setting. We focus on the case where returns are heterogeneous both because this case is arguably

empirically more relevant and because applying instrumental variables methods under homogeneity

is a straightforward GMM problem.11 In order to help �x ideas, we continue with our simple 3

period example and now ask whether methods designed to deal with the confounding e�ects of

selection in observational data, namely control function and instrumental variables, will work in the

dynamic heterogeneous case.

11Notice that, because of the dynamic nature of the model, even if we only have one instrument Z but it is time
varying, this variable can be used as an instrument for all Di (T ) since the choices are made sequentially over time.
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The potential outcomes in period 3 are given by

Yi (3, T ) = Φ (3, T ) + εi (3, T ) for T = 0, 1, 2

and the observed outcome can be written as

Yi (3) = Φ (3, 0) +Di (1) [Φ (3, 1)− Φ (3, 0)] +Di (2) [Φ (3, 2)− Φ (3, 0)]

+εi (3, 0) +Di (1) [εi (3, 1)− εi (3, 0)] +Di (2) [εi (3, 2)− εi (3, 0)] . (3)

The (observed) outcome equation is a standard regression model with dummy indicators for the time

at which an individual receives treatment. Notice that this is not a standard binary treatment model

both because we now have more than one treatment indicator and because the e�ect of treatment

is potentially heterogeneous. In the language of Heckman et al. (2006) we have a situation in which

essential heterogeneity is present if the decision of when to receive treatment is correlated with

the unobservable (to the econometrician) gains of choosing each treatment, which is likely in our

case. That is, Di (T ) is likely to be correlated with εi (3, T )− εi (3, T ′) for T 6= T ′. In the retention

example, essential heterogeneity exists if students who would experience higher gains from retention

are more likely to be retained.

3.2.1 Instrumental Variables

Consider �rst whether instrumental variables techniques can be applied to recover parameters of

interest. First, recall that standard instrumental variable methods are invalid under essential het-

erogeneity even if we can �nd a Z that is statistically independent. Take, for example, the second

unobservable term in equation (3). In this case we have

E (Di (1) [εi (3, 1)− εi (3, 0)] |Z) = E (εi (3, 1)− εi (3, 0) |Z,Di (1) = 1) Pr (Di (1) = 1|Z)

in the unobservables. Even though we assumeE (εi (3, T ) |Z) = 0 for all T , E(εi (3, 1)−εi (3, 0) |Di (1) =
1, Z) will usually not equal zero since now we are also conditioning on Di (1) = 1 and the decision

to get treatment is correlated with the unobservable gains associated with the treatment.

Instead of estimating ATE or TT like parameters one can address the problem of essential

heterogenity within the instrumental variables framework by using local methods like the Local

Average Treatment E�ect (LATE ) of Imbens & Angrist (1994)) and regression discontinuity designs

(Hahn et al. (2001)). These methods deal with the problem of essential heterogeneity by recovering

a �local� treatment parameter de�ned by some exogenous variation (e.g. an instrument that takes

two values or a law that determines an exogenous cuto� ) such that people a�ected by this variation

are assigned into treatment independently of their potential outcomes. For example, in some states

a child has to repeat a school grade if his test scores are below some cuto�. This kind of variation has

been used in a regression discontinuity design (see Jacob & Lefgren (2004) and Nagaoka & Roderick

(2005)) in which children just above and just below the cuto� are compared to estimate the e�ect
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of grade retention for children around the cuto�, the local treatment e�ect for this subgroup of

students.

By de�nition, these methods will work in the presence of dynamic treatment e�ects, but one has

to be careful both with the interpretation of the parameter they recover and with their implemen-

tation. The fact that we cannot recover the missing counterfactuals will have implications for what

these local methods can actually recover. Consider our simple 3 period case and take the local aver-

age treatment e�ect as an example. Assume �rst that treatment is static by imposing that it can only

be received at time T = 1 but not at T = 2. Assume also that we have an instrument Z that a�ects

the choice of whether to receive treatment at time T = 1 but does not a�ect the outcomes. Further-

more, assume that Z can take two values, z2 > z1 such that E (Di (1) |Z = z2) > E (Di (1) |Z = z1)
for all i (i.e. the monotonicity condition of Imbens and Angrist). That is, individuals can only be

induced into (but not out of) treatment when the instrument moves from z1 to z2 . Let Di (1, z2) be
the indicator of whether an individual gets treatment at period 1 when Z = z2 and de�ne Di (1, z1)
accordingly. In this binary treatment case the LATE parameter is given by

LATE (z1, z2) =
E (Yi (3) |Z = z2)− E (Yi (3) |Z = z1)
E (Di (1) |Z = z2)− E (Di (1) |Z = z1)

=
E (Yi (3) |Di (1, z2) = 1)− E (Yi (3) |Di (1, z1) = 0)

E (Di (1) |Z = z2)− E (Di (1) |Z = z1)

so it measures the e�ect of treatment for those individuals induced into treatment by the change in

the instrument.

Now suppose that individuals who are not a�ected by the instrument today can receive treatment

in the next period, i.e. at time T = 2. The event Di (1, z1) = 0 will now include two types of

individuals not induced into treatment at time 1: those who do not receive treatment at 2 still and

those who receive treatment at time 2. Furthermore, while in the static case noncompliers, i.e.,

inframarginal individuals for whom Di (1, z2) = Di (1, z1) = 0, drop from the LATE calculation, in

the dynamic case it may be the case that Di (2, z2) 6= Di (2, z1). LATE will now be a weighted (by

the probabilities of each of these events) average of these di�erent kinds of individuals and harder

to interpret.12

By imposing strong restrictions on the selection process (mainly that Ui (T ) = Ui for all T ),
an alternative is the local instrumental variables approach to ordered choice models of Heckman &

Vytlacil (2007) that recovers pairwise Marginal Treatment E�ects (MTE ). Using the MTE some of

the missing TT -type parameters can be recovered. Alternatively if one has access to very special

kind of data one can be relatively agnostic about the selection process. Nekipelov (2008), for

example, uses a multivalued instrument that satis�es a di�erent kind of monotonicity: as the value

of the instrument increases people either do not change treatment at all or they change treatment

monotonically. This avoids the problem with th estandard LATE approach described above at the

cost of requiring a very particular type of instrument and decision process.

12See Angrist & Imbens (1995) for a similar result in a model with multiple treatments.
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3.2.2 Control Function

An alternative to instrumental variables methods is to use the control function approach which

models the selection process explicitly,13 extending it to account for dynamics. Let Pi,1 denote the

probability of getting treated at T = 1. The event T = 1 can be written as

Ui (1) > −λ (1) ⇐⇒ FU(1)(Ui (1)) > FU(1) (−λ (1))

⇐⇒ FU(1)(Ui (1)) > 1− Pi,1,

i.e. as a function of Pi,1. Next, form the observed conditional mean of outcome 1 when T = 1 and

rewrite

E (Yi (3, 1) |T = 1) = Φ (3, 1) + E (εi (3, 1) |T = 1)

= Φ (3, 1) + E (εi (3, 1) |Ui (1) > −λ (1))

= Φ (3, 1) +K1 (Pi,1) .

The term K1 (Pi,1) is known as a control function and it can be identi�ed nonparametrically

under various conditions. The simplest condition is when one has exclusion restrictions, i.e., instru-

mental variables that a�ect the probability of getting treatment but not the outcome of interest

directly. As shown in Heckman & Navarro (2007) other nonparametric restrictions are possible.

Once K1 (Pi,1) is recovered one can apply the law of iterated expectations to get

E (εi (3, 1)) = K1 (Pi,1)Pi,1 + E (εi (3, 1) |T 6= 1) (1− Pi,1) = 0.

The only unknown term in this expression is E (εi (3, 1) |T 6= 1) so we can solve for it. However, as

with the case of experimental data neither E (εi (3, 1) |T = 0) nor E (εi (3, 1) |T = 2) can be recov-

ered. Because T = 2 is the terminal treatment in this example, all the remaining counterfactuals

that can be recovered with experimental data can also be recovered with the control function by

using a similar reasoning (i.e. by forming control functions for T = 0 and T = 2 which will be

functions of Pi,1 and Pi,2 and proceeding sequentially using the law of iterated expectations).

