
When is the Government Spending Multiplier
Large?

Lawrence Christiano, Martin Eichenbaum, and Sergio Rebelo

Northwestern University

July 2009 (preliminary version)

Abstract

When the zero bound on nominal interest rates is binding.



1. Introduction

A classic question in macroeconomics is: what is the size of the government

spending multiplier? There are very large empirical and theoretical literatures

that grapple with this question. In the empirical literature authors such as Barro

(1981) argue that the multiplier is around 0.8 while authors such as Ramey (2008)

estimate the multiplier to be closer to 1.2. These differences primarily reflect the

use of alternative identifying assumptions to isolate exogenous movements in gov-

ernment spending.

Cogan, Cwik, Taylor, and Wieland (2009) report that in the model proposed

by Christiano, Eichenbaum and Evans (2005) and extended by Smets andWouters

(2007) the government spending multiplier is roughly one on impact and declines

rapidly thereafter. An increase in government spending also increases output in

frictionless real business cycle models. In these models the multiplier effect of

temporary increases in government spending is typically less than one (see e.g.

Aiyagari, Christiano, and Eichenbaum (1992), Baxter and King (1993), Burnside,

Eichenbaum and Fisher (2004), Ramey and Shapiro (1998), and Ramey (2008)).

Much of the existing empirical literature is drawn from data in which the zero

bound on nominal interest rates is arguably not binding. In addition, the general

equilibrium models that are used to calculate the government spending multiplier

abstract from the zero bound on nominal interest rates. In this paper we build on

insights in Eggertsson and Woodford (2003) and Christiano (2004) to argue that,

whenever the zero bound on nominal interest rates is binding, the government

spending multiplier is much bigger than one. In our model it can be socially

optimal to raise government spending in response to the shocks that make the zero

bound on the nominal interest rate binding. In fact, it can be optimal to increase

government spending even when agents do not value government consumption. We
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articulate this argument in a model in which the government spending multiplier

is quite modest when the zero bound is not binding.

Our analysis proceeds in two steps. First, we consider an economy with Calvo-

style pricing frictions, no capital, and a monetary authority that follows a standard

Taylor rule. We study the effects of two types of shocks. The first is a temporary,

unanticipated rise in the discount factor of the representative agent. The second

is a fear of deflation shock, i.e. self-fulfilling expected deflation induced by a

sunspot.

Other things equal, the first shock increases desired savings. Absent capital,

aggregate savings must be zero in equilibrium. When the shock is small enough,

the real interest rate falls and there is a modest decline in output. However, when

the shock is large enough, the zero bound becomes binding before the real interest

rate falls by enough to make aggregate savings zero. The only force that can

induce the fall in saving required to re-establish equilibrium is a large transitory

fall in output

The fall in output must be very large because hitting the zero bound creates an

economic meltdown. A fall in output lowers marginal cost and generates expected

deflation which leads to a rise in the real interest rate. This increase in the

real interest rate leads to a rise in desired savings which partially undoes the

effect of the fall in output. As a consequence, the total fall in output required

to reduce savings to zero is very large. This scenario captures the paradox of

thrift originally emphasized by Keynes (1936) and recently analyzed by Krugman

(1998), Eggertsson and Woodford (2003), and Christiano (2004). The government

spending multiplier is large when the zero bound is binding because an increase in

government spending lowers desired national savings and shortcuts the meltdown

created by the paradox of thrift.

Consider now a fear of deflation shock. Suppose that for non-fundamental
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reasons agents expect a large fall in prices in the next period. For a given nom-

inal interest rate, the higher is the expected rate of deflation the higher is the

real interest rate and the higher is desired savings. Recall that savings must be

zero in equilibrium. So, as above, the nominal interest rate could hit zero before

the real interest rate falls by enough to make savings equal to zero. When the

zero bound is binding the equilibrium is established by a large, transitory fall in

output. The fall in output is associated with a fall in marginal cost and expected

deflation, thus validating agents’ initial expectation of a fall in prices. The gov-

ernment spending multiplier is large in these circumstances because an increase in

government purchases counteracts the rise in desired private savings induced by

the fear of deflation. In our simple model self-fulfilling fear of deflation equilibria

always exist. These equilibria capture the negative consequences of deflation that

some policy makers are concerned about.

In the second step of our analysis we incorporate capital accumulation into

the model. In addition to the discount factor shock we also allow for a neutral

technology shock and an investment-specific shock. For computational reasons we

consider temporary shocks that make the zero bound binding for a deterministic

number of periods. Once again, we find that the government spending multiplier is

larger when the zero bound is binding. Allowing for capital accumulation has two

effects. First, for a given size shock it reduces the likelihood that the zero bound

becomes binding. Second, when the zero bound binds, the presence of capital

accumulation tends to increase the size of the government spending multiplier.

The intuition for this result is that, in our model, investment is a decreasing

function of the real interest rate. In the zero bound the real interest rate generally

rises. So, other things equal, savings and investment diverge as the real interest

rate rises, thus exacerbating the meltdown associated with the zero bound. As a

result, the fall in output necessary to bring savings and investment into alignment
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is larger than in the model without capital.

One practical objection to using fiscal policy when the zero bound binds is

that there are long lags in implementing an increase in government spending.

Motivated by this consideration we study the size of the government spending

multiplier in the presence of implementation lags. We find that the key determi-

nant of the size of the multiplier is the state of the world in which new government

spending actually comes on line. If it comes on line in future periods when the

zero bound is binding there is a large effect on current output. If it comes on line

in future periods where the zero bound is not binding the current effect on output

is smaller.

According to our analysis the response of aggregate demand to shocks plays

a key role in making the zero-bound constraint binding. In general the more

responsive aggregate demand is to shocks the more likely the zero bound binds

after various shocks. In practice researchers such as Christiano, Eichenbaum and

Evans (2005) (henceforth CEE) and Smets and Wouters (2005, 2007) find that

it is important to include sources of inertia in aggregate demand in order for

DSGE models to fit the data. Consequently we investigate the robustness of

our results to modifying our benchmark model to allow for the sources of inertia

that these researchers stress. First, we adopt the investment adjustment cost

specification proposed by CEE. Second, we use the model developed in Altig,

Christiano, Eichenbaum, and Lindé (2005), which allows for habit formation in

consumption as well as the CEE specification for investment adjustment costs. We

find that our basic results are robust in the following sense. Incorporating sources

of inertia in aggregate demand makes it less likely that the zero bound binds after

a shock. However, conditional on the zero bound binding the government spending

multiplier is substantially larger than it would be under normal circumstances.

As emphasized by Eggertsson and Woodford (2003), an alternative way to
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escape the negative consequences of a shock that makes the zero bound binding

is for the central bank to commit to future inflation. We abstract from this

possibility is this paper. We do so for a number of reasons. First, this theoretical

possibility is well understood. Second, we do not think that it is easy in practice

for the central bank to credibly commit to future high inflation. Third, the optimal

trade-off between higher government purchases and anticipated inflation depends

sensitively on how agents value government purchases and the costs of anticipated

inflation. Studying this issue is an important topic for future research.

Our analysis is related to several recent papers on the zero bound. Eggertson

(2009) focuses on the effects of transitory tax cuts when the zero bound on nominal

interest rates binds. Bodenstein, Erceg, and Guerrieri (2009) analyze the effects

of shocks to open economies when the zero bound binds. Braun and Waki (2006)

study a model in which the zero bound is binding and use it to account for Japan’s

experience in the 1990s. Their results for fiscal policy are broadly consistent

with our results. Braun and Waki (2006) and Coenen and Wielandand (2003)

investigate whether alternative monetary policy rules could have avoided the zero

bound and have produced a more desirable economic outcome.

