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Abstract

We study how an optimal income tax and an optimal public-goods provision rule re-
spond to preference and productivity shocks. A conventional Mirrleesian treatment is shown
to provoke manipulations of the policy mechanism by individuals with similar interests. We
therefore extend the Mirrleesian model so as to include a requirement of coalition-proofness.
The main results are the following: First, the possibility of preference shocks yields a new set
of collective incentive constraints. Productivity shocks have no such implication. Second,
the optimal policy gives rise to a positive correlation between the public-goods provision
level, the extent of redistribution and marginal tax rates.
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1 Introduction

A society who wants to provide public goods and redistribute income and therefore has to tax
individuals faces a number of information problems. Given that taxes paid and transfers received
should reflect an individual’s ability to generate income, each individual’s earning ability has
to be determined. In addition, information on preferences for public goods has to be acquired
because an optimal public expenditure policy requires an assessment of the social costs and
benefits of public spending.

The theory of optimal taxation in the tradition of Mirrlees (1971) focusses on the problem
to tax individuals according to their earning ability. The optimal policy is therefore the solution
of a screening problem, i.e., for any one individual the problem is to determine this individuals’
characteristics so that the individual can be taxed accordingly. In this literature, problems of
information aggregation do not arise; e.g., there is no issue of having to acquire the information
on how many individuals have a high earning ability. Also, for extended versions of this model
that include a decision on public-goods provision, there is no need to acquire the information
on how many individuals value a public good highly.1 These aggregates are taken to be known
quantities.

The theory of public-goods provision in the tradition of Clarke (1971) and Groves (1973),
by contrast, focusses on problems of information aggregation. In this literature, information on
the public goods preferences of any one individual has to be acquired because it is an essential
input for the determination of the social benefits from public-goods provision. This literature,
however, disregards the production side of the economy and the tax system as an alternative
source of public goods-finance. Also, it does not include distributive considerations which are
based on individual differences in productive abilities.

This paper provides a unified approach to these issues so that we can simultaneously analyze
problems of optimal taxation and problems of information aggregation. This makes it possible to
provide answers to the following questions: Should the tax system become more redistributive if
the average worker becomes more productive? What are the implications of such a productivity
shock for public-goods provision? Should public spending expand if the demand for public goods
goes up? If so, what are the implications of such a preference shock for the shape of the tax
system?

More specifically, this paper is based on a large economy model with endogenous production,
as is the theory of optimal taxation. The formal analysis uses a mechanism design approach.2

The economy is populated by high-skilled and by low-skilled individuals, who either have a high
or a low preference for public goods. A state of the economy is identified with a cross-section
distribution of those characteristics; that is, a state is a triplet consisting of the population

1See, for example, Boadway and Keen (1993), Gahvari (2006), or Hellwig (2004).
2The paper thus contributes to a recent literature in public economics which uses a mechanism design approach

in order to characterize optimal insurance contracts or tax systems; see, for example, Golosov et al. (2003), or

Kocherlakota (2005). Predecessors are Hammond (1979) and Guesnerie (1995). The work that is most closely

related to this paper is by Bassetto and Phelan (2008) and Kocherlakota and Phelan (2009) who are also concerned

with the characterization of optimal policies in large economies with aggregate uncertainty. However, none of

these papers includes an analysis of public-goods provision.
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share of high-skilled individuals, the fraction of high-skilled individuals with a high taste for
public goods, and the fraction of low-skilled individuals with a high taste for public goods. A
mechanism specifies how the income tax schedule and the public-goods provision level vary with
the state of the economy; that is, how fiscal policy responds to preference and productivity
shocks. The aim of the paper is to characterize the optimal mechanism, or, equivalently, the
optimal response to preference and productivity shocks.

The paper’s mechanism design approach is based on a model with a continuum of individuals
and invokes a requirement of coalition-proofness and a requirement of robustness with respect
to the specification of the individuals’ probabilistic beliefs. In the remainder of this section, we
will first explain why, for the purposes of this paper, these modelling choices are appropriate
and, second, explain what the main results are.

Continuum Economy. Developing a formal framework for the joint analysis of income
taxation, public-goods provision and information aggregation faces the difficulty that the models
in the theory of optimal taxation and the theory of public-goods provision under asymmetric
information are very different. While the former studies a large economy model in which each
individual acts as a “price-taker” in the sense that the own behavior neither affects aggregate
tax revenue nor public spending, the latter studies a finite economy in which each individual
has a direct impact on the supply of public goods.

For this paper, we view the large economy framework as being appropriate because, from an
empirical point of view, if we consider tax revenues as a source of public-goods finance we are led
to a system that involves millions of individuals who pay taxes and jointly consume public goods
that are provided at a national scale, as, for instance, national defense, the judicial system, or
infrastructure such as highways or railroads.

For such a large economic system, it seems implausible to model problems of information
aggregation in the same way as it is done in the literature on the revelation of public-goods
preferences. In this literature, each individual articulates a public-goods preference which affects
how much of a public good should be provided and also what everybody else should contribute
to the cost of provision. Since there is only a finite number of individuals, this gives rise to
externalities and the problem then is to calibrate individual payments so as to take care of
these externalities and to ensure that efficient outcomes are reached. Now, if we have millions
of individuals, the idea that each single individual’s preference is an essential input for the
assessment of the social costs and benefits of public-goods provision seems contrived.

We will therefore study a model with a continuum of individuals. The continuum economy
is convenient for our purpose because we can model information aggregation in such a way that
(i) no single individual is pivotal for the determination of an optimal policy and, (ii) a policy
maker still needs to acquire information on the preferences and abilities of individuals, because
the optimal policy depends on aggregate data such as the marginal costs of public funds, or the
average utility gain from increased public spending. Thus, in order to learn whether the social
benefits from increased public spending are high or low, the policy maker needs to communicate
with the individuals in the economy.

Coalition-Proofness. In a large economy, the communication game between the policy
maker and individuals has multiple equilibria. For instance, suppose that tax payments depend
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only on productive abilities, but not on public-goods preferences.3 This implies that any com-
munication of public-goods preferences is, from a single individual’s perspective, a best response.
Given that a single individual can neither affect aggregate spending nor the own tax payment by
declaring a certain public-goods preference, the individual is willing to declare any conceivable
public-goods preference.

As a first step in our analysis, we simply ignore this problem and, as is often done in the
mechanism design literature, call a policy rule implementable if there is some game with some
equilibrium so that the equilibrium allocation coincides with the outcomes stipulated by the
policy rule. With this solution concept, we show that a rule for taxation and public-goods
provision can be implemented if and only if it satisfies the incentive and resource constraints
which are familiar from the Mirrleesian model of optimal income taxation: In every state, tax
revenues have to be sufficient to cover the cost of public-goods provision, and each individual
prefers the combination of private-goods consumption and productive effort that is assigned to
him over the combination that is intended for individuals who have different characteristics. The
optimal mechanism is therefore equivalent to an optimal income tax in the Mirrlees-model.

As a second step, however, we observe that this mechanism has two properties that are
problematic:

(i) Individuals may have an incentive to lie about their public-goods preferences. Under
an optimal mechanism, an individual’s “valuation” of a public good is shaped both by his
productivity level and his public-goods preference. Productivity levels matter because an income
tax system is used to finance the public good. In particular, this implies that a high-skilled
individual suffers from a smaller utility loss if he has to work more in order to contribute to the
financing of increased public-goods provision. Ceteris paribus, an individual’s valuation of the
public good is therefore increasing both in the skill level and the public-goods preference. Now
consider individuals with a high-skill level and a low taste for public goods. Being high-skilled,
these individuals have an above-average valuation of public goods, whenever the state of the
economy is such that a vast majority of individuals has a low public-goods preference. But
this implies that, from the perspective of these individuals, the optimally chosen public-goods
provision level is too low: They would be happy if the mechanism designer believed that the
share of high-skilled individuals with a high public-goods preference was higher than it actually
is, and therefore implemented a larger provision level. Hence, it seems plausible that these
individuals falsely communicate a high public-goods preference to the mechanism designer.

(ii) Individuals may have an incentive to lie about their productive abilities. In every state,
an optimal income tax has the property that high-skilled individuals are indifferent between
their consumption-effort-pair, and the one intended for low-skilled individuals.4 Conditional on
a given state of the economy, high-skilled individuals are therefore indifferent between commu-
nicating their skill level truthfully and falsely declaring a low skill level. However, if enough

3In our formal analysis this will be a result, not an assumption.
4This is well-known in the literature on optimal income taxation. Intuitively, the mechanism designer wants

the high-skilled individuals to contribute more to the economy’s output because their marginal disutility of output

provision is lower. The mechanism designer therefore increases the work load of the high-skilled up to the point

where a binding incentive constraint precludes any further increase.
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high-skilled individuals lie about their productive abilities this affects the mechanism designer’s
perception of the productivity of the economy’s workforce. Suppose, for the sake of the argu-
ment, that the optimal income tax is more redistributive if the economy is “rich”, in the sense
that there are many high-skilled individuals. Then such a lie makes mechanism designer be-
lieve that the economy is poorer than it actually is, so that redistribution is reduced and the
high-skilled are better off.

