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Abstract

I introduce a repeated two-sided matching game. Both workers and firms are forward looking, have perfect infor-

mation about all potential partners, and can switch matches each period. Wages are determined each period in a

transferable utility matching game that equates supply and demand for each position. Estimation takes about as much

computer time as solving the game once. I use data on almost all elite Swedish engineers in the private sector from

1970–1990 to examine the relationship between market thickness and switching. A counterfactual experiment inves-

tigates how many workers a new entrant firm can hire through voluntary switching in the absence of incumbent firms

shutting down and laying off workers.
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1 Introduction

1.1 Empirical assignment games

Perfect information matching games are an important tool for analyzing data on relationships. Often we have data

such as who is married to whom, which workers are employed by certain firms, which manufacturers supply particular

retailers, which venture capitalists fund particular startups, which school districts consolidate, and so on. Matching

games make the formation of these relationships the dependent variable: in equilibrium, certain assignments of agents

to partners are stable. The stability of an assignment of matches is a function of the preferences of all agents, and the

preferences of agents are functions of exogenous characteristics of agents that a researcher may have data on.

Structural estimation of matching games has the goal of estimating agent payoffs in order to understand the relative

importance of each agent characteristic in forming the matches that we observe. Becker (1973) performed an empirical

investigation into marriage markets where each potential spouse had a single exogenous characteristic. More recently, a

growing literature uses various matching models and corresponding structural methods to estimate perfect information,

two-sided matching games (Ahlin, 2006; Akkus and Hortacsu, 2006; Angelov, 2006; Boyd, Lankford, Loeb and

Wyckoff, 2003; Choo and Siow, 2006; Dagsvik, 2000; Ferrall, Salavanes and Sørensen, 2004; Gordon and Knight,

2005; Park, 2007; Sørensen, 2007; Weiss, 2007; Yang, 2006).

My own work (Bajari and Fox, 2007; Fox, 2007) has focused on transferable utility matching games where agents

exchange money as part of the terms of the match. For example, the utility of a worker i matched to firm j may be

ũi j− γwi j, where ũi j is an exogenous constant governing preferences and wi j is an endogenous wage. While Becker

(1973) applied the model with endogenous prices to marriage, it is more obvious that many product and labor markets

are best modeled using endogenous prices. The wide number of theoretical models that fit into this framework are often

called assignment games (Tinbergen, 1947; Koopmans and Beckmann, 1957; Shapley and Shubik, 1972; Becker, 1973;

Sattinger, 1979; Kelso and Crawford, 1982; Leonard, 1983; Demange and Gale, 1985; Sotomayor, 1992; Kovalenkov

and Wooders, 2003; Ostrovsky, 2004; Garicano and Rossi-Hansberg, 2006). I keep the focus on assignment games

here and do not consider other, related literatures: matching models without prices (Gale and Shapley, 1962) and

imperfect information search models with heterogeneous agents (Shimer and Smith, 2000; Atakan, 2006).

1.2 The repeated matching game

The static empirical matching game literature uses data on the sorting pattern of agents at one point at time. However,

often the researcher has data over time where agents are observed to end some relationships and start new ones.

Married people divorce and remarry, employees quit and find new jobs, retailers change suppliers and independently

operating firms decide to merge. Data on switching matches provides a different type of dependent variable: both the
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fraction of people who change matches each period and the old and new partners of the switchers. The closeness in

terms of observables of an agent’s old and new match partners can tell us a lot about the unobservables governing

switching, such as constant or changing preferences and switching costs. Similarly, how the incidence of switching at

all varies with the similarity of outside option partners can also inform us about these unobservable parameters.

The empirical application in this paper focuses on the role of labor market thickness in allowing voluntary switch-

ing to move workers to new establishments. Firm and jobs are differentiated products based on firm characteristics

such as geographic location, industry, and occupation. The hypothesis is that firms closer to other firms in characteris-

tic space operate in thicker labor markets, which will encourage workers to switch, other factors held constant. After

estimating the model’s parameters, I examine to what extent workers will move to open positions in a brand new firm.

To do this, I compute the equilibrium to a labor market with the entrant firm, and examine how many of its jobs are

likely to be filled. I return more to the market thickness application below.

Using data on agents switching matches typically requires a dynamic model. If an agent is forward looking, the

agent will weight the utility from the destination partner by the endogenous distribution of lengths that the match will

continue. The more switching predicted in the future, the lower the importance placed on the flow utility from a single

match. Therefore, we might expect measurable changes in the characteristic of a match partner that could be several

time periods away to play less of a role in determining matches when the (endogenous model outcome) switching

probability is high. As examples, consider workers acquiring firm specific human capital or a supplier learning by

doing about the needs of a retailer. In these examples, keeping a match for a long time may induce a higher flow utility

itself. Properly evaluating the costs and benefits of a switch thus requires agents to be forward looking.

This paper introduces a dynamic, repeated matching game. Each time period, a matching market clears so that

all agents are matched. Prices are chosen to that every period supply equals demand at all pairs of worker and firm

states. Then all agents’ state variables evolve and during the next period another matching game is held. All agents on

both sides of the market are forward looking: they maximize the expected present discounted value of the utility from

matches. This is not a search model: each period all agents observe all potential partners and form new matches. To

my knowledge, my model of a repeated static matching game with forward-looking agents is new and not found in the

theory literature.

1.3 Application to market thickness and employer switching

This paper examines the labor market for elite Swedish engineers from 1970–1990. I have a 21 year panel on most

elite engineers in a medium sized national labor market. The Swedish data track the engineers when they switch firms.

The data are collected for all the larger, and many of the smaller, private sector employers in Sweden. Therefore,

I observe data on almost a complete national labor market. This is opposed to typical public US datasets, where
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individual workers are interviewed about their current jobs, but no data are collected about the other employers in the

area. Without data on the other employers competing in a labor market, a researcher cannot examine whether the firm

has low turnover because of say switching costs or just the lack of labor market competitors.

I model employers as existing in a product characteristic space. Establishments (employers) are distinguished by

geographic location, industry, and corporate parent.1 Within a firm, I use a detailed Swedish job title code (standard-

ized across firms) to assign individual jobs to broad occupations. The standardized occupational codes are the critical

advantage of the Swedish data over other national-level employer-employee matched datasets. In the model, the labor

market clears so that the demand and supply of elite engineers at each plant each equals the number of engineers

recorded in the data, at least in expectation.

I estimate the matching game using data on the yearly market assignment of elite engineers to jobs. I then use the

estimated model to explore the role of market thickness in employer switching decisions. Market thickness for a given

firm is a rough notion based on the characteristics of rival firms, including their workforce sizes, and the estimated

worker preference parameters over firm characteristics. If Malmo has many manufacturing establishments, one such

manufacturer in Malmo is in a thick labor market if geographic distance and industry are important characteristics in

the utility gain or loss from switching firms.

To understand the economic interpretation of the estimated structural parameters, I compute counterfactual equi-

libria where the product characteristics of firms are altered along one dimension, such as a counterfactual where all

firms are said to operate in the same industry. In this counterfactual, all firms are in a thick labor market, at least

as far the product characteristic of industries are concerned. These counterfactual equilibria both provide an extreme

example of varying market thickness and play roughly the same role as calculating marginal effects in a single-agent

discrete choice model.

The overall goal of the application is to use the estimated model to answer the question of whether voluntary

employer switching is enough to move workers from incumbent to entrant firms. The alternative is that workers will

not move voluntarily, so only involuntary layoffs (“push” mobility) will be able to force workers to switch firms. As

even a temporary state of unemployment can impose a psychological and financial cost on the workers involved, it

would seem preferable to sort workers to growing firms with wages rather than layoffs.

I introduce an entrant firm with currently unfilled slots. After adjusting the model structure to allows jobs to

be unfilled in expectation, I recompute the equilibrium wages and continuation values. I then explore how many of

the entrant firm’s positions are filled by voluntary worker movement one time period after entry. I vary the entrant

experiment by placing the entrant in thinner or thicker markets. This experiment answers the question of how much

pull mobility from higher wages can encourage workers to move to new sectors, and how much the effectiveness of

1Unlike many papers in the equilibrium search literature, firm size is fixed in the matching model because I believe unmodeled product market
factors (how popular are Saab’s cars) explain much more of the variation in employment across establishments than labor market factors. The
matching equilibrium requires that all slots in a firm are filled, in expectation.
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wages as a sorting mechanism varies with market thickness.

2 Overview of major model and empirical details

2.1 Computational curses of dimensionality

Both dynamic programming models and matching models suffer from computational curses of dimensionality. In

single agent dynamic models, increasing the number of state variables quickly raises the number of unknown continu-

ation values that must be solved for. If there are d state variables with x values each, there are xd total states and hence

unknown continuation values. In matching games, increasing the number of agents in the model increases the number

of potential matches and hence the number of potential market assignments than could be part of an equilibrium. In a

one-to-one, two-sided matching game with e agents on each side, there are e2 individual matches and e! possible equi-

librium assignments. If e = 100, then e2 = 10,000 and e!≈ 9.33×10157. As both single-agent dynamic programming

and matching games suffer from computational curses of dimensionality, one can imagine that combining the two into

a repeated matching game creates enormous additional computational difficulties.2

2.1.1 Dynamic programming and matching

First I address combining dynamic programming and matching games. The previous discussion emphasized dynamics

in individual agents’ paths or in individual matches. A perfect information matching model introduces another form

of dynamics: how the overall matching market changes as other agents form matches. In the empirical industrial

organization literature on dynamic Nash games, typically the players are a small number of firms in an industry and the

each firm’s state variable includes the observed states of all the rival firms (Ericson and Pakes, 1995). Making the state

variable of a single player expand with the total number of players causes a computational curse of dimensionality,

which some papers have proposed changes to the game being modeled in order to mitigate (Doraszelski and Judd,

2007; Weintraub et al., 2007). In a matching game, the equilibrium concept is not Nash equilibrium (it is a cooperative

game theoretic model), but the overall distribution of rivals’ matches does affect the probability of matching next

period. Therefore, in a repeated matching game similar computational curse of dimensionality issues occur as in the

dynamic Nash games literature. One approach suitable for small matching markets is to proceed as in the IO literature

and add the states of all agents in the market to each agent’s individual state. Mergers, R&D alliance, standards and

other types of firm relationships can be modeled using the matching framework here, with no conceptual difficulties.