Our paper is organized as follows. In section 2 we analyze the size of the

government spending multiplier when the zero bound does not bind in a standard

new-Keynesian model without capital. In section 3 we modify the analysis to

incorporate a binding zero-bound constraint on the nominal interest rate. In

section 4 we extend the model to incorporate capital. In section 5 we discuss the

robustness of our results to allowing for various sources of inertia in aggregate

demand. Section 6 concludes.
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2. The standard multiplier in a model without capital

In this section we present a simple new-keynesian model and analyze its implica-

tions for the size of the “standard multiplier,” by which we mean the size of the

government spending multiplier when the zero bound is not binding.

Households The economy is populated by a representative household, whose

life-time utility, U , is given by:

U = E0

∞X
t=0

βt

"
[Cγ

t (1−Nt)
1−γ]

1−σ − 1
1− σ

+ v (Gt)

#
. (2.1)

Here E0 is the conditional expectation operator, and Ct, Gt, and Nt denote time-

t consumption, government consumption, and hours worked, respectively. We

assume that σ > 0, γ ∈ (0, 1), and that v(.) is a concave function.
The household budget constraint is given by:

PtCt +Bt+1 = Bt (1 +Rt) +WtNt + Tt, (2.2)

where Tt denotes firms’ profits net of lump-sum taxes paid to the government.

The variable Bt+1 denotes the quantity of one-period bonds purchased by the

household at time t. Also, Pt denotes the price level and Wt denotes the nominal

wage rate. Finally, Rt denotes the one-period nominal rate of interest that pays

off in period t. The household’s problem is to maximize utility given by equation

(2.1) subject to the budget constraint given by equation (2.2) and the condition

E0 limt→∞Bt+1/[(1 +R0)(1 +R1)...(1 +Rt)] ≥ 0.

Firms The final good is produced by competitive firms using the technology,

Yt =

µZ 1

0

Yt (i)
ε−1
ε di

¶ ε
ε−1

, ε > 1, (2.3)
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where Yt (i) , i ∈ [0, 1] denotes intermediate good i.

Profit maximization implies the following first-order condition for Yt (i):

Pt (i) = Pt

µ
Yt

Yt (i)

¶ 1
ε

, (2.4)

where Pt(i) denotes the price of intermediate good i and Pt is the price of the

homogeneous final good.

The intermediate good, Yt (i), is produced by a monopolist using the following

technology:

Yt (i) = Nt (i) ,

where Nt (i) denotes employment by the ith monopolist. We assume there is no

entry or exit into the production of the ith intermediate good. The monopolist

is subject to Calvo-style price-setting frictions and can optimize its price, Pt (i),

with probability 1− θ. With probability θ the firm sets:

Pt (i) = Pt−1 (i) .

The discounted profits of the ith intermediate good firm are:

Et

∞X
j=0

βt+jυt+j [Pt+j (i)Yt+j (i)− (1− ν)Wt+jNt+j (i)] , (2.5)

where ν = 1/ε denotes an employment subsidy which corrects in the steady state

the inefficiency created by the presence of monopoly power. The variable υt+j is

the multiplier on the household budget constraint in the Lagrangian representation

of the household problem. The variable Wt+j denotes the nominal wage.

Firm i maximizes its discounted profits, given by equation (2.5), subject to the

Calvo price-setting friction, the production function, and the demand function for

Yt (i), given by equation (2.4).
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Monetary policy We assume that monetary policy follows the rule:

Rt+1 = max(Zt+1, 0), (2.6)

where

Zt+1 = (1/β)(1 + πt)
φ1(Yt/Y )

φ2 (Rt/R)
ρR − 1.

The variable Y denotes the steady-state level of output. The variable πt denotes

the time-t rate of inflation. We assume that the φ1 > 1 and φ2 ∈ (0, 1).
According to equation (2.6) the monetary authority follows a Taylor rule as

long as the implied nominal interest rate is non-negative. Whenever the Taylor

rule implies a negative nominal interest rate, the monetary authority simply sets

the nominal interest rate to zero. For convenience we assume that steady-state

inflation is zero. This assumption implies that the steady-state nominal interest

rate is 1/β − 1.

Fiscal policy As long as the zero bound on the nominal interest rate is not

binding, government spending evolves according to:

Gt+1 = (1− ρ)G+ ρGt + εt+1. (2.7)

Here G is the level of government spending in the non-stochastic steady state and

εt+1 is an i.i.d. shock with zero mean. When the zero bound on the nominal

interest rate is binding, government spending is constant at a level Gl:

Gt = Gl.

To simplify our analysis, we assume that government spending and the em-

ployment subsidy are financed with lump-sump taxes. The exact timing of these

taxes is irrelevant because Ricardian equivalence holds under our assumptions.
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Equilibrium The economy’s resource constraint is:

Ct +Gt = Yt. (2.8)

A ‘monetary equilibrium’ is a collection of stochastic processes,

{Ct, Nt,Wt, Pt, Yt, Rt, Pt (i) , Yt (i) , Nt (i) , υt, Bt+1, πt},

such that for given
©
βt+1,Gt

ª
, the household and firm problems are satisfied, the

monetary and fiscal policy rules are satisfied, markets clear, and the aggregate

resource constraint is satisfied.

To solve for the equilibrium we use a linear approximation around the non-

stochastic steady state of the economy. Throughout, Ẑt denotes the percentage

deviation of Zt from its stochastic non-steady state value, Z. The equilibrium is

characterized by the following set of equations.

The Phillips curve for this economy is given by:

πt = Et

³
βπt+1 + κdMCt

´
, (2.9)

where κ = (1− θ) (1− βθ) /θ. In addition,MCt denotes real marginal cost which,

under our assumptions, is equal to the real wage rate. Absent labor market

frictions, the percent deviation of real marginal cost from its steady state value is

given by: dMCt = Ĉt +
N

1−N
N̂t. (2.10)

The linearized intertemporal Euler equation for consumption is:

γ (σ − 1)
1− g

N̂t − [γ (σ − 1) + 1] Ĉt (2.11)

= Et

½
γ (σ − 1)
1− g

N̂t+1 − [γ (σ − 1) + 1] Ĉt+1 + β(Rt+1 −R)− πt+1

¾
.

The linearized aggregate resource constraint is:

Ŷt = (1− g) Ĉt + gĜt, (2.12)
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where g = G/Y .

Combining equations (2.9) and (2.10) and using the fact that N̂t = Ŷt we

obtain:

πt = βEt (πt+1) + κ

∙µ
1

1− g
+

N

1−N

¶
Ŷt −

g

1− g
Ĝt

¸
. (2.13)

Similarly, combining equations (2.11) and (2.12) and using the fact that N̂t = Ŷt

we obtain:

Ŷt−g [γ (σ − 1) + 1] Ĝt = Et

n
− (1− g) [β (Rt+1 −R)− πt+1] + Ŷt+1 − g [γ (σ − 1) + 1] Ĝt+1

o
.

(2.14)

As long as the zero bound on the nominal interest rate does not bind, the

linearized monetary policy rule is given by:

Rt+1 −R = ρR (Rt −R) +
1− ρR

β

³
φ1πt + φ2Ŷt

´
.

Whenever the zero bound binds, Rt+1 = 0.

We solve for the equilibrium using the method of undetermined coefficients.

