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1. Introduction

The models of search on the job by Burdett and Mortensen (1998), Postel-Vinay and Robin

(2003), and Burdett and Coles (2003) can simultaneously and parsimoniously explain a number of

qualitative features of the labor market. For example, they can explain the empirical regularities

in the transition of workers between the states of employment, unemployment and across jobs

that pay different wages (e.g. the negative relationship between job hazard and tenure). They

can explain why similar workers employed at similar firms are paid different wages. They can

explain why wages tend to increase with tenure and experience. 1

Because of these theoretical properties, these models are a very useful tool for studying the

labor market. For example, a macroeconomist could use one of these models to measure the

effect of aggregate productivity shocks on the flows of workers across different employment states

and on the wage distribution. A public economist could use one of these models to measure

the effect on welfare and wage inequality of a change in unemployment benefits, employment

protection legislation, or labor income taxes. An econometrician could estimate one of these

models and measure the fraction of wage inequality that is attributable to worker’s heterogeneity,

firm’s heterogeneity, and search frictions.

However, in all of these models, the distribution of workers across different employment states

(unemployment, and employment at different wages) is an infinite dimensional object which non-

trivially affects the agents’ value and policy functions. This technical property makes it difficult

to solve these models outside of the steady-state and, hence, limits their use in the study of the

labor market.2 In fact, a macroeconomist cannot measure the effect of aggregate productivity

shocks on the flows of workers across employment states and on the wage distribution by simply

comparing the steady-states of the model (unless he has reason to believe that these shocks are

very persistent and that the transition phases have negligible length). A public economist cannot

measure the welfare effect of a change to the unemployment benefit legislation by comparing two

steady-states (unless he has reason to believe that the agents’ discount factor is approximately

zero and, hence, the transition phases are unimportant). And if an econometrician estimates

1Mortensen (1994), Pissarides (1994), and Barlevy (2002) are other popular models of search on the job. These
models have qualitative properties that are very different from those of the models by Burdett Mortensen (1998),
Postel-Vinay and Robin (2002), and Burdett and Coles (2003). For example, they cannot generate residual wage
inequality.

2Recently, Moscarini and Postel-Vinay (2008) have succeded in characterizing the transitional dynamics of the
model by Burdett and Mortensen (1998) (henceforth, BM98). Their results also suggest that it might be possible
to solve the equilibrium of BM98 in a fully stochastic environment. In the meantime, the current paper provides
a model that has the same qualitative properties as BM98 and can be solved in a stochastic environment as easily
as a representative agent model.
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the steady-state of a model, he has to be careful in using data from a period of time when the

fundamentals of the economy have remained approximately unchanged.3

In this paper, we provide an alternative model of search on the job. This model is general in

that it allows for aggregate shocks, idiosyncratic shocks, and different specifications of the con-

tractual environment. For this general model, we prove the existence of an equilibrium in which

the agents’ value and policy functions do not depend on the infinite-dimensional distribution

of workers across different employment states. We refer to this equilibrium as a Block Recur-

sive Equilibrium (BRE). Like the equilibrium of the models by Burdett and Mortensen (1998),

Postel-Vinay and Robin (2002), and Burdett and Coles (2003), the BRE of our model generates

worker flows between employment, unemployment, and across employers; it generates a negative

relationship between job hazard and tenure; it generates residual wage inequality, and a positive

return to tenure and experience. However, unlike the equilibrium of these other models, the BRE

of our model can be easily computed in and out of the steady-state. Therefore, our model can be

used, without qualifications, to carry out the labor market measurements that we have described

in the previous paragraph.

It is the difference in the nature of the search process that explains why our model admits a

Block Recursive Equilibrium and the models by Burdett and Mortensen (1998), Postel-Vinay and

Robin (2002), and Burdett and Coles (2003) do not. In our model, the search process is directed,

in the sense that a worker knows the terms of trade offered by different firms before he chooses

where to apply for a job4. In the other models, the search process is random, in the sense that

a worker has no information about terms of trade when he sends out a job application. If the

search process is directed, workers in different employment states choose to apply for different

jobs, because they have different preferences over the probability of getting a job and the value

offered by a job. Therefore, the distribution of workers across employment states does not affect

the benefit to the firm from creating a vacancy that offers certain terms of trade, the tightness of

the labor market and, ultimately, the agents’ value and policy functions. In contrast, if the search

process is random, workers in different employment states search for the same jobs. Therefore,

the distribution of workers across different employment states affects the probability that a firm

3Postel-Vinay and Robin (2002) explicitely acknowledge that estimating the steady-state of an OJS model
restricts their choice of data: “We have deliberately selected a much shorter period than is available because we
want to find out whether it is possible to estimate our model over a homogeneous period of the business cycle.
It would have been very hard to defend the assumption of time-invariant parameters (the job offer arrival rate
parameters in particular) had we been using a longer panel.” Similarly, Jolivet et alii (2006) state that “We choose
to restrict our analysis to a 3-year sample for three reasons. [...] Third, the model assumes that the labor market
is in a steady-state, an asusmption that would be harder to defend over a longer period of time.”

4The directed search literature was pioneered by Peters (1991), Moen (1997), Acemoglu and Shimer (1999), and
Burdett Shi and Wright (2001).
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meets a worker who is willing to accept certain terms of trade, the benefit to the firm of creating a

vacancy, the tightness of the labor market and, ultimately, the agents’ value and policy functions.

Two recent papers have established the existence of a Block Recursive Equilibrium for models

of directed search on the job. Shi (2008) proves the existence of a BRE for a deterministic model

with incomplete contracts. Menzio and Shi (2008) prove the existence of a BRE for a model

with aggregate shocks, idiosyncratic shocks, and complete labor contracts. The current paper

significantly generalizes the results in Shi (2008) and Menzio and Shi (2008) by establishing the

existence of a BRE for a model of directed search on the job which allows for aggregate shocks,

idiosyncratic shocks, worker’s risk aversion, and for different specifications of the contractual

environment. In order to attain such generality, the current paper has to develop a different

existence proof. The proof in Shi (2008) is based on the existence of a functional relationship

between tenure and wage. Such functional relationship does not exist in a stochastic environment.

The existence proof in Menzio and Shi (2008) is based on the equivalence between the solution

to the social planner’s problem and the equilibrium allocation. This equivalence does not hold

when employment contracts are incomplete. Because of its generality, the existence proof in our

paper may have independent use.

2. The Model

2.1. Agents and Markets

The economy is populated by a continuum of workers with measure one, and by a continuum

of firms with positive measure. Each worker has a periodical utility function υ(.) defined over

consumption, where υ : R → R is a twice-continuously differentiable, strictly increasing, weakly
concave and such that υ0(.) ∈ [υ0, υ0], 0 < υ0 ≤ υ0. Each worker maximizes the expected sum of

periodical utilities discounted at the factor β ∈ (0, 1).

Each firm operates a constant returns to scale technology which turns one unit of labor into

y + z units of consumption. The first component of productivity, y, is common to all firms, and

its value lies in the set Y = {y1, y2, ...yN(y)}, where y ≡ y1 < ... < yN(y) ≡ ȳ and N (y) ≥ 2 is
an integer. The second component of productivity, z, is specific to each firm-worker pair, and its

value lies in the set Z = {z1, z2, ...zN(z)}, where z ≡ z1 < ... < zN(z) ≡ z̄ and N (z) ≥ 1 is an
integer. Each firm maximizes the expected sum of periodical profits discounted at the factor β.

The labor market is organized in a continuum of submarkets indexed by the lifetime utility x

that the firms offer to the workers, x ∈ X = [x, x], with x < (1−β)−1υ(b) and x > (1−β)−1υ(y+z)
.Specifically, whenever a firm meets a worker in submarket x, the firm offers the worker an

3



employment contract that gives him the lifetime utility x. In submarket x, the ratio of the

number of vacancies created by firms to the number of workers looking for jobs is given by

θ(x, ψ) ≥ 0 and is determined in the equilibrium. In the remainder of the paper, we shall refer
to θ(x, ψ) as the tightness of submarket x.5

Time is discrete and continues forever. At the beginning of each period, the state of the

economy can be summarized by the triple (y, u, g) ≡ ψ. The first element of ψ denotes the

aggregate component of labor productivity, y ∈ Y . The second element denotes the measure of

workers who are unemployed, u ∈ [0, 1]. The third element is a function g : X × Z → [0, 1], with

g(V, z) denoting the measure of workers who are employed at a job that gives them the lifetime

utility Ṽ ≤ V , and that has an idiosyncratic component of productivity z̃ ≤ z.

Each period is divided into four stages: separation, search, matching and production. During

the separation stage, an employed worker is forced to move into unemployment with probability

δ ∈ (0, 1). Also, during the separation stage, an employed worker has the option to voluntarily
move into unemployment.

During the second stage, a worker gets the opportunity of searching for a job with a probability

that depends on his recent employment history. In particular, if the worker was unemployed at

the beginning of the period, he can send an application with probability λu ∈ (0, 1]. If the worker
was employed at the beginning of the period and did not lose his job during the separation stage,

he can search with probability λe ∈ (0, 1]. If the worker lost his job during the separation stage,
he cannot search. Conditional on being able to search, the worker chooses which submarket to

visit. In this sense, search is directed. Also, during the search stage, a firm chooses how many

vacancies to create and where to locate them. The cost of maintaining a vacancy for one period

is k > 0. Both workers and firms take the tightness θ(x, ψ) parametrically.6

During the matching stage, the workers and the vacancies in submarket x come together

through a frictional meeting process. In particular, a worker meets a vacant job with probability

p(θ(x, ψ)), where p : R+ → [0, 1] is a twice continuously differentiable, strictly increasing, strictly

concave function such that p(0) = 0, p0(0) <∞. Similarly, a vacancy meets a worker with prob-
ability q(θ(x, ψ)), where q : R+ → [0, 1] is a twice continuously differentiable, strictly decreasing

function such that q(θ) = p(θ)/θ, q(0) = 1, p(q−1(.)) concave.7 When a vacancy and a worker

5In submarkets that are not visited by any workers, θ(x,ψ) is an out-of-equilibrium conjecture that helps
determine equilibrium behavior.

6That is, workers and firms treat the tightness θ(x) just like households and firms treat prices in a Walrasian
Equilibrium.

7The last property of q(θ) is needed to guarantee that the worker’s search problem is strictly concave and its
solution unique. The reader should notice that this property (as well as the other properties of p and q) are satisfied
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meet, the firm that owns the vacancy offers to the worker an employment contract that gives

him the lifetime utility x.If the worker rejects the offer, he returns to his previous employment

position. If the worker accepts the offer, the two parties form a new match. We assume that all

new matches have the idiosyncratic component of productivity z0 ∈ Z.

During the last stage, an unemployed worker produces and consumes b ∈ (0, y + z) units

of output. A worker employed at a job z produces y + z units of output and consumes w

of them, where w is specified by the worker’s labor contract. At the end of the production

stage, Nature draws next period’s aggregate component of productivity, ŷ, from the probability

distribution Φŷ(ŷ|y), and next period’s idiosyncratic component of productivity, ẑ, from the

probability distribution Φẑ(ẑ|z).8 The draws of the idiosyncratic component of productivity are
independent across matches.9

2.2. Contractual Environment

We consider two alternative contractual environments. In the first environment, the firm com-

mits to an employment contract that specifies the worker’s wage as a function of the history of

realizations of the idiosyncratic productivity of the match, z, the history of realizations of the

aggregate state of the economy, ψ, and the history of realizations of a two-point lottery that is

drawn at the beginning of every production stage. In the remainder of the paper, we shall refer

to this as the “dynamic contract” environment.10 In the second environment, the firm commits

to a wage that remains constant throughout the entire duration of the employment relationship.

This constant wage is allowed to depend on the outcome of a two-point lottery that is drawn at

the beginning of the employment relationship. In the remainder of the paper, we shall refer to

this as the “fixed-wage contract” environment.

We are interested in these two contractual environments because they have been the focus

of the literature on random search on the job. The “dynamic contract” environment generalizes

the environment considered by Burdett and Coles (2003) to an economy in which productivity

is stochastic. The “fixed-wage contract” environment is the same environment that has been

by many standard specifications of the matching process. For example, it is satisfied by the CES matching process
q(θ) = (α+ θσ)−1/σα1/σ, p(θ) = (α+ θσ)−1/σα1/σθ, α ∈ (0, 1) and 1 ≥ σ > 0.

8Throughout this paper, the caret on a variable indicates the variable in the next period.
9In order to keep the exposition simple, we have chosen to restrict attention to aggregate and idiosyncratic

shocks affect only labor productivity. However, the proof of the existence of a Block Recursive Equilibrium does
not depend on this choice, and can be easily generalized to the case in which aggregate and idiosyncratic shocks
affect the search process, the value of unemployment, labor income taxes, etc. . .
10In the special case where workers are risk neutral, the dynamic contracts considered in this papers attain

the same allocation as the complete contracts considered in Menzio and Shi (2008). Therefore, the proof of the
existence of a Block Recursive Equilibrium in this paper generalizes the existence proof in Menzio and Shi (2008).
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considered by Burdett and Mortensen (1998), van Den Berg and Ridder (1998), and Jolivet et

alii (2006). Notice that, under both specifications of the environment, contracts are incomplete

because wages cannot be made contingent upon the outside offers received by the worker.

2.3. Worker’s Problem

Consider a worker who has the opportunity to look for a job at the beginning of the search stage.

If the worker visits submarket x, he succeeds in finding a job with probability p(θ(x, ψ)), and

he fails with probability 1 − p(θ(x, ψ)). If he succeeds, he enters the production stage in a new

employment relationship which gives him the lifetime utility x. If he fails (or if he does not apply

for a job), he enters the production stage in the same employment position that he previously

held, which gives him lifetime utility V . Therefore, the worker’s lifetime utility at the beginning

of the search stage is V +max{0, R(V, ψ)}, where

R(V,ψ) = max
x∈X

p(θ(x, ψ))(x− V ). (2.1)

We denote as m(V,ψ) the solution to the maximization problem in (2.1). Moreover, we denote

as p̃(V,ψ) the composite function p(θ(m(V, ψ), ψ)).