Using a control function approach one can take advantage of the availability of instruments,

allow for essential heterogeneity, and recover the same treatment parameters of interest as in a

randomized trial. Notice that modelling the selection process does not overcome the problem of the

missing counterfactuals. In order to recover these additional counterfactuals further assumptions

on the joint distribution of the unobserved components, like the factor structure we present below,

are needed.

13See Heckman & Robb (1985) and Navarro (2008).
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3.2.3 Factor Structure

We now propose a less traditional solution to selection by imposing a factor structure that permits

us to recover the joint distribution of the unobservables. This not only solves the missing counter-

factuals problem, but also incorporates some other nice features that are discussed further below.

In particular, we impose the following assumption

A-2 (Factor structure) εi (P, T ) = θiα (P, T ) + εi (P ) and Ui (T ) = θiρ (T ) + υi (T ) where θi is a

vector of mutually independent �factors� and we assume that εi (P ) ⊥⊥ εi (P ′) for all P 6= P ′

and υi (T ) ⊥⊥ υi (T ′) for all T 6= T ′ where ⊥⊥ denotes statistical independence14.

We impose A-2 for convenience even though it is stronger than required.15 The factor structure

assumption is a convenient dimension reduction technique. It allows us to transform the enormous

problem of identifying and estimating the joint distribution of all the unobservables (Ui, εi) into

a simpler problem: that of recovering the factor �loadings� α (P, T ) and ρ (T ) and the marginal

distributions of the elements of θi and of εi (P, T ) , υi (T ) ∀P, T .
Not only is the factor structure convenient, it also aids in interpretation of results since we can

now talk about a low dimensional set of common �causes.�16 Furthermore, it is intuitively appealing

in the way it interprets the role of heterogeneity; namely, that the same set of unobservables (the

vector θi) that determines the e�ect of treatment also determines the selection into treatment.

In our grade retention example, if θi is unobserved ability (or abilities if θ is a vector), essential

heterogeneity arises because unobserved ability a�ects both the treatment e�ect (i.e., gain in test

scores across two consecutive years) and the probability of being retained. We can then consider

questions such as whether less able students in our model are more likely to be retained earlier or

later and test the implications for the e�ect of treatment.

To understand how the factor structure addresses the identi�cation problem associated with

unobserved heterogeneity, consider our three period example. If A-2 holds, the observed outcome

will be

Y (3) = Φ (3, 0) +Di (1) [Φ (3, 1)− Φ (3, 0)] +Di (2) [Φ (3, 2)− Φ (3, 0)] + ε (3)

+θiα (3, 0) +Di (1) θi [α (3, 1)− α (3, 0)] +Di (2) θi [α (3, 2)− α (3, 0)] ,

and the choice process will be determined by

Vi (T ) = λ (T ) + θiρ (T ) + υi (T ) .
14If A-1 holds, α (P, T ) = α (P, 0) = α (P ) for T ≥ P .
15Following the analysis of measurement error models in Schennach (2004) we can relax the strong statistical

independence assumptions and replace them with a combination of general dependence and weaker mean independence
assumptions.

16See Jöreskog & Goldberger (1975) for a discussion and Carneiro et al. (2003) and Cunha et al. (2005) for recent
developments.

13



In this case essential heterogeneity is present when α (3, T ) 6=α (3, 0) since now the unobserved gains

in the test score will be correlated with the choice indicator because the same θi determines both.

If we could recover (or condition on) the unobserved θi, the selection process Vi (T ) and the

outcome of interest Y (P, T ) would be independent and we could then obtain consistent estimates

of the treatment e�ect. This is the key intuition behind the factor model, to condition not only

on observable covariates but also on the unobservable vector θi in order to recover the conditional

independence assumption of quasiexperimental methods. There are many normalizations under

which the distribution of θi can be recovered (see Cunha et al. (2006) and Robin & Bonhomme

(2008) for examples).

To illustrate how the factor structure works, consider a simple example in which only one factor

(e.g. the �rst element of θi: θi,1) a�ects the outcome and selection equations in period 1, i.e. the

standard case in which one assumes that unobserved ability is unidimensional. Suppose the outcome

in period 1 is free of selection,17 so

Y (1) = Φ (1) + θi,1α1 (1) + ε (1) .

It is straightforward to show that the joint distribution of εi (1) = θi,1α1 (1) + ε (1) and Ui (1) =
θi,1ρ1 (1) + υi (1) is nonparametrically identi�ed (e.g. Heckman & Smith (1998)). >From it, nor-

malizing ρ1 (1) = 1,18 we can form

E
(
ε2i (1)Ui (1)

)
E

(
εi (1)U2

i (1)
) =

α2
1 (1)E

(
θ3
i,1

)
α1 (1)E

(
θ3
i,1

) = α1 (1) .

With α1 (1) in hand it follows from a Theorem by Kotlarski (1967) that the distribution of θi,1

(and of ε (1) and υ (1)) is nonparametrically identi�ed. Intuitively, we can, from E
(
εki (1)Ui (1)

)
=

αk
1 (1)E

(
θk+1
i,1

)
for k > 0, recover all the moments of θi,1. Since we can recover all moments of

the random variable θi,1 we can, for all practical purposes, recover its distribution. Formally, one

wants to characterize a distribution using its characteristic function and not moments since some

distributions are not characterized by their moments (see Casella & Berger (2002) for conditions).

This is precisely what the Kotlarski argument does.

Next consider the (selection corrected) second period equations

Y (2, T ) = Φ (2, T ) + θi,1α1 (2, T ) + θi,2α2 (2, T ) + ε (2, T ) for T = 0, 1

Vi (2) = λ (2) + θi,1ρ1 (2) + θi,2ρ2 (2) + υi (2) ,

where we now allow for a new element of θi to enter. θi,2 can be interpreted as a correlated shock,

i.e. an unobserved shock that a�ects outcomes and selection equations from period 2 on although

17Alternatively if we have access to an exclusion restriction (i.e. an instrumental variable) we can control for
selection nonparametrically as in Heckman (1990) and Heckman & Smith (1998).

18Given that θ1 is latent, this normalization implies no restriction since θi,1ρ1 (1) = θi,1κ
ρ1(1)

κ
for any constant κ.
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its e�ect may change as time elapses. Alternatively one can think of it as an ad-hoc way of letting

unobserved ability evolve over time. Identi�cation is straightforward. By taking cross moments

over time (i.e. Y (1) with the selection corrected Y (2, T )) one can identify the elements associated

with θi,1 in period 2 equations. Then, by taking cross moments within period 2 equations, one

can identify the elements associated with the correlated shock θi,2 as well as the nonparametric

distributions of the unobservables.

We can extend this analysis to the case in which unobserved ability (θi) is multidimensional be-

yond the correlated shocks. For example, in our empirical application we consider a normalization

of θi that is particularly relevant to retention decisions when students may be retained both for cog-

nitive and behavioral abilities, but is likely to be applicable to other settings where the unobservable

component is multidimensional. Thus, we propose that true ability consists of three independent

components: 1) A trait associated purely with cognitive functions C, a purely behavioral trait B

and general ability A that can be used for both cognitive and behavioral functions. That is, we

assume that θi = (Ai, Bi, Ci).19 Associated with ability is a set of tests or markers that measure

these components of ability imperfectly, but are free of selection. In our empirical example, these

correspond to the initial tests applied to students in kindergarten before any grade repetition takes

place. This requirement is not crucial (provided we can correct for selection) but we keep it because

a) it is common to many situations and b) it makes the exposition of the identi�cation argument

much simpler.20

In particular, assume we have access to Nc ≥ 2 measures (or tests) of cognitive functions ζi,j ,

and Nb ≥ 2 measures of behavioral functions, βi,j , that are measured free of selection. As before,

we keep all conditioning on covariates implicit to simplify notation.21 We write the jth demeaned

cognitive test as

ζi,j = Aiαζ,j + Ciπζ,j + εζ,j ,

and the jth demeaned behavioral test as

βi,j = Aiαβ,j +Biφβ,j + εβ,j .