The problems in (i) and (ii) have a common cause: The optimal robust mechanism rests
on the assumption that individuals behave truthfully simply because, in a large economy, a
unilateral change of behavior would neither make a difference for the public-goods provision level,
nor the income tax schedule. However, individuals are not indifferent regarding the policy that is
implemented. If they saw the slightest chance of influencing the mechanism designer’s perception
of the state of the economy, they would no longer be willing to reveal their characteristics.
Hence, from a theoretical perspective, breaking individual indifference in favor of truth-telling is
unconvincing. Also, from an empirical viewpoint, if one thinks about the role of political parties
and special interest groups, the assumption that individuals with common interests may try to
induce policies that are favorable to them seems more plausible than the alternative view that
problems of information aggregation become trivial provided that the number of individuals is
sufficiently large.

There are different approaches that one could use to deal with this problem. One is simply
to break indifference as if an individual had an impact on the policy choice. This idea would
be easily applicable under the assumption that the policy domain is one-dimensional, e.g., that
we only have to determine how much of a public good should be provided. We could then
assume that an individual articulates a high preference for public-goods if and only if increased
public-goods provision would indeed make the individual better off. In the context of a model
of voting, such an approach is pursued in Bierbrauer and Sahm (2010). Here, by contrast, the
policy-domain is of a higher dimension since the public-goods provision level and the income tax
schedule are chosen simultaneously. This makes it difficult to extend this approach.

This paper therefore follows a different route and uses the notion of coalition-proof imple-
mentation in a large economy which has been developed in Bierbrauer and Hellwig (2010). In
this approach, individuals are given the possibility to coordinate their communication with the
policy-maker so as to take advantage of the possibility that, if sufficiently many individuals lie
about their characteristics, this affects the mechanism designer’s perception of the state of the
economy and hence the policy that is ultimately chosen. Coalition-proofness fails if there is
an alternative equilibrium in which a group of individuals lies about their characteristics, and,
moreover, benefits from the change in the policy that is induced by this deviation.5

Bierbrauer and Hellwig (2010) study the provision of an indivisible public good which is
either provided or not. Moreover, individuals differ only in their public-goods preferences. The
question then is what rules for public-goods provision are implementable in a large economy,
given that the population share of individuals who benefit from public-goods provision is a priori
unknown. This paper extends this analysis in various directions. Individuals now differ both

5This approach has been inspired by the work of Laffont and Martimort (1997, 2000) who treat the formation

of a deviating coalition as a mechanism design problem with its own set of incentive and participation constraints.
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in public-goods preferences and in productive abilities. Moreover, the distribution of public-
goods preferences and the distribution of productive abilities are a priori unknown. The public-
goods provision level can be continuously adjusted, and, finally, production is endogenous. In
particular, these extensions make it possible to study the interdependence of optimal tax and
expenditure policies.6

Robustness. In addition to coalition-proofness our analysis invokes a requirement of robust-
ness. We require that a policy rule is implementable as a coalition-proof equilibrium whatever
the probabilistic beliefs of individuals about the environment look like.7 The reason for impos-
ing this assumption is the following: If we want to analyze problems of information aggregation
in a large economy, we can not simultaneously assume that the individuals’ characteristics are
realizations of independent and identically distributed random variables. By the law of large
numbers, such an assumption would imply that the cross-section distribution of characteristics is
a degenerate random variable so that there is no longer a need to communicate with individuals
in order to learn what the state of the economy is.8

This implies that a model with a non-trivial problem of information aggregation will naturally
give rise to a correlation in the privately held information of individuals. As is well-known in
the Bayesian mechanism design literature, such correlations can typically be exploited in order
to implement first-best outcomes.9 However, the constructions that are used in this literature
seem to be somewhat artificial, and, moreover, they very much depend on fine details of the
model. For instance, a slightly different specification of the common prior may imply that
incentive compatibility fails, so that first-best is no longer achieved.10 If we insist on robustness
with respect to the specification of individual beliefs, this implies that such mechanisms are
admissible only to the extent that they do not exploit a specific common prior assumption.

Main Results. The main part of the analysis is concerned with the characterization of an
optimal rule for income taxation and public goods-provision that is both robust and coalition-
proof.11 This yields two main results.

The first main result is that there is a fundamental difference between preference and pro-
ductivity shocks: While the possibility of productivity shocks has essentially no bearing on the
set of admissible policies, the possibility of preference shocks leads to a new set of collective
incentive constraints. The reason for this asymmetry is that there is a straightforward way to

6Bierbrauer (2009b) studies the provision of an indivisible public good in a model with uncertainty about

the distribution of preferences, but no uncertainty about the distribution of productive abilities. In addition,

Bierbrauer (2009b) uses a different notion of coalition-proofness, and does not contain a rigorous treatment of the

mechanism design problem.
7This notion of robustness has been developed by Bergemann and Morris (2005) and Ledyard (1978).
8To illustrate this, suppose that each individual has a high or a low preference for a public good, each with

probability 1
2
. In a large economy, the population share of individuals with a high public-goods preference is

almost surely equal to 1
2
, so that, even without asking any one individual about his preference, the policy maker

can determine the social benefits of public-goods provision.
9See Crémer and McLean (1988) for a model with quasilinear preferences, and Piketty (1993) for an extension

to a model of optimal income taxation.
10See Bierbrauer and Hellwig (2010) for an example.
11A companion paper, Bierbrauer (2009a), contains a detailed discussion of a robust mechanism design approach

that does not incorporate a requirement of coalition-proofness. The paper shows that robust mechanism design

gives rise to an analysis that is equivalent to the Mirrleesian model of optimal income taxation.
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deter any lie about productive abilities: Just require that the incentive compatibility constraints
related to the communication of productive abilities hold as a strict inequality, and not as a weak
inequality: If, say, every high-skilled individual strictly prefers the own consumption-effort com-
bination over the one of low-skilled individuals, then there is no longer an equilibrium in which
high-skilled individuals are willing to lie about their productive abilities. Since a tiny amount
of slack in these incentive constraints is enough to get the information about the productivity
of the economy’s workforce, this information is essentially available for free. Such a remedy
is not available for the communication of public-goods preferences. Individuals are willing to
communicate any public-goods preference to the mechanism designer because, individually, they
do not have a direct influence on the provision level and their own tax payments depend only
on their productive abilities. Coalition-proofness therefore requires that there is no group of
individuals who can benefit from a joint lie about their preferences. We thus establish that
there is a fundamental difference between preference and productivity shocks: Only the latter
give rise to collective incentive problems.

The second main result is the characterization of the optimal mechanism that satisfies these
collective incentive constraints. We show that the optimal mechanism displays a complementar-
ity between public-goods provision, redistribution, and marginal tax rates; i.e., deviations from
the model without collective incentive constraints take one of the following forms:

Upward distortions. The public-goods provision level is higher than stipulated by the
Samuelson rule, and, relative to a conventional Mirrleesian analysis, there is more redis-
tribution, and marginal tax rates are higher.

Downward distortions. The public-goods provision level is lower than stipulated by the
Samuelson rule, and, relative to a conventional Mirrleesian analysis, there is less redistri-
bution, and marginal tax rates are lower.

Moreover, upward distortions are associated with states in which many individuals have a high
preference for the public good, whereas downward distortions are associated with states in which
many individuals have low preference for the public good. At an empirical level, these results
imply that we should observe a positive correlation between the public-goods provision level,
the level of redistribution and marginal tax rates. We would not predict such a correlation on
the basis of a model that does not include collective incentive constraints.

The remainder of the paper is organized as follows: Section 2 describes the economic envi-
ronment. Section 3 characterizes the optimal mechanism for income taxation and public-goods
provision based on the solution concept of a robust Bayes-Nash equilibrium. In Section 4, we
introduce the solution concept of a robust and coalition-proof Bayes-Nash equilibrium. The
optimal robust and coalition-proof mechanism for income taxation and public-goods provision
is characterized in Section 5. Section 6 elaborates on the empirical implications of our analysis.
The last section contains concluding remarks. All proofs are in the Appendix.
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2 The Environment

2.1 Payoffs and Social Choice Functions

There is a continuum of individuals identified with the unit interval I = [0, 1]. Individual i’s
utility function is given by

U(q, c, y, wi, θi) = θiq + u(c)− y

wi
,

where q is the amount of a public good, c is the individual’s consumption of a private good
and y is the individual’s contribution to the economy’s output. Individual i’s utility from the
public good depends on a taste parameter θi which either takes a high or a low value; for all
i, θi ∈ Θ = {θL, θH}, where 0 < θL < θH . The function u gives utility from private-goods
consumption and is assumed to be strictly increasing and strictly concave. The disutility from
productive effort depends on a skill parameter wi, which, again, takes either a high or a low
value; for all i, wi ∈ W = {wL, wH}, where 0 < wL < wH . Individuals are privately informed
about their taste parameter and about their skill level. To simplify the exposition we assume
that θL = wL and that θH = wH .