Next, consider an unemployed worker at the beginning of the production stage, and denote

as U(ψ) his lifetime utility. In the current period, the worker produces and consumes b units of

output. During the next search stage period, the worker is unemployed and has the opportunity

to look for a job with probability λu. Therefore, the worker’s lifetime utility U(ψ) is equal to

U(ψ) = u(b) + βEψ̂
h
U(ψ̂) + λumax

n
0, R(U(ψ̂), ψ̂)

oi
. (2.2)

2.4. Firm’s Problem

2.4.1. Dynamic Contract

Consider a firm that employs a worker at the beginning of the production stage. The aggregate

state of the economy is ψ, and the idiosyncratic productivity of the match between the firm and

the worker is z. Let s denote the couple (ψ, z). Let J(V, s) denote the maximized lifetime profits

of the firm, where the maximum is taken with respect to the employment contracts that provide

the worker with the lifetime utility V . In the Supplementary Appendix (available upon request),
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we prove that J(V, s) satisfies the following Bellman Equation

J(V, s) = max
πi,wi,d̂i,V̂i

P2
i=1 πi

n
y + z − wi + βEŝ

h
(1− di (ŝ))

³
1− λep̃(V̂i (ŝ) , ψ̂)

´
J(V̂i (ŝ) , ŝ)

io
s.t. πi ∈ [0, 1], wi ∈ R, di : Ψ× Z → [δ, 1], V̂i : Ψ× Z → X, for i = 1, 2,P2

i=1 πi = 1, di (ŝ) =
n
δ if U(ψ̂) ≤ V̂i (ŝ) + λeR(V̂i (ŝ) , ψ̂), 1 else

o
,P2

i=1 πi

n
u(wi) + βEŝ

h
di (ŝ)U(ψ̂) + (1− di (ŝ))

³
V̂i (ŝ) + λeR(V̂i (ŝ) , ψ̂)

´io
= V.

(2.3)

In the recursive formulation of the contracting problem, the firm chooses a two-point lottery

over the worker’s wage w in the current period, the worker’s probability d of becoming unemployed

during the next separation stage, and the worker’s lifetime utility V̂ at the beginning of the next

production stage. The firm’s choice is subject to an individual rationality constraint, which

requires the probability d to be consistent with the worker’s incentives to quit. The firm’s choice

is also subject to a promise-keeping constraint, which requires the worker’s lifetime utility to be

equal to V .11 The firm’s objective is to maximize the sum of its profits in the current period,

y + z − w, and its lifetime profits in the next period, (1 − di(ŝ)) (1 − λep̃(V̂i(ŝ), ψ̂)) J(V̂i(ŝ), ŝ).

We denote the optimal policy function associated with (2.3) as c = (πi, wi, di, V̂i)
2
i=1, where

πi = πi(V, s), wi = wi(V, s), di = di(V, s, ŝ), and V̂i = V̂i(V, s, ŝ), for i = 1, 2.

2.4.2. Fixed-Wage Contract

Consider a worker who is employed for a wage of w at the beginning of the production stage,

and denote as H(w,ψ) his lifetime utility. In the current period, the worker consumes w units

of output. During the next separation stage, the worker is forced to become unemployed with

probability δ, and has the option of keeping his job with probability 1− δ. If the worker becomes

unemployed, he does not have the opportunity to look for a new job during the next search stage.

If the workers keeps his job, he has the opportunity to look for a better job with probability λe.

Therefore, the worker’s lifetime utility H(w,ψ) is equal to

H(w,ψ) = w + βEψ̂
n
d(ψ̂)U(ψ̂) + (1− d(ψ̂))

h
H(w, ψ̂) + λemax{0, R(H(w, ψ̂), ψ̂)}

io
,

d(ψ̂) =
n
δ if U(ψ̂) ≤ H(w, ψ̂) + λemax

n
0, R(H(w, ψ̂), ψ̂)

o
, 1 else

o
.

(2.4)

We denote as h(V,ψ) the wage that provides an employed worker with the lifetime utility V .

That is, we denote as h(V, ψ) the solution of the equation H(w,ψ) = V with respect to w.

11In writing the promise-keeping constraint, we have used the fact that max{0, R(V̂ , ψ̂)} is equal to R(V̂ , ψ̂) for
all feasible continuation values V̂ ∈ X.
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Next, consider a firm that employs a worker for a wage of w at the beginning of the production

stage, and denote as K(w, s) its lifetime profits. In the current period, the firm’s profits are given

by y+ z −w. In the next period, the firm’s profits are given by (1− d(ψ̂)) (1− λep̃(H(w, ψ̂), ψ̂))

K(w, ŝ). Therefore, K(w, s) is equal to

K(w, s) = y + z − w + βEŝ
h
(1− d(ψ̂))(1− λep̃(H(w, ψ̂), ψ̂))K(w, ŝ))

i
,

d(ψ̂) =
n
δ if U(ψ̂) ≤ H(w, ψ̂) + λemax

n
0, R(H(w, ψ̂), ψ̂)

o
, 1 else

o
.

(2.5)

Finally, consider a firm that has just met a worker in submarket V , and denote as J(V, ψ, z0)

its lifetime profits. The firm offers to the worker a two-point lottery over the constant wage

w. The firm’s offer is required to provide the worker with the lifetime utility V (if accepted).

Therefore, the firm’s lifetime profits J(V, ψ, z0) are equal to

J(V, ψ, z0) = max
πi,Ṽi

P2
i=1 πiK(h(Ṽi, ψ), ψ, z0),

s.t. πi ∈ [0, 1], Ṽi ∈ X, for i = 1, 2,P2
i=1 πi = 1,

P2
i=1 πiṼi = V.

(2.6)

We denote the optimal policy function associated with (2.6) as c = (πi, Ṽi)
2
i=1, where πi = πi(V, s)

and Ṽi = Ṽi(V, s), for i = 1, 2.

2.5. Market Tightness

During the search stage, a firm chooses how many vacancies to create and where to locate them.

The firm’s benefit of creating a vacancy in submarket x is the product between the probability

of meeting a worker, q(θ(x, ψ)), and the value of meeting a worker, J(x, ψ, z0). The firm’s cost

of creating a vacancy in submarket x is k. When the benefit is strictly smaller than the cost, the

firm’s optimal policy is to create no vacancies in x. When the benefit is strictly greater than the

cost, the firm’s optimal policy is to create infinitely many vacancies in x. And when the benefit

and the cost are equal, the firm’s profits are independent from the number of vacancies it creates

in submarket x.

In any submarket that is visited by a positive number of workers, the tightness θ(x, ψ) is

consistent with the firm’s optimal creation strategy if and only if

k ≥ q(θ(x, ψ))J(x, ψ, z0), (2.7)

and θ (x, ψ) ≥ 0, with complementary slackness. In any submarket that workers do not visit, the
tightness θ (x, ψ) is consistent with the firm’s optimal creation strategy if and only if q(θ(x, ψ))J(x, ψ, z0)

8



is smaller or equal than k. Following most of the literature on directed search (e.g. Acemoglu

and Shimer 1999, Menzio 2007, and Shi 2008), we restrict attention to equilibria in which the

tightness θ (x, ψ) satisfies condition (2.7) in all submarkets.

3. Block Recursive Equilibrium: Definition and Procedure

The previous section motivates the following definition of equilibrium:

Definition 3.1. ARecursive Equilibrium consists of a market tightness function θ : X×Ψ→ R+;
a search value function R : X ×Ψ→ R, and policy function m : X ×Ψ→ X; an unemployment

value function U : Ψ → R; a firm’s value function J : X × Ψ × Z → R, and a contract policy
function c : X ×Ψ × Z → C; and a transition probability function for the aggregate state of the

economy Φψ̂ : Ψ×Ψ→ [0, 1]. These functions satisfy the following requirements:

(i) θ satisfies (2.7) for all (x,ψ) ∈ X ×Ψ;
(ii) R satisfies (2.1) for all (V, ψ) ∈ X ×Ψ, and m is the associated policy function;

(iii) U satisfies (2.2) for all ψ ∈ Ψ;
(iv) J satisfies (2.3) or (2.6) for all (V,ψ, z) ∈ X×Ψ×Z, and c is the associated policy function;

(v) Φψ̂ is derived from the policy functions, (m, c), and the probability distributions for (ŷ, ẑ).

Solving a recursive equilibrium outside of the steady-state requires solving a system of func-

tional equations in which the unknown functions depend on the entire distribution of workers

across employment states, (u, g). Since this distribution is a large dimensional object (for ex-

ample, it is an infinite dimensional object in the version of the model with dynamic contracts),

solving a recursive equilibrium outside of the steady-state is a difficult task both analytically and

computationally. In contrast, solving the following class of equilibria is much easier because it

involves solving a system of functional equations in which the unknown functions have at most

three dimensions:

Definition 3.2. A Block Recursive Equilibrium (BRE) is a recursive equilibrium such that the

functions {θ,R,m,U, J, c} depend on the aggregate state of the economy, ψ, only through the
aggregate component of productivity, y, and not through the distribution of workers across em-

ployment states, (u, g).

In this paper, we establish the existence of a Block Recursive Equilibrium. To this aim, we

define J (X × Y × Z) (henceforth J ) as the set of firm’s value functions J : X×Y ×Z → R such
that: (J1) For all (y, z) ∈ Y ×Z and all V1, V2 ∈ X, V1 ≤ V2, the difference J(V2, y, z)−J(V1, y, z)
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is bounded between −B̄J(V2−V1) and −BJ(V2−V1), where B̄J ≥ BJ > 0; (J2) For all (V, y, z) ∈
X×Y ×Z, J(V, y, z) is bounded between J and J̄ ; (J3) For all (y, z) ∈ Y ×Z, J(V, y, z) is concave
in V . In words, a firm’s value function J in the set J depends on ψ only through y. Moreover,

a firm’s value function J in the set J is bounded; it is strictly decreasing and weakly concave

in V ; and its “derivative” with respect to V is bounded above and below (i.e. it is bi-Lipschitz

continuous in V ). In Appendix A, we prove that J is a non-empty, bounded, closed and convex

subset of the space of bounded, continuous functions on X × Y × Z, with the sup norm.12

In Section 4, we take an arbitrary firm’s value function J from the set J . Given J , we prove

that the market tightness function, θ, that solves the equilibrium condition (2.7) depends on

the state of the economy, ψ, only through the aggregate component of productivity, y, and not

through the distribution of workers across employment states, (u, g). Intuitively, since the value

of filling a vacancy in submarket x does not depend on the distribution of workers and the cost

of creating a vacancy is constant, the equilibrium probability of filling a vacancy in submarket x,

and hence the tightness of submarket x, must be independent from the distribution of workers.

Given θ, we prove that the search value function, R, that solves the equilibrium condition

(2.1) depends on ψ only through y. Intuitively, R does not depend on (u, g), because neither the

probability that a worker finds a job in submarket x nor the benefit to a worker from finding a job

in submarket x depend on the employment status of all the other workers in the economy. Given

R, we prove that the unemployment value function, U , that solves the equilibrium condition (2.2)

depends on ψ only through y. Intuitively, U does not depend on (u, g), because neither the output

of an unemployed worker nor his return to searching depend on the distribution of workers across

different employment states.

In Section 5, we insert J , θ, R, and U in the RHS of the equilibrium condition (2.3), and we

construct an update, TJ , for the firm’s value function J . First, we prove that TJ depends on ψ

only through y. Intuitively, TJ does not depend on (u, g) because the output of a match in the

current period, the probability that a match survives until the next production stage, and the

value to the firm of a match at the next production stage are all independent from the distribution

of workers across employment states. Second, we prove that TJ is bounded between J and J ; it

is strictly decreasing and weakly concave in V ; and its “derivative” with respect to V is bounded

between −BJ and −BJ . Intuitively, the firm’s updated value function, TJ , is bounded because

the output of the match is bounded and there is time discounting; TJ is decreasing because a

firm finds it costly to provide a worker with higher lifetime utility; TJ is concave because the

12Throughout this paper, the norm is the sup norm unless it is specified otherwise.
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prescriptions of the contract between a firm and a worker are allowed to depend on the outcome

of a lottery; and the “derivative” of TJ is bounded because the derivative of the worker’s utility

function is bounded. Third, we prove that TJ is continuous in J .

From the first two properties of TJ , it follows that the equilibrium operator T maps the set of

firm’s value functions J into itself. From the third property of TJ , it follows that the equilibrium

operator T is continuous in J . From the bi-Lipschitz continuity of TJ , it follows that the family of

functions T (J ) is equicontinuous. Overall, the equilibrium operator T satisfies the assumptions

of Schauder’s fixed point theorem (see Stokey and Lucas with Prescott, 1989), and, hence, there

exists a J∗ ∈ J such that J∗ = TJ∗. Clearly, the firm’s value function J∗, together with the

functions θ∗, R∗, m∗, U∗, and c∗ constructed with J∗, constitute a Block Recursive Equilibrium

for the version of the model with dynamic contracts. In Section 6, we use a similar argument to

prove the existence a Block Recursive Equilibrium for the version of the model with fixed-wage

contracts.

4. General Properties of an Equilibrium

4.1. Market Tightness

Suppose that the firm’s value function is given by an arbitrary J ∈ J . Then, for all (x, ψ) ∈
X × Ψ such that J(x, y, z0) ≥ k, the solution to the equilibrium condition (2.7) is given by a

market tightness of q−1(k/J(x, y, z0)), where q−1(k/J(x, y, z0)) is bounded between 0 and θ ≡
q−1(k/J)..For all (x,ψ) ∈ X × Ψ such that J(x, y, z0) < k, the solution to the equilibrium

condition (2.7) is given by a a market tightness of 0. The condition J(x, y, z0) ≥ k is satisfied if

and only if x ≤ x̃(y), where x̃(y) is the solution to the equation J(x, y, z0) < k with respect to x.

From these observations, it follows that the function θ : X × Y → [0, θ] defined as

θ(x, y) =

(
q−1(k/J(x, y, z0)), if x ≤ x̃(y),

0, else,
(4.1)

is the unique solution to the equilibrium condition (2.7) for all (x, ψ) ∈ X ×Ψ.

The market tightness function, θ, has several properties. First, θ depends on the aggregate

state of the economy, ψ, only through the aggregate component of productivity, y, and not

through the distribution of workers across different employment states, (u, g). Second, the market

tightness function, θ, is strictly decreasing with respect to x. Intuitively, since in a submarket

with a higher x the firm’s value from filling a vacancy is lower, the firm’s probability of filling a

vacancy must be higher. Third, the market tightness function, θ, is bi-Lipschitz continuous with

respect to x. Intuitively, since the firm’s value function, J, is bi-Lipschitz continuous in x and the
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derivative of the function q−1(.) is bounded, the market tightness function defined in (4.1) is also

bi-Lipschitz continuous. Finally, the probability that a worker meets a vacancy in submarket x,

p(θ(x, y)), decreases at an increasing rate as x increases. This property follows from the concavity

of the firm’s value function J and of the composite function p(q−1(.)). These properties of θ are

summarized in the following lemma and proved in Appendix B.