Under this interpretation, tests are noisy measures of the components of ability. Depending

on the nature of the measure, some (like math and reading test scores) are markers of cognitive

ability C and general ability A and some (like measures of class disruptive behaviors or habits) are

noisy measures of the behavioral trait B and general ability A. This is not to say that cognitive

ability plays no role in behavioral aspects or vice versa but rather that whatever is common between

these functions is captured by the general ability component A. The cognitive ability component

C and the behavioral component B measure the part of ability that is used exclusively for the

19While we write the discussion in terms of test scores and abilities, the normalization we present applies generically
to other situations. Other normalizations are possible.

20Heckman & Navarro (2007) show it is not required.
21And we assume that these covariates are independent of θi. It will be clear below that full independence is

stronger than required, conditional moment independence for certain moments is enough.
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corresponding function.

Semiparametric identi�cation follows from an argument similar to the one used for the one factor

model but now we take moments across cognitive and behavioral equations and then within cognitive

test and within behavioral test to recover the α, π and φ parameters as well as the nonparametric

distributions of A,B,C and the ε′s. Formally, without loss of generality we impose the following

normalizations αζ,1 = 1, πζ,1 = 1 and φβ,1 = 1 22. We �rst take cross moments between cognitive

and behavioral measures
E ((ζj)

n βk) = αn
ζ,jαβ,kE

(
A1+n

)
E

(
ζj (βk)

h
)

= αζ,jα
h
β,kE

(
A1+h

) . (4)

and form
E (ζj (βk)

n)
E (ζ1 (βk)

n)
=
αζ,jα

n
β,kE

(
A1+n

)
αn

β,kE (A1+n)
= αζ,j

to recover all of the the general ability loadings on cognitive tests, αζ,j , for j = 2, . . . , Nc. We can

then form
E

(
ζ1 (βk)

2
)

E
(
(ζ1)

2 βk

) =
α2

β,kE
(
A3

)
αβ,kE (A3)

= αβ,k

and recover the general ability loadings on behavioral tests.

To show that the distribution of A is identi�ed, without loss of generality, take any two tests,

for example a cognitive and a behavioral one, and form

ζj
αζ,j

=

[
C
πζ,j

αζ,j
+
εζ,j

αζ,j

]
+A,

βk

αβ,k
=

[
B
φβ,k

αβ,k
+
εβ,k

αβ,k

]
+A.

Then, it follows from a Theorem by Kotlarski (1967) that the distribution of A (and of
[
C

πζ,j

αζ,j
+ εζ,j

αζ,j

]
and

[
B

φβ,k

αβ,k
+ εβ,k

αβ,k

]
) is nonparametrically identi�ed. Intuitively, given the now known αζ,j and αβ,k,

we can identify all of the moments of general ability A from equation (4). Since we can recover

all moments of the random variable A we can, for all practical purposes, recover its distribution.

Formally, one wants to characterize a distribution using its characteristic function and not moments

since some distributions are not characterized by their moments (see Casella & Berger (2002) for

conditions). This is exactly what the Kotlarski argument does.

With all of the parameters associated with general ability A as well as its distribution identi�ed,

we can then take the system of cognitive tests and form

E (ζj (ζk)
n)− αζ,jα

n
ζ,kE

(
A1+n

)
= πζ,jπ

n
ζ,kE

(
C1+n

)
,

22Given that A, B, and C are all latent, these normalizations imply no restriction since Aαζ,j = Aκ
αζ,j

κ
for any

constant κ.
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for any j 6= k with j, k = 1, ..., Nc. By forming

E
(
ζ1 (ζk)

2
)
− αζ,1α

2
ζ,kE

(
A3

)
E

(
(ζ1)

2 ζk
)
− α3

ζ,1αζ,kE (A3)
=
π2

ζ,kE
(
C3

)
πζ,kE (C3)

= πζ,k

we can recover πζ,k for all k = 2, ..., Nc. By iteratively applying the Kotlarski argument, we can

nonparametrically recover the distributions of C and εζ,j for all j = 1, ..., Nc. Finally, by applying

the same argument to the system of behavioral tests we can recover φβ,j and the nonparametric

distributions of B and εβ,j for all j = 1, ..., Nb.

Once we have recovered the distribution of θi, we can proceed to the next period. Now some

children will be treated (i.e. will repeat �rst grade) and so the test scores in period 2 will be

contaminated with selection. By using the selection equation, we can correct period 2 test scores

using semiparametric selection correction methods23 like the control function approach24 We can

then repeat the arguments above and recover the loadings and the distribution of the uniquenesses.

However, since we now know the distribution of abilities in advance, we can let all three types

of ability enter all equations (whether behavioral or cognitive) without having to normalize some

loadings to zero. That is, the normalization imposing that B only enters β equations and C only

enters ζ equations, need only apply on the �rst period. By proceeding iteratively we can recover all

of the outcomes of interest.

Here we assume that the only determinants of selection are the A,B,C components of ability.

However, since we can identify those elements in period 1, we can add new elements to θ over time to

allow for new persistent unobserved (to the econometrician) shocks every period. Formally, consider

a modi�ed version of the model of equations (??) and (??) in a multiperiod setting. In period 1 the

model is given by:

ζi,k,1 = Aiαζ,k,1 + Ciπζ,k,1 + εζ,k,1,

βi,k,1 = Aiαβ,k,1 +Biφβ,k,1 + εβ,k,1.

Identi�cation of these period 1 equations follows exactly as before. Moving forward in time we have

that the demeaned selection corrected period t cognitive tests for retention status τ are writen as

ζi,k,τ,t = Aiαζ,k,τ,t +Biφζ,k,τ,t + Ciπζ,k,τ,t +
t∑

h=2

η
(h)
i δ

(h)
ζ,k,τ,t + εζ,k,t. (5)

First, notice that we now allow for behavioral ability to potentially determine cognitive tests after

period 1. Second, we also add a new unobservable η
(h)
i every period. Since this new unobservable is

individual speci�c and we allow it to a�ect all outcomes (and retention decisions) from period h on,

it can be interpreted as a permanent shock that hits the model in period h (hence the superscript).

While the shock itself is permanent we allow for its e�ects to change both over time and across

23Ideally with access to an exclusion restriction in order to attain nonparametric identi�cation as in Heckman
(1990) and Heckman & Smith (1998).

24See Heckman & Robb (1985) and Navarro (2008).
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retention status for all equations in the model.

Now consider identi�cation of equation (5) in period 2 for retention status τ . We can form cross

second moments between period 2 and period 1 cognitive tests:

E
(
ζk,τ,2, ζk′,1

)
= αζ,k,τ,2

[
αζ,k′,1E

(
A2

)]
+ πζ,k,τ,2

[
πζ,k′,1E

(
C2

)]
E

(
ζk,τ,2, ζk′′,1

)
= αζ,k,τ,2

[
αζ,k′′,1E

(
A2

)]
+ πζ,k,τ,2

[
πζ,k′′,1E

(
C2

)]
.

The terms in square brackets are all known from our period 1 analysis, so, provided a standard

rank condition holds, this system can be solved for both αζ,k,τ,2 and πζ,k,τ,2 for all k = 1, ..., Nc and

retention status τ . Then, by taking cross second moments with respect to period 1 behavioral tests

we can form:
E

(
ζk,τ,2, βj′,1

)
− αζ,k,τ,2

[
αβ,k′,1E

(
A2

)]
φβ,k′,1E (B2)

= φζ,k,τ,2

and recover the behavioral ability loadings for all k = 1, ..., Nc and all retention statuses.