A state of the economy is identified with a cross-section distribution of productivity and
preference parameters. Formally, a state s of the economy is a triple s = (fH , pH , pL), where fH
is the population share of individuals with a high taste parameter, pH is the fraction of high-
skilled individuals with a high taste parameter, and pL is the fraction of low-skilled individuals
with a high taste parameter. The set of states is in the following denoted by S = [0, 1]3.

A social choice function formalizes the dependence of outcomes on the state of the economy.
It consists of a provision rule for the public good q : S 7→ R+ that specifies for each state how
much of the public good is provided. It also specifies an individual’s private-goods consumption
and output requirement as a function of the state of the economy and the individual’s charac-
teristics. Private-goods consumption is determined by the function c : S ×W × Θ 7→ R+, and
the output requirement is determined by y : S ×W ×Θ 7→ R+.

A social choice function is said to be feasible, if, for every s,

fH

(
pH(y(s, wH , θH)− c(s, wH , θH)) + (1− pH)(y(s, wH , θL)− c(s, wH , θL))

)
+(1− fH)

(
pL(y(s, wL, θH)− c(s, wL, θH)) + (1− pL)(y(s, wL, θL)− c(s, wL, θL))

)
≥ r(q(s)) ,

(1)

where r is a strictly increasing and strictly convex cost function which captures the resource
requirement of public-good provision.

2.2 Types and Beliefs

The analysis below focusses on social choice functions that are robustly implementable in the
sense that their implementability does not rely on assumptions about the individuals’ proba-
bilistic beliefs. This notion of robustness is more formally defined in the next section. As a
preliminary step, we introduce the notion of a type space, which we borrow from Bergemann
and Morris (2005). This makes it possible to view an individual’s type as a two-dimensional
object, consisting of a payoff type affecting the individuals’ preferences, and a belief type.
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More formally, let (T, T ) be a measurable space, τ = (w, θ) be a measurable map from T into
W ×Θ, and β a measurable map from T into the space M(M(T )) of probability distributions
over measures on T . We interpret ti ∈ T as the abstract type of agent i, τ(ti) = (w(ti), θ(ti)) as
the payoff type of agent i and β(ti) as the belief type of agent i. We assume throughout that
the function τ is surjective.

From an individual’s perspective, the cross-section distribution of types, henceforth denoted
by δ, is a random variable. The belief type β(ti) indicates the agent’s probabilistic beliefs about
δ. Thus, for any X ⊂M(T ), β(X | ti) is the probability that agent i assigns to the event δ ∈ X.
We refer to the map β : T →M(M(T )) as the belief system of the economy.

A given belief system specifies, in particular, an individual’s beliefs about the payoff types
of other individuals. To see this, note that each δ ∈ M(T ) induces a cross-section distribution
of payoff types s(δ) := δ ◦ τ−1.

We assume that the measures β(t), t ∈ T, are mutually absolutely continuous, i.e., that
they all have the same null sets. We refer to this property by saying that the belief system is
moderately uninformative. If the belief system is moderately uninformative, observation of the
event ti = t does not permit agent i to rule out any event that has positive probability with
some other specification of beliefs.12

3 A Mirrleesian approach

In the following we will first define what it means that a social choice function is robustly
implementable as a Bayes-Nash equilibrium and show that a social choice function is robust if
and only if it satisfies a set of incentive compatibility constraints. We then show that the problem
of choosing a welfare-maximizing social choice function subject to these incentive compatibility
constraints is equivalent to a Mirrleesian problem of optimal income taxation, amended by an
optimal choice of the public-good provision level as, for instance, in Boadway and Keen (1993) or
Gahvari (2006). We will then characterize the social choice function that maximizes utilitarian
welfare and discuss how an optimal policy responds to preference and productivity shocks; that
is, to changes in the distribution of skills and public-goods preferences.

3.1 Robust Implementation as a Bayes-Nash equilibrium

We seek to implement a social choice function by means of an allocation mechanism M =
[(A,A), Q,C, Y ], where (A,A) is a measurable space, and A is the set of of actions that indi-
viduals can take.13 The function Q : M(A) → R+ gives the public-good provision level as a
function of the cross-sectional distribution of actions, and the functions C :M(A)×A→ R+ and
Y :M(A)×A→ R+ specify a consumption level C and an output requirement Y , respectively,
as a function of an individual’s message and of the cross-section distribution of messages.

12We can leave open whether or not these beliefs are derived from a common prior. For a discussion of

moderately uninformative belief systems under a common prior assumption, see Bierbrauer and Hellwig (2010).
13We do not (yet) restrict attention to direct mechanism and to truthtelling equilibria because, for the coalition-

proof Bayes-Nash equilibria that will be studied below the revelation principle does not generally hold.
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A social choice function is implementable on a given type space if, for this type space, there
exists a mechanism M , and a Bayes-Nash equilibrium so that the equilibrium outcome is equal
to the outcome stipulated by the social choice function. It is robustly implementable if, for every
(T, T ), and τ : T → W × Θ, there exists a mechanism that implements it on the type space
[(T, T ), τ, β], for every moderately uninformative belief system β.14

Proposition 1 The following statements are equivalent.

(a) A social choice function (q, c, y) is robustly implementable as a Bayes-Nash equilibrium.

(b) A social choice function (q, c, y) satisfies the following individual incentive compatibility
constraints: For every s ∈ S and every (w, θ) ∈W ×Θ,

θq(s) + u(c(s, w, θ))− y(s, w, θ)
w

≥ θq(s) + u(c(s, ŵ, θ̂))− y(s, ŵ, θ̂)
w

, (2)

for every (ŵ, θ̂) ∈W ×Θ.

Proposition 1 adapts arguments by Ledyard (1978) and Bergemann and Morris (2005) to the
given large economy setup. The individual incentive compatibility constraints can be interpreted
as follows: A truthful revelation of types must be an ex post equilibrium; i.e., once the state of the
economy has been revealed, no individual regrets having reported his characteristics truthfully
to the mechanism designer.

3.2 Implications of individual incentive compatibility

The theory of optimal income taxation is based on the assumption that individuals differ only in
their productive abilities. Our analysis, by contrast, is based on the assumption that individuals
differ both in their productive abilities and their public-goods preferences, and that information
on both of these characteristics is private. However, we show in the following that this second
dimension is inconsequential for the characterization of social choice functions that are individ-
ually incentive-compatible and feasible. This implies that the model developed so far is indeed
equivalent to a Mirrleesian model of income taxation and public good provision.

The incentive compatibility constraints in (2) can be equivalently written as follows: for
every s ∈ S and every (w, θ) ∈W ×Θ,

u(c(s, w, θ))− y(s, w, θ)
w

≥ u(c(s, ŵ, θ̂))− y(s, ŵ, θ̂)
w

, (3)

for all (ŵ, θ̂). The utility that individuals derive from public goods does not matter for incentive
compatibility because (i) the economy is large, and (ii) the utility function is separable so that

14Our notion of robustness is slightly stronger than that of Bergemann and Morris (2005). Like Bergemann

and Morris, we require implementability on every type space, but, following Ledyard (1978), we go further than

they do and require that the mechanism that is used for implementation is the same regardless of what the belief

system is. In contrast, Bergemann and Morris assume that the mechanism designer knows the belief system β.
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an individual’ s marginal rate of substitution between consumption c and output y does not
depend on the supply of public goods.

The inequalities in (3) imply that, for every s, for every given w and every pair θ and θ̂,

u(c(s, w, θ))− y(s, w, θ)
w

= u(c(s, w, θ̂))− y(s, w, θ̂)
w

, (4)

so that two individuals who differ only in their taste parameter, derive the same utility from
their respective (c, y) combination, in every state s. Given condition (4), it is without loss of
generality to assume that also c(s, w, θ) = c(s, w, θ̂) and y(s, w, θ) = y(s, w, θ̂), for every s, w,
and every pair (θ, θ̂).15 In the following we may hence drop the dependence of consumption levels
and output requirements on taste parameters and write simply c(s, w) and y(s, w), respectively.

With this notation, we can write the individual incentive compatibility constraints as follows:
for every s, every w, and every ŵ,

u(c(s, w))− y(s, w)
w

≥ u(c(s, ŵ))− y(s, ŵ)
w

. (5)

The economy’s resource constraint in (1) can now be written as follows: For all s = (fH , pH , pL),

fH(y(s, wH)− c(s, wH)) + (1− fH)(y(s, wL)− c(s, wL)) ≥ r(q(s)) . (6)

It has become common practice to use a mechanism design approach for the analysis of the
Mirrleesian income tax problem; that is, instead of assuming that individuals are confronted with
an income tax schedule T that relates their pre-tax-income, y, to their after-tax-income, c, and
then choose y and c in a utility-maximizing way, one looks directly at the social choice functions
that permit a decentralization via some income tax schedule.16 This yields implementability
conditions that, for a given s, coincide with the constraints in (6) and (5).

3.3 The optimal utilitarian social choice function

An optimal utilitarian social choice function solves the following maximization problem: Choose
q : S → R+, c : S ×W → R+ and y : S ×W → R+ in order to maximize expected utilitarian
welfare E[W (s)], where W (s) is utilitarian welfare in state s, and E is the mechanism designer’s
expectations operator, subject to the the constraints in (6) and (5).