Lemma 4.1. (i) For all y ∈ Y , the market tightness function, θ, is such that

B̄J

q0(θ̄)k
(x2 − x1) ≤ θ(x2, y)− θ(x1, y) ≤

BJk

q0(0)J̄2
(x2 − x1), if x1 ≤ x2 ≤ x̃(y),

B̄J

q0(θ̄)k
(x2 − x1) ≤ θ(x2, y)− θ(x1, y) ≤ 0, if x1 ≤ x̃(y) ≤ x2,

θ(x2, y)− θ(x1, y) = 0, if x̃(y) ≤ x1 ≤ x2.

(4.2)

(ii) For all y ∈ Y and all x ∈ [x, x̃ (y)], the composite function p(θ(x, y)) is strictly decreasing

and strictly concave in x.

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn denote the market tightness

function computed with Jn, and θr the market tightness function computed with Jr. In the

following lemma, we prove that, if the distance between Jn and Jr converges to zero, so does the

distance between θn and θr. That is, we prove that the market tightness function, θ, is continuous

with respect to the firm’s value function J with which it is computed. This result will be used in

Section 5 and 6 to establish that the equilibrium operator T is continuous.

Lemma 4.2. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kθn − θrk < αθρ, αθ ≡ −B̄J/
£
q0(θ̄)BJk

¤
. (4.3)

Proof: For the sake of brevity, let us suppress the dependence of various functions on (y, z).

Let ρ > 0 be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that

kJn − Jrk < ρ. Let y be an arbitrary point in Y . From property (J1) of the set J , it follows
that Jr(x+ B−1J ρ) − Jr(x) ≤ −ρ and, hence, Jr(x)− ρ ≥ Jr(x+ B−1J ρ). From property (J1), it

also follows that Jr(x)− Jr(x−B−1J ρ) ≤ −ρ and, hence, Jr(x) + ρ ≤ Jr(x−B−1J ρ). From these

observations and kJn − Jrk < ρ, it follows that

Jn(x) < Jr(x) + ρ ≤ Jr(x−B−1J ρ),

Jn(x) > Jr(x)− ρ ≥ Jr(x+B−1J ρ).
(4.4)
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From the first line in (4.4) and equation (4.1), it follows that θn(x) ≤ θr(x − B−1J ρ). Similarly,

from the second line in (4.4) and equation (4.1), it follows that θn(x) ≥ θr(x + B−1J ρ). Hence,

the difference θn(x)− θr(x) is such that

θn(x)− θr(x) < θr(x−B−1J ρ)− θr(x) ≤
−B̄J

q0(θ̄)BJk
ρ,

θn(x)− θr(x) > θr(x+B−1J ρ)− θr(x) ≥
B̄J

q0(θ̄)BJk
ρ.

Since above inequalities hold for all (x, y, z) ∈ X × Y × Z, we conclude that kθn − θrk < αθρ.

¥

4.2. Search Problem

Given the firm’s value function J ∈ J , the market tightness function θ defined in (4.1) sat-

isfies the equilibrium condition (2.7). Given θ, the search value function, R, that satisfies

the equilibrium condition (2.1) is equal to maxx∈X f(x, V, y) for all (x, ψ) ∈ X × Ψ, where
f(x, V, y) ≡ p(θ(x, y))(x − V ). Note that, for all (V, ψ) ∈ X × Ψ, the objective function, f ,
depends on the aggregate state of the economy, ψ, through the aggregate component of produc-

tivity, y, and not through the distribution of workers across different employment states, (u, g).

Also, note that the choice set, X, is independent from the aggregate state of the economy, ψ.

From these observations, it follows that the search value function, R, depends on ψ only through

y, i.e. R : X × Y → R.

Given θ, a search policy function satisfies the equilibrium condition (2.1) if its value belongs

to argmaxx∈X f(x, V, y) for all (V,ψ) ∈ X × Ψ. For all (V, ψ) ∈ X ×Ψ, the objective function,
f , is negative for all x in the interval [x, V ], strictly positive for all x in the interval (V, x̃(y)),

and equal to zero for all x in the interval [x̃(y), x]. Moreover, the objective function is strictly

concave in x for all x in the interval (V, x̃(y)) (Shi, 2008, Lemma 3.1). Therefore, if V < x̃(y),

the argmax is unique and belongs to the interval (V, x̃(y)). If V ≥ x̃(y), the argmax includes any

point between V and x. From these observations, it follows that the function m : X × Y → X

defined as

m(V, y) =

(
argmaxx∈X f(x, V, y), if V < x(y),

V, else,
(4.5)

is a solution to the equilibrium condition (2.1).

In Lemma 4.3, we prove that the search value function, R, is decreasing in V . Intuitively,

since the value to a worker from finding a job in submarket x is decreasing in the value, V , of

his current employment position and the probability that a worker finds a job in submarket x
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is independent from V , the return to search is decreasing in V . Then, in Lemma 4.4, we prove

that the search policy function, m, is increasing in V . Intuitively, since the marginal rate of

substitution between the value offered by a new job and the probability of finding a new job is

decreasing in V , the optimal search strategy is increasing in V . Moreover, in Lemmas 4.3 and

4.4, we prove that the search value and policy functions are bi-Lipschitz continuous in V . These

results will be used in Sections 5 and 6 to prove that the equilibrium operator T is continuous.

Lemma 4.3. For all y ∈ Y and all V1, V2 ∈ X, V1 ≤ V2, the search value function, R, is such

that

−(V2 − V1) ≤ R(V2, y)−R(V1, y) ≤ 0. (4.6)

Proof: For the sake of brevity, let us suppress the dependence of various functions on y. For all

V1, V2 ∈ X, with V1 ≤ V2, the difference R(V2)−R(V1) is such that

R(V2)−R(V1) ≤ f(m(V2), V2)− f(m(V2), V1) ≤ −p(θ(m(V2)))(V2 − V1) ≤ 0,
R(V2)−R(V1) ≥ f(m(V1), V2)− f(m(V1), V1) ≥ −p(θ(m(V1)))(V2 − V1) ≥ −(V2 − V1).

where the first inequality in both lines makes use of the fact that R(Vi) is equal to f(m(Vi), Vi)

and greater than f(m(V−i), Vi) for i = 1, 2. ¥

Lemma 4.4. For all y ∈ Y and all V1, V2 ∈ X, V1 ≤ V2, the search policy function, m, is such

that

0 ≤ m(V2, y)−m(V1, y) ≤ V2 − V1. (4.7)

Proof: For the sake of brevity, let us suppress the dependence of the functions θ, x̃, m and p

on y. Let V1 and V2 be two arbitrary points in X, with V1 ≤ V2. If V1 ≥ x̃, then m(V2) = V2

and m(V1) = V1. In this case, (4.7) clearly holds. If V2 ≥ x̃ ≥ V1, then m(V2) = V2 and

m(V1) ∈ (V1, x̃). Also in this case, (4.7) holds.

Now, consider the remaining case where V1 ≤ V2 < x̃. Since f(m(V1), V1) is greater than

f(m(V2), V1) and f(m(V2), V2) is greater than f(m(V1), V2), we have

0 ≥ f(m(V2), V1)− f(m(V1), V1) + f(m(V1), V2)− f(m(V2), V2)

= p(θ(m(V2)))(V2 − V1)− p(θ(m(V1)))(V2 − V1)

= [p(θ(m(V2)))− p(θ(m(V1)))] (V2 − V1).

Since p(θ(x)) is decreasing in x, the previous inequality implies that m(V2)−m(V1) ≥ 0.
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If m(V2)−m(V1) = 0, (4.7) holds. If m(V2)−m(V1) > 0, let ∆ be an arbitrary real number in the
open interval between 0 and (m(V2)−m(V1))/2. The inequality f(m(V1), V1) ≥ f(m(V1)+∆, V1)

implies

m(V1)− V1 ≥
p(θ(m(V1) +∆))∆

p(θ(m(V1)))− p(θ(m(V1) +∆))
.

The inequality f(m(V2), V2) ≥ f(m(V2)−∆, V2) implies

m(V2)− V2 ≤
p(θ(m(V2)−∆))∆

p(θ(m(V2)−∆))− p(θ(m(V2)))
.

Notice that p(θ(m(V1) +∆)) is greater than p(θ(m(V2)−∆)) because p(θ(x)) is decreasing in x

and m(V1) +∆ is smaller than m(V2) −∆. Also, notice that p(θ(m(V1))) − p(θ(m(V1) +∆)) is

smaller than p(θ(m(V2)−∆))−p(θ(m(V2))) because p(θ(x)) is concave in x and m(V1) is smaller
than m(V2). From these observations and the inequalities above, it follows that m(V2)−m(V1) ≤
V2 − V1. Hence, (4.7) holds. ¥

Now we turn to the composite function p̃(V, y) = p(θ(m(V, y), y)). The probability p̃ (V, y) is

the probability that an employed worker finds a new job during the matching stage, given that

his current job gives him the lifetime utility V and the aggregate component of productivity is y.

The following corollary states that the function p̃ (V, y) is decreasing and Lipschitz continuous in

V :

Corollary 4.5. For all y ∈ Y and all V1, V2 ∈ X, V1 ≤ V2, the quitting probability p̃ is such that

−B̄p(V2 − V1) ≤ p̃(V2, y)− p̃(V1, y) ≤ −Bp (V2 − V1) , (4.8)

where B̄p = −p0(0)B̄J/
£
q0(θ̄)k

¤
> 0 and Bp = 0.

Proof: Let y be an arbitrary point in Y , and let V1, V2 be two points in X with V1 ≤ V2. From

Lemma 4.4, it follows that the difference m(V2, y)−m(V1, y) is greater than 0 and smaller than

V2 − V1. From Lemma 4.1, it follows that the difference θ(m(V2, y), y)− θ(m(V2, y), y) is greater

than (V2 − V1)B̄J/
£
q0(θ̄)k

¤
and smaller than 0. Finally, since p is a concave function of θ, the

difference p(θ(m(V2, y), y))− p(θ(m(V2, y), y)) is such that

p0(0)B̄J/
£
q0(θ̄)k

¤
(V2 − V1) ≤ p(θ(m(V2, y), y))− p(θ(m(V1, y), y)) ≤ 0.

These are the bounds in (4.8). ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn denote the market tightness function
computed with Jn; Rn and mn the search value and policy functions computed with θn; p̃n (V, y)
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the composite function p(θn(mn(V, y), y)). Similarly, let θr denote the market tightness function

computed with Jr; Rr and mr the search value and policy functions computed with θr; p̃r (V, y)

the composite function p(θr(mr(V, y), y)). In the following lemma, we prove that, if the distance

between Jn and Jr converges to zero, so does the distance between Rn and Rr and the distance

between p̃n and p̃r. That is, we prove that the search value function R and the separation

probability p̃ are continuous with respect to the firm’s value function J . These results will be

used in Sections 5 and 6 to establish that the equilibrium operator T is continuous.

Lemma 4.6. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kRn −Rrk < αRρ, αR ≡ p0(0)αθ(x̄− x), (4.9)

kp̃n − p̃rk < αp (ρ) , αp (ρ) ≡ max{2B̄pρ
1/2 + p0 (0)αθρ, 2αRρ

1/2}. (4.10)

As ρ→ 0, αp (ρ)→ 0.

Proof: For the sake of brevity, let us suppress the dependence of various functions on V and

y. Let ρ > 0 be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that

kJn − Jrk < ρ. Let (V, y) be an arbitrary point in X × Y . The distance between Rn(V, y) and

Rr(V, y) is such that

|Rn −Rr| ≤ max
x∈X

|[p(θn(x))− p(θr(x))] (x− V )|

≤
½
max
x∈X

|p(θn(x))− p(θr(x))|
¾½

max
x∈X

|x− V |
¾

≤
½
max
x∈X

¯̄̄R θn(x)
θr(x)

p0(t)dt
¯̄̄¾
(x̄− x) < p0(0)αθ(x̄− x)ρ,

where the last inequality makes use of the bounds in (4.3). Since this result holds for all (V, y) ∈
X × Y , we conclude that kRn −Rrk < αRρ.

Now, consider the function p̃. Without loss of generality, assume mr(V, y) ≤ mn(V, y). (If

mr (V, y) > mn (V, y), just switch the roles of mn and mr in the proof below.) First, consider the

case where p(θr(mr)) ≤ p(θn(mn)). In this case, the distance between p(θn(mn)) and p(θr(mr))

is such that

(0 ≤) p (θn (mn))− p (θr (mr)) ≤ p (θn (mr))− p (θr (mr)) < p0 (0)αθρ,

where the first inequality makes use of the fact that p(θn(x)) is decreasing in x and mn ≥ mr,

and the second inequality makes use of the bounds in (4.3).
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Second, consider the case where p(θr(mr)) > p(θn(mn)) and mn − 2ρ1/2 ≤ mr ≤ mn. In this

case, the distance between p(θn(mn)) and p(θr(mr)) is such that

(0 <) p (θr (mr))− p (θn (mn))

= p (θr (mr))− p (θr (mn)) + p (θr (mn))− p (θn (mn))

< 2B̄pρ
1/2 + p0 (0)αθρ,

where the last inequality makes use of the bounds in (4.8) and in (4.3). Note that this bound is

larger than the one in the previous case.

Finally, consider the remaining case where p(θr(mr)) > p(θn(mn)) and mr < mn − 2ρ1/2 < mn.

First, note that mr ≥ /V , because mr ∈ (V, x̃r) if V < x̃r, and mr = V if V ≥ x̃r. Second, note

that mn > V implies mn < x̃n, because mn ∈ (V, x̃n) if V < x̃n, and mn = V if V ≥ x̃n. The

first observation implies that mn > V + ρ1/2, because if mn ≤ V + ρ1/2 then mr < V − ρ1/2 < V .

The second observations implies that mn < x̃n.

Note that p(θn(mn))(mn − V ) is greater than p(θn(mn − ρ1/2))(mn − ρ1/2 − V ). Therefore, we

have
p(θn(mn))ρ

1/2

≥
£
p(θn(mn − ρ1/2))− p(θn(mn))

¤ ¡
mn − ρ1/2 − V

¢
≥

£
p(θn(mr))− p(θn(mr + ρ1/2))

¤ ¡
mn − ρ1/2 − V

¢
≥

£
p(θn(mr))− p(θn(mr + ρ1/2))

¤ ¡
mr + ρ1/2 − V

¢
.