In order to identify the terms related to the new unobservable (i.e. the period 2 permanent

shock η(2) and its loadings δ
(2)
ζ,k,τ,2) a normalization on the scale of the unobservable is required so

we impose that δ
(2)
ζ,1,0,2 = 1 for τ = 0. With the normalization in place we can form cross moments

between period 2 equations for the τ = 0 retention status and form

E
(
ζk,0,2, ζk′,0,2

)
− αζ,k,0,2αζ,k′,0,2E

(
A2

)
+ πζ,k,0,2πζ,k′,0,2E

(
C2

)
E

(
ζ1,0,2, ζk′,0,2

)
− αζ,1,0,2αζ,k′,0,2E (A2) + πζ,1,0,2πζ,k′,0,2E (C2)

= δ
(2)
ζ,k,0,2

to identify the loadings on the permanent shock for all cognitive scores k = 1, ..., Nc for retention

status τ = 0.25We can then apply Kotlarsky to any pair of equations k, k′ for τ = 0 and identify the

nonparametric distributions of η(2) and εζ,k,2, εζ,k′,2. To identify the loadings for retention statuses

τ > 0 we can form

E
(
ζk,τ,2, ζ

2
k′,τ,2

)
− αζ,k,τ,2α

2
ζ,k′,τ,2E

(
A3

)
+ πζ,k,τ,2πζ,k′,τ,2E

(
C3

)
E

(
ζk,τ,2, ζk′,τ,2

)
− αζ,k,τ,2αζ,k′,0,2E (A2) + πζ,k,τ,2πζ,k′,0,2E (C2)

E

((
η(2)

)2
)

E
((
η(2)

)3
) = δ

(2)
ζ,k,τ,2.

Applying the same arguments recursively it is clear that we can add a new permanent shock

every period and still be able to identify all of the loadings and nonparametric distributions of the

unobsrvables. The factor structure has other advantages. For example, by adding an equation for

missing data (say a binary model for attrition) that depends on the same common vector θi we

can correct for potential biases due to people dropping from the sample (e.g. children moving to a

di�erent school if they know they will be retained in their current school).

25Notice that we cannot form cross moments for equations with di�erent retention indices τ since we can only
observe a kid in the retention status he actually receives.
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4 The E�ect of Retention on Test Scores

Grade retention is a common and controversial practice in U.S. schools. Understanding the e�ects

of grade retention has become increasingly important with the rise in student accountability policies

that often include grade retention as a potential consequence of not meeting a given achievement

threshold. Most research on the e�ects of grade retention treats it as a single treatment (being

retained versus not being retained) or attempts to correct for static, but not dynamic, selection.

These studies generally �nd that retention at best has no e�ect and at worse has considerable

negative e�ects.26

We apply the method described above to estimate how the e�ect of grade retention varies across

di�erent grades, as time since retention passes and by di�erent types of students using data from

the Early Childhood Longitudinal Survey (ECLS-K). The ECLS-K is a panel survey of students

starting with the 1998-99 kindergarten cohort. The survey was applied again in the 1999-2000,

2001-02 and 2003-04 school years. Roughly 10% of our sample is retained between kindergarten

and fourth grade. We restrict the sample to students who were retained only once and did not skip

grades. Because of the nature of the survey, we are able to form three di�erent retention indicators:

kindergarten, early (�rst or second grades) and late (third and fourth grades).27That is, our dynamic

treatment time indicator takes values T = 0, 1, 2, 3 where T = 0 means the child was not retained,

T = 1 means he is retained in kindergarten, T = 2 means he is retained early and T = 3 that he is

retained late.

Each year of the ECLS-K includes cognitive tests measuring students' general knowledge, read-

ing, math and science skills as well as both parent and teacher ratings on students' behavioral and

social skills�the Social Rating Scale (SRS). We focus primarily on the cognitive tests, the item re-

sponse theory (IRT) scores, as our outcomes of interest, though the e�ect of retention on behavior

is of interest as well.

A logical di�culty in evaluating the e�ect of grade retention is that it is impossible to hold both

the grade and age �xed when retaining a student. Depending on the policy question of interest,

it may be more appropriate to focus on measuring e�ects holding grade �xed or holding age �xed.

The e�ect holding grade �xed would address, for instance, whether a student learns more by the end

of �fth grade than he would if he had not repeated fourth grade. Alternatively, holding age �xed

would measure whether a student learns more, say, by age 11 if he repeats fourth grade than he

would have if he had been promoted to the �fth grade and exposed to the new material. We focus

on the e�ect of retention holding age �xed, which the test scores in the ECLS-K are better-suited

for measuring.

The ECLS-K survey also includes information on the schools' retention policies in all survey

26See Holmes (1989) and Jimerson (2001) for comprehensive meta-analyses. In more recent studies, using a regres-
sion discontinuity design to study test-based promotion in Chicago public schools, both Jacob & Lefgren (2004) and
Nagaoka & Roderick (2005) found that retention lead to small short term gains on test scores that disappeared over
time.

27In principle we could form all and separate early and late into the four grades. This, however, can only be done
for less than half of the sample.
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years. We use these variables as exclusions, under the assumption that they do not determine the

child's test score directly (conditional on the other covariates including observable school charac-

teristics) but they do a�ect the probability that a child repeats a grade. The ECLS-K contains a

very rich set of covariates that include characteristics of the children, the family, the class and the

school that we use as controls. Table 2 shows descriptive statistics for the 28 covariates we include

in all our equations as well as the scores and retention policy variables.

We focus our discussion primarily on the 2003-04 math and reading IRT scores to understand

the longer run e�ects of retention, though we also consider more immediate e�ects on earlier test

scores.28 Since the survey is applied every two years, 2003-04 scores include 5th graders (if they are

not retained) and 4th graders (if they were retained at some point). As mentioned above, we focus

on the e�ects on retention keeping age �xed, as this is more appropriate given the structure of the

test.

4.1 Baseline Estimates

To demonstrate the potential importance of our method, we begin by presenting suggestive evidence

on both the presence of dynamic selection and of dynamic treatment e�ects using the ECLS-K. To

test for dynamic selection, we regress the kindergarten cognitive tests on indicators of whether the

child is retained in the future, controlling for 28 covariates related to the child, his family, school and

class as described in Table 2 above. Tables 3 and 4 present results for math and reading respectively.

Column 1 of both tables show that children who will be retained have lower kindergarten test scores

than those who will not be retained. Furthermore, we reject the hypothesis that the e�ects of being

retained at di�erent grades are the same, suggesting not only the presence of selection but also

dynamic selection. Though not reported, the same pattern holds for the behavioral measures.

We then look for evidence of dynamic treatment e�ects, by regressing test scores in the 4th

sample period (2003-04 school year) on retention in the di�erent periods. As shown in Column

2 of Tables 3 and 4, being retained is associated with worse outcomes. These estimated �e�ects�

of retention are consistent with either dynamic treatment e�ects, dynamic selection or both. In

Columns 3 and 4, we include the kindergarten scores as proxies for ability to account for a non-

time-varying component of selection. Consistent with the existence of selection, the negative e�ects

of retention become smaller but do not disappear. Furthermore, we can reject the formal test of

equality of the e�ects for di�erent retention times.29

While this basic analysis provides suggestive evidence of both dynamic treatment e�ects and

dynamic selection, it is far from conclusive. The assumption that kindergarten test scores control for

dynamic selection is a very restrictive one, in that it assumes only one type of ability that determines

whether one is retained in kindergarten, early or late. In addition, under our interpretation of tests

scores as noisy measures of true latent abilities, using the kindergarten measures as controls may

28The general knowledge test was administered in periods 1 and 2, but is replaced by a science test in periods 3
and 4. As the scores are on di�erent scales and not comparable across grades, we do not focus on these outcomes in
the analysis.

29As before, the same pattern holds for the other cognitive tests and for the behavioral measures.
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actually worsen the bias in the treatment e�ects estimated.30 Furthermore, it does not capture

heterogeneous e�ects of treatment by student type.

4.2 Estimating a Multidimensional Model of Ability and Retention

Following our discussion of identi�cation in Section 3.2.3, we impose the following normalizations.

We normalize the general ability loading on the general knowledge test to 1, so A can be interpreted

as a trait that is associated positively with higher scores in the general knowledge test. The loading

on cognitive ability is normalized to 1 on the math test, so C is associated with higher math scores.