For simplicity, we begin by considering the case in which ρR = 0. Under the

assumption that φ1 > 1, there is a unique linear equilibrium in which πt and Ŷt

are given by:

πt = AπĜt, (2.15)

Ŷt = AY Ĝt. (2.16)

The coefficients Aπ and AY are given by:

Aπ =
κ

1− βρ

∙µ
1

1− g
+

N

1−N

¶
AY −

g

1− g

¸
, (2.17)

AY = g
(ρ− φ1)κ− [γ (σ − 1) + 1] (1− ρ) (1− βρ)

(1− βρ) [ρ− 1− (1− g)φ2] + (1− g) (ρ− φ1)κ
³

1
1−g +

N
1−N

´ . (2.18)
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The effect of an increase in government spending Using equation (2.12)

we can write the government spending multiplier as:

dYt
dGt

=
1

g

Ŷt

Ĝt

= 1 +
1− g

g

Ĉt

Ĝt

. (2.19)

This equation implies that the multiplier is less than one whenever consumption

falls in response to an increase in government spending. Equation (2.16) implies

that the government spending multiplier is given by:

dYt
dGt

=
AY

g
. (2.20)

From this equation we see that the multiplier is constant over time. To analyze

the magnitude of the multiplier outside of the zero bound we consider the following

baseline parameter values:

θ = 0.85, β = 0.99, φ1 = 1.5, φ2 = 0, γ = 0.29, g = 0.2, σ = 2, ρR = 0, ρ = 0.8.

(2.21)

These parameter values imply that κ = 0.03 and N = 1/3. Our baseline pa-

rameter values imply that the government spending multiplier is 1.05. Figure 1

displays the impulse response of output, inflation, and the nominal interest rate

to a government spending shock.

In our model Ricardian equivalence holds; from the perspective of the repre-

sentative household the increase in the present value of taxes equals the increase

in the present value of government purchases. In a typical version of the standard

neoclassical model we would expect some rise in output driven by the negative

wealth effect on leisure of the tax increase. But in that model the multiplier is gen-

erally less than one because the wealth effect reduces private consumption. From

this perspective it is perhaps surprising that the multiplier in our baseline model is

greater than one. This perspective neglects two key features of our model, the fric-

tions in price setting and the complementarity between consumption and leisure
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in preferences. When government purchases increase, total demand, Ct +Gt, in-

creases. The presence of sticky prices has the consequence that, in the wake of

a rise in demand, price over marginal cost falls. As emphasized in the literature

on the role of monopoly power in business cycles, the fall in the markup induces

an outward shift in the labor demand curve. This shift amplifies the rise in em-

ployment following the rise in demand. Given our specification of preferences,

σ > 1 implies that the marginal utility of consumption rises with the increase

in employment. As long as this increase in marginal utility is large enough, it

is possible for private consumption to actually rise in response to an increase in

government purchases. Indeed, consumption does rise in our benchmark scenario

which is why the multiplier is larger than one.

To assess the importance of our preference specification we redid our calcula-

tions using the basic specification for the momentary utility function commonly

used in the new-keynesian DSGE literature:

u =
¡
C1−ς
t − 1

¢
/ (1− ς)− ηN1+ϑ

t / (1 + ϑ) , (2.22)

where, ς, η, and ϑ are positive. The key feature of this specification is that the

marginal utility of consumption is independent of hours worked. Consistent with

the intuition discussed in the main text, we found that, across a wide set of para-

meter values, dY/dG is always less than one with this preference specification.1

To provide additional intuition for the determinants of the multiplier, Figure

2 displays dY/dG for various parameter configurations. In each case we perturb

one parameter at a time relative to the benchmark parameter values. The (1, 1)

1See Monacelli and Perotti (2008) for a detailed discussion of the impact of preferences on the
size of the government spending multiplier in models with Calvo-style frictions. These authors
show that the multiplier is always greater than one when preferences take the form suggested
by Greenwood, Hercowitz, and Huffman (1988). They also show that the multiplier is greater
than one when preferences take the form suggested in King, Plosser, and Rebelo (1988) and the
elasticity of intertemporal substitution is less than one.
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element of Figure 2 shows that a rise in σ is associated with an increase in the

multiplier. This result is consistent with the intuition above which builds on the

observation that the marginal utility of consumption is increasing in hours worked.

This dependence is stronger the higher is σ. Note that multiplier can be bigger

than unity even for σ slightly less than unity. This result presumably reflects

the positive wealth effects associated with the increased competitiveness of the

economy associated with the reduction in the markup.

The (1, 2) element of Figure 2 shows that the multiplier is a decreasing function

of κ. In other words, the multiplier is larger the higher is the degree of price

stickiness. The result reflects the fall in the markup when aggregate demand and

marginal cost rise. This effect is stronger the stickier are prices. The multiplier

exceeds one for all κ < 0.13. In the limiting case when prices are perfectly sticky

(κ = 0) the multiplier is given by:

dYt
dGt

=
[γ (σ − 1) + 1] (1− ρ)

1− ρ+ (1− g)φ2
> 0.

Note that when φ2 = 0 the multiplier is greater than one as long as σ is greater

than one.

When prices are perfectly flexible (κ = ∞) the markup is constant. In this
case the multiplier is given by:

dYt
dGt

=
1

1 + (1− g) N
1−N

< 1.

Note that the multiplier is less than one. This result reflects the fact that with

flexible prices an increase in government spending has no impact on the markup.

As a result, the demand for labor does not rise as much as in the case in which

prices are sticky.

The (1, 3) element of Figure 2 shows that as φ1 increases, the multiplier falls.

The intuition for this effect is that the expansion in output increases marginal cost
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which in turn induces a rise in inflation. According to equation (2.6) the monetary

authority increases the interest rate in response to a rise in inflation. The rise in

the interest rate is an increasing function of φ1. In general higher values of φ1 lead

to higher values of the real interest rate which are associated with lower levels of

consumption. So, higher values of φ1 lead to lower values of the multiplier

The (2, 1) element of Figure 2 shows that as φ2 increases, the multiplier falls.

The intuition underlying this effect is similar to that associated with φ1. When

φ2 is large there is a substantial increase in the real interest rate in response to a

rise in output. The contractionary effects of the rise in the real interest rate on

consumption reduce the size of the multiplier.

The (2, 2) element of Figure 2 shows that as ρR increases the multiplier rises.

The intuition for this result is as follows. The higher is ρR the less rapidly the

monetary authority increases the interest rate in response to the rise in marginal

cost and inflation that occur in the wake of an increase in government purchases.

This result is consistent with the traditional view that the government spending

multiplier is greater in the presence of accommodative monetary policy. By ac-

commodative we mean that the monetary authority keeps interest rates low in the

presence of a fiscal expansion.

The (2, 3) element of Figure 2 shows that the multiplier is a decreasing func-

tion of the parameter governing the persistence of government purchases, ρ. The

intuition for this result is that the present value of taxes associated with a given

innovation in government purchases is an increasing function of ρ. So the negative

wealth effect on consumption is an increasing function of ρ.

We conclude this subsection by noting that we redid Figure 2 using a forward-

looking Taylor rule in which the interest rate responds to the one-period-ahead

expected inflation and output gap. The results that we obtained were very similar

to the ones discussed above.
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Viewed overall, our results indicate that, from the perspective a simple new-

keynesian model, it is quite plausible that the multiplier is above one. However,

it is difficult to obtain multipliers above 1.2 for plausible parameter values.

3. The zero-bound multiplier in a model without capital

In this section we analyze the government spending multiplier in our simple new-

keynesian model when the zero bound on nominal interest rates becomes binding.