To obtain the second inequality we have used the facts that p(θn(x)) is concave in x for all

x ∈ [x, x̃n], that mr+ρ1/2 < mn < x̃n, and that mn−ρ1/2−V > 0. To obtain the third inequality

we have used the facts that mr + ρ1/2 < mn − ρ1/2, and that p(θn(mr))− p(θn(mr + ρ1/2)) > 0.

Next, note that p(θr(mr))(mr − V ) is greater than p(θr(mr + ρ1/2))(mr + ρ1/2 − V ). Therefore,

we have

p(θr(mr))ρ
1/2 ≤

h
p(θr(mr))− p(θr(mr + ρ1/2))

i ³
mr + ρ1/2 − V

´
.

Subtracting (xx) from (xx) and dividing by ρ1/2, we obtain

(0 <) p(θr(mr))− p(θn(mn))

≤ ρ−1/2
£
p(θr(mr))− p(θn(mr)) + p(θn(mr + ρ1/2))− p(θr(mr + ρ1/2))

¤ ¡
mr + ρ1/2 − V

¢
< 2p0(0)αθρ1/2 (x− x) = 2αRρ,

where the last line makes use of the fact that the distance between p(θr(m)) and p(θn(m)) is

smaller than p0(0)αθρ, and that mr + ρ1/2 − V is smaller than x− x.

Overall, we have established that the distance between p(θr(mr)) and p(θn(mn)) is such that

|p(θr(mr))− p(θn(mn))| < max{2B̄pρ
1/2 + p0 (0)αθρ, 2αRρ

1/2} = αp(ρ)
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Since this result holds for all (V, y) ∈ X × Y , we conclude that ||p̃r − p̃n|| < αp(ρ). ¥

4.3. Unemployment Value

Given the firm’s value function J ∈ J , the solution to the equilibrium condition (2.7) is the

market tightness, θ, defined in (4.1). Given θ, the solution to the equilibrium condition (2.1) is

the search value function, R, defined as R(V, y) = maxx∈X f(x, V, y). Given R, an unemployment

value function is a solution to the equilibrium condition (2.2) if and only if it is a fixed point of

the mapping TU defined as

(TUϕ)(ψ) = υ(b) + βEψ̂
n
ϕ(ψ̂) + λumax{0, R(ϕ(ψ̂), ŷ)}

o
. (4.11)

In the next lemma, we prove that there exists a unique fixed point of the mapping TU within

the set B(Y ) of bounded continuous functions ϕ : Y → R. Therefore, there exists a unique
unemployment value function, U ∈ B(Y ), that satisfies the equilibrium condition (2.2), and

depends on the aggregate state of the economy, ψ, only through the aggregate component of

productivity, y, and not through the distribution of workers across different employment states,

(u, g).

Lemma 4.7. (i) There exists a unique function U ∈ B(Y ) such that U = TUU . (ii) For all y ∈ Y ,

U(y) ∈
£
U, Ū

¤
, where U = (1− β)−1υ(b) > x and Ū = υ(b) + βx̄ < x̄.

Proof: In Appendix C. ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn denote the market tightness function
computed with Jn; Rn the search value function computed with θn; and Un the unemployment

value function computed with Rn. Similarly, let θr denote the market tightness function computed

with Jr; Rr the search value function computed with θr; and Ur the unemployment value function

computed with Rr. In the following lemma, we prove that, if the distance between Jn and Jr

converges to zero, so does the distance between Un and Ur.

Lemma 4.8. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kUn − Urk < αUρ, αU ≡ βλuαR/ (1− β) . (4.12)

Proof: For the sake of brevity, let us suppress the dependence of various functions on ŷ. Let ρ > 0

be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that kJn − Jrk < ρ.
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Let y be an arbitrary point in Y . The distance between Un(y) and Ur(y) is such that

|Un(y)− Ur(y)|
≤ βEŷ {|[Un + λuRn(Un)]− [Ur + λumaxRn(Ur)]|+ λu |Rn(Ur)−Rr(Ur)|}
< β kUn − Urk+ βλuαRρ.

To obtain the second inequality we have used the fact that the distance between Un + λuRn(Un)

and Un+λuRn(Un) is smaller than the distance between Un and Ur. Since the above result holds

for all y ∈ Y , it follows that kUn − Urk < αuρ. ¥

5. Block Recursive Equilibrium with Dynamic Contracts

5.1. Updated Value Function of the Firm

In the previous section, we have chosen an arbitrary firm’s value function, J ∈ J . Given J , we

have computed the market tightness function, θ, that satisfies the equilibrium condition (2.7).

Given θ, we have computed the search value and policy functions, R and m, that satisfy the

equilibrium condition (2.1). Given R, we have computed the unemployment value function, U ,

that satisfies the equilibrium condition (2.2). In this section, we insert J , θ, R, m and U into the

right hand side of the equilibrium condition (2.3), and we compute an update, J̃ = TJ , for the

firm’s value function J . More specifically, J̃ is given by13

J̃(V, y, z)

= max
πi,wi,d̂i,V̂i

P2
i=1 πi

n
y + z − wi + βEŝ

h
(1− di (ŷ, ẑ))(1− λep̃(V̂i (ŷ, ẑ) , ŷ)J(V̂i (ŷ, ẑ) , ŷ, ẑ)

io
s.t. πi ∈ [0, 1], wi ∈ R, di : Y × Z → [δ, 1], V̂i : Y × Z → X, for i = 1, 2,P2

i=1 πi = 1, di (ŷ, ẑ) =
n
δ if U(ŷ) ≤ V̂i (ŷ, ẑ) + λeR(V̂i (ŷ, ẑ) , ŷ), 1 else

o
,P2

i=1 πi

n
υ(wi) + βEŝ

h
di (ŷ, ẑ)U(ŷ) + (1− di(ŷ, ẑ))(V̂i (ŷ, ẑ) + λeR(V̂i (ŷ, ẑ) , ŷ))

io
= V.

(5.1)

The updated firm’s value function, J̃ , has four important properties. First, J̃ depends on

the aggregate state of the economy, ψ, only through the aggregate component of productivity,

y, and not through the distribution of workers across different employment states, (u, g). This

property follows immediately from the fact that both the objective function and the choice set on

the right hand side of (5.1) depends on y but not on (u, g). Second, the updated value function,

13In a Block Recursive Equilibrium, the distribution of workers across employment states in the next period,
(û, ĝ), is uniquely determined by the realization of the aggregate component of productivity in the next period,
ŷ, and by the state of the economy in the current period, ψ. Therefore, in the contracting problem (5.1), next
period’s separation probability, di, and continuation value, V̂i, can be written as functions of ŷ only.
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J̃ , is bi-Lipschitz continuous in V . More specifically, for all (y, z) ∈ Y × Z and all V1, V2 ∈ X,

with V1 ≤ V2, the difference J̃(V2, y, z) − J̃(V1, y, z) is bounded between −(V2 − V1)/υ
0 and

−(V2 − V1)/υ
0 (see part (i) in the proof of Lemma 5.1). Third, J̃ is bounded. More specifically,

for all (V, y, z) ∈ X × Y × Z, J̃(V, y, z) is greater than y + z − υ−1(x − βx) + βδJ and smaller

than y + z − υ−1(x− βx) + βδJ (see part (ii) in the proof of Lemma 5.1). Finally, J̃ is concave

in V (see part (iii) in the proof of Lemma 5.1).

It follows immediately from these properties that, if the bounds BJ , BJ , J , and J are set as

BJ =
1

υ0
, BJ =

1

υ0
, − J = J = max

(¯̄
y + z − υ−1(x− βx)

¯̄
1− β(1− δ)

,

¯̄
y + z − υ−1(x− βx)

¯̄
1− β(1− δ)

)
, (5.2)

the updated firm’s value function, J̃ , satisfies conditions (J1)-(J3) and, hence, belongs to the set

J . This argument is formalized by the next lemma.

Lemma 5.1. Set the bounds BJ , BJ , J , and J as in (5.2). Then, the updated value function,

J̃ , belongs to the set J .

Proof: For all (V, y, z) ∈ X × Y × Z, J̃(V, y, z) is equal to maxγ∈Γ F (γ, V, y, z), where γ is

defined as the tuple (π1, Ṽ1, V̂1, V̂2); Γ is defined as the set of γ’s such that π1 ∈ [0, 1), Ṽ1 ∈ R,
V̂1 : Y × Z → X, and V̂2 : Y × Z → X; and F (γ, V, y, z) is defined as

F (γ, V, y, z) =
P2

i=1 πi

n
y + z − wi + βEŝ

h
(1− di (ŷ, ẑ))(1− λep̃(V̂i (ŷ, ẑ) , ŷ))J(V̂i (ŷ, ẑ) , ŷ, ẑ)

io
,

s.t. π2 = 1− π1, Ṽ2 = (V − π1Ṽ1)/π2,

di(ŷ, ẑ) =
n
δ if U(ŷ) ≤ V̂i(ŷ, ẑ) + λeR(V̂i(ŷ, ẑ), ŷ), 1 else

o
,

wi = υ−1
³
Ṽi − βEŝ

h
di(ŷ, ẑ)U(ŷ) + (1− di(ŷ, ẑ))(V̂i(ŷ, ẑ) + λeR(V̂i(ŷ, ẑ), ŷ))

i´
.

(5.3)

Let F 0(γ, V, y, z) denote the derivative of F (γ, V, y, z) with respect to V. It is immediate to verify

that

F 0(γ, V, y, z) = − 1

υ0(w2)
∈
∙
− 1
υ0
,− 1

υ0

¸
.

(i) First, we want to prove that J̃ satisfies property (J1) of the set J . To this aim, let (y, z) be an
arbitrary point in Y ×Z, and let V1, V2 be two points in X with V1 ≤ V2. The distance between

J̃(V2, y, z) and J̃(V1, y, z) is such that¯̄̄
J̃(V2, y, z)− J̃(V1, y, z)

¯̄̄
≤ maxγ∈Γ |F (γ, V2, y, z)− F (γ, V1, y, z)|

≤ maxγ∈Γ
¯̄̄R V2

V1
F 0(γ, t, y, z)dt

¯̄̄
≤ maxγ∈Γ

R V2
V1
|F 0(γ, t, y, z)| dt ≤ |V2 − V1| /u0.
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The inequality above implies that the function J̃ is Lipschitz continuous in V . Therefore, it

is absolutely continuous and almost everywhere differentiable with respect to V (see Royden,

1988, page 112). The function F is differentiable with respect to V . Therefore, at any point of

differentiability, the derivative of J̃ with respect to V is equal to F 0(γ∗(V, y, z), V, y, z), where

γ∗(V, y, z) belongs to argmaxγ∈Γ F (γ, V, y, z) (see Milgrom and Segal, 2003, Theorem 1). From

these properties of J̃ , it follows that the difference J̃(V2, y, z)− J̃(V1, y, z) is such that

J̃(V2, y, z)− J̃(V1, y, z) =

Z V2

V1

F 0(γ∗(t, y, z), t, y, z)dt ∈
∙
−V2 − V1

υ0
,−V2 − V1

υ0

¸
.

(ii) Next, we want to prove that J̃ satisfies property (J2) of the set J . To this aim, let (V, y, z)
be an arbitrary point in X × Y × Z. Also, let γ0 denote the tuple (π1,0, Ṽ1,0, V̂1,0, V̂2,0), where

π1,0 = 0, Ṽ1,0 = x, V̂1,0 = V̂2,0 = x. The firm’s value J̃(V, y, z) is such that

J̃(V, y, z) ≤ y + z −minπi,Ṽi
nP2

i=1 πiυ
−1(Ṽi − βx), s.t.

P2
i=1 πiṼi = V

o
+ βδJ

≤ y + z + βδJ − υ−1(x− βx) ≤ J,

where the first inequality makes use of the bounds on y, z, w and J , and the second inequality

makes use of the convexity of υ−1(.). Also, the firm’s value J̃(V, y, z) is such that

J̃(V, y, z) ≥ F (γ0, V, y, z) ≥ y + z − υ−1(x− βx) + βδJ ≥ J,

where the first inequality makes use of the fact that γ0 belongs to Γ, and second inequality makes

use of the bounds on y, z, w and J .

(iii) In Appendix F, we prove that J̃ is concave with respect to V . Hence, J̃ satisfies property

(J3) of the set J . ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let θn, Rn, p̃n, Un, Fn and J̃n denote

the functions computed with Jn. Similarly, let θr, Rr, p̃r, Ur, Fr and J̃r denote the functions

computed with Jr ∈ J . The next lemma proves that as the distance between Jn and Jr converges
to zero, the distance between J̃n and J̃r converges to zero as well.

Lemma 5.2. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kJ̃n − J̃rk < βλeαp (ρ) J̄ + αJρ, (5.4)

where
αJ ≡ αw + β

£
(1 + λe)

¡
1 + B̄JαV̂

¢
+ λeB̄pαV̂ J̄

¤
,

αV̂ ≡ (λeαR + αU + 1)/ (1− λe) , αw ≡ β
¡
αU + αV̂ + λeαR

¢
/υ0.
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Proof: For the sake of brevity, suppress the dependence of various functions on (ŷ, ẑ). Let ρ > 0

be an arbitrary real number. Let Jn and Jr be arbitrary functions in J such that kJn − Jrk <
ρ. Let (V, y, z) to an arbitrary point in X × Y × Z. Without loss in generality, assume that

J̃n(V, y, z) ≤ J̃r(V, y, z).(If J̃n(V, y, z) > J̃r(V, y, z), just switch the roles of J̃n and J̃r in the proof

below).

Denote as γr = (π1,r, Ṽ1,r, V̂1,r, V̂2,r) a tuple such that γr ∈ Γ and Fr(γr, V, y, z) = J̃r(V, y, z). Also,

denote as wi,r and di,r the wage and the separation probability implied by (5.3) for F (γ, V, y, z) =

Fr(γr, V, y, z). Denote as γn the tuple (π1,n, Ṽ1,n, V̂1,n, V̂2,n), where π1,n = π1,r, Ṽ1,n = Ṽ1,r, and

V̂i,n =

⎧⎪⎪⎨⎪⎪⎩
V̂i,r, if [V̂i,r + λeRn(V̂i,r)− Un][V̂i,r + λeRr(V̂i,r)− Ur] > 0,

Un − λeRn(V̂i,n) + ρ, if V̂i,r + λeRn(V̂i,r) ≤ Un, V̂i,r + λeRr(V̂i,r) ≥ Ur,

Un − λeRn(V̂i,n)− ρ, if V̂i,r + λeRn(V̂i,r) ≥ Un, V̂i,r + λeRr(V̂i,r) < Ur.

(5.5)

Let wi,n and di,n denote the wage and separation probability implied by (5.3) for F (γ, V, y, z) =

Fn(γn, V, y, z). Note that (5.5) implies di,n = di,r.