Finally, we normalize the behavioral loading on the self-control marker to 1. If we let ζi,j,1 be our j
th

cognitive measure for individual i in period 1 (kindergarten) and similarly for behavioral measures,

our kindergarten measures are modeled as

ζi,j,1 = Xi,1γζ,j,1 +Aiαζ,j,1 + Ciπζ,j,1 + εζ,j,1 (6)

and

βi,j,1 = Xi,1γβ,j,1 +Aiαβ,j,1 +Biφβ,j,1 + εβ,j,1. (7)

Our model for test scores in the following years is given by

ζi,j,t =
∑3

τ=1D (τ)
[
Φτ,t +Ai [αζ,j,τ,t − αζ,j,t] +Bi [φζ,j,τ,t − φζ,j,τ,t] + Ci [πζ,j,τ,t − πζ,j,t] +

∑t
h=2 η

(h)
i

[
δ
(h)
ζ,j,τ,t − δ

(h)
ζ,j,τ,t

]]
+Xi,tγζ,j,t +Aiαζ,j,t +Biφζ,j,t + Ciπζ,j,t +

∑t
h=2 η

(h)
i δ

(h)
ζ,j,τ,t + εζ,j,t

.

(8)

Importantly, note that this speci�cation corresponds to the general case discussed above, in that the

treatment varies over time as does the marginal e�ect of observable characteristics and unobservable

�abilities.�

The decision of whether to have a child repeat a grade is the solution to some complicated game

being played between the parents, the teachers, the child and the school. While in principle we

can think of modelling such a game, we choose to instead approximate it with a threshold crossing

model as described in section 2. As shown in Heckman & Navarro (2007), this model is in fact

nonparametrically identi�ed and it follows from the same arguments used in section 3.2.3.

The actual form of the model for retention we use is the following. We write the latent index V

as31

Vi,t = λ0,t +Xi,tλx + Zi,tλz +AiρA,t +BiρB,t + CiρC,t +
t∑

h=2

η
(h)
i ψ

(h)
t + υi,t for t = T, ..., T̄ .

30See Heckman & Navarro (2004).
31Since we know the latent index is nonparametrically identi�ed, we could instead write it as a polynomial on the

variables instead of a linear function. Given that the number of parameters we are estimating is already 471, and the
number of parameters would increase considerably, we stick with the linear form.
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Di (t) would then be de�ned as

Di (t) = 1
(
Vi (t) > 0|{Vi (τ) ≤ 0}t−1

τ=1

)
.

Notice that, consistent with our data, we allow for exclusions in the index. That is we allow for

some variables (Z) to be included in the retention equations but not in the outcomes. In the

data this correspond to 7 binary measures of whether the school has a policy that allows children

to be retained in any grade, to be retained because of immaturity, to be retained at the parents

request and to be retained without parental authorization. As shown in Table 2, these policies vary

considerably across schools. In the 1998-1999 school year seven percent of schools in our sample do

not permit retention for any reason. Seventy-�ve percent permit retention by parents' request, and

only 45 percent permit retention without parents' permission.

As shown in section 3.2.3, the distributions of the unobservables (A,B,C, {η(h)}T
h=2, ε, υ) in the

model are nonparametrically identi�ed. For estimation purposes, however, we specify all of the

distributions and allow them to follow mixtures of normals with either two or three components.

Second, while our identi�cation arguments are presented in a sequential fashion and lead naturally

to a multistep estimation procedure we estimate all of the 471 parameters in the model jointly by

maximum likelihood in one single step.

4.2.1 Model Fit

In Tables 5 and 6 we present evidence of the �t of the model. Table 5 shows that the model replicates

the probabilities of retention in the data remarkably well. In fact, we cannot reject the hypothesis

of equality of predicted and actual probabilities. In Table 6 we show that the same holds true for

the cognitive and behavioral measures. The model �ts the means and variances of all the measures

and we cannot reject that these are the values predicted by the model.

4.2.2 Unobservable Abilities

Tables 7 and 8 present the variance decomposition of unobserved abilities for cognitive and behav-

ioral ability respectively as de�ned in equations (6) to (7). Table 7 shows that for reading tests

cognitive ability accounts for about half the initial variance, whereas by period 4 general ability

accounts for half. In contrast for math scores, initially general and cognitive ability explain about

30% of the variance, whereas by period 4 general ability again dominates, explaining 60%. The

persistent factor accounts for a relatively small portion of the unobservable variance. Turning to

Table 8, the fraction of the unobservable behavioral trait explained by behavioral ability is much

higher in all cases then general ability. As behavioral traits are only measured in period 1, we

cannot compare how the variance decomposition varies over time or permit persistent factors in this

dimension.

Figures 1 through 3 present evidence for selection on the components of ability. Figure 1

describes the distribution of general ability by retention status; Figure 2 corresponds to behavioral
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ability and Figure 3 to general ability. Not surprisingly, students who are not retained have higher

general and cognitive ability that those who are retained. Students who are retained in kindergarten

have generally higher cognitive and general ability than those retained early. Students retained in

kindergarten also have higher general ability than those who are retained later, though cognitive

ability is comparable. The pattern for behavioral ability is less clear. Students who are retained early

have generally lower behavioral ability than the rest, but those who are retained late have higher

behavioral ability than those retained early or in kindergarten. The distribution of behavioral ability

is very similar for students who are not retained and for those who are retained in kindergarten.

That is, behavioral aspects seem to play more of a role in the decision to retain a student in early

grades.

4.2.3 Average Treatment Parameters

In Tables 9 and 10 we present average test scores by potential and actual retention status for the

2003-04 school year for reading and math respectively. Achievement is measured in logs of the IRT

score. The rows correspond to potential retention states whereas the columns correspond to actual

status. Thus, the diagonal, which is shaded yellow, describes the observed average achievement

for students, whereas the o�-diagonals present counterfactuals. In all cases we condition on age

being 11 at test date so our estimates include the e�ect of the grade di�erential between not being

retained therefore taking the test in the 5th grade and having repeated a grade therefore taking the

test while in the 4th grade. Comparing the rows in a given column, we �nd that a student who is

retained in kindergarten would not have received higher achievement if retained in another grade

or not retained. In contrast, a student who is retained late would have received slightly higher

achievement if not retained and the highest achievement if retained in kindergarten. Interestingly,

students who are not retained would have achieved higher if retained in kindergarten or early but

not late grades.

Tables 11 and 12 describe treatment on the treated (and the untreated) as well as unconditional

average treatment parameters for both reading and math test scores in the 2003-04 school year

(corresponding to the average achievement described in Tables 9 and 10). The average treatment

e�ects in the last column show that students perform 7.5% higher in reading and 10% higher in

math by 2003-04 (period 4) if retained in kindergarten versus not being retained and that these

estimates are statistically signi�cantly di�erent from 0. A student who is retained in kindergarten

performs 4% higher in math by 2003-04 than if not retained, but the e�ect on reading achievement

is not statistically signi�cantly di�erent from 0. In contrast, students who are retained early would

have performed signi�cantly better if not retained, 12.4% for reading and 9.8% for math. Also,

students who are retained late would have performed marginally better in math if not retained,

2.4%.

While we have focused the discussion on the return in terms of longer term outcomes, i.e., test

scores in 2003-04, short term outcomes may also be of interest. We also consider the e�ect of

retention on test scores in earlier periods. Figure 4 compares the average treatment e�ect at the
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di�erent time periods for reading and math. We focus on the e�ect of being retained in kindergarten

versus not being retained. The immediate e�ect of retention on kindergarten test scores is negative,

but the return is positive by the early grades and even more positive in the later grades. Interestingly,

this appears to be in contrast to evidence in the literature which suggests that any gain in retention

may actually be short-lived.32 Figure 5 shows that a similar pattern holds for the treatment on the

treated, i.e., for the subpopulation who is actually retained in kindergarten.

Interestingly, the results above suggest that the large positive average treatment e�ect of reten-

tion in kindergarten derives mainly from the e�ect on the students who were not retained. Figures

6 to 9 provide further evidence about how the treatment e�ect varies by di�erent measures of stu-

dents abilities. Figures 6 and 7 describe how the treatment e�ect of being retained vary across the

percentiles of the general and cognitive ability distribtuions for reading. For reading, the bene�ts of

retention increase with ability for both kindergarten and early retention, particularly with cognitive

ability. Late retention exhibits the opposite pattern, with lower achieving students demonstrating

small improvements due to retention and higher-achieving students small losses. Figures 8 and 9

show a similar pattern for math, though the e�ect of late retention across ability types is relatively

�at in this case. Some of this contrast in pattern for late retention may be driven by the time

elapsed since retention, as described above.