We first assume, as in Eggertsson and Woodford (2003) and Christiano (2004),

that the shock that makes the zero bound binding is an increase in the discount

factor. We think of this shock as representing a temporary rise in agent’s propen-

sity to save. We then consider a self-fulfilling fear of deflation shock. Finally,

we analyze the impact of the timing of government spending increases on the

magnitude of the multiplier.

A discount factor shock We modify agent’s preferences, given by (2.1), to

allow for a stochastic discount factor,

U = E0

∞X
t=0

dt

"
[Cγ

t (1−Nt)
1−γ]

1−σ − 1
1− σ

+ v (Gt)

#
. (3.1)

The cumulative discount factor, dt, is given by:

dt =

½
1

1+r1
1

1+r2
· · · 1

1+rt
, t ≥ 1

1 t = 0
. (3.2)

The time-t discount factor, rt, can take on two values: r and rl, where rl < 0.

The stochastic process for rt is given by:

Pr
£
rt+1 = rl|rt = rl

¤
= p, Pr

£
rt+1 = r|rt = rl

¤
= 1−p, Pr

£
rt+1 = rl|rt = r

¤
= 0.

(3.3)

The value of rt+1 is realized at time t.
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We consider the following experiment. The economy is initially in the steady

state, so rt = r. At time zero r1 takes on the value rl. Thereafter rt follows

the process described by equation (3.3). The discount factor remains high with

probability p and returns permanently to its normal value, r, with probability

1− p. In what follows we assume that rl is sufficiently high that the zero-bound

constraint on nominal interest rates is binding. We assume that Ĝt = Ĝl ≥ 0 in
the lower bound and Ĝt = 0 otherwise.

To solve the model we suppose (and then verify) that the equilibrium is char-

acterized by two values for each variable: one value for when the zero bound is

binding and one value for when it is not. We denote the values of inflation and

output in the zero bound by πl and Ŷ l, respectively. For simplicity we assume

that ρR = 0, so there is no interest rate smoothing in the Taylor rule, (2.6). Since

there are no state variables and Ĝt = 0 outside of the zero bound, as soon as the

zero bound is not binding the economy jumps to the steady state.

We can solve for Ŷ l using equation (2.13) and the following version of equation

(2.14), which takes into account the discount factor shock:

Ŷt−g [γ (σ − 1) + 1] Ĝt = Et

n
−β (1− g)

¡
Rt+1 − rl

¢
+ Ŷt+1 − g [γ (σ − 1) + 1] Ĝt+1 + (1− g)πt+1

o
(3.4)

Equations (2.13) and (3.4) can be re-written as:

Ŷ l = g [γ (σ − 1) + 1] Ĝl +
1− g

1− p

¡
βrl + pπl

¢
, (3.5)

πl = βpπl + κ

µ
1

1− g
+

N

1−N

¶
Ŷ l − g

1− g
κĜl. (3.6)

Equations (3.5) and (3.6) imply that πl is given by:

πl =
κ
³

1
1−g +

N
1−N

´
βrl

(1− βp) (1− p)/(1− g)− pκ
³

1
1−g +

N
1−N

´+gκ
³

1
1−g +

N
1−N

´
γ (σ − 1) + N

1−N

1− βp− κ
³

1
1−g +

N
1−N

´
p1−g
1−p

Ĝl.

(3.7)
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The government spending multiplier is given by:

dY l

dG
= [γ (σ − 1) + 1] + κ

£
1 + N

1−N (1− g)
¤
[γ (σ − 1) + 1]− 1

(1− βp) (1− p) /p− κ
£
1 + N

1−N (1− g)
¤ . (3.8)

In analyzing the size of the multiplier we assume that the shock pushing the

economy into the zero bound state is a rise in the discount factor from its steady

state value of four percent (APR) to −1 percent (APR).2 In our discussion of
the standard multiplier we assume that the first-order serial correlation of govern-

ment spending shocks is 0.8. To make the experiment in this section comparable

we choose p = 0.8. This choice implies that the first-order serial correlation of

government spending in the zero bound is also 0.8. All other parameter values

are given by the baseline specification in (2.21). We only consider values of κ for

which the zero bound is binding, so we display results for 0.013 ≤ κ ≤ 0.038.
Figure 3 displays the government-spending multiplier and the response of out-

put to the discount rate shock in the absence of a change in government spending

as a function of the parameter κ . Three key features of this figure are worth

noting. First, the multiplier is very large. For our benchmark specification it is

3.7, which is roughly three times larger than the standard multiplier. Second,

absent a change in government spending, the decline in output is increasing in

the degree of price flexibility, i.e. it is increasing in κ. Finally the government

spending multiplier is also an increasing function of κ.

To provide intuition for these results it is useful to focus on why the drop in

output is so large absent a change in government spending. The basic shock to

the economy is an increase in agent’s desire to save. In this economy savings must

be zero in equilibrium. With completely flexible prices the real interest rate would

simply fall to discourage agents from saving. There are two ways in which such a

2This shock corresponds to a jump in the quarterly discount rate from β = 0.99 to β =
1.0101. The latter value of β corresponds to rl = −0.01.
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fall can occur: a large fall in the nominal interest rate and/or a substantial rise

in the expected inflation rate. The extent to which the nominal interest rate can

fall is limited by the zero bound. In our sticky-price economy a rise in the rate of

inflation is associated with a rise in output and marginal cost. But a transitory

increase in output is associated with a further increase in the desire to save, so

that the real interest rate must rise by even more. Given the size of our shock

to the discount factor there is no equilibrium in which the nominal interest rate

is zero and inflation is positive. So the real interest rate cannot fall enough to

reduce desired savings to zero. Instead, the equilibrium is established by a large,

temporary fall in output, deflation, and a rise in the real interest rate.

Figure 4 displays a stylized version of this economy. Savings (S) are an in-

creasing function of the real interest rate. Since there is no investment in this

economy savings must be zero in equilibrium. The initial equilibrium is repre-

sented by point A. But the increase in the discount factor can be thought of as

inducing a rightward shift in the savings curve from S to S0. When this shift is

large, the real interest rate cannot fall enough to re-establish equilibrium because

the lower bound on the nominal interest rate becomes binding prior to reaching

that point. This situation is represented by point B.

To understand the mechanism by which equilibrium is reached after the shift in

the savings consider equation (3.7). This equation shows how the rate of inflation,

πl, depends on the discount rate and on government spending. In the region where

the zero bound is binding the denominator of this equation is positive. Since rl

is negative, it follows that πl is negative and so too is expected inflation, pπl.

Since the nominal interest rate is zero and expected inflation is negative, the real

interest rate (nominal interest rate minus expected inflation rate) is positive. Both

the increase in the discount factor and the rise in the real interest rate increase

agents’ desire to save. There is only one force remaining to generate zero savings
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in equilibrium: a large, transitory fall in income. Other things equal this fall in

income reduces desired savings as agents attempt to smooth the marginal utility

of consumption over states of the world. Because the zero bound is a transitory

state of the world this force leads to a decrease in agents desire to save. This effect

has to exactly counterbalance the other two forces which are leading agents to save

more. This reasoning suggest that there is a very large decline in income when

the zero bound is binding. In terms of Figure 4 we can think of the temporary

fall in output as inducing a shift in the savings curve to the left.

From equation (3.7) we see that the rate of deflation is increasing in the degree

of price flexibility as summarized by κ. Other things equal, a larger κ is associated

with a larger rise in the real interest rate, as long as the zero bound is binding.

