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Abstract

High interest rate currencies tend to appreciate. This is the uncovered interest
rate parity (UIP) puzzle. It is primarily a statement about short-term interest
rates and how they are related to exchange rates. Short-term interest rates are
strongly affected by monetary policy. We represent monetary policy as foreign
and domestic Taylor rules. We use a statistical pricing-kernel model to map these
Taylor rules into an exchange rate process and ask if the model can account for
the UIP puzzle. We find that if the foreign Taylor rule responds to variations in
the nominal exchange rate, but the domestic Taylor rule does not, then there are
parameterizations of the model for which the well-known UIP regression coefficient
is negative. An economic interpretation of our results is that the excess returns to
currency speculation that are inherent in deviations from UIP represent the costs
that central banks incur for implementing Taylor rule type policies.
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1 Introduction

The uncovered interest rate parity (UIP) relation states that high interest rate
currencies ought to tend to depreciate against low interest rate currencies. For
many currency pairs and time periods we seem to see the opposite. This is puzzling
in that it has proven difficult to write down a model that can explain why UIP is
at odds with data.

The UIP evidence is primarily about short-term interest rates and currency
depreciation rates. Monetary policy exerts substantial influence over short-term
interest rates. Therefore, the UIP puzzle can be synonymously stated in terms of
monetary policy; why do countries with high interest rate policies have currencies
which tend to appreciate against those with low interest rate policies? This is
the question that we ask. We represent foreign and domestic monetary policies
as Taylor rules, develop a statistical pricing-kernel model which maps the Taylor
rules into an exchange rate process, and then ask if the model can account for the
UIP evidence.

We are not the first to examine the link between UIP deviations and monetary
policy.1 What distinguishes our paper is how monetary policy is represented. Many
existing papers include a specific model of money, most commonly some sort of
cash-in-advance constraint. We take a short-cut. Monetary policy takes the form
of an Taylor rule, an interest rate equation of the form

it = τ + τ1πt + τ2zt , (1)

where it is the short rate, πt is the inflation rate and zt is a “policy shock.” We
also require that the interest rate satisfy the standard (nominal) pricing kernel
equation,

it = − log Et nt+1e
−πt+1 , (2)

where nt+1 is the (real) marginal rate of substitution. How can both equations
hold? We use the framework developed in Gallmeyer, Hollifield, Palomino, and Zin
(2007) (GHPZ). Their approach is to solve for an inflation process such that equa-
tions (1) and (2) are both satisfied. This captures the essence of the new-Keynesian
paradigm; the notion that inflation πt is an endogenous process, reflecting both
policy responses and household responses to the same underlying shocks. What
results is what GHPZ call a ‘monetary policy consistent pricing kernel:’ a nominal
pricing kernel which depends on the Taylor-rule parameters τ , τ1 and τ2. We build

1Previous work includes Alvarez, Atkeson, and Kehoe (2007), Backus, Gregory, and Telmer
(1993), Bekaert (1994), Burnside, Eichenbaum, Kleshchelski, and Rebelo (2006), Canova and Mar-
rinan (1993), Dutton (1993), Grilli and Roubini (1992), Lucas (1982), Macklem (1991), Marshall
(1992), McCallum (1994) and Schlagenhauf and Wrase (1995).
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on their work by specifying such pricing kernels for both domestic and foreign-
currency denominated payoffs and then using results from Backus, Foresi, and
Telmer (2001) to derive the implications for exchange rates and the UIP puzzle.

An important precursor to our paper is McCallum (1994) who also derived
implications for UIP as the solution to a linear rational expectations model char-
acterized by a policy-type interest rate rule. Our contribution is to explicitly
incorporate the pricing kernel approach in equation (2), which we think is helpful
for the identification of shocks.

2 Model

We begin with a terse treatment of existing results in order to fix notation. The
core of our approach is the standard pricing-kernel equation,

bn+1
t = Et mt+1b

n
t+1 , (3)

where bn
t is the U.S. dollar (USD) price of a nominal n-period zero-coupon bond

at date t and mt is the pricing kernel. We will work mostly with the short rate,
the yield on the shortest maturity bond, defined as it = − log b1

t . An equation
analogous to (3) applies for foreign-currency denominated bonds, say in units of
British pounds (GBP). GBP-denominated variables, m∗

t , i∗t , etc., will be denoted
with asterisks. Fama’s (1984) well-known decomposition of the interest-rate dif-
ferential, it − i∗t , into the expected rate of depreciation of USD, qt, and the excess
expected return to currency speculation, pt, — so that it − i∗t = pt + qt — can be
expressed as,

it − i∗t = log Et m∗
t+1 − log Et mt+1 (4)

qt = Et log m∗
t+1 − Et log mt+1 (5)

pt =
(

log Et m∗
t+1 − Et log m∗

t+1

)

− (log Et mt+1 − Et log mt+1) (6)

= Var t(log m∗
t+1)/2 − Var t(log mt+1)/2 , (7)

where equation (7) is only valid for the case of conditional lognormality. The rate
of USD currency depreciation is denoted dt+1 = St+1/St, so that qt = Et log dt+1,
where St is the nominal exchange rate, USD per unit GBP. See Backus, Foresi,
and Telmer (2001) for a less-terse development of these results.