First, we want to bound the distance ||V̂i,n − V̂i,r||. To this aim, let (ŷ, ẑ) denote an arbitrary
point in Y × Z. Consider the case in which V̂i,r + λeRn(V̂i,r) − Un has the same sign as V̂i,r +

λeRr(V̂i,r)− Ur. In this case, V̂i,n = V̂i,r and, hence, |V̂i,n − V̂i,r| < αV̂ ρ. Next, consider the case

in which V̂i,r + λeRn(V̂i,r)− Un has a different sign than V̂i,r + λeRr(V̂i,r)− Ur. In this case, the

absolute value of V̂i,r + λeRn(V̂i,r)− Un is such that¯̄̄
V̂i,r + λeRn(V̂i,r)− Un

¯̄̄
≤
¯̄̄
V̂i,r + λeRn(V̂i,r)− Un − (V̂i,r + λeRr(V̂i,r)− Ur)

¯̄̄
≤ (λeαR + αU ) ρ,

(5.6)

where the second inequality makes use of the bounds in (4.9) and (4.12). Moreover, the absolute

value of V̂i,r + λeRn(V̂i,r)− Un is such that¯̄̄
V̂i,r + λeRn(V̂i,r)− Un

¯̄̄
=
¯̄̄
V̂i,r + λeRn(V̂i,r)− Un − (V̂i,n + λeRn(V̂i,n)− Un)

¯̄̄
− ρ

≥ (1− λe)
¯̄̄
V̂i,r − V̂i,n

¯̄̄
− ρ,

(5.7)

where the equality equality makes use of the definition of V̂i,n in (5.5), and the inequality makes

use of the bounds in (4.6). From (5.6) and (5.7), it follows that (0 <)V̂i,n − V̂i,r < αV̂ ρ and,

hence, |V̂i,n − V̂i,r| < αV̂ ρ. Since these results hold for all (ŷ, ẑ) ∈ Y × Z, we have

|V̂i,n − V̂i,r| < αV̂ ρ. (5.8)

Second, we want to bound the distance |wi,r−wi,n|. From the definition of wi,r and wi,n, it follows
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that υ(wi,r) and υ(wi,n) are

υ(wi,r) = Ṽi,r − βEŝ
h
di,rUr + (1− di,r)(V̂i,r + λeRr(V̂i,r))

i
,

υ(wi,n) = Ṽi,n − βEŝ
h
di,nUn + (1− di,n)(V̂i,n + λeRn(V̂i,n))

i
= Ṽi,r − βEŝ

h
di,rUn + (1− di,r)(V̂i,n + λeRn(V̂i,n))

i
,

where the last line makes use of the fact that, by construction, Ṽi,n = Ṽi,r and di,n = di,r. From

the previous equations, it follows that the distance between υ(wi,n) and υ(wi,r) is such that

|u(wi,n)− u(wi,r)| ≥ u0 |wi,n − wi,r| ,

|u(wi,n)− u(wi,r)| ≤ βEŝ
n
|Un − Ur|+

¯̄̄h
V̂i,n + λeRn(V̂i,n)

i
−
h
V̂i,r + λeRn(V̂i,r)

i¯̄̄o
+βEŝ

n¯̄̄h
V̂i,r + λeRn(V̂i,r)

i
−
h
V̂i,r + λeRr(V̂i,r)

i¯̄̄o
< β

¡
αU + αV̂ + λeαR

¢
ρ,

(5.9)

where the last inequality makes use of the bounds in (4.12), (5.8) and (4.9). Taken together, the

two inequalities in (5.9) imply that

|wi,n − wi,r| < αwρ. (5.10)

Third, we want to bound the distance between (1 − λep̃n(V̂i,n)) Jn(V̂i,n) and (1 − λep̃r(V̂i,r))

Jr(V̂i,r) To this aim, note that the distance between Jn(V̂i,n) and Jr(V̂i,r) is such that¯̄̄
Jn(V̂i,n)− Jr(V̂i,r)

¯̄̄
≤
¯̄̄
Jn(V̂i,n)− Jn(V̂i,r)

¯̄̄
+
¯̄̄
Jn(V̂i,r)− Jr(V̂i,r)

¯̄̄
<
¡
1 + B̄JαV̂

¢
ρ, (5.11)

where the last inequality makes use of the bounds in (5.8). Also, note that the distance between

p̃n(V̂i,n)Jn(V̂i,n) and and p̃r(V̂i,r)Jr(V̂i,r) is such that¯̄̄
p̃n(V̂i,n)Jn(V̂i,n)− p̃r(V̂i,r)Jr(V̂i,r)

¯̄̄
≤ p̃n(V̂i,n)

¯̄̄
Jn(V̂i,n)− Jr(V̂i,n)

¯̄̄
+ p̃n(V̂i,n)

¯̄̄
Jr(V̂i,n)− Jr(V̂i,r)

¯̄̄
+
¯̄̄
Jr(V̂i,r)

¯̄̄ ¯̄̄
p̃n(V̂i,n)− p̃n(V̂i,r)

¯̄̄
+
¯̄̄
Jr(V̂i,r)

¯̄̄ ¯̄̄
p̃n(V̂i,r)− p̃r(V̂i,r)

¯̄̄
<

¡
1 + B̄JαV̂ + B̄pαV̂ J̄

¢
ρ+ αp (ρ) J̄ ,

(5.12)

where we have used Lemma 4.10 to bound the last difference. From (5.11) and (5.12), it follows

that ¯̄̄
(1− λep̃n(V̂i,n))Jn(V̂i,n)− (1− λep̃r(V̂i,r))Jr(V̂i,r)

¯̄̄
≤

¯̄̄
Jn(V̂i,n)− Jr(V̂i,r)

¯̄̄
+ λe

¯̄̄
p̃n(V̂i,n)Jn(V̂i,n)− p̃r(V̂i,r)Jr(V̂i,r)

¯̄̄
< λeαp (ρ) J̄ +

£
(1 + λe)

¡
1 + B̄JαV̂

¢
+ λeB̄pαV̂ J̄

¤
ρ.

(5.13)
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Finally, we want to bound the distance between J̃r(V, y, z) and J̃n(V, y, z). To this aim, note

that the difference J̃r(V, y, z)− J̃n(V, y, z) is positive (by assumption). Also, note that the differ-

ence J̃r(V, y, z) − J̃n(V, y, z) is smaller than Fr(γr, V, y, z) − Fn(γn, V, y, z) because J̃r(V, y, z) =

Fr(γr, V, y, z) and Fn(γn, V, y, z) ≤ J̃n(V, y, z). From these observations and the bounds (5.8),

(5.10) and (5.13), it follows that

0 ≤ J̃r(V, y, z)− J̃n(V, y, z) ≤ Fr(γr, V, y, z)− Fn(γn, V, y, z)

≤
P2

i=1 πi,r

n
|wi,n − wi,r|+ βEŝ

h¯̄̄
(1− λep̃n(V̂i,n))Jn(V̂i,n)− (1− λep̃r(V̂i,r))Jr(V̂i,r)

¯̄̄io
< βλeαp (ρ) J̄ +

©
αw + β

£
(1 + λe)

¡
1 + B̄JαV̂

¢
+ λeB̄pαV̂ J̄

¤ª
ρ,

Since the above inequality holds for all (V, y, z) ∈ X × Y × Z, the result stated in the lemma

holds. ¥

5.2. Existence of a Block Recursive Equilibrium

Now, we are in the position to establish the paper’s main result.

Theorem 5.3. There exists a Block Recursive Equilibrium under the exists.

Proof: First, fix > 0 to be an arbitrary real number. Let ρ be the unique positive solution

for ρ of the equation βλeαp (ρ) J̄ +αjρ = ε. For all Jn, Jr ∈ J such that kJn − Jrk < ρ , Lemma

5.2 implies that kTJn − TJrk < ε. Hence, the equilibrium operator T is continuous. Next, let ρy

denote the minimum distance between distinct elements of the set Y , and ρz denote the minimum

distance between distinct elements of the set Z, i.e. ρy = minY |yi − yj | and ρz = minZ |zi − zj |.14

Also, let k.kE denote the standard norm on the Euclidean space X × Y × Z. Fix > 0 to be

an arbitrary real number. Let ρ = min{u0ε, ρy, ρz}. For all (V1, y1, z1), (V2, y2, z2) ∈ X × Y × Z

such that k(V2, y2, z2)− (V1, y1, z1)kE < ρ and all J ∈ J , Lemma 5.1 implies that TJ satisfies
the property (J1) of the set J and, consequently, |(TJ)(V2, y2, z2)− (TJ)(V2, y2, z2)| < . Hence,

the family of functions T (J ) is equicontinuous. Finally, Lemma 5.1 implies that the equilibrium
operator T maps the set of functions J into itself.

From these properties, it follows that the equilibrium operator T satisfies the conditions of

Schauder’s fixed point theorem (Stokey and Lucas with Prescott, 1989, Theorem 17.4). There-

fore, there exists a firm’s value function J∗ ∈ J such that TJ∗ = J∗. Denote as θ∗ the market

tightness function computed with J∗. Denote as R∗ and m∗ the search value and policy func-

tions computed with θ∗. Denote as U∗ the unemployment value function computed with R∗.

14If Y contains only one element, we can set ρy = 1. Similarly, if Z contains only one elemet, set ρz = 1.
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Denote as c∗ the contract policy function computed with J∗, θ∗, R∗, m∗, and U∗. The functions

{θ∗, R∗,m∗, U∗, J∗, c∗} satisfy the conditions (i)—(v) in the definition of a recursive equilibrium.
The functions {θ∗, R∗,m∗, U∗, J∗, c∗} depend on the aggregate state of the economy, ψ, only
through the aggregate component of productivity, y, and not through the distribution of workers

across different employment states, (u, g). Hence, the functions {θ∗, R∗,m∗, U∗, J∗, c∗} constitute
a Block Recursive Equilibrium. ¥

There are four assumptions about the production technology and the search process that are

necessary for the existence of a Block Recursive Equilibrium. The linearity of the production

function is one of these assumptions. In fact, if the production function was either concave or

convex, the distribution of workers across different employment states would affect the output

of a match and, in turn, the firm’s value function, the market tightness function and the value

of unemployment. The independence of the vacancy cost from the aggregate vacancy rate is

another necessary assumption. In fact, without this assumption, the distribution of workers

across different employment states would affect the aggregate vacancy rate, the vacancy cost and,

ultimately, the equilibrium market tightness. The assumption that the matching process between

vacancies and applicants exhibits constant returns to scale is also necessary to the existence of

a Block Recursive Equilibrium. Without this assumption, the distribution of applicants across

different submarkets (and, hence, the distribution of workers across different employment states)

would affect the market tightness function and, in turn, the firm’s and worker’s value functions.

Last but not least, directed search is necessary for the existence of a Block Recursive Equi-

librium. In fact, if search was random, the equilibrium condition (2.7) would be

k ≥ max
x∈X

q(θ(ψ))I (x, ψ)J(x,ψ, z0), (5.14)

and θ(ψ) ≥ 0, with complementary slackness. The term on the LHS of (5.14) is the cost of creating
a vacancy. The expression on the RHS of (5.14) is the maximized benefit of creating a vacancy.

The first term on the RHS is the probability that a firm meets a worker. The second term denotes

the probability that a worker met by a firm is willing to accept an employment contract that

provides him with the lifetime utility x. The third term is the value to the firm of being matched

with a worker to whom it has promised the lifetime utility x. Since the distribution of workers

across employment states non-trivially affects the second term, the equilibrium condition (5.14)

holds only if the distribution affects also the equilibrium market tightness or the firm’s value

function.
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The models of search on the job by Burdett and Mortensen (1998), Postel-Vinay and Robin

(2002), and Burdett and Coles (2003) also assume that the production technology is linear, that

the vacancy cost is independent from the aggregate vacancy rate, and that the matching functions

has constant returns to scale. However, these models do not admit a Block Recursive Equilibrium

because they assume that the search process is random rather than directed.

6. Block Recursive Equilibrium with Fixed-Wage Contracts

In the model with fixed-wage contracts, the equilibrium operator T may not be continuous. For

example, the search value function, Rn, and the unemployment value function, Un, computed with

the firm’s value function Jn may be such that the worker prefers being employed at the wage w

than being unemployed. However, given a firm’s value function Jr that is arbitrarily close to Jn,

the search value function, Rr, and the unemployment value function, Ur, may be such that the

worker’s preference ordering between employment at the wage w and unemployment is reversed.

When this is the case, the probability with which a worker leaves a job that pays the wage w is

not continuous in J and, hence, the firm’s value K(w) from employing a worker at the wage w,

and the firm’s updated value function, TJ , are not continuous in J .

Since the equilibrium operator T may not be continuous, we cannot appeal to Schauder’s

theorem in order to prove the existence of a fixed point of T , and, in turn, the existence of a

Block Recursive Equilibrium. Instead, we adopt the following strategy. We consider a proxy of

the model with fixed-wage contracts in which a worker is not allowed to voluntarily quit his jobs

during the separation stage. Formally, in this proxy model, the equilibrium conditions (2.4) and

(2.5) are replaced by

H(w,ψ) = w + βEψ̂
n
δU(ψ̂) + (1− δ)

h
H(w, ψ̂) + λemax{0, R(H(w, ψ̂), ψ̂)}

io
, (6.1)

and

K(w, s) = y + z − w + β (1− δ)Eŝ
h
(1− λep̃(H(w, ψ̂), ψ̂))K(H(w, ψ̂), ŝ)

i
. (6.2)

We prove that the equilibrium operator associated with the proxy model admits a fixed point

because it satisfies all the conditions of Schauder’s theorem (including continuity). Finally, we

use the fixed point to construct a Block Recursive Equilibrium of the proxy model. If, along the

equilibrium path, a worker does never have the incentive to quit his job during the separation

stage, the BRE of the proxy model is also a BRE of the original model.
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6.1. Employment Value

Given an arbitrary firm’s value function J ∈ J , let R denote the search value function that

solves the equilibrium condition (2.1), and U the unemployment value function that solves the

equilibrium condition (2.2). Given R and U , an employment value function is a solution to the

equilibrium condition (6.1) if and only if it is a fixed point of the mapping TH defined as

(THϕ)(w,ψ) = w + βEψ̂
n
δU(ŷ) + (1− δ)

h
ϕ(w, ψ̂) + λemax{0, R(ϕ(w, ψ̂), ŷ)}

io
. (6.3)

In Lemma 6.1, we prove that there exists a unique fixed point of the mapping TH within the set

B(W×Y ) of bounded continuous functions ϕ :W×Y → R (whereW is defined below). Therefore,

there exists a unique employment value function, H, that satisfies the equilibrium condition (6.1),

and depends on the aggregate state of the economy, ψ, only through the aggregate component of

productivity, y. Moreover, in Lemma 6.1, we prove that H is strictly decreasing and bi-Lipschitz

continuous in w.