In a very large matching market, an alternative might be to appeal to theorems like those in Hopenhayn (1992)

2On top of the computational difficulties inherent in repeated matching games, I also want to estimate the model, so there must be econometric
error terms in the model. If the error terms must be integrated out, with the integrand being a repeated matching game, the model will combine
three curses of dimensionality: dynamic programming, matching games and now integrating out error terms for every period and possible match.
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for industry dynamics to argue there exist sufficient conditions for the market to remain in an aggregate steady state,

where an aggregate steady state involves idiosyncratic switching that does not change the aggregate distributions of

agent states and matches. However, imposing such assumptions on payoff functions and the evolution of states would

contradict my empirical goal of using the estimator to work with microdata on smaller matching markets. For example,

my empirical application looks at thin labor markets, where there is often only a handful of firms employing workers in

a given city or industry. Transforming this type of microdata into a continuum removes much of the empirical richness

of the application. Also, the model assumptions that ensure an steady state are strong and do not allow one to look at

data on interesting empirical phenomena that disturb the aggregate steady state, such as the entry of a new, large firm.

For my application to thin markets, I make a modeling compromise that fits in between the purist approaches in

the small industry and atomistic agent models. I impose the behavioral assumption that agents believe the market

will remain in steady state.3 In particular, each agent believes the continuation value for being a particular individual

state in the future will be the same as the continuation value for being at that state today. This is an assumption: in

reality the market-clearing prices will change as other agents enter and exit and existing agents switch matches. This

keeps the focus of the dynamic model on the trajectory of each individual agent rather than modeling each agent’s

uncertainty over the extremely complex economy-wide dynamics. This assumption fits the labor market application

well, as individual workers could be reasonably be thought of as looking to the experiences of their elders for career

advice, rather than recomputing equilibria to the entire labor market.

2.1.2 Empirical tractability, matching and dynamic programming

The worst curse of dimensionality for estimation would come if the solution to a repeated matching game was part

of the integrand of the integral over a large number of matched-specific error terms.4 The main issue is that the

continuation value in a dynamic model involves not only the observed state variables, but also the expected value of

the error term for taking a particular action, given that the action is the optimal one. The distribution of the error terms

is required to calculate this conditional expectation and solve Bellman’s equation.

The key solution to the computational curse of dimensionality from integrating out match specific shocks is to

change the model’s timing assumptions so that endogenous prices are computed before the realization of match-

specific taste shocks. Taste shocks affect the equilibrium matches but not the computation of the equilibrium prices.

If the discount factor is set to 0, my model reduces to a static logit matching game that has been applied to marriage

by Choo and Siow (2006) and Weiss (2007).5 Unlike the latter authors, I show how to compute the equilibrium to

3Krusell and Smith Jr (1998) study a heterogeneous-agent growth model with another behavioral assumption: agents need to keep track of only
a finite list of the moments of the wealth distribution, rather than the entire distribution.

4The semiparametric matching game maximum score estimator in Fox (2007) that avoids recomputing equilibria as part of the estimation routine
does not extend to a dynamic matching game. Maximum score is a partial identification approach, where the estimator is consistent in the presence
of error terms but the distribution of error terms is not identifiable (under minimal assumptions) and not estimated.

5Dagsvik (2000) considers a static logit matching game where an equilibrium match contract can be more general than a monetary exchange.
For example, a labor contract can specify hours of work in addition to the wage.
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the model. My dynamic model can be expressed as a series of nonlinear equations: one Bellman’s equation for each

distinct agent state, and one supply equals demand equation for each pair of partner states. The endogenous variables

in the model are the continuation values, one for each agent state, and the wages, one for each pair of partner states.

2.1.3 Number of equilibrium equations and unknowns

A final computational curse of dimensionality exists: the number of equilibrium wages and corresponding supply

equals demand conditions goes up with the number of states. I discuss this issue in more detail in Section 4.2.

2.2 Estimation

Choo and Siow and Weiss estimate their static models using aggregate data / market share inversion methods similar

to those in Berry (1994) for single-agent demand estimation. As Berry, Linton and Pakes (2002) show in simulation

studies, aggregate data share inversion methods have large finite sample biases if there are few agents for each combi-

nation of observable characteristics, so that market shares (choice probabilities) are estimated with statistical noise in

a first stage.6 Consequently, the market share inversion estimators in Choo and Siow and Weiss will have large finite

sample biases if applied to many typical matching datasets with small numbers of agents at each observed state.

My application is to market thickness, where in thin markets by definition there are few observations for some

agent states. More generally, my goal is to work with microdata on specific markets in industrial organization and

labor economics. Therefore, I generalize the single agent, dynamic discrete choice estimator of Rust (1987) to to the

case of a repeated matching game. For each guess of a vector of parameters and the empirical distribution of agents

over states, the dynamic matching game in principle may be solved, so that the likelihood function of the model and

data may be evaluated. As maximum likelihood is asymptotically efficient, no alternative estimator is preferable on

statistical grounds, under the parametric assumptions. The estimator is compatible with microdata as no first-stage

estimates of market shares are required, unlike in the share inversion methods of Choo and Siow and Weiss and

the mathematically similar dynamic two-step estimators of Hotz and Miller (1993), Aguirregabiria and Mira (2002),

Bajari, Benkard and Levin (2007), Pakes, Ostrovsky and Berry (2007), Aguirregabiria and Mira (2007), Pesendorfer

and Schmidt-Dengler (2007), as well as Bajari and Hong (2005).

Computing a single equilibrium to my dynamic matching game (solving a system of nonlinear equations) can

be time consuming, potentially taking hours or days for matching markets with large numbers of agents. Therefore,

solving the model each time the likelihood function is evaluated, as in the nested fixed point approach of Rust (1987),

may require years to numerically converge. I adopt a suggestion by Su and Judd (2007) to enforce the nonlinear

equations that define the model as nonlinear constraints and to optimize the likelihood by picking both the unknown

6See the small n cells in Table 1 of Berry, Linton and Pakes.
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structural parameters and the unknown, endogenous objects in equilibrium: continuation values at all states and the

unobserved wages at all pairs of potential partner states. I will show that maximizing a likelihood subject to the

model’s structure is almost the same computational procedure as solving the model once. Therefore, using the Su

and Judd suggestion makes estimation about as costly as solving the model once, for known parameter values. One

research style only estimates a structural model where the equilibrium is possible to compute, as otherwise the model

cannot be used to construct counterfactual predictions. For my matching game, any model whose equilibrium can be

computed once can be estimated using almost the same computer time. This is one of the first applications of the Su

and Judd suggestion and shows the usefulness of the approach in a serious empirical application.

2.3 Data on prices vs. matches and matching model robustness

In some datasets, there is information on physical matches but not the transfers exchanged between partners. For

example, Becker (1973) studies marriage using a transferable utility framework. Likewise, in many supplier-retailer

applications, inspection of store shelves or catalogs reveals the suppliers matched to each retailer, but the wholesale

prices may be private contractual details. Because of data availability, it is useful to allow estimation using only one

of the two dependent variables in the model: matches but not prices.

In the empirical application, I have data on both matches and wages, with wages for chosen positions only. In prin-

ciple, one could explore a selection likelihood for the wage data that incorporates the existing matches-only likelihood

as the selection equation in Heckman (1979).7

The estimator based on the selection likelihood would be consistent under the assumption that the wages from the

model are the wages in the data. However, I do not necessarily believe the wages I observe come from the model.

In the matching game, there is, subject to some modeling discretion, a separate wage for each pair of a worker and a

firm state. Firms that do not want to hire a particular worker can offer him or her a low wage. If some unqualified (in

terms of observables) worker was employed in a prestigious job (perhaps because of a high worker match-specific taste

shock), the model would predict that the unqualified worker would be paid less than his colleagues. In the repeated

matching model, once worker-specific wages are set, there is no further screening of applicants.

However, my reading of the administrative rules of how the Swedish labor market works suggests that wages

are tied very strongly to positions (job titles). One equilibrium, transferable utility matching model consistent with

administrative wage setting is Garicano and Rossi-Hansberg (2006). Indeed, the Swedish data list a detailed four-digit

code representing a nationally standardized categorization for job titles. This code strongly predicts wages. If the

model is one of administrative wage setting, if an unqualified worker was assigned to a particular job (because of a

taste shock by the firm, say), we would expect the unqualified worker to be paid roughly the same. In a world where

7Another approach would be to use the price data in a single agent discrete choice model, with instruments for prices (Bayer et al., 2002). It is
not clear where the instruments would come from in this model.
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wages are tied to jobs, screening (job interviews) is the main mechanism used to sort workers to firms.

The conjecture that wages are not generated from the matching game does not mean that the match data cannot

be used to estimate the model. Both screening and individual-job specific wages can support the same equilibrium

assignment of workers to jobs: the competitive assignment. In a two-sided, many-to-one matching game with addi-

tive separability across the match output from multiple workers at the same firm, Sotomayor (1992) proves that any

pairwise stable match will maximize the total output of the economy. She generalizes results on one-to-one matching

from Koopmans and Beckmann (1957), Shapley and Shubik (1972), Becker (1973) and others. This output maximiz-

ing equilibrium can be considered the first welfare theorem (any equilibrium is efficient) for models with transferable

utility. The stage game of my repeated matching model is similar to the static matching model of Sotomayor (1992),

up to a set of econometric assumptions that simplify estimation.

Because multiple mechanisms can sustain the same assignment of workers to jobs, using data on matches only

provides an estimator that it robust to misspecifying the model of equilibrium wages. Wages can be attached to either

worker-firm matches and no screening used, or wages can be attached to jobs and screening used to assign applicants

to jobs. As long as both assignment mechanisms support the competitive assignment of workers to jobs, estimation

using data on matches only is consistent while remaining agnostic about the market-clearing mechanism.