To compensate for this effect the fall in output must be even larger.

To understand why the multiplier is so large in the zero bound note that a

temporary rise in government purchases induces a fall in private consumption.

Other things equal, the contemporaneous fall in private consumption is smaller

than the rise in government spending because agents want to smooth their con-

sumption over time. So a rise in government purchases is associated with a fall

in aggregate savings. This effect offsets the rise in desired private savings that

sent the economy into the zero bound to begin with. The government spending

multiplier is large precisely because output falls so much when the zero bound

is binding. An additional complementary effect arises if σ is greater than one.

Equation (3.7) implies that πl is increasing in Ĝl. Other things equal this effect

reduces the rise in the real interest rate that occurs when the zero bound is bind-

ing. For the reasons discussed above this effect reduces the fall in output that

occurs when the zero bound is binding.
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Sensitivity to the timing of government spending In practice there is

likely be a lag between the time at which the zero bound becomes binding and

the time at which additional government purchases begin. A natural question is:

how does the economy respond at time t to the knowledge that the government

will increase spending in the future? Consider the following scenario. At time t

the zero bound is binding. Government spending does not change at time t, but

it takes on the value Gl > G for all future periods as long as the economy is in the

zero bound. Under these assumptions equations (2.13) and (3.4) can be written

as:

πt = βpπl + κ

µ
1

1− g
+

N

1−N

¶
Ŷt. (3.9)

Ŷt = (1− g)βrl + pŶ l − g [γ (σ − 1) + 1] pĜl + (1− g)pπl (3.10)

Here we use the fact that Et (πt+1) = pπl, Et(Ĝt+1) = pĜl, and Et(Ŷt+1) = pŶ l.

The values of πl and Ŷ l are given by equations (3.7) and (3.5), respectively. Using

equation (3.5) to replace Ŷ l in equation (3.10) we obtain:

dYt,1
dGl

=
1− g

g

1

1− p

dπl

dĜl
(3.11)

Here the subscript 1 denotes the presence of a one period delay. One can show

that the multiplier is increasing in the probability p that the economy remains in

the zero bound. The multiplier operates through the effect of a future increase in

government spending on expected inflation. If the economy is in the zero bound

in the future, an increase in government purchases increases future output and

therefore future inflation. From the perspective of time t this effect leads to

higher expected inflation and a lower real interest rate. This lower real interest

rate reduces desired savings and increases consumption and output at time t.

Evaluating equation (3.11) at the benchmark values we obtain a multiplier

equal to 2.4. While this multiplier is lower than the benchmark multiplier of 3.7,
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it is still large. Moreover, this multiplier pertains to a increase in today’s output

in response to a possible increase in future government consumption.

Suppose that it takes two periods for the government to increase in the event

that the zero bound is binding. It is straightforward to show that the impact of

a potential increase in government spending that takes two periods to implement

is given by:
dYt,2
dGl

= p
1− g

g

∙
dπt,1

dĜl
+

1

1− p

dπl

dĜl

¸
.

Here the subscript 2 denotes the presence of a one period delay. Evaluating this

expression using our benchmark values we obtain 2.38, so the rate at which the

multiplier becomes smaller as we increase the delay in the government spending

increase is relatively low.

The usual objection to using fiscal policy as a tool for fighting recessions is

that there are long lags in gearing up increases in spending. Our analysis indicates

that the key question is: in which state of the world does additional government

spending come on line? If it comes on line in future periods when the zero bound

is binding there is a large effect on current output. If it comes on line in future

periods where the zero bound is not binding the current effect on government

spending is smaller. Suppose, for example, that at time t the government promises

to implement a persistent increase in government spending at time t + 1, if the

economy emerges from the zero bound at time t+1. This increase in government

purchases is governed by: Ĝt+j = 0.8
j−1Ĝt+1, for j ≥ 2. In this case the value of

the multiplier, dYt/dGt+1, is 0.5 for our benchmark values.

Optimal government spending The fact that the government spending mul-

tiplier is so large in the zero bound raises the following question: taking as given

the monetary policy rule (2.6) what is the optimal level of government spending

when agent’s discount rates are high? In what follows we use the superscript L to
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denote the value of variables in states of the world where the discount rate is rl.

In these states of the world the zero bound may or may not be binding depending

on the level of government spending. From equation (3.7) we anticipate that the

higher is government spending, the higher is expected inflation, and the less likely

the zero bound is to bind.

We choose GL to maximize the expected utility of the consumer in states of

the world in which the discount factor is high and the zero bound is binding. For

now we assume that in other states of the world Ĝ is zero. So, we choose GL to

maximize:

UL =
∞X
t=0

µ
p

1 + rl

¶t
"£¡

CL
¢γ
(1−NL)1−γ

¤1−σ − 1
1− σ

+ v
¡
GL
¢#
, (3.12)

=
1 + rr

1 + rl − p

"£¡
CL
¢γ
(1−NL)1−γ

¤1−σ − 1
1− σ

+ v
¡
GL
¢#
.

To ensure that UL is finite we assume that p < (1 + rl).

Note that:

Y L = NL = Y
³
Ŷ L + 1

´
,

CL = Y
³
Ŷ L + 1

´
−G

³
ĜL + 1

´
.

Substituting these expressions into equation (3.12) we obtain:

UL =
1 + rr

1 + rl − p

⎡⎢⎣
³h

N
³
Ŷ L + 1

´
−Ng

³
ĜL + 1

´iγ
(1−N

³
Ŷ L + 1

´
)1−γ

´1−σ
− 1

1− σ

⎤⎥⎦
+

1 + rr

1 + rl − p
v
h
Ng

³
ĜL + 1

´i
.

We choose the value of ĜL that maximizes UL subject to the intertemporal

Euler (equation (2.13)), the Phillips curve (equation (2.14)), and Ŷt = Ŷ L, Ĝt =
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GL, Et(Ĝt+1) = pGL, πt+1 = πL, Et(πt+1) = pπL, and Rt+1 = RL:

RL = max
¡
ZL, 0

¢
,

where

ZL =
1

β
− 1 + 1

β

³
φ1π

L + φ2Ŷ
L
´
.

The last constraint takes into account that the zero bound on interest rates may

not be binding even though the discount rate is high.

Finally, for simplicity we assume that v(G) is given by:

v (G) = ψg

G1−σ

1− σ
.

We choose ψg so that g = G/Y is equal to 0.2.

Since government purchases are financed with lump sum taxes equation (2.20)

implies that, in the steady state, the optimal level of G has the property that the

marginal utility of G is equal to the marginal utility of consumption:

ψgG
−σ = γCγ(1−σ)−1N (1−γ)(1−σ).

This relation implies:

ψg = γ ([N (1− g)])γ(1−σ)−1N (1−γ)(1−σ) (Ng)σ .

Using our benchmark parameter values we obtain a value of ψg equal to 0.015.

Figure 5 displays the values of UL, Ŷ L, ZL, ĈL, RL, and πL as a function of

ĜL. The ‘*’ indicates the level of a variable corresponding to the optimal value

of ĜL. The ‘o’ indicates the level of a variable corresponding to the highest value

of ĜL that satisfies Z l ≤ 0 (see the (1, 3) graph). Notice that for the benchmark
parameter values the optimal value of ĜL is the highest value of ĜL for which

the nominal interest rate is still zero. A number of features of Figure 4 are worth
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noting. First, the optimal value of ĜL is very large: roughly 30 percent (recall

that in steady state government purchases are 20 percent of output). Second, for

this particular parameterization the increase in government spending more than

undoes the effect of the shock which made the zero bound constraint bind. Here,

government purchases rise to the point where the zero bound is marginally non

binding and output is actually above its steady state level. These last two results

depend on the parameter values that we chose and on our assumed functional

form for v(Gt). What is robust across different assumptions is that it is optimal

to substantially increase government purchases and that the government spending

multiplier is large when the zero-bound constraint is binding.