The population regression coefficient from the well-known regression of the
depreciation rate on the interest-rate differential,

log dt+1 = c + b
(

it − i∗t
)

+ residuals

is

b =
Cov(qt, pt + qt)

Var(pt + qt)
. (8)
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UIP implies that b = 1. Our objective is to write down a model that fits the
empirical facts, b < 0. It is important to note that a necessary condition for this is
that pt vary over time. The implies that, at least for the lognormal case, we must
have stochastic volatility in the log kernels.

2.1 Taylor Rules and the UIP Regression

We represent monetary policy with a Taylor rule of the form

it = τ + τ1πt + τ2zt . (9)

where it and πt are the continuously-compounded short nominal interest rate and
inflation rate, respectively, and zt is a “policy shock.” There are many alternative
specifications for Taylor rules. A good discussion related to asset pricing is Ang,
Dong, and Piazzesi (2007). We begin with this relatively simple specification for
reasons of tractability and clarity. Cochrane (2007) uses a similar specification
to address issues related to price-level determinacy and the identification of the
parameters in equation (9).

The process for zt is a AR(1) with stochastic volatility:

zt = ϕzzt−1 + v
1/2

t−1
εt (10)

vt = θv(1 − ϕv) + ϕvvt−1 + σvwt (11)

where εt and wt are i.i.d. standard normal. Recall that stochastic volatility is
not an option. It is a requirement. The only issue is where it comes from. Since
our goal is to emphasize monetary policy we specify the source of the stochastic
volatility as the “policy shock.”

Turning to asset pricing, define the continuously-compounded inflation rate
as πt+1 = log(Pt+1/Pt). The nominal pricing kernel, mt+1 = nt+1Pt/Pt+1, is
comprised of a real piece nt+1 and an inflation piece, Pt+1/Pt. The short rate is
it = − log Et mt+1. Given this structure, we have the following result:

Result 1:

Suppose that foreign and domestic Taylor rules are both of the form (9),
with identical coefficients and shocks which are not perfectly correlated.
If the real part of the pricing kernel is constant, nt+1 = n, and the
policy shocks are not autocorrelated, ϕz = 0, then the UIP regression
coefficient is

b =
ρv

τ1

.

Derivations are provided in Appendix 1.
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Common wisdom is that τ1 > 1, so b < 1. Therefore, b isn’t negative unless
volatility is negatively autocorrelated which is implausible. Nevertheless, the UIP
regression coefficient can be significantly less than unity and the joint distribution
of exchange rates and interest rates will admit positive expected excess returns to
suitably-defined trading strategy.

Why set nt+1 to a constant? This implies that investors are risk-neutral over
real-valued consumption gambles. We do this in order to achieve a combination
of tractability and clarity. Tractability is obvious from Result 1. There seems to
be a clear relation between the UIP regression parameter and the all-important
τ1 parameter that is the focus of attention in the new-Keynesian monetary theory
literature. By clarity we mean the following. There is much debate about the em-
pirical relation between consumption and excess returns from currency speculation
(see Lustig and Verdehlan (2007a), the associated critique by Burnside (2007), and
the response in Lustig and Verdehlan (2007b)). By omitting consumption-based
risk completely, when the magnitude of which is perhaps small in any case, we
hope to more sharply focus on our topic of interest: monetary policy.

2.2 Asymmetric Taylor Rules

The series of examples outlined in Backus, Foresi, and Telmer (2001) suggest that
asymmetries between the foreign and domestic pricing kernels are likely to play
a critical role in achieving b < 0. Their approach is purely statistical in nature.
There are many parameters and few sources of guidance for which asymmetries
are plausible and which are not. Our approach offers more guidance. The Taylor
rules (9) are a sensible, and arguably observable, source of asymmetry. It seems
plausible the Fed policy depends less on Bank of England policy than the converse.

The following result shows that if the domestic Taylor rule is of the form (9),
but the foreign Taylor rule depends on the depreciation rate, log(St+1/St), then
b < 0 is possible. This has much the flavor of the specification of McCallum (1994).

Result 2:

Suppose that the domestic Taylor rule is of the form (9). The foreign
Taylor rule is of the form

i∗t = τ∗ + τ∗
3 log(St/St−1) . (12)

If the real part of the pricing kernel is constant, nt+1 = n, and the
policy shocks are not autocorrelated, ϕz = 0, then the sign of the UIP
regression coefficient depends on the sign of the following term, which
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can be negative depending on parameter values:

Cov(it − i∗t , qt) = (a2 − a∗2)ϕv

(

(a2 − a∗2)ϕv − (a2
1 − a∗21 )/2

) σ2
v

1 − ϕ2
v

(13)

where,

a∗1 =
τ∗
3 τ2

(ϕz − τ1)(ϕz + τ∗
3
)

(14)

a∗2 =
1

ϕv + τ∗
3

(

a∗21
2

+
τ∗
3 τ2

2

2(ϕz − τ1)2(ϕv − τ1)

)

(15)

Derivations are provided in Appendix 2.