3 A Repeated Matching Game

I introduce a dynamic, repeated matching game. For concreteness, I use language from the worker-firm labor market

application. However, following the exposition style of Rust (1987), I lay out the model using generic notation for

utility flows, state vectors, state transition densities, and error term distributions. This illustrates the generality of the

method to other fields and applications. In a few places, I use footnotes to document when an assumption might make

more sense in the labor application than in another application, such as firm relationships in industrial organization.

3.1 Time and timing

A year t describes calendar time: the matching market clears each period. T is the last period of data. A worker a has

age dt in period t. A worker works until he is, say, 60 years old, which is the same age for all workers but a different

calendar year Da for each worker. Firms are infinitely lived.8

The timing of the game within a period is as follows.

1. At the beginning of a period, all agents have states variables known to them and all other agents.

8The finite horizon nature of workers requires no special adjustment, other than a bookkeeping terminal state for year Da +1 with a continuation
value of 0. As backwards recursion for a single agent is not a computationally effective method of solving a market equilibrium model, making
both sides of the market infinitely lived would simplify, not complicate, matters.
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2. Then equilibrium wages and (under one optimal assumption to come) the corresponding agent beliefs about

future opportunities are simultaneously determined. Equilibrium wages ensure the expected (over the period t

taste shocks) number of workers at each job equals the expected demand for workers at that job.

3. After wages are computed, each worker and each job receives a taste shock to each potential job (for workers)

or worker (for firms).

4. Given these taste shocks, workers, and workers only, unilaterally pick a firm to work at. If more or fewer workers

then the expected number appear at a firm because of taste shocks, the firm adjusts its slots to accommodate

them.

In the fourth step, the firm receives a taste shock but cannot screen (refuse to hire) workers if the taste shock is low,

for example. The firm taste shock serves to create a firm labor demand function so that demand equals supply in the

second step.

In estimation, the timing assumption that the taste shocks occur after wages are set allows the researcher not to

have to embed a linear programming problem inside a numerical integral over all of the match-specific taste shocks of

both workers and firms. Therefore, in this model wages are not correlated with the realized taste shocks. This timing

assumption does not radically alter the equilibrium predictions in a static model: the equilibrium will still roughly

maximize some notion of the sum of match outputs, as Koopmans and Beckmann (1957) and other papers show for

games without taste shocks.

3.2 Matches and states

The notation ait refers to the event that the match between worker a and job i occurred in the period t.

The state vector is the same for a worker and a job in a match. Say worker a and job i matched in period t−1, or

the match ait−1 occurred. Then the period t state is sait . The overall match state contains the vector of characteristics

xat of worker a and the vector of characteristics x f
it of job i. So sait =

{
xat ,x

f
it

}
. Occasionally I will use superscripts

f to refer to model elements for jobs. Also, to keep the definition of an equilibrium simple (in a few sections), I will

constrain xat and x f
it to each take on a finite number of values.

Say worker a makes a new match with job j during period t, or the event a jt occurs. Previously, job j was matched

to worker b. Then the state transition distribution is

hθ1

(
sa j,t+1 | sait ,sb jt ,a jt

)
,

where, optionally, θ1 is an estimable vector of a finite number of parameters that govern the updating of states. Perhaps

the simplest possibility is that h inserts the time invariant characteristics of worker a and job j into a new sa j,t+1 =

9



{
xat ,x

f
jt

}
. In this case, there are no transition parameters θ1 to estimate. For some applications, it is important that

there the state transition of worker a be a function of the worker’s job. For example, the worker could be accumulating

occupation, industry or firm specific human capital. In these cases, switching to another occupation, industry or firm

might reset the respective stock of specific human capital to zero. If parameters on the human capital accumulation

problem needed to be estimated, they would be in θ1.

A worker could have been unmatched since the end of period t− 1: sa /0t = {xat , /0}. This can happen for several

reasons: the worker has just entered or reentered employment or the worker’s period t− 1 employer eliminated his

position. Likewise, a job i could be unmatched: s /0it =
{

/0,x f
it

}
. This could happen if a firm is growing, adding new

positions for period t, or if some workers retired or exited the labor market. If layoff risk is modeled explicitly, it enters

hθ1 .

In the standard case, xat and x f
jt are recorded in the data. However, the theoretical model of a repeated matching

game is still valid if xat and x f
jt are observed by the agents in the model but are not recorded in the data. Like in single-

agent discrete choice methods, having unobserved, time-persistent states will typically require panel data approaches

to be used in estimation. For an equilibrium model, this makes computation of a statistical objective function time

consuming as there will be a different equilibrium for each realization of the unobserved states for all agents. In

industrial organization, researchers typically deal with unobserved state variables by estimating these variables in a

first stage. For example, one can use price and quantity data to estimate a structural demand system and back out a

firm j’s unobserved product quality ξ jt as the econometric error term BLP. In the estimation of the matching game, ξ jt

is then treated as an observable state variable.

3.3 Steady state beliefs

As I discussed in Section 2.1, in applications to firm relationships in small industries in industrial organization, each

agent (a firm) keeps track of the states of all rival firms. In my labor application, only a worker a’s current (period

t − 1) employer’s characteristics x f
jt enter sait . Embedding the characteristics of all other agents into the state will

often be computationally infeasible because of a computational curse of dimensionality in the number of outcomes to

the matching stage game. Consider a medium-sized matching game with 100 workers and 100 available jobs. There

are 100! ≈ 9.33× 10157, way more than the atoms in the universe, possible sets of matches that could occur next

period. Having agents explore the combinations of moves of all workers and all jobs is infeasible computationally in

medium-sized matching games.

The only computationally tractable approach for matching games of medium size is for agents to believe that the

market is in an aggregate steady state, so that the overall distribution of potential partners and wages will remain the

same as it is today. A rational expectations approach to justifying this agent belief is to tightly structure the model
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so that the economy actually is in an aggregate steady state. Imposing these strong theoretical assumptions is at odds

with providing a general econometric framework that can be taken to many micro data sets in many fields. Instead, I

assume that agents believe the continuation value for being at a particular state sait will not change.

Assumption 1. If a worker with state sait in period t has a continuation value V (sait), workers in period t who might

end up at state saiτ = sait in some period τ > t expect to have continuation value V (saiτ) = V (sait) when they reach

that state. An analogous property holds for jobs.

The force of this assumption is that the experiences of workers of say 50 today are reflective of the outcomes

workers of age 40 expect to receive in 10 years. Workers do not consider the aggregate dynamics of the economy but

consider their own trajectory in that economy. For example, a worker moving to a large city may know the switch

opens up the possibility of in the future switching to the many employers located in the large city. But the worker

does not concern himself with the possibility that other workers and firms may move to the city, disturbing the market

equilibrium. The assumption can be recast as one of bounded rationality: no individual agent can hope to work out

all of the combinations of future combinations of matches, so they choose not to and consider only their own future

trajectory at the current distribution of states and equilibrium wages.

The assumption that agents ignore economy-wide dynamics and consider only their own future matches seems

relatively innocuous for some applications to the labor market, where agents are somewhat small (but not atomistic)

relative to the market. However, if the assumption is dangerous, an aggregate state At =
{{

sa jt
}

a∈N ,{sbit}i∈J
}

that

describes the state of all agents can be added as an additional argument in all model functions.

3.4 Worker decisions

For a worker a of age dt in year t with the state vector sa jt , his current period utility function if he choose employment

at a job i out of J total jobs is

uβ (ait ,sa jt)+ εait = ũ
β̃
(ait ,sa jt)+βwwait + εait ,

where the match ait is his employment choice and εait is a worker’s job specific stochastic disturbance in utility. Utility

u is parameterized by the parameter vector β , which is to be estimated. Notationally, worker age dt is part of xat in

sa jt =
{

xat ,x
f
jt

}
.

The wage at job i, wait is implied by xat in sa jt from the equilibrium structure of the model. As wages clear the

labor market, I model workers as making a unilateral employment decision. The wage enters uβ additively separably,

with the parameter βw governing its importance in utility. I use tildes on objects to denote the non-wage portions of

those terms.
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The job match ait is chosen to maximize the worker’s expected, present discounted value of utility

E

[
Da

∑
τ=t

δ
τ−t (uβ (aiτ ,sa jτ)+ εaiτ

)
| sa jt ,εat

]
,

where δ is a discount factor between 0 and 1 and εat is the vector of all employer-specific taste shocks at age t.

This is a finite-horizon and discrete-time dynamic programming problem. Given wages, I solve for the model’s

predicted probabilities of job choice Pr(iat | sait) by backwards recursion. Recall hθ1 (sai,t+1 | sa jt ,sbit ,ait) is the tran-

sition density of the state variable sait conditional on the worker’s new match ait . Define a continuation value to

be

V (sa jt) =
∫

max
ait∈{1,...,J}

E

[
Da

∑
τ=t

δ
τ−t (uβ (aiτ ,sa jt)+ εaiτ

)
| sa jt ,εat

]
gθ2 (εat)dεat

=
∫

max
ait∈{1,...,J}

[
uβ (ait ,sa jt)+ εait +δ

∫
st+1∈S

V (sai,t+1)hθ1 (sai,t+1 | sa jt ,sbit ,ait)dsai,t+1

]
gθ2 (εat)dεat

=
∫

max
ait∈{1,...,J}

[v(ait ,sa jt)+ εait ]gθ2 (εat)dεat , (1)

where gθ2 is the joint density of the worker’s vector of taste shocks εat , and where v(ait ,sa jt) is the match ait -specific

value function implicitly defined in the equation. θ2 is an optional vector of estimable parameters that may govern the

distribution of taste shocks. To handle planned retirement, V (sa jt)≡ 0∀ j if t > Da.9

At the state sa jt , and integrating out the taste shocks εat , the probability of worker a picking the match ait is

Prt (ait | sa jt) =
∫

1 [v(ait ,sa jt)+ εait > v(akt ,sa jt)+ εakt ∀k 6= i]gθ2 (εat)dεat . (2)

The t subscript emphasizes that this probability is for the market configuration at time t. If the match-specific shock

εat is iid with the logit distribution, McFadden (1973) shows the equilibrium probability of the match ait for an age t

worker simplifies to

Prt (ait | sa jt) =
exp(v(sa jt ,ait))

∑
J
ak=1 exp(v(sa jt ,ak))

. (3)

The relevant choice’s present discounted value of payoffs is in the numerator, normalized by the sum of the payoffs

of all choices in the denominator. More generally, choosing a distribution for εat in McFadden (1973)’s generalized

extreme value (GEV) class ensures closed form integrals for both Prt (ait | sa jt) and V (sa jt).10

A single-agent, dynamic programming, discrete choice model with many differentiated choices is found in Kennan

and Walker (2002), who study the choice between the fifty American states. They do not model the preferences of

9Readers familiar with Rust (1987) will recognize his conditional independence assumption: taste shocks only affect state transitions by altering
matches. Time persistent taste shocks enter sa jt and were discussed at the end of the previous subsection.