These apparently counterintuitive �nding of the higher ability students bene�ting from retention

more than lower ability students may be explained by �rst observing that the test scores reported

in the ECLS-K are not actually those used to determine retention decisions. High ability students

who are retained may bene�t more than low ability students from that additional year if they

bene�t more from any additional attention given to them by their teachers or parents. This �nding

is further supported by research by Bedard & Dhuey (2006) and others suggesting that the age

relative to other children in the classroom matters for performance. The disparity in �ndings across

high and low ability students may simply follow because a lower ability student who is retained may

be discouraged if he �nds out that now younger students are outperforming him.

Importantly, this �nding may help to reconcile some of the mixed evidence on the e�ects of

grade retention in the literature. E�ectively, when there is a higher threshold for students to be

promoted to the next grade, higher ability students will be retained. A regression discontinuity

design that focuses on these marginal students may �nd a positive e�ect of retention even if lower-

ability students are being hurt by the design.

To attempt to recover parameters directly related to policy changes, we consider outcomes if we

�x all of retention policy variables to one for all individuals. That is, our policy experiment permits

all children to be retained for any reason, including immaturity, by parents' request, and without

parents' permission. Tables 13 and 14 present average math and reading gains by students actual

retention status if their retention status changes as a result of the policy change. For instance, the

achievement of those students who are not retained before the policy but that as consequence of

the policy are now retained in kindergarten (the compliers in the LATE language) would increase

32See Frederick & Hauser (2006) for a nice summary of the literature.
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by 7.7% in reading and 10.3% in math. There are similarly positive returns for students who are

retained early or late if the policy induces them to be retained earlier. In contrast, the returns are

generally negligible for students if the policy change induces them into being retained early or late.

5 Conclusion

In this paper we develop and apply a framework for the analysis of dynamic treatment e�ects.

Our analysis of grade retention shows the usefulness of extending the standard static framework to

estimate dynamic treatment e�ects. First, our results show evidence of dynamic selection, which is

not accounted for in previous studies in the literature. Second, our estimates show that the e�ects

of repeating a grade on tests scores at age 11 vary considerably depending on when the student

is retained, i.e., dynamic treatment e�ects. In general the e�ect of being retained in kindergarten

is positive, but not if retained in later grades. Interestingly, the short run e�ects of retention are

negative, i.e., the e�ects of being retained in kindergarten versus not retained on kindergarten test

scores. However, the e�ect turns positive in the long run, by 2003-04 when students are either in 4th

or 5thgrade depending on retention status. We generally �nd that a more liberal retention policy

produces positive bene�ts for students who are a�ected, particularly if it causes them to be retained

in kindergarten. Another bene�t of our framework is that we can contrast the e�ects of retention

not just across time but across students of di�erent unobservable abilities. Interestingly, we �nd

that generally higher ability students bene�t more from retention than lower ability students.

The analysis in this paper could clearly be applied in other situations like treatments associated

with health status indicators and/or costs of particular treatments. One could also analyze the

e�ects of advertisement at di�erent stages in the life of a product, the e�ect of attending a segregated

school at di�erent stages, etc.

The framework we develop can be thought of as a midpoint between the standard reduced form

static treatment literature and a fully speci�ed structural dynamic discrete choice model. In many

situations it is not clear how to specify the selection process and our analysis provides a reduced

form alternative (with all the advantages and problems associated with it). Furthermore, since

extending it to the case in which treatment is not an absorbing state is straightforward (by letting

treatment occur not only the �rst time a threshold is crossed but also the second, third, etc) it can

be applied in more complicated situations.
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A Tables and Figures

A.1 Tables

# of 

Observations
Mean

Standard 

Deviation
Minimum Maximum

# of 

Observations
Mean

Standard 

Deviation
Minimum Maximum

Male 7799 0.50 0.50 0 1 2491 0.47 0.50 0 1

White 7799 0.64 0.48 0 1 2491 0.76 0.43 0 1

Black 7799 0.13 0.33 0 1 2491 0.07 0.25 0 1

Hispanic 7799 0.13 0.34 0 1 2491 0.09 0.29 0 1

Body Mass Index 7799 16.24 2.19 8.28 32.52 2491 20.25 4.57 11.29 42.2

Age 7799 5.64 0.35 4.83 6.92 2491 11.11 0.35 10.25 12.25

Age squared 7799 31.99 4.04 23.36 47.84 2491 123.52 7.84 105.06 150.06

Number of Siblings 7799 1.43 1.11 0 11 2491 1.49 1.05 0 12

Family Income 7799 6.98 3.14 0 12 2491 8.03 2.82 0 12

Nonenglish Spoken at 

Home
7799 0.10 0.30 0 1 2491 0.00 0.00 0 0

TV Rule at Home 7799 0.89 0.32 0 1 2491 0.90 0.29 0 1

Mother in Household 7799 0.02 0.13 0 1 2491 0.02 0.15 0 1

Father in Household 7799 0.19 0.39 0 1 2491 0.16 0.37 0 1

Mother's Education 7799 3.37 1.78 0 8 2491 3.80 1.76 0 8

Fatehr's Education 7799 2.90 2.27 0 8 2491 3.33 2.34 0 8

Number of Kids in Class 7799 20.52 5.33 1 52 2491 20.88 4.20 8 34

Number of Kids in Class 

squared
7799 449.31 249.76 1 2704 2491 453.77 180.26 64 1156

Teacher's Rating of Class 

Behavior
7799 1.81 1.94 0 14 2491 1.45 0.98 0 14

Percentage of Minority 

Students (categorical)
7799 1.44 1.47 0 4 2491 1.18 1.34 0 4

Public School 7799 0.78 0.41 0 1 2491 0.77 0.42 0 1

School's Average Daily 

Atendance
7799 3.29 1.20 0 5 2491 3.53 0.94 0 5

TT1 Funds Received by 

School
7799 0.63 0.48 0 1 2491 0.59 0.49 0 1

Crime a Problem 7799 0.45 0.57 0 2 2491 0.29 0.50 0 2

Students Bring Weapons 7799 0.18 0.38 0 1 2491 0.10 0.29 0 1

Children or Teachers 

Physically Attacked
7799 0.37 0.48 0 1 2491 0.26 0.44 0 1

Security Measures in 

School
7799 0.57 0.50 0 1 2491 0.79 0.41 0 1

Parents Involved in 

School Activities
7799 2.95 0.90 0 4 2491 3.11 0.91 0 4

Policy: Retained for any 

Reason
7712 0.93 0.25 0 1 1946 0.91 0.28 0 1

Policy: Retained for 

Immaturity
7159 0.76 0.43 0 1 1946 0.87 0.34 0 1

Policy: Retained by 

Parents' Request
7159 0.75 0.43 0 1 1946 0.82 0.38 0 1

Policy: Retained without 

Parents' Permission
7159 0.45 0.50 0 1 1946 0.49 0.50 0 1

Source: ECLS-K Longitudinal Kindergarten-Fifth Grade Public-Use Data File

2003-04 School Year

Table 2: Summary Statistics

1998-99 School Year

Note: For our counter-factual analyses, we only use data on kids whose covariates and retention history are observable (i.e. not missing) for all time periods.  Thus, we end up with much 

fewer observations at the 2003-04 school year.
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Dependent Variable
Kindergarten 

Math Score
#

Retained in Kindergarten -0.19* -0.18* -0.07* -0.07*

Retained Early (1st or 2nd grade) -0.29* -0.24* -0.15* -0.15*

Retained Late (3rd or 4th grade) -0.20* -0.18* -0.11* -0.10*

Child's Characteristics Yes Yes Yes Yes

Family Characteristics Yes Yes Yes Yes

School Characteristics Yes Yes Yes Yes

Age and Age Squared Yes Yes Yes Yes

Kindergarten Cognitive Tests -- No Yes Yes

Kindergarten Behavioral Measures -- No No Yes

No. of Observations 7771 3964 3884 3854

P-value for KI = EA = LA
+

0.000 0.058 0.010 0.011

P-value for KI = EA 0.000 0.062 0.003 0.003

P-value for EA = LA 0.002 0.039 0.087 0.098

P-value for KI = LA 0.730 0.945 0.255 0.261

R squared 0.354 0.316 0.524 0.527

* Statistically significant at 5% level

#
 1998-99 School Year

Note: If the p value is small compared to the critical value, we reject the hypothesis of equality of coefficients. P values less than 0.05 

are colored with yellow. Yes/No indicates if each group of variables is included as controls.