From Federico’s email: In particular, if a2 > a∗2, we need (a2 − a∗2)ϕv < (a2
1 −

a∗21 )/2 and viceversa.

3 Conclusions

Work-in-progress
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Appendix 1

The short rate must satisfy both the Euler equation and the Taylor rule:

it = − log Et mt+1 (16)

it = τ + τ1πt + τ2zt , (17)

where the processes for zt and its volatility vt are

zt = ϕzzt−1 + v
1/2

t−1
εt (18)

vt = θv(1 − ϕv) + ϕvvt−1 + σvwt (19)

where εt and wt are i.i.d. standard normal. Given that mt+1 = nt+1Pt/Pt+1 and
πt+1 = log(Pt+1/Pt), set the real pricing kernel to a constant and guess that the
solution for endogenous inflation is:

πt = a + a1zt + a2vt , (20)

Substitute equation (20) into the pricing kernel and compute the expectation in
equation (16):

it = C + a1ϕzzt + (a2ϕv − a2
1/2)vt , (21)

where

C ≡ −n + a + a2θv(1 − ϕv) − (a2σv)
2/2 (22)

Match-up the coefficients with the Taylor rule and solve for the ai parameters:

a =
C − τ

τ1

(23)

a1 =
τ2

ϕz − τ1

(24)

a2 =
τ2
2

2(ϕz − τ1)2(ϕv − τ1)
(25)

It’s useful to note that

a2 =
a2

1

2(ϕv − τ1)

Inflation and the short rate are:

πt =
C − τ

τ1

+
τ2

ϕz − τ1

zt +
τ2
2

2(ϕz − τ1)2(ϕv − τ1)
vt (26)

it = C +
ϕzτ2

ϕz − τ1

zt +
τ1τ

2
2

2(ϕz − τ1)2(ϕv − τ1)
vt (27)

= C + ϕza1zt + τ1a2vt (28)
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The pricing kernel is

− log mt+1 = C + (σva2)
2/2 + a1ϕzzt + a2ϕvvt + a1v

1/2

t εt+1 + σva2wt+1

= D +
τ2

ϕz − τ1

ϕzzt +
ϕvτ

2
2

2(ϕz − τ1)2(ϕv − τ1)
vt

+
τ2

ϕz − τ1

v
1/2

t εt+1 +
σvτ

2
2

2(ϕz − τ1)2(ϕv − τ1)
wt+1

(29)

where

D ≡ C + (σva2)
2/2 (30)

The GBP-denominated kernel and variables are denoted with asterisks. The
interest-rate differential, the expected depreciation rate, qt, and the risk premium,
pt, are:

it − i∗t = ϕza1zt − ϕ∗
za

∗
1z

∗
t + τ1a2vt − τ∗

1 a∗2v
∗
t (31)

qt = D − D∗ + a1ϕzzt − a∗1ϕ
∗
zz

∗
t + a2ϕvvt − a∗2ϕ

∗
vv

∗
t (32)

pt = −

1

2

(

a2
1vt − a∗21 v∗t + σ2

va
2
2 − σ∗2

v a∗22
)

(33)

It is easily verified that pt + qt = it − i∗t .

If we assume that all foreign and domestic parameter values are the same (i.e.,
τ = τ∗) and if we set ϕz = 0, then the regression parameter is:

b =
Cov(it − i∗t , qt)

Var(it − i∗t )

=
ϕv

τ1
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Appendix 2

Let the foreign Taylor rule be

i∗t = τ∗ + τ∗
3 (πt − π∗

t ) . (34)

Guess that the solution for foreign inflation is:

π∗
t = a∗ + a∗1zt + a∗2vt , (35)

Similarly to Appendix 1, substitute equation (35) into the pricing kernel and com-
pute the expectation in equation (16):

i∗t = C∗ + a∗1ϕzzt + (a∗2ϕv − a∗21 /2)vt , (36)

where

C∗
≡ −n∗ + a∗ + a∗2θv(1 − ϕv) − (a∗2σv)

2/2 (37)

Match-up the coefficients with the Taylor rule and solve for the a∗i parameters:

a∗ = a −

C − τ∗

τ∗
3

(38)

a∗1 =
τ∗
3 τ2

(ϕz − τ1)(ϕz + τ∗
3
)

(39)

a∗2 =
1

ϕv + τ∗
3

(

a∗21
2

+
τ∗
3 τ2

2

2(ϕz − τ1)2(ϕv − τ1)

)

(40)

The interest-rate differential, the expected depreciation rate, qt, and the risk pre-
mium, pt, are:

it − i∗t = C − C∗ + (a1 − a∗1)ϕzzt +
(

(a2 − a∗2)ϕv − (a2
1 − a∗21 )/2

)

vt (41)

qt = D − D∗ + (a1 − a∗1)ϕzzt + (a2 − a∗2)ϕvvt (42)

pt = −

1

2

(

(a2
1 − a∗21 )vt + (a2

2 − a∗22 )σ2
v

)

(43)

It is easily verified that pt + qt = it − i∗t .

Moments
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