10The simplification V
(
sa jt
)

= ∑
J
ai=1 Prt

(
ait | sa jt

){
v
(
sa jt ,ait

)
+E [εait | ai?t = ait ]

}
eases the calculation of V (sat). If the error terms have the

extreme value (logit) distribution, the expected value of the error term conditional on a match is E [εait | ai?t = ait ] = 0.577− logPrt
(
ait | sa jt

)
.
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firms or market equilibrium.

3.5 Jobs

The timing assumptions show how workers unilaterally choose individual jobs in equilibrium. However, we derive

each job’s labor demand functions so we can define equilibrium.

Job i at some firm hiring a worker a in year t produces current-period output, or profit, πγ (ait ,sbit)+ ε
f

ait , where

sbit is the job’s state vector from matching with worker b in period t− 1, ε
f

ait is a match-ai specific logit shock, and

γ is an estimable parameter vector. The wage wait is implied by the equilibrium structure of the model and enters πγ

additively separably,

πγ (ait ,sbit)+ ε
f

ait = π̃γ (ait ,sbit)− γwwait + ε
f

ait .

For simplicity in dynamic programming, profits are additively separable across jobs (employment relationships at the

firm) for a firm that hires multiple workers. Additive separability is also used in Sotomayor (1992).11

Jobs are infinitely lived and their maximization of the expected, present discounted value of profits for a particular

job (employment slot)

E
[

∞

∑
τ=t

δ
τ−t
(

πγ (aiτ ,sbit)+ ε
f

aiτ

)
| sbit ,ε

f
it

]
,

is a stationary problem if sbit contains the states of all matches or the earlier steady state beliefs assumption is main-

tained. Here ε
f

it is the vector of firm i’s taste shocks. The discount factor δ ∈ [0,1) is the same as for workers, for

simplicity.

Let there be N total workers. Jobs are forward-looking and have state-sbit value functions V f (sbit) that can be

decomposed into choice-specific value functions v f (ait ,sbit):

V f (sbit) =
∫

max
ait∈{1,...,N}

E
[

∞

∑
τ=t

δ
τ−t
(

πγ (aiτ ,sbit)+ ε
f

aiτ

)
| rit ,ε

f
it

]
g f

θ3

(
ε

f
it

)
dε

f
it

=
∫

max
ait∈{1,...,N}

[
πγ (aiτ ,sbit)+ ε

f
ait +δ

∫
st+1∈S

V (sai,t+1)hθ1 (sai,t+1 | sa jt ,sbit ,ait)dsai,t+1

]
g f

θ3

(
ε

f
it

)
dε

f
it

=
∫

max
ait∈{1,...,N}

[
v f (ait ,sbit)+ ε

f
ait

]
g f

θ3

(
ε

f
it

)
dε

f
it . (4)

V f (sbit) for all states sbit is a system of nonlinear equations, Bellman’s equation. Conditional on the equilibrium

wages, iterating the system creates a contraction mapping, with a unique solution for the V f (sbit)’s.

Firms have a labor demand preference: how much they would prefer to employ a worker. This can be expressed

11For static matching games, Fox (2007) presents a feasible estimator for many-to-many two-sided matching games where profits are not addi-
tively separable across multiple matches involving the same agent.
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as a quasi-demand probability, for worker i and a particular slot in the firm,

Pr f
t (ait | sbit) =

∫
1
[
v f (ait ,sbit)+ ε

f
ait > v f (akt ,sbit)+ ε

f
cit ∀c 6= a

]
g f

θ3

(
ε

f
it

)
dε

f
it .

Again, this quasi-demand probability is the solution to a N-dimensional integral over the ε
f

ait ’s.

3.6 Equilibrium in wages and match probabilities

Recall there are finite numbers of the worker and firm contributions to states, xat and x f
it , so there is a finite number of

states sait =
{

xat ,x
f
it

}
. There is also a finite number of workers N (sait) at state sait and a finite number of jobs at state

sait , N f (sait). By feasibility, N (sait) = N f (sait) unless one of the firm or worker’s index is /0, the partner representing

being unmatched since the end of period t−1.

Wages are used to clear the market. All workers a are offered wages wait by all jobs i. By the timing assumptions,

εait is realized after wages are set.12 This is mainly for computational reasons: to avoid nesting an algorithm to compute

the equilibrium inside the J ·N integral of all match-specific taste shocks. Therefore, by payoff equivalence, it is

without loss of generality to assume equilibrium wages are a function of only the non-taste shock states: wai (sa jt ,sbit).

The notational convention is the worker’s state sa jt is listed first, followed by the job’s state sbit in the second argument.

The subscripts ai emphasize that the wage is for the match ait , not any of the other three matches that could have

occurred: a jt , bit and b jt .

The following definition describes equilibrium.

Definition 1. If Assumption 1 is maintained, an equilibrium in period t is a function wai (sa jt ,sbit) that describes the

wages for all pairs of worker and job states and where

• Expected labor supply equals expected labor demand for all matches and pairs of states, meaning

N (sa jt)P(ait | sa jt) = N f (sbit)P f (ait | sbit) (5)

for all pairs
{

sa jt ,sbit
}

and all period t matches ait where a ∈ N (sa jt) and i ∈ N f (sbit).

• All workers’ and jobs’ Bellman equations are satisfied.

Let S be the number of match states. Without aggregate states, the model is therefore described by a set of nonlinear

equations:

1. S×S supply equals demand conditions, (5).

12Again, Fox (2007) presents an estimator for static matching games where equilibrium prices may be a function of taste shocks.
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2. S workers’ Bellman equations (1).

3. S jobs’ Bellman equations (4).

Corresponding to these nonlinear equations, there are the following model unknowns

1. S×S wages wai (sa jt ,sbit)

2. S workers’ continuation values V (sa jt)

3. S jobs’ continuation values V f (sbit)

As the number of unknowns equal the number of equations, it is possible that there exists a solution for any given

parameterization.13

With aggregate states, there are the above equations and unknowns multiplied by the total number of aggregate

states. Here we see the computational curse of dimensionality, and why the steady state beliefs assumption must be

imposed on medium-sized matching games.

Once equilibrium wage functions wai (sa jt ,sbit) and continuation values V (sa jt) for workers have been calculated,

it is easy to compute equilibrium match probabilities by substituting wages and continuation values back into labor

supply probabilities, (2). These equilibrium match probabilities Pr?t (ait | sa jt) describe the final pattern of sorting in

period t: the equilibrium assignment of workers to jobs by their labor market histories and characteristics. Note these

probabilities are a function of the entire set of matches, so they are subscripted by t.14

3.7 Equilibrium match probabilities for a special case

Let there be two workers and two jobs: N = 2 and J = 2. Let the workers be a and b and the jobs i and j. Say the

current states are sa jt and sbit . Let the taste shocks for workers and firms both be logit with scale parameter 1. Let the

Assumption 1 hold.

I work with the four supply equals demand equations and leave the Bellman’s equations unsolved. Algebra can be

used to show that, in equilibrium,

Pr?t (ait | sa jt) = Pr?t (b jt | sbit) =
A

A+B
(6)

13If instead all rivals’ states enter an agent’s state, so that the aggregate state is At , an equilibrium is a function wai
(
sa jt ,sbit ,At

)
that describes

the wages for all pairs of worker and job states given a certain aggregate state At , and where expected labor supply equals expected labor demand
for all matches and pairs of states at all aggregate states and all workers’ and jobs’ Bellman equations are satisfied at all individual and aggregate
states.

14The requirement that supply equals demand for every pair of a worker and firm state means the solution concept known as oblivious equilibrium
cannot be applied to a matching game (Weintraub, Benkard and Roy, 2007). In an oblivious equilibrium, agents optimize while believing the
aggregate market state is currently and will remain forever and some limiting, long-run state. In a matching game, if agents act according to some
state that is not the true aggregate market state, then supply and demand will not equate at each period. For example, a consider a firm where all of
its jobs are filled in the long-run state. Few workers will match there, even if in the real-world state none of the jobs are filled.
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where

A = exp
(

1
2(1+αw)

(
αw
(
ṽ
(
ait ,sa jt

)
+ ṽ(b jt ,sbit)

)
+ ṽ f (ait ,sbit)+ ṽ f (b jt ,sa jt

)))
and

B = exp
(

1
2(1+αw)

(
αw
(
ṽ
(
a jt ,sa jt

)
+ ṽ(bit , s̃bit)

)
+ ṽ f (bit ,sbit)+ ṽ f (a jt ,sa jt

)))
.

Here I have solved for the static equilibrium as a function of the choice-specific value functions that exclude the wage

component of period t’s flow utility:

ṽ(ait ,sa jt) = v(ait ,sa jt)−βwwai (sa jt ,sbit) & ṽ f (ait ,sbit) = v f (ait ,sbit)+ γwwai (sa jt ,sbit) .

Wages are endogenous and can be substituted out of equilibrium match probabilities. Also, αw = γw/βw is the ratio of

the wage parameters of the job and worker.

In this simple example, the endogenous wages support what is more or less the efficient outcome. The equilibrium

match probabilities look like they are comparing the sums of the non-wage expected present discounted value of two

assignments in period t: ait and b jt as well as a jt and bit . Under the model’s timing assumptions, workers make

employment decisions after wages are set. Therefore, the taste shocks εait could be such that a and b could match with

the job i and the job j could be unfilled.