+
 KI, EA, and LA stand for the coefficient of the dummy variable for "retained in kindergarten", "retained early", and "retained late", 

respectively.

Math Score for 2003-04 School Year

Table 3: Evidence for Dynamic Selection and Treatment Effect (Math Score)
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Dependent Variable
Kindergarten 

Reading Score
#

Retained in Kindergarten -0.12* -0.17* -0.09* -0.09*

Retained Early (1st or 2nd grade) -0.18* -0.22* -0.15* -0.15*

Retained Late (3rd or 4th grade) -0.10* -0.15* -0.09* -0.09*

Child's Characteristics Yes Yes Yes Yes

Family Characteristics Yes Yes Yes Yes

School Characteristics Yes Yes Yes Yes

Age and Age Squared Yes Yes Yes Yes

Kindergarten Cognitive Tests -- No Yes Yes

Kindergarten Behavioral Measures -- No No Yes

No. of Observations 7605 3961 3881 3851

P-value for KI = EA = LA
+

0.000 0.047 0.034 0.050

P-value for KI = EA 0.000 0.161 0.029 0.045

P-value for EA = LA 0.001 0.017 0.039 0.045

P-value for KI = LA 0.409 0.422 0.987 0.932

R squared 0.265 0.365 0.516 0.515

* Statistically significant at 5% level

#
 1998-99 School Year

+
 KI, EA, and LA stand for the coefficient of the dummy variable for "retained in kindergarten", "retained early", and "retained late", 

respectively.

Table 4: Evidence for Dynamic Selection and Treatment Effect (Reading Score)

Reading Score for 2003-04 School Year

Note: If the p value is small compared to the critical value, we reject the hypothesis of equality of coefficients. P values less than 0.05 

are colored with yellow. Yes/No indicates if each group of variables is included as controls.
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Predicted Predicted Actual Actual

Mean Standard Deviation Mean Standard Deviation

3.067 0.352 3.085 0.347

3.357 0.291 3.362 0.281

3.093 0.367 3.097 0.361

-0.019 0.998 0 1

-0.006 1.007 0 1

-0.005 1.012 0 1

Predicted Standard Error

Retained in Kindergarten 5.06% 5.14%

Retained Early                    

(1st or 2nd grade)
3.64% 3.62%

Retained Late                          

(3rd or 4th grade)
1.07% 1.03%

Table 6: Predicted and Actual Retention Probabilities 

(Conditional on Survival)*

Data

Model

Math Test 

Note:  Behavioral measures are standardized to have mean zero and variance equal to one.  These figures are calculated from 500000 simulations based on 

the estimated model.

Table  5: Predicted and Actual Means and Standard Deviations of Kindergarten             

(1998-99 School Year) Test Scores/Measures

Note: The table caclulates the probability of retention at t, conditional on not having been retained before t. 

Standard Errors obtained via 200 bootstrap replications.

Test / Measure

Interpersonal Skills

General Test 

Approach to Learning 

Self-Control

Reading Test 
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1 2 3 4 1 2 3 4

General Ability 0.508 0.609 -- -- General Ability 0.193 0.356 0.546 0.513

Behavioral Trait -- -- -- -- Behavioral Trait -- -- -- --

Cognitive Ability 0.024 0.003 -- -- Cognitive Ability 0.510 0.319 0.153 0.176

Persistent Factor 1 -- 0.025 -- -- Persistent Factor 1 -- 0.001 0.007 0.014

Persistent Factor 2 -- -- -- -- Persistent Factor 2 -- -- 0.047 0.049

Persistent Factor 3 -- -- -- -- Persistent Factor 3 -- -- -- 0.011

1 2 3 4 1 2 3 4

General Ability 0.382 0.551 0.637 0.612 General Ability -- -- 0.670 0.651

Behavioral Trait -- -- -- -- Behavioral Trait -- -- -- --

Cognitive Ability 0.325 0.149 0.122 0.111 Cognitive Ability -- -- 0.042 0.074

Persistent Factor 1 -- 0.042 0.058 0.055 Persistent Factor 1 -- -- 0.031 0.026

Persistent Factor 2 -- -- 0.012 0.020 Persistent Factor 2 -- -- 0.008 0.020

Persistent Factor 3 -- -- -- 0.004 Persistent Factor 3 -- -- -- 0.005

1 2 3 4 1 2 3 4

General Ability 0.170 -- -- -- General Ability 0.032 -- -- --

Behavioral Trait 0.453 -- -- -- Behavioral Trait 0.693 -- -- --

Cognitive Ability -- -- -- -- Cognitive Ability -- -- -- --

Persistent Factor 1 -- -- -- -- Persistent Factor 1 -- -- -- --

Persistent Factor 2 -- -- -- -- Persistent Factor 2 -- -- -- --

Persistent Factor 3 -- -- -- -- Persistent Factor 3 -- -- -- --

1 2 3 4

General Ability 0.051 -- -- --

Behavioral Trait 0.683 -- -- --

Cognitive Ability -- -- -- --

Persistent Factor 1 -- -- -- --

Persistent Factor 2 -- -- -- --

Persistent Factor 3 -- -- -- --

Table 7:   Fraction of the Unobservable Variance Explained by Each Factor for Cognitive Scores by Time Period

Note:  Let Vc=var(Cαc) and let Vu=var(Cαc+Aαa+Bαb+ε) for the parameters of a given equation. Then the fraction of the variance explained by the cognitive factor, for example, is given by 

Vc/Vu. These figures are calculated from 500000 simulations based on the estimated model.

General Test

Math Test Science Test

Reading Test
Time Period Time Period

Time Period Time Period

Note:  Let Vc=var(Cαc) and let Vu=var(Cαc+Aαa+Bαb+ε) for the parameters of a given equation. Then the fraction of the variance explained by the cognitive factor, for example, is given by 

Vc/Vu. These figures are calculated from 500000 simulations based on the estimated model.

Table 8:  Fraction of the Unobservable Variance Explained by Each Factor for Behavioral Measures by Time Period

Measure for Approach 

to Learning 

Measure for Self-

Control

Measure for 

Interpersonal Skills

Time Period Time Period

Time Period
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Actual Retention 

Status
Potential Retention 

Status Not Retained
Retained in 

Kindergarten
Retained Early Retained Late

Not Retained      4.966 4.829 4.761 4.760 4.950

Retained in 

Kindergarten
5.052 4.839 4.661 4.791 5.024

Retained Early 4.991 4.788 4.638 4.748 4.966

Retained Late 4.941 4.838 4.790 4.745 4.929

Factual Results

Actual Retention 

Status
Potential Retention 

Status Not Retained
Retained in 

Kindergarten
Retained Early Retained Late

Not Retained      4.757 4.589 4.498 4.476 4.736

Retained in 

Kindergarten
4.871 4.626 4.428 4.537 4.839

Retained Early 4.771 4.550 4.399 4.497 4.744

Retained Late 4.766 4.585 4.479 4.461 4.744

Factual Results

would obtain if the 

kid was

Note: Let T = 0,1,2, or 3 represent the actual retention status of a kid: never retained, retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 4), 

respectively. Let S(i) be the potential test score at 2003-04 school year if the kid were retained at time i=0,1,2,3. The row i, column j element of this table calculates E[S(i) | D=j].  For 

example, a kid who was actually not retained would get 4.771 on average if the kid were retained at 1 or 2 grade instead. When calculating them, we keep kid's age fixed at 11.

Unconditional

Unconditional

Note: Let T = 0,1,2, or 3 represent the actual retention status of a kid: never retained, retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 4), 

respectively. Let S(i) be the potential test score at 2003-04 school year if the kid were retained at time i=0,1,2,3. The row i, column j element of this table calculates E[S(i) | D=j].  For 

example, a kid who was actually not retained would get 4.991 on average if the kid were retained at 1 or 2 grade instead. When calculating them, we keep kid's age fixed at 11.