Lemma 6.1. Let W = [w,w], where w is given by [1 − β(1 − δ)]x − βδU and w is given by

x − β[1 − β(1 − δ)]−1(w + βδU). (i) There exists a unique function H ∈ B(W × Y ) such that

H = THH. (ii) For all y ∈ Y and all w1, w2 ∈W , w1 ≤ w2, H is such that

w2 − w1 ≤ H(w2, y)−H(w1, y) ≤ (w2 − w1) / [1− β(1− δ)] . (6.4)

(iii) For all y ∈ Y , H is such that

H(w, y) ≤ x, x̄ ≤ H(w̄, y), all y ∈ Y . (6.5)

Proof: In Appendix D. ¥

From the properties of the employment value function, H, we can derive some properties of the

wage function, h. First, since H is strictly increasing in w, h is well-defined. Second, Since H is

strictly increasing and bi-Lipschitz continuous in w, h is strictly increasing and bi-Lipschitz in V .

More specifically, for all y ∈ Y and all V1, V2 ∈ X, with V1 ≤ V2, the difference h(V2, y)−h(V1, y)
is such that

[1− β(1− δ)](V2 − V1) ≤ h(V2, y)− h(V1, y) ≤ V2 − V1. (6.6)

Finally, since H is strictly increasing in w and satisfies property (6.5), h(V, y) belongs to the

interval W for all (V, y) ∈ X × Y .

Now, consider two arbitrary functions Jn, Jr ∈ J . Let Rn, Un, Hn and hn denote the functions

computed with Jn. Similarly, let Rr, Ur, Hr and hr denote the functions computed with Jr ∈ J .
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Lemma 6.2 proves that as the distance between Jn and Jr converges to zero, the distance between

Hn and Hr and the distance between hn and hr converge to zero. That is, Lemma 6.2, proves

that H and h are continuous in J .

Lemma 6.2. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kHn −Hrk < αhρ, khn − hrk < αhρ,

αh ≡ β (αu + λeαR) / (1− β) .
(6.7)

Proof: Let ρ > 0 be an arbitrary real number; let Jn and Jr be arbitrary functions in J such

that kJn − Jrk < ρ. Let (w, y) be an arbitrary point in W × Y . Then, the distance between

Hn(w, y) and Hr(w, y) is such that

|Hn(w, y)−Hr(w, y)|
≤ βEŷ {|Un(y)− Ur(y)|+ λe |max{0, Rn(Hn(w, ŷ), ŷ)}−max{0, Rr(Hn(w, ŷ), ŷ)}|}
+ βEŷ {|Hn(w, ŷ) + λemax{0, Rr(Hn(w, ŷ), ŷ)}−Hr(w, ŷ)− λemax{0, Rr(Hr(w, ŷ), ŷ)}|}
< β (αu + λeαR) ρ+ β kHn −Hrk ,

where the last inequality makes use of the bounds in (4.12), (4.9), and (4.6). Since the above

result holds for all (w, y) ∈ W × Y , the RHS is an upper bound on kHn −Hrk. Re-arranging
terms yields the bound on kHn −Hrk given by (6.7).

Now, let (V, y) be an arbitrary point in X × Y . The distance between hn(V, y) and hr(V, y) is

such that
|hn(V, y)− hr(V, y)| ≤ |Hn(hn(V, y), y)−Hn(hr(V, y), y)|

= |Hr(hr(V, y), y)−Hn(hr(V, y), y)| < αhρ,

where the first inequality uses the fact that Hn(w, y) satisfies condition (6.4), and the equality

uses the fact that Hn(hn(V, y), y) = Hr(hr(V, y), y) = V . Since the above result holds for all

(V, y) ∈ X × Y , the RHS is an upper bound on khn − hrk. Re-arranging terms yields the bound
on khn − hrk given by (6.7). ¥

6.2. Value Function of the Firm

Let H and p̃ denote the employment value function and the separation probability computed

with an arbitrary function J ∈ J . Given H and p̃, a firm’s value function is a solution to the

equilibrium condition (6.2) if and only if it is a fixed point of the mapping TK defined as

(TKϕ)(w, s) = y + z −w + β (1− δ)Eŝ [(1− λep̃(H(w, ŷ), ŷ))ϕ(w, ŝ)] . (6.8)

In Lemma 6.3, we prove that there exists a unique fixed point of the mapping TK within the set

B(W × Y × Z) of bounded continuous functions ϕ : W × Y × Z → R. Therefore, there exists
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a unique firm’s value function, K, that satisfies the equilibrium condition (6.2), and depends on

the aggregate state of the economy, ψ, only through the aggregate component of productivity, y.

Then, we prove that K is bounded between K and K, where

−K = K = max

( ¯̄
y + z − w̄

¯̄
1− β(1− δ)

,
|ȳ + z̄ − w|
1− β(1− δ)

)
.

Finally, we prove that K is bi-Lipschitz continuous in w. That is, for all w1 ≤ w2, the difference

K(w2, y, z)−K(w1, y, z) is bounded between −B̄K(w2 − w1) and −BK(w2 − w1), where

BK =
1− β (1− δ)

¡
1 + λeB̄pK

¢
[1− β (1− δ)] [1− β(1− δ)(1− λe)]

, B̄K =
1− β(1− δ)(1 + λeB̄pK)

[1− β(1− δ)]2
,

In the remainder of this section, we will assume that the parameters of the model are such that

0 < BK ≤ B̄K <∞15.

Lemma 6.3. (i) There exists a unique function K ∈ B(W × Y × Z) such that K = TKK. (ii)

For all (y, z) ∈ Y × Z and all w1, w2 ∈W , with w1 ≤ w2, K is such that

−B̄K(w2 − w1) ≤ K(w2, y, z)−K(w1, y, z) ≤ −BK (w2 −w1) , (6.9)

(iii) For all (w, y, z) ∈W × Y × Z, K is such that

K(w, y, z) ∈ [K,K]. (6.10)

Proof: In Appendix E. ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . Let Rn,Un, Hn, hn and Kn denote the

functions computed with Jn. Similarly, let Rr, Ur, Hr, hr and Kr denote the functions computed

with Jr ∈ J . Lemma 6.4 proves that as the distance between Jn and Jr converges to zero, the

distance between Kn and Kr goes to zero as well.

Lemma 6.4. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

kKn −Krk < αK(ρ),

αK(ρ) ≡ β(1− δ)λeK
¡
Bpαhρ+ αp(ρ)

¢±
[1− β(1− δ)] .

(6.11)

15It is immediate to verify that the condition 0 < B ≤ B <∞ is satisfied as long as the probability λe that an
employed worker has the opportunity of searching is not too large.

29



Proof: Let ρ > 0 be an arbitrary real number; let Jn and Jr be arbitrary functions in J such

that kJn − Jrk < ρ. Let (w, y, z) be an arbitrary point in W × Y × Z. The distance between

Kn(w, y, z) and Kr(w, y, z) is such that

|Kn(w, y, z)−Kr(w, y, z)|
≤ β(1− δ)Eŝ {|Kn(w, y, z)−Kr(w, y, z)|}
+ β(1− δ)λeKEŝ {|p̃n(Hn(w, ŷ), ŷ)− p̃n(Hr(w, ŷ), ŷ)|+ |p̃n(Hr(w, ŷ), ŷ)− p̃r(Hr(w, ŷ), ŷ)|}
< β(1− δ)

£
kKn −Krk+ λeK (Bpαhρ+ αp(ρ))

¤
,

where the last inequality makes use of the bounds in (6.7), (6.9) and (4.5). Since this result holds

for all (w, y, z) ∈ W × Y × Z, the RHS is an upper bound on kKn −Krk. Re-arranging terms
yields the bound on kKn −Krk given by (6.11). ¥

6.3. Existence of a Block Recursive Equilibrium

In the previous subsections, we have computed the employment value function, H, the wage

function, h, and the firm’s value function, K, associated to an arbitrary J ∈ J . In this subsection,
we insert K and h into the right hand side of the equilibrium condition (2.6), and we compute

an update, J̃ = TJ , for the value function J . More specifically, J̃ is given by

J̃(V, y, z) = max
πi,Ṽi

P2
i=1 πiK(h(Ṽi, y), y, z),

s.t. V =
P2

i=1 πiṼi,

πi ∈ [0, 1], π1 + π2 = 1, Ṽi ∈ X.

(6.12)

The updated function, J̃ , has four properties. First, J̃ depends on the aggregate state of

the economy, ψ, only through the aggregate component of productivity, y. This property follows

immediately from the fact that both the objective function and the choice set on the right hand

side of (5.1) depends on ψ only through y. Second, the updated value function, J̃ , is bi-Lipschitz

continuous in V . More specifically, for all (y, z) ∈ Y × Z and all V1, V2 ∈ X, with V1 ≤ V2, the

difference J̃(V2, y, z) − J̃(V1, y, z) is bounded between −BK (V2 − V1) and −BK(1 − β(1 − δ))

(V2−V1) (see part (i) in the proof of Lemma 6.5). Third, J̃ is bounded. More specifically, for all

(V, y, z) ∈ X×Y ×Z, J̃(V, y, z) is greater than K and smaller than K (see part (ii) in the proof of

Lemma 6.5). Finally, J̃ is concave in V (see part (iii) in the proof of Lemma 6.5).Therefore, given

the appropriate choice of BJ , BJ , J , and J , the updated value function, J̃ , satisfies conditions

(J1), (J2) and (J3) and, hence, it belongs to the set J . This argument is formalized in the
following lemma:
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Lemma 6.5. Set J = K, and J = K. Set BJ = BK(1 − β(1 − δ)) and BJ = BK . Then, the

updated value function, J̃ , belongs to the set J .

Proof: (i) Let (V, y, z) be an arbitrary point in X × Y × Z. Then, J̃(V, y, z) is such that

J̃(V, y, z) ≤ maxṼ1∈X K(h(Ṽ1, y), y, z) ≤ maxw∈W K(w, y, z) ≤ K,

J̃(V, y, z) ≥ minṼ1∈X K(h(Ṽ1, y), y, z) ≤ minw∈W K(w, y, z) ≥ K,

where we used the fact that if Ṽ1 ∈ X then h(Ṽ1, y) ∈ W . The above inequalities imply that J̃

satisfies property (J1) of the set J .

(ii) Let (y, z) be an arbitrary point in Y ×Z, and V1, V2 two arbitrary points in X, with V1 ≤ V2.

Let {πi,1, Ṽi,1}2i=1 denote the maximizer of (6.12) for V = V1, and {πi,2, Ṽi,2}2i=1 the maximizer of
(6.12) for V = V2. Let {∆i,1}2i=1 be a vector such that Σ2i=1πi,1(Ṽi,1+∆i,1) = V2 and ∆i,1 ∈ [0, x̄−
Vi,1]. Also, let {∆i,2}2i=1 be a vector such that Σ2i=1πi,2(Ṽi,2 −∆i,2) = V1 and ∆i,2 ∈ [0, Vi,2 − x].

Note that {πi,1, Ṽi,1 +∆i,1}2i=1 belongs to the choice set of (6.12) for V = V2. Therefore,

J̃(V2, y, z)− J̃(V1, y, z) ≥
P2

i=1 πi,1

h
K(h(Ṽi,1 +∆i,1, y), y, z)−K(h(Ṽi,1, y), y, z)

i
≥ −B̄K

hP2
i=1 πi,1

³
h(Ṽi,1 +∆i,1, y)− h(Ṽi,1, y)

´i
= −B̄K(V2 − V1).

Next, note that {πi,2, Ṽi,2 −∆i,2}2i=1 belongs to the choice set of (6.12) for V = V2. Therefore,

J̃(V2, y, z)− J̃(V1, y, z) ≤
P2

i=1 πi,2

h
K(h(Ṽi,2, y), y, z)−K(h(Ṽi,2 −∆i,2, y), y, z)

i
≤ −BK

hP2
i=1 πi,2

³
h(Ṽi,2, y)− h(Ṽi,2 −∆i,2, y)

´i
= −BK(1− β(1− δ))(V2 − V1).

The above inequalities imply that J̃ satisfies property (J2) of the set J .

(iii) Finally, Appendix F shows that J̃ is concave with respect to V . Hence, J̃ satisfies property

(J3) of the set J . ¥

Now, consider two arbitrary functions Jn, Jr ∈ J . LetHn, hn, Kn and J̃n denote the functions

computed with Jn. Similarly, let Hr, hr, Kr and J̃r denote the functions computed with Jr ∈ J .
Lemma 6.4 proves that as the distance between Jn and Jr converges to zero, the distance between

J̃n and J̃r goes to zero as well.

Lemma 6.6. For any ρ > 0 and any Jn, Jr ∈ J , if kJn − Jrk < ρ, then

||J̃n − J̃rk < αJ(ρ), αJ(ρ) ≡ αK(ρ) +BKαhρ. (6.13)
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Proof: Let ρ > 0 be an arbitrary real number; let Jn and Jr be arbitrary functions in J such

that kJn − Jrk < ρ. Denote as Hn, hn and Kn the functions computed with Jn, and Hr hr and

Kr the functions computed with Jr. Let (V, y, z) be an arbitrary point in X × Y × Z. The

distance between J̃n(V, y, z) and J̃r(V, y, z) is such that¯̄̄
J̃n(V, y, z)− J̃r(V, y, z)

¯̄̄
≤ maxṼ1∈X

h¯̄̄
Kn(hn(Ṽ1))−Kn(hr(Ṽ1))

¯̄̄
+
¯̄̄
Kn(hr(Ṽ1))−Kr(hr(Ṽ1))

¯̄̄i
≤ maxV1∈X

£
BK khn − hrk+ kKn −Krk

¤
≤ αK(ρ) +BKαhρ,

where the last inequality makes use of the bounds in (6.7), (6.9) and (6.11). Since this result

holds for all (V, y, z) ∈ X × Y × Z, the RHS is an upper bound on ||J̃n − J̃r||. ¥

Lemma 6.5 implies that the equilibrium operator T maps the set J into itself. Moreover,

since the functions in the set J are bi-Lipschitz and the sets Y and Z are finite, Lemma 6.5

implies that the family of functions T (J ) is equicontinuous. In addition, Lemma 6.6 implies that
the operator T is continuous. Since these properties of the operator T are sufficient to apply

Schauder fixed point theorem, there exists a function J∗ ∈ J such that TJ∗ = J∗. Clearly, the

firm’s value function J∗, together with the associated tightness function θ∗, search value function

R∗, search policy functionm∗, and unemployment value function U∗, constitute a Block Recursive

Equilibrium. This completes the proof of the following theorem:

Theorem 6.7. There exists a Block Recursive Equilibrium for the proxy of the model with

fixed-wage contracts.