However, the equilibrium match probabilities are written as if the outcome maximizes the sum of the payoffs of

all four agents and as if each job can have only worker. It is similar to the result of Koopmans and Beckmann (1957)

for a model without taste shocks: the decentralized stable matching equilibrium is equal to the solution of social

planner’s problem. Here, the only change might be the social planner has a unobserved payoff component for each of

the two hypothetically exclusive assignments. The scaling αw = γw/βw uses money to equalize the units of the utility

of workers, which are arbitrarily normalized to the variance of the logit taste shocks, π2/6, with the units of the profits

of jobs, which are also arbitrarily scaled.

The formula (6) is sensible for other reasons. First, by switching indices one can see the probabilities of the

matches ait and a jt sum to 1, as they must by market clearing. Second, consider a job j and year t only utility flow

ξ jt that occurs to both workers a and b. A firm fixed effect, or unobserved product characteristic, ξ jt is priced out in

the equilibrium wages. Becker (1973) shows that only interactions between the characteristics of firms and workers

affect matching probabilities. To see the invariance, add ξ jt to both ṽ(ait ,sa jt) and ṽ f (ait ,sbit). There is now one ξ jt

in the same place inside each of the three exp terms. Therefore, the ξ jt terms cancel by multiplying the numerator and

denominator by exp
(
− αw

2(1+αw)ξ jt

)
.

The ṽ(ait ,sa jt)’s and ṽ f (ait ,sbit)’s are not model primitives: they are choice-specific continuation values. The so-

lution to the entire dynamic matching game is required to compute matching probabilities in terms of model primitives,
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such as uβ and πγ . I compute an equilibrium numerically from now on.15

4 Computing an equilibrium

4.1 Solving the system of equations

The system of nonlinear equations (1), (4) and (5) needs to be solved in order to compute an equilibrium. Many

methods exist for solving systems of nonlinear equations. Methods applicable to single-agent dynamic programming

problems, such as contraction mappings, are not guaranteed to converge in this equilibrium model. Therefore I use

Newton’s method, which converges quickly near a solution (SCHMEDDERS2007).

In practice, I use dedicated nonlinear programming solvers, which are used to minimize some function subject to

nonlinear constraints. To compute an equilibrium, I minimize the constant function 0 subject to the set of equality

constraints that the model’s equilibrium equations are satisfied:

max
{V (s),V f (s),ws,s′}

0 s.t.modelequations.

I have found the best success using the commercial solver KNITRO (Byrd, Hribar and Nocedal, 1999). Finding a

solution may require restarts using randomly generated starting values if little information exists about the solution.

Because of the many restarts (which KNITRO automates), computing an equilibrium once may take hours or days for

large matching markets. Once a solution is found, computing new equilibria for model perturbations is much easier as

good starting values are available. Typically only one starting value is needed.

4.2 Reducing the number of model equations and unknowns

Because all agents in a matching market are heterogeneous, studying matching markets suffers from combinatorics

issues in computation. Likewise, dynamic programming problems suffer from scale issues. The combination of

matching and dynamics, the repeated matching game, has the potential to be very computationally difficult. I have

imposed the timing assumptions, like the taste shocks arising after wages are computed, as well as the assumption on

the state space of agents, Assumption 1, to eliminate several forms of computational curses of dimensionality.

However, there is still at least one computational curse of dimensionality remaining. There are S + S + S× S =

2S + S2 nonlinear equations (1), (4) and (5). The remaining computational curse comes from the S× S = S2 supply

equals demand equations, (5), and corresponding equilibrium wages wai (sa jt ,sbit). Recall each state sait is the unique

combination of a vector of worker characteristics xat and a vector of firm characteristics, x f
it . As the number of states S

15I have not been able to use (6) to guess and verify a closed form solution for match probabilities for N > 2.
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increases rapidly as more heterogeneity in either worker or firm characteristics is added, having the number of model

equations increase at the rate S2 creates a tremendous computational burden.

My solution is to make wages less flexible: to have wages be constant over some aggregations of workers and

jobs. Correspondingly, supply must only equal demand at these aggregations. I group pairs of worker and jobs states{
sa jt ,sbit

}
into equivalence classes Xt . The notational convention is that the worker’s state sa jt is listed before the

job’s state sbit . Then there is an equilibrium wage function w(Xt) that replaces each of the wages wai (sa jt ,sbit) for{
sa jt ,sbit

}
∈Xt and a corresponding supply equals demand equation

∑
{sa jt |{sa jt ,sbit}∈Xt}

N (sa jt)Prt (ait | sa jt) = ∑
{sbit |{sa jt ,sbit}∈Xt}

N f (sbit)Pr f
t (ait | sbit) .

Computationally, instead of S2 supply equals demand equations, (5), we have only as many equations as equivalence

classes. There are fewer supply equals demand equations, but each equation has many more terms. It is not obvious that

this way of reducing the number of model equations reduces the computational burden of computing an equilibrium,

but in my experiments it has.

In the empirical application, I use a simple scheme for the equivalence classes. An equivalence class is all the jobs

at one firm and the set of workers either inside or outside the firm. In other words, each firm offers two wages, one to its

current workers and one to potential new workers. I choose this simplification because in the model low wages are used

to screen out workers; a firm has a fixed number of positions and so offers low wages to newcomers if its positions do

not need to be filled. As Section 2.3 argues, the same assignment can be supported by both active screening programs

and by match-specific wages. However, I do plan to consider alternatives. Note that the simplifying assumption says

nothing about the Bellman equations; there is still one Bellman equation (1) for each worker state sait , for example.

4.3 Existence and uniqueness

In a static, one-to-many two-sided matching game with firms having additive payoffs with multiple workers, So-

tomayor (1992) proves that any equilibrium assignment of workers to jobs will maximize the total output of the

economy. The equilibrium is guaranteed to exist and the assignment of workers to firms is unique if no two assign-

ments both maximize the total output of the economy. The equilibrium wages that support the competitive assignment

are not unique; they lie in bounds because of the discrete nature of the inequalities that define an equilibrium.

I add taste shocks to the matching model’s stage game for the econometric need for the model to be able to

rationalize any data set. These taste shocks preserve many of the economic intuition about the pattern of sorting that

may arise in equilibrium, as argued by Choo and Siow (2006) and Weiss (2007) for marriage, but do change the

mathematical structure to make the matching game look more like a Bertrand Nash pricing game with differentiated
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products demand from industrial organization.

The literature on Bertrand pricing equilibria suggests that existence and uniqueness is largely a function of as-

sumptions on the densities of taste shocks, gθ2 (εat) for workers and g f
θ3

(
ε

f
it

)
for firms (Anderson et al., 1992). These

presumably differentiable densities smooth out the match probabilities as a function of the wages, Prt (ait | sa jt) for

workers and Pr f
t (ait | sbit) for firms. These probabilities are similar to reaction functions in a Bertrand Nash pricing

game and their shapes determine whether an equilibrium exists at all and just how many equilibria there might be.

For computational reasons, I have limited myself to assuming that the εat and ε
f

it are both iid extreme value

(yielding the logit). As discussed earlier, this assumption provides closed form solutions for all the integrals in the

match probabilities (2) and the expectations over next period’s states that appear in the model equations (1), (4) and

(5). For these error densities and N = J = 2 workers and jobs, I algebraically derived the unique equilibrium match

probabilities in Section 3.7. For more agents, I have found no examples where I have been able to numerically compute

two sets of equilibrium matching probabilities. This includes the repeated matching game with forward looking agents.

A recent literature uses numerical techniques known as homotopies to find more (but not always all) of the solutions to

a game (Borkovsky, Doraszelski and Kryukov, 2007). Homotopies are much too slow to apply to a repeated matching

game.

If there is no outside option of being unmatched that pays a wage wa /0 (sa jt , /0) = 0, then the wages that support an

equilibrium assignment are unique up to a common additive constant. This can be seen by adding B to all continuation

values in (3): match probabilities remain the same. Unlike Sotomayor (1992), the wages that support a given equilib-

rium set of match probabilities are otherwise more likely to be unique because of the smoothness from gθ2 (εat) and

g f
θ3

(
ε

f
it

)
.

5 Estimation

5.1 Dependent variables for choice model: matches

The data do not contain direct observations on the number of jobs a firm posts. Because of the worker taste shocks

εait , some jobs may remain vacant even though the expected number of holders of the job is 1. In each year t, an

assignment is a vector {1it ,2it , . . .Nit} of the realized job matches of each worker 1, . . . ,N. The assignment satisfies

worker feasibility: each worker must have only one job. Under the model’s timing assumptions, if more or fewer

workers than the expected number accept a firm’s job because of logit shocks, then the job is, for at least a year, filled

by larger or smaller number than its targeted size of 1.
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5.2 Data and the transition rule of the states

Assume that all non logit shock states are observable in the data. An observation
{

ait ,sa jt ,sbit ,sai,t+1
}

is a match ait ,

the worker a’s period t state (based on his period t−1 match a jt−1) sa jt , the job i’s state sbit and the realized state after

the match ait occurs, sai,t+1. The period t states are like regressors in a linear regression, and the period t + 1 states

and the match are the dependent variables. All states are discrete.

The likelihood contribution of this observation can be factored, using the laws of conditional probability, as

o(ait ,sai,t+1 | sa jt ,sbit) = hθ1 (sai,t+1 | sa jt ,sbit ,ait)Pr?t,β̃ ,γ̃,θ1,θ2,θ3
(ait | sa jt) .

Taking the log of o will result in the log of the two components separately. By assumption the utility and profit

structural parameters
{

β̃ , γ̃,θ2,θ3

}
do not enter the transition rule of the observable states. The parameters θ1 of the

transition density of the worker states can be estimated by maximizing the partial log-likelihood

T

∑
t=1

Nt

∑
a=1

loghθ1 (sai,t+1 | sa jt ,sbit ,ait) .