To illustrate the last point we re-calculate the optimal response of government

purchases under the extreme assumption that v(G) = 0, i.e. agents derive no

utility from government purchases. Figure 6 shows that, even under this extreme

assumption, it is optimal to increase government purchases by 6.5 percent relative

to their steady state value. In this example the multiplier is large enough that it

is worth making wasteful government spending to raise aggregate demand.

Fear of deflation In this subsection we show that deflation expectations can

be self-fulfilling, making the zero bound binding and leading to a situation where

the government multiplier is large.3

Consistent with the intuition discussed in the introduction, suppose that agents

expect inflation to be zero with probability 1 − p and πl < 0 with probability p.

Recall that Ŷ l and πl are given by equations (3.5) and (3.7). By construction

there are no fundamental shocks to the economy so the discount factor rl is equal

3It is well known that Taylor rules can generate multiple equilibrium. For a recent analysis
that emphasizes the potential importance of liquidity traps see Schmitt-Grohé and Uribe (2009).
See Adão, Correia, and Teles (2009) and the references therein for a discussion of alternative
monetary policy rules that achieve a unique equilibrium in an interesting class of monetary
models.
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to its steady state value , 1/β − 1. Suppose that Ĝl = 0. Equations (3.5) and

(3.7) imply that πl and Ŷ l are given by:

πl =
κ
³

1
1−g +

N
1−N

´
(1− β)

(1− βp) (1− p)/(1− g)− pκ
³

1
1−g +

N
1−N

´ ,
Ŷ l =

(1− β) (1− βp)
(1−βp)(1−p)

(1−g) − κ
³

1
1−g +

N
1−N

´
p
.

A self-fulfilling fear of deflation equilibrium exists as long as πl and Zl are

negative. Here Z l is the nominal interest rate implied by equation (2.6), which is

given by:

Zl =
1

β
− 1 +

⎡⎣φ1
β
+

φ2
β

(1− βp)

κ
³

1
1−g +

N
1−N

´
⎤⎦ κ

³
1
1−g +

N
1−N

´
(1− β)

(1−βp)(1−p)
(1−g) − κ

³
1
1−g +

N
1−N

´
p
.

The value of πl is negative as long as p satisfies the following condition:

(1− βp) (1− p)

(1− g)
− κ

µ
1

1− g
+

N

1−N

¶
p < 0. (3.13)

To see that such a value of p exists, note that the expression on the left of the

inequality is continuous in p and strictly negative for p = 1. At our benchmark

values condition (3.13) is satisfied for all p ≥ 0.819. For example, when p = 0.85,

πl = −.035, Ŷ l = −0.106, and Z l = −0.043.
It is straightforward to show that the government spending multiplier in the

zero bound is exactly the same regardless of whether the zero bound is triggered

by a discount rate shock or a fear of deflation shock. Since the value of that

multiplier is large this result is consistent with the basic theme of this paper: the

government spending multiplier is large whenever the zero bound is binding.
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4. A model with capital and multiple shocks

In the previous section we use a simple model without capital to argue that the

government spending multiplier is large whenever the zero bound on the nominal

interest rate is binding. Here we show that this basic result extends to a gener-

alized version of the previous model in which we allow for capital accumulation.

In addition, we consider three types of shocks: a discount-factor shock, a neutral

technology shock, and a capital-embodied technology shock. These shocks have

different effects on the behavior of the model economy. But, in all cases, the

government spending multiplier is large whenever the zero bound binding.

The model The preferences of the representative household are given by equa-

tions (3.1) and (3.2). The household’s budget constraint is given by:

Pt

¡
Ct + Ite

−ψt
¢
+Bt+1 = Bt (1 +Rt) +WtNt + Ptr

k
tKt + Tt, (4.1)

where It denotes investment, Kt is the stock of capital, and rkt is the real rental

rate of capital. The capital accumulation equation is given by:

Kt+1 = It + (1− δ)Kt −
σI
2

µ
It
Kt
− δ

¶2
Kt. (4.2)

The variable ψt represents a capital-embodied technology shock. The price of

investment goods in units of consumption is equal to exp(−ψt). A positive shock

to ψt is associated with a decline in the price of investment goods. The parameter

σI > 0 governs the magnitude of adjustment costs to capital accumulation. As σI

→∞, investment and the stock of capital become constant. The resulting model
behaves in a manner very similar to the one described in the previous section.

The household’s problem is to maximize life-time utility, given by equations

(3.1) and (3.2), subject to the resource constraints given by equations (4.1) and

(4.2) and the condition E0 limt→∞Bt+1/[(1 +R0)(1 +R1)...(1 +Rt)] ≥ 0.
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It is useful to derive an expression for Tobin’s q, i.e. the value in units of

consumption of an additional unit of capital. We denote this value by qt. Equa-

tion (4.1) implies that the real cost of increasing investment by one unit is e−ψt.

Equation (4.2) implies that increasing investment by one unit raises Kt+1 by

1 − σI
³

It
Kt
− δ
´
units. It follows that the optimal level of investment satisfies

the following equation:

e−ψt = qt

∙
1− σI

µ
It
Kt
− δ

¶¸
. (4.3)

Firms The problem of the final good producers is the same as in previous sec-

tion. The discounted profits of the ith intermediate good firm are given by:

Et

∞X
j=0

βt+jυt+j
©
Pt+j (i)Yt+j (i)− (1− ν)

£
Wt+jNt+j (i) + Pt+jr

k
t+jKt+j(i)

¤ª
.

(4.4)

Output of good i is given by:

Yt (i) = eat [Kt (i)]
α [Nt (i)]

1−α ,

where Nt (i) and Kt (i) denote the labor and capital employed by the ith monop-

olist. The variable at represents a neutral technology shock that is common to all

intermediate goods producers.

The monopolist is subject to the same Calvo-style price-setting frictions de-

scribed in Section 2. Recall that ν = 1/ε denotes a subsidy to the costs of

production which corrects the steady-state inefficiency created by the presence

of monopoly power. The variable υt+j is the multiplier on the household budget

constraint in the Lagrangian representation of the household problem. Firm i

maximizes its discounted profits, given by equation (4.4), subject to the Calvo

price-setting friction, the production function, and the demand function for Yt (i),

given by equation (2.4).
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The central bank follows the same Taylor rule described in Section 2. We com-

pute the government spending multiplier assuming that government consumption

increases by one percent over its steady state value, for as long as the zero bound

is binding.

Equilibrium The economy’s resource constraint is:

Ct + Ite
−ψt +Gt = Yt. (4.5)

A ‘monetary equilibrium’ is a collection of stochastic processes,

{Ct, It, Nt,Kt,Wt, Pt, Yt, Rt, Pt (i) , r
k
t , Yt (i) , Nt (i) , υt, Bt+1, πt},

such that for given
©
βt+1, Gt, at, ψt

ª
, the household and firm problems are satis-

fied, the monetary policy rule given by equation equation (2.6) is satisfied, markets

clear, and the aggregate resource constraint holds.

Experiments At time zero the economy is in its non-stochastic steady state.