Table 9: Average Reading Test Scores by Potential and Actual Retention Status: 2003-04 School Year 

Table 10: Average Math Test Scores by Potential and Actual Retention Status: 2003-04 School Year  

A kid who is actually                                                                                                              

(i.e. conditional on retention status being:)

would obtain if the 

kid was

A kid who is actually                                                                                                                 

(i.e. conditional on retention status being:)
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Not Retained
Retained in 

Kindergarten
Retained Early Retained Late

0.085 0.008 -0.104 0.032 0.074

(0.0038) (0.0081) (0.0137) (0.0144) (0.0036)

0.024 -0.043 -0.126 -0.008 0.015

(0.0023) (0.0050) (0.0080) (0.0094) (0.0021)

-0.025 0.007 0.031 -0.008 -0.021

(0.0023) (0.0076) (0.0109) (0.0148) (0.0019)

Figures in parentheses are standard errors which were obtained via 200 bootstrap replications

         

           

Not Retained
Retained in 

Kindergarten
Retained Early Retained Late

0.114 0.035 -0.075 0.049 0.102

(0.0049) (0.0082) (0.0122) (0.0131) (0.0048)

0.014 -0.040 -0.098 0.016 0.008

(0.0013) (0.0057) (0.0084) (0.0114) (0.0010)

0.009 -0.004 -0.020 -0.024 0.007

(0.0010) (0.0039) (0.0065) (0.0088) (0.0006)

Figures in parentheses are standard errors which were obtained via 200 bootstrap replications

Retained in Kindergarten                        

vs                                      

Not Retained

Retained Early                            

vs                                     

Not Retained

Note: Let T = 0,1,2, or 3 represent the actual retention status of a kid: never retained, retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 

4), respectively. Let S(i) be the potential test score if the kid were retained at time i=0,1,2,3. The row i, column j element of this table calculates E[S(i) - S(0) | D=j].  For 

example, the test score of a kid who was actually not retained would increase by 0.014 if he were retained at 1 or 2 grade instead. When calculating these figures, we keep 

kid's age fixed at 11.

ATE          

(unconditional)

Retained Late                            

vs                                     

Not Retained

Retained in Kindergarten                        

vs                                     

Not Retained

Retained Early                                  

vs                                     

Not Retained

Retained Late                              

vs                                     

Not Retained

Table 11: Average Reading Test Score Gain by Retention Status: 2003-04 School Year

Table 12: Average Math Test Score Gain by Retention Status: 2003-04 School Year

Average Gain

Average Gain

A kid who is actually                                                                                                                   

(i.e. conditional on the retention status being)

Note: Let T = 0,1,2, or 3 represent the actual retention status of a kid: never retained, retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 

4), respectively. Let S(i) be the potential test score if the kid were retained at time i=0,1,2,3. The row i, column j element of this table calculates E[S(i) - S(0) | D=j].  For 

example, the test score of a kid who was actually not retained would increase by 0.024  if he were retained at 1 or 2 grade instead. When calculating these figures, we keep 

kid's age fixed at 11.

ATE           

(unconditional)

A kid who is actually                                                                                                                  

(i.e. conditional on the retention status being:)
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Not Retained
Retained in 

Kindergarten
Retained Early Retained Late

Not Retained      -- 0.077 0.019 -0.021

Retained in 

Kindergarten
-- -- -- --

Retained Early -- 0.058 -- --

Retained Late -- 0.098 0.040 --

Not Retained
Retained in 

Kindergarten
Retained Early Retained Late

Not Retained      -- 0.103 0.010 0.006

Retained in 

Kindergarten
-- -- -- --

Retained Early -- 0.093 -- --

Retained Late -- 0.098 0.004 --

   Notice that if a kid is retained at some point without the policy change, the kid will be retained with the policy change as well because the retention policy became 

more stringent. Likewise the retention with the policy change can not be later than without the policy change. When calculating these values, we keep kid's age fixed at 

11.

Retention Status with Policy Change

Table 13: Policy Relevant Parameters on Average Reading Test Scores by Retention Status of 

Before and After Policy Change: 2003-04 School Year 

Note: We fix all of retention policy variables to one for all individuals. That is all children can be retained by any reason including "immature," can be retained by 

parents' request, and can be retained without parents' permission.  We call this the policy change in this simulation. Let T = 0,1,2, or 3 represent the actual retention 

status of a kid: never retained, retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 4), respectively. For kid k who is retained at T=i 

without the policy change and would be retained at T=j with the policy change, let Sk(i,j :1) and Sk(i,j :0) be the test score in the 2003-04 school year with and without 

the policy change, respectively. The row i, column j element of this table calculates E[Sk(i,j :1) - Sk(i,j :0)]. For example, the score of a kid who was not retained without 

the policy change would increase by 0.077 on average if the kid were retained in kindergarten due to the policy change. Each average is calculated based on 1000 

such individuals. 

Retention Status without 

Policy Change

Retention Status with Policy Change

Retention Status without 

Policy Change

Note: We fix all of retention policy variables to one for all individuals. That is all children can be retained by any reason including "immature," can be retained by 

parents' request, and can be retained without parents' permission.  We call this the policy change in this simulation. Let T = 0,1,2, or 3 represent the actual retention 

status of a kid: never retained, retained in kindergarten, retained early (at grade 1 or 2), or retained late (at grade 3 or 4), respectively. For kid k who is retained at T=i 

without the policy change and would be retained at T=j with the policy change, let Sk(i,j :1) and Sk(i,j :0) be the test score in the 2003-04 school year with and without 

the policy change, respectively. The row i, column j element of this table calculates E[Sk(i,j :1) - Sk(i,j :0)]. For example, the score of a kid who was not retained without 

the policy change would increase by 0.077 on average if the kid were retained in kindergarten due to the policy change. Each average is calculated based on 1000 

such individuals. 

Table 14: Policy Relevant Parameters on Average Math Test Scores by Retention Status of 

Before and After Policy Change: 2003-04 School Year 

   Notice that if a kid is retained at some point without the policy change, the kid will be retained with the policy change as well because the retention policy became 

more stringent. Likewise the retention with the policy change can not be later than without the policy change. When calculating these values, we keep kid's age fixed at 

11.
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A.2 Figures

L et f(A ) denote the probability density function of general
 ability. We assume that f(A ) is a mixture
of normals. L et T =0,1,2,3 denote retention status: not retained, retained in kinderg
arten, retained
early (1 or 2 grade) and retained late (3 or 4). T he graph 
shows f(A |T =t) for each retention status.
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Figure 1
Density of General A bility Conditional on R etention Status
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L et f(B ) denote the probability density function of behavio
ral ability. We assume that f(B ) is a mixture
of normals. L et T =0,1,2,3 denote retention status: not retained, retained in kinderg
arten, retained
early (1 or 2 grade) and retained late (3 or 4). T he graph 
shows f(B |T =t) for each retention status.
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Figure 2
Density of B ehavioral A bility Conditional on R etention Stat
us

B ehavioral A bility
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L et f(C) denote the probability density function of cogniti
ve ability. We assume that f(C) is a mixture
of normals. L et T =0,1,2,3 denote retention status: not retained, retained in kinderg
arten, retained
early (1 or 2 grade) and retained late (3 or 4). T he graph 
shows f(C|T =t) for each retention status.
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Figure 3
Density of Cognitive A bility Conditional on R etention Statu
s

Cognitive A bility
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Figure 4: Change in ATE Over time (Reading and Math Score)
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Let S(t,1) and S(t,0) be the potential test scores at time t if the kid were retained 

in kindergarten and if the kid were not retained, respectively. The graph shows 

E[S(t,1)-S(t,0)] for t=1,2, and 3 for each test score.
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Figure 5: Change in Treatment Over Time For Students 
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Let S(t,1) and S(t,0) be the potential test scores at time t if the kid were retained 

in kindergarten and if the kid were not retained, respectively. The graph shows 

E[S(t,1)-S(t,0)] for t=1,2, and 3 for each test score.
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