For any Block Recursive Equilibrium of the proxy model, we can compute the worker’s value

of unemployment, U∗(y), and the worker’s value of employment at the beginning of the search

stage, H∗(w, y) + λemax{0, R∗(H∗(w, y), y)}. A BRE of the proxy model is a BRE of the original
model if

U∗(y) ≤ H∗(w, y) + λemax{0, R∗(H∗(w, y), y)} (6.14)

for all equilibrium wages w and for all realizations of the aggregate component of productivity y.

In this paper, we do not provide restrictions on the parameters of the model under which condition

(6.14) is satisfied. However, the reader should notice that, since unemployed workers search for

jobs that offer lifetime utility H∗(w, y) greater than U∗(y) and since employed workers search for

even better jobs, condition (6.14) is likely to be satisfied as long as aggregate productivity shocks

are sufficiently small.
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7. A Calibrated Example

In Sections 5 and 6, we have established the existence of a Block Recursive Equilibrium for our

stochastic model of directed search on the job. In this section, we want to characterize the

properties of a BRE. To this aim, we calibrate the parameters of the model using data about

the US labor market. Given the calibrated parameters, we construct the equilibrium operator T

and we apply it to an arbitrary value function, J ∈ J , until we reach a fixed point, J∗. Then,
we construct a BRE by computing the agents’ value functions, policy functions and the market

tightness function associated with J∗. For the sake of brevity, we report our findings only for the

version of the model with fixed-wage contracts.

The workers’ preferences are described by the discount factor β, and the value of leisure b.

The search technology is described by the probability that an unemployed worker is able to look

for a job, λu, by the probability that an employed worker is able look for a job, λe, and by the

job-finding probability function p(θ). We assume that p(θ) is of the form θ(1 + θγ)−1/γ . The

production technology is described by the vacancy creation cost k, the exogenous job-destruction

probability δ, and the stochastic processes for the idiosyncratic and the aggregate components

of productivity. We assume that the idiosyncratic component of productivity, z, is always equal

to zero, and that the aggregate component of productivity, y, obeys a two-state Markov process.

The unconditional mean of y is normalized to 1.

We set the model period to be one quarter. We set β equal to 0.987, so that the annual interest

rate in the model is 5 percent. We set k, δ, and λe equal to 0.001, 0.045, and 0.3 respectively,

so that the average transition rates between employment, unemployment, and across employers

are the same in the model as in the US data.16 We normalize λu to 1. We tentatively set γ

equal to 0.5, which implies an the elasticity of substitution between vacancies and applicants of

2/3. Finally, we set b equal to 0.7, so that the consumption value of leisure is 70 percent of the

consumption value of work (a figure that is empirically supported by Hall and Milgrom, 2008).

Given these parameter values, we compute a BRE of the proxy model. In Figure 1, we plot the

market tightness as a function of the value, x, offered by the firms to the workers, and conditional

on the realization of the aggregate component of productivity, y. In accordance with Lemma 4.1,

we find that the market tightness is decreasing with respect to x. Moreover, we find that the

market tightness is higher when the aggregate component of productivity is higher. Intuitively,

when y is higher, firms create more vacancies per applicant because the value of filling a vacancy

is higher.

16The data used for the calibration are described in Section 5 of Menzio and Shi (2008).
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In Figure 2, we plot the worker’s optimal search strategy as a function of the value, V , of

his current employment position, and conditional on the realization of the aggregate component

of productivity, y. In accordance with Lemma 4.4, we find that the worker seeks jobs that offer

more generous terms of trade (and are harder to get) when the value of his current employment

position is higher. Moreover, we find that the worker seeks jobs that offer more generous terms

of trade and are easier to get when the aggregate component of productivity is higher (see Figure

3).

In Figure 4, we plot the worker’s employment value as a function of the wage w, and conditional

on the realization of the aggregate component of productivity, y. Similarly, in Figure 5, we plot

the firm’s value of employing a worker as a function of the wage w, and conditional on y. We

find that the worker’s value of being employed is increasing in w, while the firm’s value of having

an employee is decreasing in w. Moreover, we find that the worker’s and firm’s values are both

increasing with respect to the the aggregate component of productivity. Intuitively, when y

is higher, the worker’s value is higher because the value of unemployment and the return to

searching are higher. The firm’s value is higher because its periodical profits (conditional on the

survival of the employment relationship) are higher. From these properties of H∗ and K∗, it

follows immediately that the firm’s value of filling a vacancy in submarket x is decreasing in x,

and increasing in y (see Figure 6).

Given the properties of the equilibrium functions θ∗, m∗, and H∗, it is immediate to see that

the BRE has qualitative features that are similar to those of the models by Burdett and Mortensen

(1998), Postel-Vinay and Robin (2002) and Burdett and Coles (2003). For example, the BRE

generates residual wage inequality because, if ex-ante homogeneous workers have different luck

with their job searches, they will be employed at different wages. The BRE features a positive

return to tenure because workers who are employed at lower wages search in tighter submarkets

and, hence, have a higher probability of leaving their job. For the very same reason, the BRE

also features a negative relationship between tenure and job hazard.

Finally, using the equilibrium functions θ∗, m∗, H∗, K∗, J∗ and U∗, we simulate the life of an

unemployed worker. We find that, whenever the worker is employed, he prefers keeping his job

than moving into unemployment. That is, we find that condition (6.14) is satisfied everywhere

along the equilibrium path. Therefore, the BRE of the proxy model is also a BRE of the original

model with fixed-wage contracts.
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8. Conclusions

In this paper, we prove the existence of a Block Recursive Equilibrium for a general model of

directed search on the job, which allows for aggregate shocks, idiosyncratic shocks, risk aversion,

and different specifications of the contractual environment. The BRE of our model has similar

qualitative properties as the equilibrium of the models of random search on the job by Burdett

and Mortensen (1998), Postel-Vinay and Robin (2002), and Burdett and Coles (2003). That

is, the BRE features flows of workers between employment, unemployment, and across different

employers; it features residual wage inequality, and a positive return to tenure and experience.

However, the BRE of our model has different technical properties than the equilibrium of the

random search models. In the equilibrium of the random search models, the distribution of

workers across different employment states is an infinite-dimensional object which non-trivially

affects the agents’ value and policy functions. In the BRE of our model, the distribution of workers

across different employment states does not affect the agents’ value and policy functions. For this

reason, while solving the equilibrium of the random search model in a stochastic environment is

a difficult task both computationally and analytically, solving the BRE of our model is as easy

as solving a representative agent model. These properties of the BRE make our model both a

useful and a practical tool for studying labor market dynamics.
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Appendix

A. Properties of the Set of Functions J

Lemma A.1. J is a non-empty, bounded, closed and convex subset of the space of bounded,

continuous functions on X × Y × Z, with the sup norm.

Proof: (i) Clearly, the set J is non-empty and bounded.

(ii) Next, we need to prove that the set J is closed. To this aim, let {Jn}∞n=1 be an arbitrary
sequence with Jn ∈ J for every n, and with Jn → J (in the sup norm). Note that, since Jn → J ,

for every ε > 0, there exists N(ε) ≥ 1 such that n ≥ N(ε) =⇒ kJn − Jk < ε.

For some (y, z) ∈ Y × Z and some V1, V2 ∈ X, with V1 ≤ V2, suppose that the difference

J(V2, y, z) − J(V1, y, z) is strictly smaller than −B̄J(V2 − V1). Let ε > 0 be one third of the

difference between −B̄J(V2−V1) and [J(V2, y, z)−J(V1, y, z)]. Let n be a natural number greater
than N (ε). Since ||Jn − J || < ε, the difference Jn(V2, y, z)− Jn(V1, y, z) is such that

Jn(V2, y, z)− Jn(V1, y, z) < J(V2, y, z)− J(V1, y, z) + 2ε

= 1
3 [J(V2, y, z)− J(V1, y, z)]− 2

3B̄J(V2 − V1)

< −B̄J(V2 − V1).

The last inequality contradicts Jn ∈ J . Therefore, J(V2, y, z) − J(V1, y, z) is greater than

−B̄J(V2−V1) for all (y, z) ∈ Y ×Z and all V1, V2 ∈ X, with V1 ≤ V2. Using a similar argument,

we can prove that J(V2, y, z)−J(V1, y, z) is smaller than −BJ(V2−V1) for all (y, z) ∈ Y ×Z and

all V1, V2 ∈ X, with V1 ≤ V2. That is, J satisfies property (J1) of the set J .

For all (V, y, z) ∈ X × Y × Z, it is immediate to verify that J(V, y, z) ∈ [J, J̄ ]. Hence, J satisfies
property (J2) of the set J . For some (y, z) ∈ Y ×Z, some V1, V2 ∈ X, and some α ∈ [0, 1], suppose
that J(Vα, y, z) is strictly smaller than αJ(V1, y, z)+(1−α)J(V2, y, z), where Vα = αV1+(1−α)V2.
Let ε > 0 be one third of the difference between [αJ(V1, y, z) + (1− α)J(V2, y, z)] and J(Vα, y, z).

n be a natural number greater than N (ε). Since ||Jn − J || < ε, we have

Jn(Vα, y, z) < J(Vα, y, z) + ε

= αJ(V1, y, z) + (1− α)J(V2, y, z)− 2ε
< αJn(V1, y, z) + (1− α)Jn(V2, y, z)− ε

< αJn(V1, y, z) + (1− α)Jn(V2, y, z).

The last inequality contradicts Jn ∈ J . Therefore, J(Vα, y, z) is greater than αJ(V1, y, z) + (1−
α)J(V2, y, z) for all (y, z) ∈ Y × Z, all V1, V2 ∈ X and all α ∈ [0, 1]. That is, J satisfies property
(J3) of the set J . This establishes that J ∈ J and, hence, that the set J is closed.

37



(iii) Finally, we need to prove that the set J is closed. To this aim, consider arbitrary J1,

J2 ∈ J and an arbitrary α ∈ [0, 1]. Denote Jα(V, y, z) = αJ1(V, y, z) + (1− α)J2(V, y, z). For all

(y, z) ∈ Y × Z and all V1, V2 ∈ X, with V1 ≤ V2, the difference Jα(V2, y, z)− Jα(V1, y, z) is such

that
Jα(V2, y, z)− Jα(V1, y, z)

= α [J1(V2, y, z)− J1(V1, y, z)] + (1− α) [J2(V2, y, z)− J2(V1, y, z)]

∈
£
−BJ(V2 − V1),−BJ(V2 − V1)

¤
.

Hence, Jα satisfies property (J1) of the set J . For all (V, y, z) ∈ X×Y ×Z, it is immediate to verify
that Jα(V, y, z) ∈ [J, J̄ ]. Hence, Jα satisfies property (J2) of the set J . For all (y, z) ∈ Y × Z,

V1, V2 ∈ X, and ζ ∈ [0, 1], let Vζ = ζV1 + (1− ζ)V2. Then, Jα(Vζ , y, z) is such that

Jα(Vζ , y, z)

= αJ1(Vζ , y, z) + (1− α)J2(Vζ , y, z)

≥ α [ζJ1(V1, y, z) + (1− ζ)J1(V2, y, z)] + (1− α) [ζJ2(V1, y, z) + (1− ζ)J2(V2, y, z)]

= ζJα(V1, y, z) + (1− ζ)Jα(V2, y, z).

Hence, Jα satisfies property (J3) of the set J . This establishes that Jα ∈ J and, hence, that the

set J is convex. ¥

B. Proof of Lemma 4.1

(i) For the sake of brevity, let us suppress the dependence of various functions on y and z. Let y

be an arbitrary point in Y , and let x1, x2 be two points in X with x1 ≤ x2. First, consider the

case in which x1 ≤ x2 ≤ x̃. In this case, the difference θ(x2)− θ(x1) is equal to

θ(x2)− θ(x1) = q−1(k/J(x2))− q−1(k/J(x1)) =

Z k/J(x2)

k/J(x1)
q−10(t)dt, (B.1)

where the first equality makes use of (4.1), and the second equality makes use of the fact that

J(x1) ≥ J(x2) ≥ k > 0. For all x ∈ [x, x̃], the derivative of the inverse function q−1(.) evaluated

at k/J(x) is equal to 1/q0(θ(x)) ∈ [1/q0(θ̄), 1/q0(0)], where 1/q0(θ̄) ≤ 1/q0(0) < 0. Therefore, the

last term in (B.1) is such that

1

q0(θ̄)

µ
k

J(x2)
− k

J(x1)

¶
≤
Z k/J(x2)

k/J(x1)
q−10(t)dt ≤ 1

q0(0)

µ
k

J(x2)
− k

J(x1)

¶
. (B.2)

The difference k/J(x2)− k/J(x1) is equal to

k

J(x2)
− k

J(x1)
=

Z J(x1)

J(x2)

k

t2
dt.
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For all x ∈ [x,x̃], J(x) is strictly decreasing in x and it is bounded between J and k. Therefore,

the integral on the RHS above is such thatZ J(x1)

J(x2)

k

t2
dt ≤ 1

k
[J(x1)− J(x2)] ≤

B̄J

k
(x2 − x1),Z J(x1)

J(x2)

k

t2
dt ≥ k

J̄2
[J(x1)− J(x2)] ≥

BJk

J̄2
(x2 − x1).

(B.3)

Taken together, (B.2) and (B.3) imply that the difference θ(x2)− θ(x1) is such that

B̄J

q0(θ̄)k
(x2 − x1) ≤ θ(x2)− θ(x1) ≤

BJk

q0(0)J̄2
(x2 − x1). (B.4)

Next, consider the case in which x1 ≤ x̃ ≤ x2. In this case, the difference θ(x2) − θ(x1) is such

that

θ(x2)− θ(x1) = θ(x̃)− θ(x1) ≤
BJk

q0(0)J̄2
(x̃− x1) ≤ 0,

θ(x2)− θ(x1) = θ(x̃)− θ(x1) ≥
B̄J

q0(θ̄)k
(x̃− x1) ≥

B̄J

q0(θ̄)k
(x2 − x1),

where the first equality in both lines makes use of the fact that θ(x2) = θ(x̃), and the first

inequality in both lines makes use of the bounds in (B.4). Finally, consider the case in which

x̃ ≤ x1 ≤ x2. In this case, (4.1) implies that θ(x1) = θ(x2) = 0.