This estimator will be consistent. Substituting the estimate θ̂1 into the likelihood contribution Pr?
t,β̃ ,γ̃,θ1,θ2,θ3

(ait | sa jt)

will allow the other parameters
{

β̃ , γ̃,θ2,θ3

}
to be estimated in a second step. Given the computational cost of

evaluating Pr∗ and the the computational curse of dimensionality in nonlinear optimization, moving the transition

density estimates to a first step reduces the computational cost of the second step. The argument for the consistency of

the two-step procedure is standard in the literature (Rust, 1987). The partial likelihood procedure is consistent for all

parameters, but not as efficient as the joint estimation of all parameters.16

5.3 Matching likelihood

Estimation maximizes a partial log-likelihood over all observed matches,

L
(

β̃ , γ̃,θ2,θ3

)
=

T

∑
t=1

Nt

∑
a=1

logPr?t,β̃ ,γ̃,θ̂1,θ2,θ3
(ait | sa jt) . (7)

The worker non-wage utility parameters β̃ , the firm non-wage profit parameters γ̃ , and the error distribution parameters

θ2 and θ3, if included, enter the model in the primitive forms specified earlier.17

16I have written the transition density of the non-wage state variables hθ1

(
sai,t+1 | sa jt ,sbit ,ait

)
to exclude the endogenous wage data, to exploit

the transferable utility structure of the model. Wages evolve in a worker’s or job’s single-agent dynamic programming problem, but they do so
through the equilibrium structure of the matching game. Having wages affect the transition of non-wage states (through a direct channel, rather than
indirectly through equilibrium matches) may be permissible, but any attempt to have wages enter hθ1 will be application-specific.

17θ2 and θ3 parameterize the distributions of tastes for workers and jobs, respectively. Because of the computational need for closed form
solutions to matching probabilities, the pure logit can easily only be generalized to the Generalized Extreme Value (GEV) class, which nests the
logit and nested logit, among other distributions.
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5.4 Computation in estimation

Evaluating the likelihood function (7) requires solving for an equilibrium to the matching game. Given the com-

putational costs of solving for a matching equilibrium, which mainly involve trying many starting values, nesting the

solution to a matching model inside the likelihood means that it could take hours or even days to evaluate the likelihood

only once. The nested solutions method suggested by (Rust, 1987) for single agent dynamic programming models is

computationally infeasible. Further, two-step estimators such as Hotz and Miller (1993) are statistically infeasible be-

cause they require first-stage nonparametric estimates of Pr?t (ait | sa jt), which would require a thick matching market:

a very large number observationally identical workers and jobs for each state. Asymptotics across matching markets

or years will not provide the required number of observations, as the matching equilibrium will adjust to the new

distribution of states. Unfortunately, my empirical application studies market thickness, where in thin markets almost

by definition I cannot form a nonparametric estimate of Pr?t (ait | sa jt).

Instead, I adopt a suggestion by Su and Judd (2007) and maximize the likelihood (7) subject to the nonlinear

constraints of the model: the equations (5), (1), and (4). The control variables in the maximization routine are both the

structural parameters
{

β̃ , γ̃,θ2,θ3

}
and the equilibrium model objects: for each market t the S workers’ continuation

values V (sa jt), the S jobs’ continuation values V f (sbit), and the S×S wages wai (sa jt ,sbit). Su and Judd (2007) show

and it is simple to see that the maximum value of this constrained optimization problem is the same as the maximum

value of (7). Also, the structural parameter estimates for
{

β̃ , γ̃,θ2,θ3

}
are numerically the same in both methods.18

For a matching market, the T · (S +S +S×S) model unknowns typically far outnumber the number of structural

parameters
{

β̃ , γ̃,θ2,θ3

}
. Therefore, the computational time to estimate the model using maximum likelihood is

about equal to the time it takes to solve the model once (or T times), as described in Section 4.19 Therefore, any model

whose equilibrium can be computed can be estimated, and any model that can be estimated can be used to compute

counterfactuals. Indeed, the computer code I use for equilibrium computation differs in only about five lines from the

code I use for estimation. This is one of the first empirical applications using the suggestion of Su and Judd (2007),

and I have found it to be very practical.20

5.5 Consistency

Sampling error in the matches likelihood arises only because of the workers’ εait job-specific taste shocks. The taste

shocks are independent across workers and occur after wages are set, so each match ait ’s likelihood contribution is

independent from the contribution of other matches. However, the states sa jt and sbit affect the equilibrium wages and

hence the equilibrium match probabilities of all agents. Adding new workers and jobs to the market will probably

18Just to be sure, I coded the nested equilibrium computation estimator for small matching markets and verified the numerical equivalency of the
estimation algorithms.

19One should first estimate the model for T = 1 to get good starting values for the full data set.
20Computing standard errors uses a method for constrained likelihood estimation (Aitchison and Silvey, 1958).
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change the matches of agents. Asymptotics where the dependent variable change as new dependent variable data are

collected are not addressed here.

The purest asymptotics are as T → ∞: the number of distinct realizations of the repeated matching market in-

creases. In Fox (2007), I argue that a matching estimator can be consistent if Nt → ∞ if Nt is only the number of

workers with data. The fiction is that there is labor market with millions of workers, and we have only data on Nt of

them. This fiction is similar to asymptotics in the number of independent countries in cross-country regression: we do

not model colonization of Antarctica or the Moon. Collecting more data on the same matching market does not change

the matches of existing agents, so it is possible to prove consistency this way. However, this large-market fiction is

slightly at odds with the equilibrium computation needed to evaluate the likelihood. Therefore, I focus on the simpler

process of collecting more years of data here (T →∞), and refer readers to Fox (2007) for more details on the Nt →∞

argument.

The model treats different years of data as statistically independent for computing match probabilities and hence for

consistency. This is standard in applications of the Rust (1987) single-agent dynamic discrete choice estimator, where

his conditional independence assumptions means the taste shocks εait are independent across time. Here, Assumption

1 makes this easier: workers and jobs treat the aggregate matching equilibrium as fixed in their forecasts for the future.

5.6 Multiple equilibria

As discussed in Section 4.3, the existence and uniqueness of equilibria likely depends on the distribution of taste

shocks. In a model where there are multiple equilibria (or multiple equilibrium match probabilities here as wage data

are not used), Su and Judd (2007) point out that an equilibrium that does not generate the data is unlikely to be a local

optimum to the likelihood in terms of both the structural parameters and the model’s equilibrium objects. Thus, Su and

Judd argue that their estimator is consistent if the underlying economic model has multiple equilibria. I have verified

their conjecture computationally for private information Nash games with multiple equilibria.

6 Identification

6.1 Identification of flow utilities from continuation values

Choices in dynamic programming models are governed by choice-specific continuation values, such as v(sat ,ait). In a

single-agent model with some parametric error distribution such as the logit, revealed preference using data on choice

probabilities identifies utility differences, such as v(sat ,ait)− v(sat ,a jt) for all pairs. It requires additional assump-

tions to identify flow utilities uβ (sat ,ait) from these continuation value differences. There is a growing literature on

this topic in both single agent and Nash games models: Rust (1994), Taber (2000), Magnac and Thesmar (2002),
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Aguirregabiria (2002), Bajari and Hong (2005), Pesendorfer and Schmidt-Dengler (2007), and Heckman and Navarro

(2007). All of the lessons from this literature can be applied to repeated matching games.

6.2 Breaking a match surplus into worker and firm surpluses

In the match probabilities for the N = J = 2 case in (6), the continuation value of worker a for match ai always occurs

in a matched pair with the continuation value of the firm i for match ai. If this pairing occurs in models with more

agents (and numerically I have verified that it appears to), then match probabilities identify the differences between

the sum of worker and firm continuation values for a match, m̃(ait ,sa jt ,sbit)− m̃(b jt ,sa jt ,sbit), where

m̃(ait ,sa jt ,sbit) = αwṽ(ait ,sa jt)+ ṽ f (ait ,sbit)

and αw = γw/βw. Fox (2007) studies nonparametric identification in a static matching game with transferable utility.

In a purely static matching game, δ = 0, only the total surplus of a match, f
γ̃ β̃

(ait ,sa jt ,sbit) = αwũ
β̃
(ait ,sa jt) +

π̃γ̃ (ait ,sbit), is identifiable from data on who matches with whom. To apply his results to a dynamic example, say

one observes that not many switches occur between firms i and j. In a switching costs model, one can identify that

switching costs are high, but one cannot identify whether the switching costs are incurred by the worker, say as a

psychic disruption cost from moving, or the firm, say as a retraining cost.21

In a static model, computing the equilibrium matching probabilities requires data on only the total surplus f
γ̃ β̃

.

To compute the solutions to the separate worker and firm dynamic programming problems as part of computing an

equilibrium to a repeated matching game, one needs to take a stand on breaking f
γ̃ β̃

into ũ
β̃

and π̃γ̃ . Certain state

variables may be payoff relevant for workers, and others for firms. These exclusion restrictions may be motivated by

economic theory or other empirical evidence. Below I use results from a separate productivity study to argue that the

output lost from having high turnover appears small, so I model switching costs as occurring to the worker.

6.3 Normalizations

αw = γw/βw is not separately identified from any parameters that enter linearly into ũ
β̃
(ait ,sa jt). Using data on

matches alone, it is not possible to tell whether workers have a higher value of money than firms or higher utility gains

from observed states: only the product αwβ̃ is identified if all elements of the vector β̃ enter flow utility linearly.

21Choo and Siow (2006) argue that data on non-matched or single people can identify a composite term uβ (ait ,sait)+βwwait , which shows that
value of the match ait over being single, which has a utility normalized to 0. This normalization is not innocuous and further does not identify a
structural object, rather the sum of a structural object and an equilibrium object, the wage.
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7 Estimating the Switching Costs of Engineers

The empirical application of the repeated matching game is to market thickness and switching in the labor market for

elite Swedish engineers. I use data on most elite engineers in Sweden for 1970–1990. Key advantages include data on

almost all employers, although the data lack firm level accounting data such as output. I do have a job title code that

is standardized across firms, which is a rarity.