At time one agents learn that one of the three shocks (rL,at, or ψt) differs from its

steady state value for ten periods and then returns to its steady state value. We

consider shocks that are sufficiently large so that the zero bound on the nominal

interest rate is binding between two time periods that we denote by t1 and t2,

where 1 ≤ t1 ≤ t2 ≤ 10. The values of t1 and t2 are different for different shocks.

The model was solved using a shooting algorithm.

With the exception of σI and δ all parameters are the same as in the economy

without capital. We set δ equal to 0.02. We choose the value of σI so that the

elasticity of I/K with respect to q is equal to the value implied by the estimates

in Eberly, Rebelo, and Vincent (2008).4 The resulting value of σI is equal to 17.

4Eberly et al (2008) obtain a point estimate of b equal to 0.06 in the regression I/K =
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When the zero bound is not binding the government spending multiplier is

roughly 0.9.5 This value is lower than the value of the multiplier in the model

without capital. This lower value reflects the fact that an increase in government

spending tends to increase real interest rates and crowd out private investment.

This effect is not present in the model without capital.

A discount factor shock We now consider the effect of an increase in the

discount factor from its steady state value of four percent (APR) to −0.5 percent
(APR).6 Figure 7 displays the dynamic response of the economy to this shock. The

zero bound is binding in periods one through six. The higher discount rate leads

to substantial declines in investment, hours worked, output, and consumption.

The large fall in output is associated with a fall in marginal cost and substantial

deflation. Since the nominal interest rate is zero, the real interest rate rises sharply.

We now discuss the intuition for how investment affects the response of the

economy to a discount rate shock. We begin by analyzing why a rise in the real

interest rate is associated with a sharp decline in investment. Ignoring covariance

terms, the household’s first-order condition for investment can be written as:

Et

µ
1 +Rt+1

Pt+1/Pt

¶
=

1

qt
Ete

atαKα−1
t+1 N

1−α
t+1 st+1 + (4.6)

1

qt
Et

(
qt+1

"
(1− δ)− σI

2

µ
It+1
Kt+1

− δ

¶2
+ σI

µ
It+1
Kt+1

− δ

¶
It+1
Kt+1

#)
where st is the inverse of the markup rate. Equation (4.6) implies that in equi-

librium the household equates the returns to two different ways of investing one

a+ b ln(q). This estimate implies a steady state elasticity of It/Kt with respect to Tobin’s q of
0.06/δ. Our theoretical model implies that this elasticity is equal to (σIδ)

−1. Equating these
two elasticities yields a value of σI of 17.

5The value of this multiplier is closer to those discussed by Cogan, Cwik, Taylor, and Wieland
(2009) in their survey of the effects of fiscal policy in DSGE models.

6This shock corresponds to a jump in the quarterly discount rate from β = 0.99 to β =
1.0013. The latter value of β corresponds to rl = −0.0012.
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unit of consumption. The first strategy is to invest in a bond that yields the real

interest rate defined by the left-hand side of equation (4.6). The second equation

involves converting the consumption good into 1/qt units of installed capital. The

returns to this capital has three components. The first component is the marginal

product of capital (the first term in square brackets). The second component is

the value of the undepreciated capital in consumption units (qt+1 (1− δ)). The

third component is the value in consumption units of the reduction in adjustment

costs associated with an increase in installed capital.

To provide intuition it is useful to consider two extreme cases, infinite adjust-

ment costs (σI = ∞) and zero adjustment costs (σI = 0). Suppose first that

adjustment costs are infinite. Figure 8 displays a stylized version of this economy.

Investment is fixed and savings are an increasing function of the real interest rate.

The increase in the discount factor can be thought of as inducing a rightward shift

in the savings curve. When this shift is very large, the real interest rate cannot

fall enough to re-establish equilibrium. The intuition for this result and the role

played by the zero bound on nominal interest rates is the same as in the model

without capital. That model also provides the intuition for why the equilibrium

is characterized by a large, temporary fall in output, deflation, and a rise in the

real interest rate.

Suppose now that there are no adjustment costs (σI = 0). In this case Tobin’s

q is equal to e−ψ and equation (4.6) simplifies to:

Et
1 +Rt+1

Pt+1/Pt
= Et

£
eatαKα−1

t+1 N
1−α
t+1 st+1 + (1− δ)

¤
.

According to this equation an increase in the real interest rate must be matched

by an increase in the marginal product of capital. In general the latter is accom-

plished, at least in part, by a fall in Kt+1 caused by a large drop in investment.

In Figure 8 the downward sloping curve labeled ‘elastic investment’ depicts the
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negative relation between the real interest rate and investment in the absence of

any adjustment costs. As drawn the shift in the savings curve moves the equilib-

rium to point C and does not cause the zero bound to bind. So, the result of an

increase in the discount rate is a fall in the real interest rate and a rise in savings

and investment.

Now consider a value of σI that is between zero and infinity. In this case both

investment and q respond to the shift in the discount factor. For our parameter

values the higher the adjustment costs the more likely it is that the zero bound is

binding. In terms of Figure 8 a higher value of σI can be thought of as generating

a steeper slope in the investment curve, thus increasing the likelihood that the

zero bound binds. Consistent with this intuition we find that the lowest value

of σI for which our shock to rl renders the zero bound binding is 5.5. Similarly,

keeping σI at its benchmark value the smallest discount rate shock for which the

zero bound binds corresponds to a discount factor of −3.3 percent (APR).
From Figure 7 we see that the government spending multiplier is very large

when the zero bound binds (on impact dY/dG is roughly equal to four). This

multiplier is actually larger than in the model without capital. When the zero

bound binds investment actually declines because the real interest rate rises. This

decline in investment exacerbates the fall in output relative to the model without

capital. This larger fall in output is undone by an increase in government pur-

chases. Interestingly, we find that, as long as the zero bound binds, the multiplier

is relatively insensitive to the size of the shock.

A neutral technology shock We now consider the effect of a temporary, three-

percent increase in the neutral technology shock, at. Figure 9 displays the dynamic

response of the economy to this shock. The zero bound is binding in periods one
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through eight.7 Strikingly, the positive technology shock leads to a decline in

output, investment, consumption, and hours work. The shock also leads to a

sharp rise in the real interest rate and to substantial deflation. To understand

these effects it is useful to begin by considering the effects of a technology shock

when we abstract from the zero bound. A transitory technology shock triggers a

relatively small rise in consumption and a relatively large rise in investment. Other

things equal, the expansion in output leads to a rise in marginal cost and in the rate

of inflation. However, the direct impact of the technology shock on marginal cost

dominates and generates strong deflationary pressures. Absent a large coefficient

on the rate of inflation in the Taylor rule, the deflationary pressures dominate.

A Taylor rule with a large coefficient on inflation relative to output dictates that

the central bank lower real rates to reduce the rate of deflation. If the technology

shock is large enough, the zero bound becomes binding. At this point the real

interest rate may simply be too high to equate desired savings and investment.

The intuition for what happens when the zero bound is binding is exactly the same

as for the discount factor shock. The key point is that the only way to reduce

desired savings is to have a temporary large fall in output. As with the discount

rate shock once the zero bound binds, the government spending multiplier rises

dramatically (see Figure 9).

We find that the lowest value of σI for which a neutral technology shock renders

the zero bound binding is 5.5. Keeping σI at its benchmark value the smallest

neutral technology shock for which the zero bound binds is 2.3 percent (APR).

Again, as long as the zero bound binds, the multiplier is relatively insensitive to

the size of the shock.
7In computing the government spending multiplier we set ĜL to 0.5 percent in periods one,

through eight.
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An investment-specific shock We now consider the effect of a temporary

eight percent increase in the price of investment goods (i.e. an eight percent fall

in ψt). Figure 10 displays the dynamic response of the economy to this shock.