We assume that the mechanism designer has subjective beliefs about the possible realizations
of s. For simplicity, we assume that she has an agnostic prior in the following sense: She views
fH , pH and pL as independent random variables, which are uniformly distributed over the unit
interval. For the optimization problems studied in Section 5 below, these beliefs affect the
way in which the mechanism designer is making trade-offs between welfare levels in different
states of the economy.17 However, as long as we focus on individual incentive compatibility and

15Any welfare-maximizing social choice function is such that individual utility levels are generated at a minimal

resource cost. Hence it must be true that y(s, w, θ) − c(s, w, θ) = y(s, w, θ′) − c(s, w, θ′). This equality in

conjunction with the fact that indifference curves in a y − c diagram are strictly increasing and strictly convex,

yields c(s, w, θ) = c(s, w, θ′) and y(s, w, θ) = y(s, w, θ′).
16Examples are Stiglitz (1982), Boadway and Keen (1993), Gahvari (2006), or Hellwig (2007).
17In Section 5, the assumption of an agnostic prior simplifies the exposition. The logic of the analysis would

remain the same with alternative assumptions about the mechanism designer’s beliefs.
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feasibility there is no constraint that links the outcomes for different states. Hence, we may
assume without loss of generality that each state s gives rise to its own optimization problem,
without repercussions for the outcomes in other states.

Formally, for every s, q(s), c(s, wL), y(s, wL), c(s, wH) and y(s, wH) are chosen in order to
maximize

W (s) = θ̄(s)q(s) + fH

(
u(c(s, wH))− y(s,wH)

wH

)
+ (1− fH)

(
u(c(s, wH))− y(s,wH)

wH

)
,

where

θ̄(s) = (fHpH + (1− fH)pL)θH + (fH(1− pH) + (1− fH)(1− pL))θL

is the population average of the taste parameter in state s.
As is well-known,18 the solution to this problem is such that the incentive constraint for the

high-skilled individuals is binding,

u(c(s, wH))− y(s, wH)
wH

= u(c(s, wL))− y(s, wL)
wH

, (7)

and the incentive constraint of the low-skilled individuals is slack,

u(c(s, wL))− y(s, wL)
wL

> u(c(s, wH))− y(s, wH)
wL

.

Intuitively, the reason is that the utilitarian mechanism designer wants to allocate the same
consumption to high-skilled and low-skilled individuals so as to equate their marginal utilities
of consumption. At the same time, he wants to have as much output as possible generated
by the high-skilled because their marginal effort cost is smaller. Hence, unless the high-skilled
individuals’ incentive constraint is binding, W (s) can be increased by lowering y(s, wL) and
increasing y(s, wH), so that aggregate output remains unchanged.

The resource constraint is also binding,

fH(y(s, wH)− c(s, wH)) + (1− fH)(y(s, wL)− c(s, wL)) = r(q(s)) . (8)

Otherwise y(s, wL) and y(s, wH) could both be decreased in a way that maintains incentive
compatibility.

Knowing that these constraints are binding, we can use a Lagrangean approach to charac-
terize the optimal choices of q(s), c(s, wL), y(s, wL), c(s, wH) and y(s, wH). The results from
this exercise are summarized in the following proposition which we state without proof.19

Proposition 2 For every s, the values of q(s), c(s, wL), y(s, wL), c(s, wH) and y(s, wH) which
maximize W (s) subject to the constraints in (7) and (8) are characterized by the following system
of equations:

i) The optimal consumption levels satisfy

u′(c∗(s, wH)) = 1
wH

and u′(c∗(s, wL)) = 1
wL

1−fH
wH−wL
wH

1−fH
wH−wL
wL

.

18A formal proof can be found in Weymark (1986) or Hellwig (2007).
19A sketch of the proof can be found in Bierbrauer and Sahm (2010).
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The implicit marginal tax rates, which are a measure of how distortionary the income tax
system is, are given by

τ∗(s, wH) := 1− 1
wHu′(c∗(s,wH)) = 0 and τ∗(s, wL) := 1− 1

wLu′(c∗(s,wL)) > 0 .

ii) The optimal public-goods provision level satisfies the Samuleson rule, θ̄(s) = λ(s)r′(q∗(s)),
where λ(s) := fH

wH
+ 1−fH

wH
gives the marginal costs of public funds in state s.

iii) The optimal output requirements satisfy

y∗(s, wH) = e∗(s) + (1− fH)wH(u(c∗(s, wH))− u(c∗(s, wL))) and
y∗(s, wL) = e∗(s)− fHwH(u(c∗(s, wH))− u(c∗(s, wL))) ,

where e∗(s) := fHc
∗(s, wH) + (1 − fH)c∗(s, wL) + r(q∗(s)) denotes aggregate expenditures

on public and private goods in state s.

Proposition 2 makes it possible to analyze how a change in the distribution of productivity
or preference parameters affects the optimal policy. For instance, if the economy as a whole
becomes “richer” in the sense that the average worker’s productivity increases, i.e., if fH goes
up, this implies that λ goes down so that there is more public-goods provision. It also leaves
the consumption of the high-skilled unaffected, whereas the consumption of the low-skilled goes
up. This also implies that the income tax system becomes more distortionary, as reflected by an
increase of τ(s, wL). Hence, an increase in fH can be viewed as generating a further deviation
from a laissez-faire outcome without redistribution and without distortionary taxation.

We can also analyze how a change in the distribution of public-goods preferences among
the high skilled (a change in pH), or among the low-skilled (a change in pL) affects the optimal
policy. An increase of pH or pL generates an increase of the average valuation of the public good,
θ̄(s), and hence leads to a higher provision level of the public good. It has neither an impact on
the consumption of private goods, nor on marginal tax rates.

3.4 Problems with the optimal utilitarian social choice function

In the following we discuss two examples, in order to demonstrate that the implementability
of the social choice function in Proposition 2 is questionable because individuals may have an
incentive to coordinate their behavior in such a way that the optimal policy is manipulated.

Example 1: Public-goods preferences

To articulate this concern, we find it useful to define the indirect utility function V ∗ : S×W×Θ→
R, with

V ∗(s, w, θ) = θq∗(s) + u(c∗(s, w, θ))− y∗(s, w, θ)
w

,

where (q∗, c∗, y∗) is the social choice function characterized in Proposition 2. One easily derives
that, for every s, w, θ, and k ∈ {L,H},

∂V ∗(s, w, θ)
∂pk

=
(
θw − r′(q∗(s))

) 1
w

∂q∗(s)
∂pk

=
(
θw − θ̄(s)

λ(s)

)
1
w

∂q∗(s)
∂pk

. (9)
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Now consider a low-skilled individual with a high taste for the public good; i.e., w = wL, and
θ = θH . Also, for the sake of the argument, suppose that the type space under consideration
is such that this individual’s beliefs assign a lot of probability mass to states s such that both
pH and pL are high; i.e., the individual beliefs that most other individuals have a high taste
parameter. This implies that θ̄(s) is close to θH so that ∂V ∗(s,wL,θH)

∂pH
is close to

θH

(
wL −

1
λ(s)

)
1
wL

∂q∗(s)
∂pL

.

Since, for all s, wL < 1
λ(s) , and ∂q∗(s)

∂pL
> 0, this implies that

∂V ∗(s, wL, θH)
∂pL

< 0 .

This can be explained as follows. A utilitarian mechanism designer provides public goods in
such a way that the marginal cost is equal to the average valuation θ̄(s)

λ(s) which is shaped both by
the average public-goods preference and the average disutility of a larger output requirement. If
almost every individual has a high taste parameter and θ̄(s) is close to θH , then an individual
with (wi, θi) = (wL, θH) has a taste parameter that is equal to the average, and an above-average
disutility of producing the output that is needed to increase the supply of public goods. The
combination of an average public-goods preference and an above-average skill level translate
into a below-average valuation of public goods. Hence, the individual would be better off if the
supply of public goods was increased.20

This situation is illustrated in Figure 1. Assuming a quadratic cost function, the provision
level q∗(s) = q∗(fH , pH , pL) is, given fH and pH , a linearly increasing function of the fraction
of low-skilled individuals with a high taste parameter, pL. The indirect utility function of these
individuals V ∗(s, wL, θH) = V ∗(fH , pH , pL, wL, θH) is, however, increasing in pL only if pL is low
and is decreasing if pL is high. Hence, if these individuals think that is likely that they will find
themselves on the downward-sloping part of their indirect utility function they would be happy
if they could make the mechanism designer believe that pL was lower than it actually is.

Given this observation, wouldn’t it be more plausible for these individual to falsely commu-
nicate a low taste parameter instead of a high taste parameter to the mechanism designer. Note
that this behavior, which would be motivated by the desire to change outcomes at an aggregate
level, would also be perfectly in line with the incentives at the individual level: It is an impli-
cation of individual incentive-compatibility (recall equation (4)), that, neither an individual’s
consumption level c nor his productive effort y depend on the preference parameter.