7.1 Current Period Utility Function

For a worker i of age age (before the retirement age Da) and with overall state vector sat , his current period utility

function if he chooses match ait is

uβ (ait ,sait)+ εait = βwwait +βdist,agedist(ait−1,ait)+
5

∑
l=1

βscl ,agescl (ait−1,ait)+ εait . (8)

The immediate goal is to estimate

β̃ =
{{

βdist,age,
{

βsc5,age
}5

l=1

}60

age=25

}
,

which describes the relative importance of the switching costs that enter the current period utility function. All the

parameters vary by age, as switching behavior decreases with age. As before, βw is not estimated.

Switching costs depend on the relative locations, in employer characteristic space, of the origin and destination

firms. The switching cost in geographic distance βdist,agedist(ait−1,ait), is an estimated parameter times the log dis-

tance in kilometers between the capitals of the Swedish counties in which the old, ait−1, and potential new, ait , firms

are located.22 The terms {scl (ait−1,ait)}3
l=1are indicator variables that refer to employer changes that cause non-

geographic switching costs. One term is a base switching cost, which a worker incurs even if he moves to a new

employer across the street. An additional switching cost is incurred if the worker switches between firms in different

industries. Also, the data show that 21% of observed switches for Swedish engineers in the estimation sample are

between establishments owned by the same legal corporation.23 Another switching cost is incurred if a worker trans-

fers outside of the boundaries of his corporation. Finally, an attractive element of the Swedish data is that data on the

occupation of each job are recorded. The final switching cost deals with workers switching occupations.

Larger employers have lower turnover. This can rise endogenously in the model, in part because more jobs are lo-

cated inside the firm and workers receive a separate shock for each job. Also recall the job-specific working conditions

that are valued the same by all workers do not effect equilibrium match probabilities.

22dist(ait−1,ait) = 0 for firms in the same county.
23It is important to distinguish between establishments owned by the same legal corporation in order to preserve the geographic nature of an

employment choice. The model assumes that a worker makes all within-corporation transfers through the matching game.
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The final term in the current period utility function is a worker, age and employer-specific taste shock εait . Em-

pirically, the shock allows the model to match the data, where observationally equivalent workers make different

choices. Economically, the relative importance of the taste shock compared to other parameters represents the contri-

bution of idiosyncratic life developments to employer switching. If the patterns of turnover in the data are not driven

by differences in wages and other characteristics, it is likely that employer switching is caused by the idiosyncratic

developments captured by εait .24

In the model, the main reason for a worker to switch matches is because of taste shocks. There is no scope for

experimentation or working at different firms to accumulate different types of general human capital, as postulated by

Lazear (2003). Also, the occupational stratification of workers into entry-level employees and managers across firms

of different size in some static matching models like Rosen (1982) and Garicano and Rossi-Hansberg (2006) suggest,

for example, that as workers gain human capital with experience they may move from being entry-level workers at

large firms to managers at small firms. There is some evidence in favor of these deterministic career paths in the data;

for example workers do tend to disproportionately move from large to small firms with age. With my 21 year panel

these career paths are observable for many engineers and could be included as observable states sait without conceptual

difficulty, but with some computational difficulty. However, I keep the focus on market thickness and switching rather

than modeling these deterministic career paths explicitly to keep the empirical work focused on the effectiveness of

thin and thick matching markets.

7.2 Job profit functions

The empirical specification of the flow profits of a job is trivial:

πγ (ait ,sbit)+ ε
f

ait =−γwwait + ε
f

ait .

As γw cannot be estimated using data only on matches, in practice almost all of the structural surplus is assumed to

accrue to firms. Even given this simple firm profit function, the model still has firms being forward looking as part of

equilibrium.

7.3 Evidence in favor of switching costs independent of stocks of tenure

Fox and Smeets (2007) have firm-level output data and regress firm output on disaggregated labor inputs for firms in

large groups of industries. Broadly speaking, manufacturing is the industrial sector employing the most engineers,

and so the results from that sector are the most relevant. Fox and Smeets (Table 3) find that workers with one or more
24If εi jt is autocorrelated across a career for the same employer (an assumption that complicates computation), the model is a statistical matching

model where the match quality reflects the worker’s idiosyncratic evaluation of the employer’s workplace environment. This contrasts to other
models of statistical matching, where career-employer shocks primarily affect worker productivities and therefore wages (Jovanovic, 1979a).
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years of tenure at a firm produce more output than newcomers, who are workers with zero years of tenure at the firm.

However, there is no statistical evidence in favor of an increasing wage premium with more years of tenure than just

one. The output data are consistent with a one-time training or adjustment cost. The primitive firm output data seems

to support the switching cost rather than slightly more complex stock of tenure specification.

Fox and Smeets use firm output data and it will be more typical to place the switching costs in the profit function

of the firm than the utility function of the worker. However, workers can have additional psychic disruption switching

costs, so an exclusion restriction for one type of switching cost is not natural. Section (6.2) argued that match data

alone cannot distinguish whether the payoff to a match occurs to a worker or to a firm in transferable utility matching

games. For this identification reason, I make the firm’s profit function not include any data or estimable parameters.

Fox and Smeets also consider industry (but not occupational) tenure. The coefficients on industry tenure are lower

than the coefficients on firm tenure. Again, there is no statistical evidence in favor of a sharp returns to industry

specific tenure. A switching cost that does not depend on the stock of tenure in an industry seems sufficient. However,

as stocks of tenure are often observed in panel data, including worker tenure presents no conceptual difficulty, but does

not increase the computational burden of estimation by adding to the number of worker characteristics and hence total

model states.

7.4 Other models of persistence in employment

The focus in the empirical application is on market thickness and switching. Reliance on switching costs in the

model to explain the persistence (not-switching) of employment relationships is just one way to fit the data on market

thickness and switching in an equilibrium matching model with forward looking agents. Alternative theories that could

explain the evidence include search costs / lack of information about the wages at other firms (Burdett and Mortensen,

1998) as well as time persistence in unobserved, match-specific taste or productivity shocks (Jovanovic, 1979b).

The focus is on switching and market thickness. My goal is not to tell apart these alternative models that can explain

switching and market thickness. There are datasets where this might be possible under additional assumptions. For

example, Dubé, Hitsch and Rossi (2007) use high frequency price variation (sales) to shift purchase behavior and

then to see whether the new products continue to be purchased after the sales end. If so, consumers are said to have

switching costs rather than persistent preferences (or search costs / new information). However, there is no such high-

frequency price variation in labor markets for elite workers that could identify the differences between switching costs

and time persistence of preferences.

Another explanation for more switching in a thicker labor market is correlated preferences across similar choices.

This is somewhat easier to add to a matching model. For example, one can use a nested logit rather than the pure logit

for gθ2 (εat). Thompson (1989) studies the nonparametric identification of the distribution of choice-specific error

26



terms in a single-agent multinomial choice model. With good variation in the states of workers, one might be able to

identify these correlated error terms separately from switching costs. I do not pursue this.

7.5 Comparisons to some single-agent and some search models

If I modeled only the worker’s problem and not the matching equilibrium, one would have to use a statistical selection

correction procedure to infer the offered wage distribution from the accepted wage distribution. With 300 or so

employers potentially offering different wages, the selection probability would be a function of 300 indices. Without

300 independently moving instruments, one for each firm, any result of a selection procedure would be sensitive to

functional form, independence or auxiliary assumptions (Dahl, 2002; Bayer, Khan and Timmins, 2007).

Another issue with some single-agent methods and some equilibrium search models is that the dependent variable

is often a worker selecting a certain firm, so in effect the dependent variable is the size of the firm, just like the

dependent variable in consumer demand estimation is the market share of a product. The first order explanation for

plant and firm size variation in a cross section probably has to do with product market issues such as the demand curves

of consumers for different products, and not labor market issues. Single-agent methods have to explain why workers

do not pick high-wage firms, while the matching estimator only needs to explain why one worker is a better match

than another for a fixed position. Equilibrium search models explain failure to take high wage jobs as an informational

friction. This seems like a poor explanation for Swedish graduate engineers, who work in a medium-sized nation for

many internationally recognized firms and probably are well aware of the various employers. In any case, their labor

union would collect data on wage rates and provide it to their members if informational frictions would otherwise be

a major welfare issue.

8 Data

In order to estimate my employer choice model, I need data that cover most employers that hire engineers in a national

labor market, that track workers as they switch employers, and that have multiple workers per employer. In this section

I detail data with these properties.

8.1 The Swedish Labor Market for Engineers

This paper uses data on the wages and employer matches of engineers who work as white collar workers in the

Swedish private sector. The data are collected by the Swedish Employers’ Federation (SAF in Swedish). I use

engineers who have completed a five-year undergraduate degree from one of several university equivalents. The

official translation of this degree is “graduate engineer.” The term “graduate” distinguishes these engineers from those
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attended who attended less prestigious trade schools. Especially during the sample period 1970–1990, these engineers

were among the most highly educated workers in the Swedish private sector. The number of Swedish engineers is

constrained by enrollment limitations at the fixed number of government-run technical institutions allowed to offer

five-year engineering degrees. Therefore, these workers were likely highly valuable employees that were important

to many firms’ successes. The use of engineers contrasts with studies of worker behavior that focus on all workers,

less-skilled workers, or on unusual workers such as CEOs and professional athletes.

An outcome of both negotiations between firms and unions and the 1974 Law on Employment Security is layoffs

in Sweden happen in the inverse order of seniority.25 This lack of discretion implies that firms may be reluctant to lay

off workers. Firing for cause is also very difficult in Sweden, because firings must be justifiable to a union. Therefore,

Sweden is an excellent place to study voluntary employer switching.

My focus is on switching between relatively stable firms. I do not model layoffs due to a dramatic downsizing in a

firm. These layoffs largely happen for product market and not labor market reasons The product market is not part of

the matching model. I clean the data by eliminating establishments that shut down during a particular year. Workers

frequently transfer between establishments owned by the same legal company, so the model includes a switching cost

term in the current period utility function to fit this aspect of the data.