(ii) The function p(θ) is strictly increasing in θ. The function θ(x) is strictly decreasing in x for

all x ∈ [x, x̃]. Therefore, the composite function p (θ (x)) is strictly decreasing in x for x ∈ [x, x̃].
In order to prove that the composite function p (θ (x)) is strictly concave in x for x ∈ [x, x̃],
consider arbitrary x1, x2 ∈ [x, x̃], with x1 6= x2, and an arbitrary number α ∈ (0, 1). Let

xα = αx1 + (1 − α)x2. Since the function J(x) is concave in x and the function k/x is strictly

convex in x, we have

k

J(xα)
≤ k

αJ(x1) + (1− α)J(x2)
< α

k

J(x1)
+ (1− α)

k

J(x2)
.

Since p(q−1(.)) is strictly decreasing and weakly concave, the previous inequality implies that

p(q−1 (k/J(xα)) > p(q−1(αk/J(x1) + (1− α)k/J(x2)))

≥ αp(q−1(k/J(x1))) + (1− α)p(q−1(k/J(x2))).
(B.5)

Since q−1(k/J(x)) is equal to θ(x) for all x ∈ [x, x̃], (B.5) can be rewritten as

p(θ(xα)) > αp(θ(x1)) + (1− α)p(θ(x2)). (B.6)

This establishes that the composite function p (θ (x)) is strictly concave in x for all x ∈ [x, x̃].
¥
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C. Proof of Lemma 4.7

(i) For all ϕ1, ϕ2 ∈ B(Y ), with ϕ1 ≤ ϕ2, the difference TUϕ2 − TUϕ1 is such that

(TUϕ2)(y)− (TUϕ1)(y)
= βEψ̂ {ϕ2(ŷ)− ϕ1(ŷ) + λu [max{0, R(ϕ2(ŷ), ŷ)}−max{0, R(ϕ1(ŷ), ŷ)}]} ≥ 0,

(C.1)

where the last inequality uses the fact that the function V +λumax{0, R(V )} is increasing in V .

For all ϕ ∈ B(Y ) and all a ≥ 0, TU (ϕ+ a) is such that

[TU (ϕ+ a)] (y) = (TUϕ)(y) + βEψ̂ {a+ λu [max{R(ϕ+ a), 0}−max{R(ϕ), 0}]}

≤ (TUϕ)(y) + βa,
(C.2)

where, for the sake of brevity, we have suppressed the dependence of various variables from the

aggregate state ŷ. Conditions (C.1) and (C.2) are sufficient to prove that the operator TU is a

contraction mapping (Stokey and Lucas with Prescott, 1989, Theorem 3.3). Hence, there exists

one and only one U such that TUU = U .

(ii) Let ϕ ∈ B(Y ) be a function that is bounded between U and U. Then, TUϕ is such that

(TUϕ)(y) ≥ u(b) + βU = U ,

(TUϕ)(y) ≤ u(b) + βx̄ = Ū ,
(C.3)

where the first line makes use of the facts that ϕ ≥ U and R(ϕ(ŷ), ŷ) ≥ 0; and the second line
makes use of the fact that ϕ + λumax{0, R(ϕ(ŷ), ŷ)} ≤ x̄. From the inequalities in (C.3), it

follows that the operator TU maps the set of functions that are bounded between U and U into

itself. Since the operator TU is a contraction, it follows that its fixed point, U, is bounded between

U and U . ¥

D. Proof of Lemma 6.1

(i) For all ϕ1, ϕ2 ∈ B(W × Y ), with ϕ1 ≤ ϕ2, the difference THϕ2 − THϕ1 is such that

(THϕ2)(w, y)− (THϕ1)(w, y)

= β(1− δ)Eŷ
∙
ϕ2(w, ŷ) + λemax{0, R(ϕ2(w, ŷ), ŷ)}
−ϕ1(w, ŷ)− λemax{0, R(ϕ1(w, ŷ), ŷ)}

¸
≥ 0,

(D.1)

where the last inequality uses the fact that the function V + λemax{0, R(V, ŷ)} is increasing in
V . For all ϕ ∈ B(W × Y ) and all a ≥ 0, TH(ϕ+ a) is such that

[TH(ϕ+ a)] (w, y) = w + βEŷ {δU + (1− δ) [ϕ(w, ŷ) + λemax{0, R(ϕ(w, ŷ), ŷ)}]}
+β(1− δ)Eŷ {a+ λemax{0, R(ϕ(w, ŷ), ŷ)}− λemax{0, R(ϕ(w, ŷ) + a, ŷ)}}
≤ (THϕ)(w, y) + β(1− δ)a,

(D.2)
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where the last inequality uses the fact that R(V, ŷ)−R(V +a, ŷ) ≤ 0. Conditions (D.1) and (D.2)
are sufficient to prove that the operator TH is a contraction mapping. Hence, there exists one

and only one H such that THH = H.

(ii) Let ϕ ∈ B(W × Y ) be a function that satisfies condition (6.4). Let y be an arbitrary point

in Y , and w1, w2 two arbitrary points in W with w1 ≤ w2. For all ŷ ∈ Y , the difference

f(w2, ŷ)− f (w1, ŷ) is bounded between 0 and [1− β(1− δ)]−1(w2 − w1). Therefore,

(THϕ)(w2, y)− (THϕ)(w1, y)

= w2 − w1 + β(1− δ)Eŷ
∙
ϕ(w2, ŷ) + λemax{0, R(ϕ(w2, ŷ), ŷ)}
−ϕ(w1, ŷ)− λemax{0, R(ϕ(w1, ŷ), ŷ)}

¸
∈ [1, 1/[1− β(1− δ)]] (w2 −w1) .

(D.3)

The bounds in (D.3) imply that the operator TH maps functions that satisfy (6.4) into functions

that satisfy (6.4). Since TH is a contraction, its unique fixed point H satisfies (6.4).

(iii) Let V̄ denote
¡
w̄ + βδŪ

¢
/[1− β (1− δ)]. Let ϕ ∈ B(W × Y ) be an arbitrary function such

that (THf) (w̄, y) ∈ [x̄, V̄ ] for all y ∈ Y . The function THϕ is such that (THϕ) (w̄, y) ∈ [x̄, V̄ ] for
all y ∈ Y , because

(THϕ) (w̄, y) ≥ w̄ + βδU + β (1− δ) x̄ = x̄,

(THϕ) (w̄, y) ≤ w̄ + βδŪ + β (1− δ) V̄ = V̄ .

Therefore, the fixed point, H, is such that H (w̄, y) ∈ [x̄, V̄ ] for all y ∈ Y. Moreover, H(w, y) ≤ x

for all y ∈ Y , because

H(w, y) ≤ w + β
£
δŪ + (1− δ)Eŷ

£
V̄ + λemax{0, R(V̄ , ŷ)}

¤¤
≤ x. ¥

E. Proof of Lemma 6.3

(i) It is immediate to verify that, for all ϕ1, ϕ2 ∈ B(W × Y ×Z), if ϕ1 ≤ ϕ2 then TKϕ1 ≤ TKϕ2.

It is also immediate to verify that, for all ϕ ∈ B(W × Y ×Z) and all a > 0, TK(ϕ+ a) is smaller

than TKϕ+βa. These two conditions are sufficient to prove that the operator TK is a contraction

mapping. Hence, there exists one and only one K ∈ B(W × Y × Z) such that TKK = K.

(ii)-(iii) Let ϕ ∈ B(W ×Y ×Z) satisfy conditions (6.9)—(6.10). Let (y, z) be an arbitrary point in

Y × Z, and w1, w2 arbitrary points in W with w1 ≤ w2. The difference between (TKϕ)(w2, y, z)
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and (TKϕ)(w1, y, z) is such that

(TKϕ)(w2, y, z)− (TKϕ)(w1, y, z)
= w1 − w2 + β(1− δ)Eŝ {[1− λep̃(H(w2, ŷ), ŷ)] [ϕ(w2, ŷ, ẑ)− ϕ(w1, ŷ, ẑ)]}
+ β(1− δ)Eŝ {λe [p̃(H(w1, ŷ), ŷ)− p̃(H(w2, ŷ), ŷ)]ϕ(w1, ŷ, ẑ)}

≤ −
n
1 + β(1− δ)(1− λe)BK − [1− β (1− δ)]−1 β(1− δ)λeB̄pK

o
(w2 − w1)

= −BK(w2 − w1),

(E.1)

where the first inequality makes use of the bounds in (6.6), (6.9), (4.8) and (6.10). Moreover, the

difference between (TKϕ)(w2, y, z) and (TKϕ)(w1, y, z) is such that

(TKϕ)(w2, y, z)− (TKϕ)(w1, y, z)

≥ −
n
1 + β(1− δ)B̄K − [1− β (1− δ)]−1 β(1− δ)λeB̄pK

o
(w2 −w1)

= −B̄K(w2 − w1),

(E.2)

where the first inequality makes use of the bounds (6.6), (6.9), (4.8) and (6.10).

Let w be an arbitrary point in W . Then, TKϕ is such that

(TKϕ)(w, y, z) ≤ ȳ + z̄ − w + β(1− δ)K ≤ K,

(TKϕ)(w, y, z) ≥ y + z − w̄ + β(1− δ) (1− λe)K ≥ K.
(E.3)

Inequalities (E.1)—(E.3) imply that the operator TK maps functions that satisfy conditions (6.9)—

(6.10) into functions that satisfy (6.9)—(6.10). Since the operator TK is a contraction, its unique

fixed point, K, satisfies conditions (6.9)—(6.10). ¥

F. Two-Point Lotteries and Concavity of the Value Function

Let K (x) be a continuous function, where x ∈ [x, x̄]. Consider the following problem with a

two-point lottery:

J (V ) = max(π,x1,x2) [πK (x1) + (1− π)K (x2)]

s.t. πx1 + (1− π)x2 = V , x1 ≤ V ≤ x2, π ∈ [0, 1] .
(F.1)

The above problem encompasses the maximization problems in (5.1) and (6.12) as special cases.

(In these problems, the lottery is contingent on the realizations of aggregate and match-specific

shocks, (y, z), which is suppressed here.)

We want to prove that J (V ) is concave. To this end, consider arbitrary V ∈ (x, x̄). Let (x∗1, x∗2)
be the solution for (x1, x2) in (F.1). If K (V ) is strictly convex at V , it must be true that
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x∗1 < V < x∗2. Thus, if x
∗
1 = x∗2, then J (V ) = K (V ) must be concave at V . In the remainder

of the proof, it suffices to examine the case where x∗1 < x∗2. For any arbitrary x1, x2 ∈ (x, x̄),
x1 < x2, denote the line segment connecting K(x1) and K(x2) as x1x2, and denote the slope of

x1x2 as

L(x1, x2) ≡
K(x2)−K(x1)

x2 − x1
.

Using the constraint in (F.1) to express π = (x2 − V )/(x2 − x1), we can rewrite J(V ) in the

following equivalent forms:

J(V ) = max
(x1,x2)

[K (x2)− (x2 − V )L(x1, x2)] = max
(x1,x2)

[K(x1) + (V − x1)L(x1, x2)] .

The following results hold:

(A) For all x ∈ [x, x̄], K(x) must lie on or below x∗1x
∗
2, i.e., K(x) ≤ K(x∗1) + L(x∗1, x

∗
2)(x− x∗1);

(B) If x∗2 > V , then x∗1 = argminx≤x∗2 L(x, x
∗
2) and x∗2 = argmaxx≥x∗1 L(x

∗
1, x).

Proofs of (A) and (B). For (A), consider first the case x ∈ [x∗1, x∗2]. (We will return to the case
x /∈ [x∗1, x∗2] after proving (B).) Result (A) holds trivially when x = x∗1 or x = x∗2. To show that

(A) also holds for x ∈ (x∗1, x∗2), suppose to the contrary that (A) is violated by some x0 ∈ (x∗1, x∗2).
Then, K(x0) > K(x∗1) + L(x∗1, x

∗
2)(x0 − x∗1). If x0 = V , then (x0, x0) is optimal. If x0 < V , then

(x0, x
∗
2) is feasible and dominates (x

∗
1, x

∗
2). If x0 > V , then (x∗1, x0) is feasible and dominates

(x∗1, x
∗
2). The result in each of these cases contradicts the optimality of (x

∗
1, x

∗
2).

For (B), we only prove the first part, i.e., the part for x∗1, since the proof of the result for x
∗
2 is

similar. From the first rewritten form of the maximization problem, L(x∗1, x
∗
2) ≤ L(x, x∗2) for all

x ≤ V . For x ∈ (V, x∗2), K(x) is on or below the line connecting K(x∗1) and K(x∗2) (see the proven
part of (A) above), and so L(x∗1, x

∗
2) ≤ L(x, x∗2). Thus, (B) holds.

Now we prove that (A) also holds for x /∈ [x∗1, x∗2]. If (A) did not hold for some x0 < x∗1, then

L(x0, x
∗
2) < L(x∗1, x

∗
2), which would contradict (B). If (A) did not hold for some x0 > x∗2, then

L(x∗1, x0) > L(x∗1, x
∗
2), which would again contradict (B). ¥

Lemma F.1. J (V ) is a concave function.

Proof. Let V1 and V2 be two arbitrary values in [x, x̄], and let Vα = αV1 + (1 − α)V2, where

α ∈ (0, 1). Denote (x∗1i, x∗2i) as the solution to the maximization problem when V = Vi, where

i ∈ {1, 2, α}. We show that J(Vα) ≥ αJ(V1) + (1− α)J(V2).
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Applying (A) to any x ∈ [x∗11, x∗21], we know that K(x) cannot lie above the extension of x∗1αx∗2α.
Thus, all points on x∗11x

∗
21 must lie on or below the extension of x∗1αx

∗
2α. This implies that

J(V1) ≤ J(Vα)−Lα(Vα−V1), where Lα = L(x∗1α, x
∗
2α). Similarly, applying (A) to any x ∈ [x∗12, x∗22]

yields: J(V2) ≤ J(Vα) + Lα(V2 − Vα). Thus,

αJ(V1) + (1− α)J(V2) ≤ J(Vα) + Lα [α (V1 − Vα) + (1− α) (V2 − Vα)] = J(Vα).

This completes the proof of the lemma. ¥
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Figure 2: Optimal Search Strategy
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Figure 1: Market Tightness
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Figure 4: Value of Employment
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Figure 5: Value of an Employee
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Figure 6: Firm's Value Function
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Figure 3: Job Finding Probability
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