Example 2: Productive Abilities

We can also question whether information on the fraction of high-skilled individuals, fH , can
be acquired if the social choice function in Proposition 2 is used. To demonstrate this in an
easy way, consider a simplified version of our model without public goods. Suppose that we seek
to implement a social choice function with the following properties: For all states, there is a

20A similar argument can be used to show that individuals with a low taste parameter and a high skill level

may desire an increased supply of public goods.
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Figure 1: State-dependent public-goods provision
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binding incentive compatibility constraint so that high-skilled individuals are indifferent between
the bundles z(s, wL) := (c(s, wL), y(s, wL)) and z(s, wH) = (c(s, wH), y(s, wH)), and there is
redistribution from the high-skilled to the low-skilled, y(s, w2) − c(s, w2) > 0 and y(s, w1) −
c(s, w1) < 0. Moreover, suppose that the level of redistribution varies across states; it is large
whenever the economy is “rich” in the sense that most workers are high-skilled (fH > 1

2), and it
is small otherwise. This is illustrated by Figure 2. In this Figure, IL is the relevant indifference
curve of the low-skilled, and IH is the one of the high-skilled individuals.

Does it make sense to assume that high-skilled individuals are communicating their skill
level truthfully to the mechanism designer? The states in S′ involve more redistribution than
the states in S′′ so that the high-skilled individuals are better off in states s′ ∈ S′ than in states
s′′ ∈ S′′. Moreover, for every s, the incentive constraint of the high-skilled is binding, so that
the high-skilled are giving a best response if they lie about their skill level. These individuals
could therefore be inclined to lie about their skill level so as to convince the mechanism designer
that there are only few high-skilled individuals in the population and that it is therefore optimal
to have only a moderate level of redistribution.

The implementability of the social choice function in Proposition 2 is based on the assump-
tion that individuals do not lie about their characteristics, because, in a large economy, they
cannot affect the outcome anyway. We consider this way of breaking the individual’s indifference
in favor of truth-telling to be unconvincing. If all like-minded individuals – e.g., all individuals
with a low skill level and a high preference parameter in Example 1, or all high-skilled individu-
als in the example in Example 2 – coordinated their behavior, they could affect the outcome in a
way that makes all of them strictly better off, without violating the postulate that each individ-
ual’s action is a best response to the actions chosen by all other individuals. To articulate this
concern more formally, we will introduce a notion of coalition-proofness in the following section.

14



Figure 2: State-dependent redistribution

6

- y

c

�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�

IHIL

pppppppppp
pppppppppp
pppppp

y(·, wL)
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppp

y(·, wH)

p p p p p p p p p p p p p p p pc(·, wL)

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pc(·, wH)

“Rich” Economy

6

- y

c

�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�

IH

IL

pppppppppp
pppppppppp
ppppppppp

y(·, wL)
pppppppppp
pppppppppp
pppppppppp
pppppppppp
pppppp

y(·, wH)

p p p p p p p p p p p p p p p p p p p p p p pc(·, wL)

p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p p pc(·, wH)

“Poor” Economy

4 Robust and coalition-proof social choice functions

In this section we develop the notion of a robust and coalition-proof social choice function and
state necessary and sufficient conditions that characterize such a social choice function. A main
result of this section will be that preference and productivity shocks have very different impli-
cations: The possibility of preference shocks indeed gives rise to an additional set of collective
incentive constraints that a social choice function has to fulfill. By contrast, productivity shocks
do not give rise to such constraints. Hence, a mechanism designer has to provide appropriate
incentives in order to learn pH and pL, while he gets the information on fH for free.

As a first step, however, we define formally what it means that the game induced by a
mechanism M = [(A,A), Q,C, Y ] has a coalition-proof equilibrium.21 We will then introduce
the requirement of robustness, and provide a characterization of robust and coalition-proof social
choice functions.

4.1 Coalition-proof Bayes-Nash equilibrium

A (mixed) strategy in the game induced by M is a function σ : T → M(A) that specifies
a probability distribution over actions for each type of individual. Put differently, the action
chosen by individual i is a random variable a(ti). The probability, conditional on the event
ti = t, that a(ti) takes values in subset A′ of A is in the following denoted by σ(A′ | t).

We find it convenient to introduce the following notation: Suppose that, for the game induced
21The definition below is a simplified version of the notion of a coalition-proof Nash equilibrium due to Bernheim

et al. (1986). In particular, we also take a non-cooperative approach to coalition formation, and we also require

that a coalition is subcoalition-proof, i.e., that the formation of a coalition cannot be undermined by the further

deviation of a subcoalition. For reasons of tractability, however, we do not model a possibly infinite chain of

successive formations of subcoalitions.
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by mechanism M , individuals follow a strategy σ : T → M(A), then the expected payoff of a
type t individual from behaving according to χ ∈M(A) is given by

ŨM (σ, χ, t) :=
∫
M(T )

∫
A
ũM (α(δ, σ), a, w(t), θ(t)) dχ(a) dβ(δ | t) ,

where, for any α, a, θ and w we define

ũM (α, a, w, θ) = θQ(α) + u(C(α, a))− Y (α, a)
w

,

and α(δ, σ) = δ ◦ σ−1 is the cross-section distribution of actions induced by strategy σ if the
cross-section distribution of types is given by δ. We assume that a law of large numbers for large
economies holds so that we can interpret σ(A′ | t) both as the probability that the action chosen
by a type t individual belongs to a subset A′ of A and as the fraction of type t individuals who
choose an action in A′.22 Consequently, for a given δ, we can treat α(δ, σ) as a non-random
quantity.

Definition 1 Given a mechanism M and a type space [(T, T ), τ, β], a strategy σ∗ : T →M(A)
is said to be a coalition-proof Bayes-Nash equilibrium if it is a Bayes-Nash equilibrium, and there
is no set of types T ′ ⊆ T who can deviate to a strategy σ′T ′ : T ′ →M(A) so that the following
conditions are fulfilled:

(a) The strategy profile (σ∗T\T ′ , σ
′
T ′), where σ∗T\T ′ is the restriction of σ∗ to types not in T ′, is

a Bayes-Nash equilibrium.

(b) Deviators are made better off: The outcome that is induced if all types in T \ T ′ play
according to σ∗T\T ′, and all types in T ′ play according to σ′T ′, is preferred by all individuals
with types in T ′; i.e, for all t ∈ T ′,

ŨM ((σ∗T\T ′ , σ
′
T ′), σ

′
T ′(t), t) > ŨM (σ∗, σ∗(t), t) . (10)

(c) The deviation is subcoalition-proof: There is no strict subset T ′′ of T ′ – i.e., a subset
T ′′ of T ′ so that there are t′ ∈ T ′ and t′′ ∈ T ′′ with w(t′) 6= w(t′′), or θ(t′) 6= θ(t′′),
or β(t′) 6= β(t′′) – with a strategy σ′′T ′′ : T ′′ → M(A) so that (σ∗T\T ′ , σ

′
T ′\T ′′ , σ

′′
T ′′) is a

Bayes-Nash equilibrium, and, for all t ∈ T ′′,

ŨM ((σ∗T\T ′ , σ
′
T ′\T ′′ , σ

′′
T ′′), σ

′′
T ′′(t), t) ≥ ŨM ((σ∗T\T ′ , σ

′
T ′), σ

′
T ′(t), t) . (11)

An equilibrium σ∗ is coalition-proof only if it does not leave incentives for a subset of individuals
to coordinate their behavior in such a way that they induce an outcome that makes all of
them better off. Our definition is very demanding with respect to the consistency requirements
that such a deviation from an equilibrium strategy σ∗ has to satisfy: The behavior that is
prescribed by the deviation must induce a new Bayes-Nash equilibrium, i.e., playing according

22For a discussion of the law of large numbers in large economies, see Sun (2006), Al-Najjar (2004) or Judd

(1985).
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to (σ∗T\T ′ , σ
′
T ′) must be a best response, both for the deviating types as well as for the non-

deviating types. Also, the outcome that is induced by the deviation must be beneficial for all
deviating types. Finally, we require that a deviation must itself be coalition-proof; that is, it
must not trigger a further deviation by a subcoalition of the deviators.

With this definition, we may think of the collective deviation as resulting from an own
mechanism design problem that the deviating agents face. Condition (a) can be interpreted as
a incentive compatibility constraint so that behaving according the strategy profile (σ∗T\T ′ , σ

′
T ′)

is indeed a best response. Condition (b) is a participation constraint which ensures that the
deviators are made better off. Finally, condition (c) requires that the mechanism on which
the collective deviation is based, must also be coalition-proof. A similar approach to coalition
formation has previously been introduced by Laffont and Martimort (1997, 2000), and has been
extended to a large economy model by Bierbrauer and Hellwig (2010). These papers explicitly
model the formation of a coalition as an extensive form game, so that first an overall mechanism
is announced, then a coalition organizer may propose a collusive side mechanism to a set of
deviating agents, and ultimately a subcoalition organizer may propose a further side mechanism
to a subset of the deviators. A mechanism is then said to be coalition-proof if it does not provoke
the formation of a collusive side mechanism.

The approach taken here is different in that we define the notion of a coalition-proof equilib-
rium with reference to a given normal form game. The reason for this approach is that it makes
the exposition easier, without affecting the conclusions. Indeed, the constraints on social choice
functions that are derived below resemble those identified by Bierbrauer and Hellwig (2010),
albeit in a somewhat different model.