During the sample period 1970–1990, firms and unions collectively bargained over wages for engineers at the

national, industry, and firm levels. National bargaining for white collar workers ended in 1991, after the sample

period. Engineers belong to the CF26 union, which is part of the SACO university graduate union federation, which

itself bargained with the Swedish Employers’ Federation (SAF) at the national level as part of the PTK white collar

workers’ cartel. A large fraction of nominal wage increases is due to wage drift, or firm level wage increases. Union

bargaining is not explicitly part of the transferable utility matching game.

This paper estimates the relative importance of switching costs in employer switching decisions. In the model,

workers have perfect informed about expected outcomes at all employers. I therefore view switching costs as most

likely representing psychic costs of disrupting work and living routines, rather than informational frictions. While

I believe most switching costs are psychic disruption costs, institutional features can also affect switching costs. In

Sweden, the government provides or heavily regulates health care and pension plans, and switching firms does not

reduce these welfare state benefits. On the other hand, capital gains taxes on housing may interfere with geographic

mobility (Lundborg and Skedinger, 1998). Likewise, some Swedes live in rent-controlled apartments, which the

renters cannot use if they switch to employers in different regions.

25The legal relationship between employer seniority and layoff risk means that switching costs may be higher in Sweden. However, unemploy-
ment for engineers is close to zero over the sample period, so the cost of a layoff is more likely to be a psychic disruption cost, rather than a large
salary decrease.

26I do not translate Swedish acronyms for labor unions.
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8.2 Data overview

The data come from the Swedish Employers’ Federation (SAF in Swedish), an organization that represents firms

in negotiations with labor unions. The SAF is composed of industry-level employers’ federations, and the data list

the smaller federation an establishment belongs to. I use these sub-affiliations as my measure of an establishment’s,

and hence a worker’s, industry. The five largest employers of graduate engineers are the basic manufacturing sector

(“engineering” sector in Swedish), a broad chemicals and related group called ALMEGA, steel and metal, building

and construction and finally forestry.

The SAF data aim to cover all workers in member companies of the SAF from 1970–1990. Every year, each

establishment owned by a member company is asked to report information on the worker ID code, age, monthly salary,

education and sex of all white collar employees.27 As a result, the data track workers as they move from employer to

employer in the private sector, but cannot track workers if they leave the labor force or switch to an uncovered sector.28

In practice, collection problems mean that not all establishments report in every year. The data contain information on

roughly 60% of the Swedish private sector work force.29 The coverage rate for engineers in the private sector should

be higher than 60% because they are more likely to be employed by large manufacturing firms, which choose to join

the SAF. 79% of engineers work in the private sector according to the current website of the labor union for engineers,

The most serious problem affecting data coverage is that not all establishments report the educational background

of their workers. About 50% of workers in the data have reported schooling. The establishments reporting on schooling

tend to focus on the need to employ highly educated workers. Therefore, studying a group of highly educated workers

such as engineers minimizes the coverage problem.30

I model workers as making employer decisions at each successive career stage. While I do not directly observe total

labor market experience, age is a good proxy for experience when workers have roughly the same background and do

not take time off from the labor market. Sweden had extremely low reported rates of unemployment during the period

(although some workers were in government training programs), and the rate for the most highly educated workers

is presumably lower. I consider only male engineers, who are less likely to take time off from work for unmodeled

family reasons. A typical male engineer needs to complete his five years of university education and around a year of

military service before entering the labor market. For this reason I only include engineers aged 26 and higher. Many

Swedish workers choose early retirement plans, and I lose track of employees whose firms promote them to executive

positions. For this reason, I do not model workers older than 61, even though the mandatory retirement age is 65.

27The data do not contain information on the personal characteristics of workers, such as their family status and nonwage income, or on the
financial performance of firms.

28There is no particular age pattern for workers who leave the data, except for the expected spike at retirement.
29I calculate this based on numbers in Calmfors and Forslund (1990). The main exceptions are the banking industry, which is represented by a

different employers’ federation, firms that are cooperatively owned by their workers, and firms that do not belong to any employers’ federation. The
data coverage is much better for workers in manufacturing.

30My attempts to accurately predict schooling from other covariates failed.
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Table 1: Facts About Establishments: Mean Over Years
Variable All Estabs. Estimation Sample

# of Establishments 1816 464
Minimum Size for Inclusion N/A 4
Mean # Engineers per Establishment 8.42 26.5
Mean # Total White-Collar Workers 112 283
# of Estabs. in Stockholm County 497 151
# of Estabs. in Small Counties 879 191
# of Estabs. in Manufacturing 513 167
# of Estabs. in Industry and Chemicals 603 151

Large counties are the 1990 administrative boundaries that include the cities of Goteborg, Stockholm and Malmo. Small counties excluded
those three cities.

Finally, I only include engineers who work full-time, which is defined by the SAF as working more than 35 hours in a

week.31

Swedish firms pay engineers a straight monthly salary. While the data report contractual hours (usually 40) for

white collar workers, contractual hours may be a poor proxy for actual hours of work in an office environment.

The SAF data do not follow workers before they enter the labor market, so this paper does not investigate the initial

decision of where to work. In a dynamic setting, all workers must pay a switching cost for this initial employer choice.

For brand new workers, the elasticity of labor supply with respect to the stochastic process for age–wage profiles at a

particular firm may be especially high, and firms may strongly compete to attract new workers into potentially long

careers inside a single firm’s internal labor market.

8.3 Firm Estimation Sample

I use the term firm as a generic term to refer to any employer. Throughout most of this paper, the basic unit of analysis

is a physical establishment, which I sometimes still refer to as a firm for simplicity. I focus on establishments because

geography is a key component in switching costs. I use the term company when I need to explicitly deal with issues

surrounding a legal organization that owns more than one establishment.

Table 1 lists sample statistics for establishments in my estimation sample. There are an average of 1816 estab-

lishments per year. Handling this many choices in a nonlinear discrete choice model is computationally intensive. In

order to increase the speed of the estimation procedure, I narrow the sample by eliminating firms with less than four

engineers in either the start or end year of a two-year period. Establishments that shut down are excluded as a result.

Table 1 labels this truncated sample the estimation sample. From now on, all results use the estimation sample. Table

1 shows that many of the firms are in Stockholm County, and presents the number of establishments in the two largest

industries: “manufacturing” and the ALMEGA “industry and chemicals.”

31Sweden was not a participant in World War II, so the war disrupted the careers of the relevant age cohorts less than the careers of workers in
some other countries. Sweden had no baby boom, although over time the government established new technical universities, increasing the number
of graduate engineering entering the labor market.
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Table 2: Descriptive Statistics about Worker Sample
Variable Mean Std. Dev.

Yearly Salary in 1990 Crowns 266,300 81,100
Yearly Salary in Approximate US Dollars 38,000 11,600
Normalized Salary Percentage Increase (%) 3.93 5.86
Switching Rate (%) 4.08 19.8
Age 38.1 8.71
Large County (%) 59.7 49.0
Establishment Size 1463 1857
Fellow Engineers at the Establishment 208 284
Total Worker Years 195,113
Total Unique Workers 28,251
Mean Years per Worker 6.91

This table uses the estimation sample. Large counties are the 1990 administrative boundaries that include the cities of Goteborg, Stockholm
and Malmo.

8.4 Worker Estimation Sample

The estimation sample covers 28,251 unique Swedish engineers. Each engineer is observed for an average of 6.9

years.

Table 2 lists descriptive statistics for the engineers in the estimation sample. Monthly salaries are in Swedish

crowns normalized to their value in 1990. The yearly percentage growth in salaries reflects the average growth in

the normalized wage levels; in this case it is 3.9%. The yearly switching rate is the percentage of workers who

switch to another firm, with both the new and old firms remaining in business over the period. In the estimation

sample, engineers have a 4.1% probability of switching employers over a yearly period.32 The variable large county

is an indicator variable for working in one of the three largest metropolitan areas in Sweden. A majority of Swedish

engineers work in large counties. Establishment size is the number of other white collar workers at a worker’s place

of employment, while the number of engineers is the number of employees with a five-year engineering degree at

that establishment.33 Clearly, many of the engineers are employed at large establishments. Note that throughout the

remainder of the paper, worker age will refer to a worker’s age at the end a yearly observation.

32In the complete sample of full-time, male engineers, the yearly switching rate is 11.7%. When eliminating establishments that enter or leave
the data, the number drops to 4.08%. The matching game does not model product market changes.

33The estimation sample does not include all engineers as listed in Table 2, as I delete workers if they work part time, are female, or if they were
not in the data in the previous period.
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8.5 Computational burden of the empirical application

9 Descriptive statistics about switching

9.1 Plant closings vs. idiosyncratic switching

9.2 Industries

Lots in construction

9.3 Counties

Lots in Stockholm and its suburb Uppsala, not so much in Goteborg and Malmo. More concentration in Goteborg and

Malmo.

9.4 Worker career stages

Older workers very unlikely to switch

9.5 Firm sizes

Large firms have lower turnover

10 Switching cost estimates

10.1 Point Estimates

• Relative to standard deviation (≈ 1.28) of logit error term

Switching cost Point estimate Standard error

Plant -5.19 0.638

Corporation -1.89 0.600

Industry -0.988 0.799

County -3.72 0.376

Occupation -5.06 0.123
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10.2 Statistical fit

Counties, 1978–1983, switch job at all (occupation, plant, etc.)

County Data Model

Stockholm 0.27 0.34

Jankoping 0.38 0.37

Malmohus 0.09 0.19

Goteborg 0.04 0.04

Kopparberg 0.27 0.25

Gavleborg 0 0.03

Vasternorrland 0.28 0.28

Industries

Industry Data Model

Chemicals 0.34 0.36

Construction 0.09 0.19

Forestry 0 0.03

Manufacturing 0.30 0.30

Petroleum 0.13 0.23

Textiles 0.04 0.04

11 Counterfactuals

11.1 Alternative market structures

Predicted switching rate in Sweden in 1978–1983 if all jobs (plants & occupations) in
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Counterfactual Change Switching rate

County Same 0.35

Different 0.16

Industry Same 0.30

Different 0.24

Occup. Same 0.51

Different 0.17

Plant Same 0.67

Different 0.28

Corporation Same 0.33

Different 0.21

11.2 Entrant firm with unfilled jobs

12 Conclusions
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