Even though the shock that we consider is very large, the zero bound binds only in

periods one through three.8 In addition, the effects of the shock on the economy

are small relative to the effects of the other shocks that we discussed. So, while

the multiplier is certainly large when the zero bound binds, it is much smaller

than in the cases that we have already analyzed.

The shock leads to a decline in output, investment, consumption, and hours

worked. It is also associated with deflation and a rise in the real interest rate.

To understand how the zero bound can become binding in response to this shock,

consider the impact on the economy when the zero bound does not bind. The

basic reason why output falls is that the shock makes investment temporarily

expensive, reducing the returns to work. As it turns out, consumption also falls

because of the negative wealth effect. Other things equal, the fall in output is

associated with strong deflationary pressures. Suppose that these deflationary

pressures predominate. Then the fall in output and deflation leads the central

bank to lower nominal interest rates. For a sufficiently large shock, the zero

bound becomes binding. The intuition for what happens when the zero bound

is binding is exactly the same as for the discount factor shock and the neutral

technology shock.

We find that zero bound continues to bind even for very low values of σI (e.g.

σI = 1). Keeping σI at its benchmark value the smallest investment-specific shock

for which the zero bound binds is six percent. Once again, as long as the zero

bound binds, the multiplier is relatively insensitive to the size of the shock.

8In computing the government spending multiplier we set ĜL to one percent in periods one,
two, and three.
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5. Robustness analysis

In previous sections we emphasize the response of aggregate demand to shocks

as a key mechanism which makes the zero-bound constraint binding. In general

the larger is the fall in aggregate demand, the larger is the fall in output and

the larger is the government spending multiplier when the zero bound constraint

binds. In this section we modify our benchmark analysis to consider various

sources of inertia in aggregate demand.

5.1. An alternative form of investment adjustment costs

In this subsection we document the sensitivity of our calculations to the form of

investment adjustment costs proposed by CEE. This specification is often used

in the macroeconomics literature because it generates impulse responses to mon-

etary policy shocks that are consistent with those estimated using vector auto-

regressions.

According to this specification the law of motion for investment is given by:

Kt+1 = (1− δ)Kt +

∙
1− S

µ
It
It−1

¶¸
. (5.1)

The function S is increasing, convex, and satisfy the following conditions: S(1) =

S0(1) = 0, and S00(1) > 0. We assume that S00(1) = 5 which is close to the value

estimated by Smets and Wouters (2007).

Figures 11, 12 and 13 report the response of the economy when the zero bound

is binding to a discount factor shock, a neutral technology shock, and a capital

embodied shock, respectively. The precise experiments are the same underlying

Figures 7, 9 and 10.

According to Figure 11, the zero bound is binding in periods one through

six after a discount factor shock. Comparing Figures 7 and 11 we see that the

main impact of moving to the CEE adjustment cost specification is to reduce the
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fall in investment and output that occurs after the shock. So, not surprisingly,

the government spending multiplier is smaller than the one we obtain using the

benchmark adjustment cost specification (2.6 versus 3.8 on impact). Nevertheless,

the multiplier is much larger than it would be if the zero bound were not binding.

To establish this result we calculate the government spending multiplier setting

Ĝt = Ĝl in periods one through six after the shock occurs. The resulting impact

multiplier is only 0.85.

Figure 12 shows that after a neutral technology shock the zero bound is binding

in periods one through seven. Again, the main impact of moving to the CEE

adjustment cost specification is to reduce the fall in investment and output after

the shock occurs. The government spending multiplier on impact is smaller than

we obtain with the benchmark adjustment cost specification (3.9 versus 5.1). But,

again, the multiplier is much larger than it would be if the zero bound were not

binding. The multiplier associated with setting Ĝt = Ĝl in periods one through

seven after the shock occurs is only 0.77.9

Figure 13 shows that a different pattern emerges after an investment-specific

shock . Here the zero bound is not immediately binding but does become binding

in periods four through eight. In this case the multiplier actually rises from 2.3

to 3.3 when we move to the CEE adjustment cost specification.

In summary the results of this subsection show that our basic conclusion about

the multiplier is robust: government spending has a much bigger impact on output

when the economy is in the zero bound than under normal circumstances.

9The reason why the non-zero bound technology shock multiplier is lower than the analogue
discount rate shock multiplier (0.85) is that we are increasing Ĝt for one more period in the
first case, so there is a stronger negative wealth effects on consumption which drives down the
multiplier.
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5.2. The multiplier in a medium-size DSGE model

In this subsection we discuss the size of the multiplier implied by the model

in Altig, Christiano, Eichenbaum, and Lindé (2005). This model is estimated

to match the estimated impulse response function of ten aggregate U.S. time

series to three identified shocks: a neutral technology shock, a capital-embodied

technology shock and a monetary policy shock. The ten aggregate time series

include measures of the change in the relative price of investment, the change in

average productivity, the change in the GDP deflator, capacity utilization, per

capita hours worked, the real wage, the shares of consumption and investment in

GDP, the Federal Funds Rate and the velocity of money. The sample period is

1959.Q2 to 2008.Q3. For comparability we set the value of S00(1) = 5, the value

used in the previous subsection.

The model includes a variety of frictions that are useful to match the esti-

mated impulse response functions. These frictions include: sticky wages, sticky

prices, variable capital utilization, and the CEE adjustment cost specification.

The representative agent’s momentary utility is given by equation (2.22), modi-

fied to include internal habit formation in consumption. Both habit formation and

the CEE specification for adjustment costs slow down the response of aggregate

demand to shocks.

Our key finding is that in order for the zero bound to be binding, shocks must

be larger than in our benchmark specification. But, once the economy is in the

zero bound the government spending multiplier is much larger than its normal

value.

For example, suppose that the discount rate moves from 4 percent to -10.5

percent on an annual basis for ten periods. Then the zero bound is binding between

periods two and 11 and the government spending multiplier is 3.4 on impact. The

analogue multiplier when the zero bound is not binding is 0.8. The latter multiplier
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is computed by raising Ĝt to Ĝl
t in periods two to 11. Suppose that the neutral

technology shock falls by 4.5 percent for ten periods. Then the zero bound is

binding from period three to nine and the government spending multiplier is 1.3

on impact. This multiplier is still substantially larger than the multiplier outside

of the zero bound, which is 0.7. The latter multiplier is computed by raising Ĝt

to Ĝl
t in periods six to nine. Interestingly, we could not find a reasonable capital-

embodied technology shock that make the zero bound binding. This result reflects

the weak direct effect of this shock on aggregate demand coupled with two features

that mute the impact of any shock on aggregate demand: habit formation and

the CEE specification for investment adjustment costs.

6. Conclusion

In this paper we argue that the government spending multiplier can be very large

when the zero bound on nominal interest rates is binding. We obtain this con-

clusion in a variety of models where the government spending multiplier is quite

modest when the zero bound is not binding.

Our analysis abstracts from a host of political economy considerations which

might make an increase in government spending less attractive than our analysis

indicates. We are keenly aware that it is much easier to start new government pro-

grams than to end them. It remains very much an open question whether, in the

presence of political economy considerations, tax policies of the sort emphasized

by Eggertson (2009) are a better way of responding to the economy being in the

zero bound than an increase in government purchases. What our analysis does

indicate is that measures designed to increase aggregate demand are particularly

powerful when the zero bound binds.
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