4.2 Robust and coalition-proof implementation

For a given type space, a social choice function (q, c, y) is said to be implementable as a coalition-
proof Bayes-Nash equilibrium, if there is a mechanism M and a strategy σ∗ such that (i) σ∗ is
a coalition-proof Bayes-Nash equilibrium, and (ii) the equilibrium allocation coincides with the
prescription of the social choice function for every δ; i.e., we have that, for every δ,

Q(α(δ, σ∗)) = q(s(δ)) (12)

and, for each δ and t,

C(α(δ, σ∗), a(t)) = c(s(δ), w(t), θ(t)) and Y (α(δ, σ∗), a(t)) = y(s(δ), w(t), θ(t)) , (13)

σ∗(t)-almost surely.
We say that a social choice function is robustly implementable and coalition-proof, if, given

(T, T ) and τ , there is a mechanism M and a strategy σ∗ such that requirements (i) and (ii) are
fulfilled, for every belief system β.

In the following we will derive necessary and sufficient conditions which make it possible to
characterize robust and coalition-proof social functions.
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4.2.1 A necessary condition

For a given social choice function (q, c, y), define the associated indirect utility function V by

V (s, w, θ) = θq(s) + u(c(s, w))− y(s, w)
w

.

Proposition 3 If (q, c, y) is robust and coalition-proof, then it must be true that: (i) For any
given pair (fH , pL), V (s, wH , θL) is a non-increasing function of pH , and V (s, wH , θH) is a non-
decreasing function of pH , and (ii) for any given pair (fH , pH), V (s, wL, θL) is a non-increasing
function of pL, and V (s, wL, θH) is a non-decreasing function of pL.

The logic of the proof is straightforward. If, say, the constraint that V (s, wL, θH) is non-
decreasing function in pL is violated this implies that there exist pL and p′L with p′L > pL

so that V ((fH , pL, pH), wL, θH) > V ((fH , p′L, pH), wL, θH). If we now consider a type space, so
that all individuals assign mass 1 to a distribution of types δ with s(δ) = (fH , p′L, pH), individu-
als with a low skill level and a high taste parameter have an incentive to lie. If they communicate
a low as apposed to a high taste parameter to the mechanism designer – more specifically, if
they, falsely, announce a low taste parameter with probability 1− pL

p′L
, and, truthfully, announce

a high taste parameter with probability pL
p′L

– they will receive the outcome intended for the case
that s = (fH , pL, pH), and are thereby made better off, i.e., requirement (b) in Definition 1 is
fulfilled. Since the lie involves only a false communication of taste parameters, and, by individual
incentive compatibility, an individual’s (c, y)-bundle does not depend on the taste parameter,
every individual is giving a best response. Hence, the deviation satisfies property (a). Finally,
all these individuals have the same preferences, and the same beliefs so that there exists no strict
subset of types. This implies that the deviation is subcoalition-proof, i.e., property (c) is also
satisfied.

A difficulty for the proof of Proposition 3 is that we cannot use the revelation principle to
establish this result.23 Hence, we may not assume that individuals communicate their char-
acteristics to the mechanism designer simply by declaring a type t ∈ T and thereby also a
productivity level w(t) and a preference parameter θ(t). However, the assumption that a given
social choice function is reached by some mechanism implies that a type t individual implicitly
communicates her type by behaving according to σ∗(t). A false communication of, say, the taste
parameter by a type t individual can therefore still be defined in a meaningful way: It takes the
form of behaving according to σ∗(t̂), for some type t̂ 6= t with θ(t̂) 6= θ(t).

To see the significance of the monotonicity constraints in Proposition 3, it is instructive
to check which of these constraints are satisfied and which ones are violated by the optimal
social choice function in Proposition 2 which was derived without imposing the requirement of
coalition-proofness. In essence it shows that there is no state s of the economy so that the social

23Boylan (1998) has shown that, with the solution concept of a coalition-proof Nash equilibrium, the revelation

principle does not hold. More generally, it is well-known in the literature, that the objective to implement a social

choice function as the unique equilibrium of some mechanism, makes the use of non-direct mechanisms necessary

(see e.g. Jackson (2001) for an overview). Here, the situation is similar in that our notion of coalition-proofness

postulates that there must not exist a second equilibrium with certain properties.
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Figure 3: Violation of monotonicity constraints
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choice function is coalition-proof. More precisely, for every s so that wLθH 6= θ̄(s)
λ(s) , one of the

monotonicity constraints in Proposition 3 is violated. This is illustrated by Figure 3. In this
Figure, we treat fH as a given parameter, and vary only pH and pL.

4.2.2 A sufficient condition

The following Proposition states a sufficient condition for coalition-proofness. More specifically,
is states that all social choice functions in a set Ω(ε) are robust and coalition-proof. This set
is defined as the set of social choice functions with the following properties: (i) For every s,
at most one of the monotonicity constraints holds as an equality, (ii) for every s, the resource
constraint in (1) holds, and (iii) there is ε > 0, so that for every s, every w, and every ŵ,

u(c(s, w))− y(s, w)
w

≥ u(c(s, ŵ))− y(s, ŵ)
w

+ ε . (14)

These constraints require that, for every s, an individual with skill level w prefers the “own”
consumption-output bundle (c(s, w), y(s, w)) strictly over any alternative bundle (c(s, ŵ), y(s, ŵ)),
where the parameter ε is the minimal intensity of this strict preference; that is the constraints
in (14) require that their is a little bit of slack in the incentive compatibility constraints in (5).

Proposition 4 A social choice function in Ω(ε) is robustly implementable as a coalition-proof
Bayes-Nash equilibrium.

The proof is based on a direct mechanism that reaches the given social choice function in a
truthtelling equilibrium. We verify that this equilibrium is coalition-proof, whatever the belief
system β is. As a first step, we observe that there is no collective deviation that involves a
false communication of productive abilities. The fact that for social choice functions in Ω(ε),
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all individual incentive compatibility constraints hold as strict inequalities implies that there is
no equilibrium in which individuals declare false productivity levels. Hence, any such deviation
would violate condition (a) in Definition 1.

Next, consider a deviation that involves only lies about taste parameters. Any such deviation
induces a new equilibrium because (c, y)-bundles do not depend on taste parameters. Suppose
first that the types who participate all have the same payoff type, i.e., that they all have the
same skill level and the same taste parameter. For instance, suppose that they all have the
skill level wH and the taste parameter θL. If these individuals lie about their taste parameter,
this implies that the mechanism designer ends up with the perception that pH is higher than it
actually is. By the monotonicity constraints in Proposition 3, V (s, wH , θL) is a non-increasing
function of pH , so that this deviation does not make the participating individuals better off, i.e.,
it violates condition (b) in Definition 1.

Now suppose that the types who collectively lie about their taste parameters have diverse
payoff types. The assumption that, for every s, at most one monotonicity constraint binds,
implies that, from on ex post perspective, there is always a set of types who would like to
“withdraw” their contribution to the deviation, thereby free-riding on the contribution of others.
For instance, suppose that individuals with payoff type (wH , θL) and individuals with payoff type
(wH , θH) lie about their taste parameters. From an ex post perspective, either the (wH , θL)-
individuals think that pH , as perceived by the mechanism designer, is too high, or the (wH , θH)-
individuals think that pH is too low. Moreover, by the monotonicity constraints in Proposition
3, the (wH , θL)-individuals never thinks that pH is too low, and the (wH , θH)-individuals never
think that pH is too high. Consequently, ex interim, individuals with payoff type (wH , θL)
understand that, taking the lie of individuals with payoff type (wH , θH) as given, they are weakly
better off if they communicate their characteristics truthfully. Likewise, the (wH , θH)-individuals
are weakly better off if they refuse to lie about their public goods preferences. Moreover, with
a moderately uninformative belief system, if the deviation affects the implemented policy with
positive probability (which is necessary in order to satisfy condition (b) in Definition 1), then
one of these groups is in fact strictly better off if it communicates truthfully, which implies that
the deviation does not satisfy condition (c) in Definition 1.

4.2.3 Why are these conditions useful for finding an optimal social choice function?

Propositions 3 and 4 make it possible to solve for the optimal social choice function via the
following procedure: First, characterize the optimal social choice function that is optimal among
those that are individually incentive compatible, resource feasible and satisfy the monotonicity
constraints in Proposition 3. Second, verify that the optimal social choice function is indeed
such that for every s, at most one of the monotonicity constraints holds as an equality, more
formally that it belongs to the set Ω(0). This procedure will be applied in the following Section.

The social choice functions in Ω(0) are not generally coalition-proof, as we explain below.
However, under a mild technical assumption, every such social choice function can be approx-
imated by a social choice function that is coalition-proof. This is stated more formally in the
following Corollary.

20



Corollary 1 Suppose that there is some ε̄ > 0 so that the set
⋃

0≤ε≤ε̄ Ω(ε) is compact. Then,
for every social choice function (q, c, y) ∈ Ω(0), and for every ε̃ > 0, there is a social choice
function (q′, c′, y′) that is robustly implementable as a coalition-proof Bayes-Nash equilibrium,
and satisfies

| U(q′(s), c′(s, w), y′(s, w), w, θ)− U(q(s), c(s, w), y(s, w), w, θ) |≤ ε̃ ,

for every s, and every (θ, w).

Example 2 revisited. To illustrate why the social choice functions in Ω(0) are not necessarily
coalition-proof themselves but can be approximated by coalition-proof social choice functions it
is instructive to look once more at the example in Section 3.4, where the social choice function
that is illustrated in Figure 1 cannot be implemented as a coalition-proof equilibrium because
the high-skilled have an incentive to lie. We will now argue that there is, however, a social choice
function which is arbitrarily close and does not face this problem.

Suppose that the social choice function in Figure 1 is modified as follows: In both graphs,
the bundle for high-skilled individuals is moved to a slightly higher indifference curve.24 This
implies that truth-telling is the unique best response of the high-skilled, for every state s. A
deviation that involves lies about skill levels is therefore no longer consistent with equilibrium
behavior.

The example illustrates the general insight in Corollary 1. Once we introduce a tiny amount
of slack into the incentive compatibility constraints, deviations that involve lies about skill levels
are no longer viable. The example also shows why the slack is needed. If incentive compatibility
constraints are binding, lies that involve skill levels are a concern.

4.3 On the separability of individual and collective incentive problems

The reasoning in section 4.2 translates the requirement of coalition-proofness into a simple set
of inequality constraints: There must not exist a group of individuals who could benefit from
the policy change that is induced by a false communication of public-goods preferences. This
simple characterization is available because as far as coalition-proofness is concerned, we may,
without loss of generality, assume that productive abilities are communicated truthfully: if we
introduce a tiny amount of slack into individual incentive compatibility constraints, any lie that
involves a false communication of productive abilities is effectively deterred.

A first major insight of the paper therefore is that preference and productivity shocks have
very different implications for the set of robust and coalition-proof social choice functions: While
appropriately calibrated incentives at the individual level make a manipulative communication
of productive abilities unviable, the communication of public-goods preferences cannot be ad-
dressed in this way. As we have seen in Section 3.2, individual incentive compatibility implies
that individuals who differ only in their public-goods preferences need to be treated equally

24To preserve feasibility, we may simultaneously have to move the low-skilled individuals to a slightly lower

indifference curve.
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in terms of their consumption level c and their output requirement y. Consequently, individu-
als are willing to lie about their public-goods preferences if this has positive consequences at an
aggregate level. A social choice function therefore has to be such that those lies are unattractive.

5 The optimal social choice function

In this Section, we characterize the social choice function which maximizes expected utilitarian
welfare E[W (s)] subject to the requirements of individual incentive compatibility, resource feasi-
bility and coalition-proofness. We proceed in two steps. We first characterize the optimal social
choice function that satisfies the necessary conditions identified in Proposition 3. Subsequently,
we show that the resulting social choice function is such that, for every s, at most one of these
necessary conditions is binding, i.e., that the social choice function in question belongs to the
set Ω(0). With an appeal to Corollary 1, this does imply that the social choice function is
approximately coalition-proof.

More formally, as a first step, we characterize the social choice function that is optimal
if we impose the monotonicity constraints which were shown to be necessary for coalition-
proofness in Proposition 3, i.e., we study the following optimization problem: choose q : s 7→ q(s),
y : (s, w) 7→ y(s, w) and c : (s, w) 7→ c(s, w) in order to maximize E[W (s)] subject to the
requirements that, for any k ∈ {L,H}, V (s, wk, θL) is a non-increasing function of pk, and
V (s, wk, θH) is a non-decreasing function of pk, and that, for every s, the resource constraints
in (6), and the individual incentive compatibility constraints in (5) are satisfied.

Our strategy for solving this “big” optimization problem, is it to decompose it into a number
of subproblems, each of which take only some of the relevant constraints into account. (We will
verify ex post that the neglected constraints are indeed satisfied.) More specifically, for each
possible value of the parameter fH ∈ [0, 1] we study the following set of subproblems:

i) Problems of the PL(pH , fH)-type: Fix pH and fH and consider the values of pL so
that θ̄(pH ,pL)

λ ≥ θHwL. Choose c(s, wL), y(s, wL), c(s, wH), y(s, wH) and q(s) in order to

maximize E
[
W (s) | θ̄(pH ,pL)

λ ≥ θHwL, fH , pH
]

subject to the incentive constraints in (5),

the resource constraints in (6), and the monotonicity constraint ∂V (s,wL,θH)
∂pL

≥ 0.

ii) Problems of the PH(pL, fH)-type: Fix pL and fH and consider the values of pH so
that θ̄(pH ,pL)

λ ≤ θHwL. Choose c(s, wL), y(s, wL), c(s, wH), y(s, wH) and q(s) in order to

maximize E
[
W (s) | θ̄(pH ,pL)

λ ≤ θHwL, fH , pL
]

subject to the incentive constraints in (5),

the resource constraints in (6), and the monotonicity constraint ∂V (s,wH ,θL)
∂pH

≤ 0.

Figure 4 illustrates how these subproblems relate to each other. Along the downward sloping
line we have, as in Figure 3, that θ̄(pH ,pL)

λ = θHwL. For later use, we denote the level of pL, so
that, for given pH , (pL, pH) lies on this line by η(pH). More formally, η(pH) is implicitly defined
by the equation θ̄(pH ,η(pH))

λ = θHwL.
Observe that, if we determine for every fH , the solutions to all problems of the PL(pH , fH)-

type and to all problems of the PH(pL, fH)-type we characterize a social choice function.25 For

25Along the θ̄(pH ,pL)
λ

= θHwL line, the outcome is determined by two such problems. However, as follows from
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Figure 4: Relaxed optimization problems
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every s, q(s), c(s, wL), y(s, wL), c(s, wH), and y(s, wH) are then given by the solution to the
relevant subproblem, in the following denoted by c∗∗(s, wL), y∗∗(s, wL), c∗∗(s, wH), y∗∗(s, wH)
and q∗∗(s). Also, denote by v∗∗k (s) = u(c∗∗(s, wL))− y∗∗(s,wk)

wk
, the utility derived by individuals

with skill level wk from their (c, y) bundle in state s. Analogously, we denote by v∗k(s) the value
that results from the social choice function in Proposition 2; that is, from the social choice
function that is optimal if only individual incentive compatibility is required and concerns of
coalition-proofness are ignored. Finally, we denote by τ∗∗(s, wk) = 1− 1

wku′(c∗∗(s,wk)) the implicit
marginal tax rate for individuals with skill level wk.

Proposition 5 The solution to Problem PL(pH , fH) has the following properties. There is a
cutoff value p̂L such that:

(a) For pL ∈ [max{0, η(pH)}, p̂L) redistribution and public-goods provision are distorted down-
wards, v∗∗L (s) < v∗L(s), v∗∗H (s) > v∗H(s), and q∗∗(s) < q∗(s). Also, the implicit marginal tax
rates are lower, τ∗∗(s, wL) < τ∗(s, wL), and τ∗∗(s, wH) ≤ τ∗(s, wH).

(b) For pL = p̂L the allocation is undistorted. Also, if η(pH) ≥ 0, then the allocation is
undistorted for pL = η(pH).

(c) For pL ∈ (p̂L, p̄L] redistribution and public-goods provision are distorted upwards, v∗∗L (s) >
v∗L(s), v∗∗H (s) < v∗H(s), and q∗∗(s) > q∗(s). Also, the implicit marginal tax rates are higher,
τ∗∗(s, wL) > τ∗(s, wL) and τ∗∗(s, wH) = τ∗(s, wH).

We solve problem PL(pH , fH) using a two-step-procedure: First, for given pL, we treat the
public-goods provision level q(pL) and the utility that low-skilled individuals realize from their

Propositions 5 and 6 below, these solutions are identical.
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(c, y)-bundle vL(pL) as given. (Note that since we treat fH and pH as given, q and vL can
be written as functions of pL, i.e., we may suppress the dependence on the whole vector s =
(fH , pH , pL).) A solution to problem PL(pH , fH) has to be such that, given these variables, the
utility of the high-skilled is chosen optimally subject to the individual incentive compatibility
and resource constraints; i.e.,

vH(pL) = VH(vL(pL), r(q(pL))) ,

where, for any pair (vL, ρ),

VH(vL, ρ) := max u(cH)− yH
wH

s.t. u(cH)− yH
wH
≥ u(cL)− yL

wH
, u(cL)− yL

wL
≥ u(cH)− yH

wL
,

fH(yH − cH) + (1− fH)(yL − cL) = ρ , u(cL)− yL
wL

= vL .

The function VH can be interpreted as the Pareto-frontier in a simplified version of the Mir-
rleesian income tax problem with no public goods, but an exogenous revenue requirement ρ.26

Given that vH(pL) = VH(vL(pL), r(q(pL)), we can, in a second step, determine the optimal
values of q(pL) and vL(pL). For this purpose we use optimal control theory to determine the
solution to the following optimization problem: Choose the functions q : pL 7→ q(pL) and
vL : pL 7→ vL(pL) in order to maximize∫ 1

κ(pH)
{θ̄(pL)q(pL) + fHVH(vL(pL), r(q(pL))) + (1− fH)vL(pL)}dpL

subject to the monotonicity constraint, that for all pL ∈ [κ(pH), 1], with κ(pH) := max{0, η(pH)},

θHq
′(pL) + v′L(pL) ≥ 0 .

The essential optimality condition, which is formally derived in the Appendix, is the following:

1
θH

(θ̄ + fHVH2 r
′(q)) = fHVH1 + 1− fH . (15)

This equation requires that the marginal social benefit from increased public-goods provision
θ̄ + fHVH2 r′(q) is proportional to the marginal social benefit from increased redistribution
fHVH1 + 1− fH . The social choice function in Proposition 2 also satisfies this equation, since it
prescribes optimal utilitarian redistribution

fHVH1 + 1− fH = 0 ,

and optimal utilitarian public-goods provision,

θ̄ + fHVH2 r
′(q) = 0 .

However, as we have argued before (see Figure 3) it violates the monotonicity constraint θHq′(pL)+
v′L(pL) ≥ 0. Now, Equation (15) implies a complementarity between redistribution and public-
goods provision: If we have excessive redistribution, so that the utility level of the low-skilled
is higher than optimal, which implies fHVH1 + 1 − fH < 0, then it has to be the case that
public-good provision is also higher than optimal, fHVH1 + 1 − fH < 0, and vice versa. If the

26For a complete characterization of the function VH , see Bierbrauer and Boyer (2010).
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low-skilled are better off than otherwise, this implies in turn that there is no longer room to
make the high-skilled as well off, i.e., v∗∗H falls short of v∗H whenever v∗∗L exceeds v∗L. Likewise,
insufficient redistribution goes together with insufficient public-goods provision, and with higher
utility for the high-skilled.

Proposition 5 also claims that states with excessive redistribution and public-goods provision
are associated marginal tax rates that are higher than those that we would obtain without the
requirement of coalition-proofness, and that states with deficient redistribution and public-goods
provision are associated with lower marginal tax rates. This follows from the properties of the
function VH . If, starting from the optimal utilitarian allocation with fHVH1(vL, ·))+1−fH = 0,
we increase the utility of the low-skilled, vL, the associated change in consumption levels and
output requirements is such that the marginal tax rate of the high-skilled individuals does
not change, i.e., we still have “no distortion at the top”. At the same time, the “downward
distortion” of low-skilled labor supply becomes more severe; that is, the marginal income taxes
for the low-skilled go up. If instead, we decrease the utility of the low-skilled, the effect on
marginal tax rates depends on how much we deviate from fHVH1(vL, ·)) + 1 − fH = 0. A
small reduction in vL will again leave the high-skilled individuals’ marginal tax rate unchanged,
but reduce the downward distortions for the low-skilled individuals. Eventually, the downward
distortion completely disappears and we are in a region of the Pareto-frontier in which no
incentive constraint binds. In this region, there are no distortions and small changes in vL

have no impact on marginal tax rates. However, if we decrease vL substantially, we eventually
reach a region of the Pareto-frontier so that the low-skilled individuals’ incentive compatibility
constraint is binding. This is associated with upward distortions in the supply of high-skilled
labor (negative marginal tax rates) and no distortions in the supply of low-skilled labor (zero
marginal tax rates). Moreover, the lower the utility level of the low-skilled, the more severe is
the upward distortion for the high-skilled individuals.27 These observations may be summarized
as follows: Both marginal tax rates are increasing functions of vL. Moreover, if, starting from
fHVH1(vL, ·)) + 1− fH = 0, we change vL this will imply a change in the low-skilled individuals’
marginal income tax rate, and possibly also in the high-skilled individuals’ marginal income tax
rate.

A further insight of Proposition 5 concerns the optimal allocation of the distortions that
are due to the binding monotonicity constraint. The Proposition stipulates that if pL is high
public-goods provision and redistribution should be distorted upwards, and that they should be
distorted downwards otherwise. The reason for this observation is as follows: The optimality
conditions imply that the “average distortion” must be zero, i.e., a solution has to be such that∫ 1

κ(pH)
{θ̄ + fHVH2 r

′(q)}dpL =
∫ 1

κ(pH)
{fHVH1 + 1− fH}dpL = 0 . (16)

This condition says that any upward distortion of public-goods provision and redistribution that
occurs over some subinterval of [κ(pH), 1] has to be balanced by a downward distortion over some
other subinterval. Intuitively, given that this “budget condition” holds, it is optimal to have the
upward distortions of public-goods supply concentrated in the region where it contributes most

27A formal proof of these statements can be found in Bierbrauer and Boyer (2010).
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to welfare, i.e. where θ̄ is particularly high. This is the case for high values of pL.
The following Proposition gives the characterization of the solution to problem PH(pL, fH).

It is the mirror image of Proposition 5, i.e., it follows from exactly the same reasoning, so that
we can simply state it, without need of further elaboration.

Proposition 6 The solution to Problem PH(pL, fH) has the following properties. There is a
cutoff value p̂H such that:

(a) For pH < p̂H redistribution and public-goods provision are distorted downwards, v∗∗L (s) <
v∗L(s), v∗∗H (s) > v∗H(s), and q∗∗(s) < q∗(s). Also, the implicit marginal tax rates are lower,
τ∗∗(s, wL) < τ∗(s, wL) and τ∗∗(s, wH) ≤ τ∗(s, wH).

(b) For pH = p̂H and for pH such that pL = η(pH) the allocation is undistorted.

(c) For pH > p̂H redistribution and public-goods provision are distorted upwards, v∗∗L (s) >
v∗L(s), v∗∗H (s) < v∗H(s), and q∗∗(s) > q∗(s). Also, the implicit marginal tax rates are
higher, τ∗∗(s, wL) > τ∗(s, wL) and τ∗∗(s, wH) = τ∗(s, wH).

The social choice function (q∗∗, c∗∗, y∗∗) which is characterized in Propositions 5 and 6 satisfies
some of the necessary conditions for coalition-proofness which were identified in Proposition
3. In particular, if (q∗∗, c∗∗, y∗∗) coincides with a the solution to a problem of the PL(pH , fH)-
type, then, by the definition of this problem, the constraint that V (s, wL, θH) must be a non-
decreasing function of pL is satisfied. If it coincides with a the solution to a problem of the
PH(pL, fH)-type, then, by the definition of this problem, the constraint that V (s, wH , θL) must
be a non-increasing function of pH is satisfied. The following Proposition establishes that all
monotonicity constraints that were not explicitly taken into account by this approach, are also
satisfied; i.e., the Proposition shows that (q∗∗, c∗∗, y∗∗) satisfies all of the necessary conditions in
Proposition 3. Moreover, it is shown that, for any s, at most one these conditions holds as an
equality. By Corollary 1 this is an “almost” sufficient condition for coalition-proofness; i.e., if
(q∗∗, c∗∗, y∗∗) is not coalition-proof itself, then the Corollary implies that there is an alternative
social choice function that is coalition-proof and arbitrarily close to (q∗∗, c∗∗, y∗∗).

Proposition 7 The social choice function (q∗∗, c∗∗, y∗∗) satisfies all the monotonicity constraints
in Proposition 3. More specifically, for every s, one of those monotonicity constraints holds as
an equality, and all others hold as a strict inequality.

Even though the formal arguments needed in the proof of Proposition 7 involve some subtleties,
the intuition is straightforward: The constraint that V (s, wH , θH) must be a non-decreasing
function of pH is always satisfied: Individuals with a high-skill level and a high taste parameter
always have an above-average valuation of the public good. Hence, from their perspective the
provision level is always too low, so that they want the policy maker to believe that pH is high.
Consequently, V ∗∗(s, wH , θH) is a strictly increasing function of pH . A symmetric argument
implies that V ∗∗(s, wL, θL) is a strictly decreasing function of pL.
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We finally show that, say, in the region where problems of the PL(pH , fH)-type are relevant
for a characterization (q∗∗, c∗∗, y∗∗), V ∗∗(s, wH , θL) is a strictly decreasing function of pH . Recall
that in this region, also the allocation in Proposition 2 has this property, i.e., we have that
V ∗(s,wH ,θL)

∂pH
< 0. In the Appendix it is shown that, this property carries over the setting with

collective incentive compatibility constraints.

6 Empirical implications

We will argue in the following that the optimal policy that is derived under the requirement of
coalition-proofness implies a positive correlation between public-goods provision, redistribution
and income tax rates. We would not predict such a correlation on the basis of the conventional
Mirrleesian approach in Section 3. Our model is therefore consistent with the empirical obser-
vation that some countries, in particular the US, have comparatively low taxes, a comparatively
slim welfare state and a limited role of the state in the provision of goods such as health care or
education, whereas the European welfare states such as France, Germany or the Scandinavian
countries not only have larger transfer system but also more public provision of goods and higher
tax rates.

To see how our model gives rise to such a positive correlation, it is instructive to view fH

as a given quantity, and to ask how a preference shock, i.e., a shift of the demand for public
goods among the low-skilled (a change in pL), or among the high-skilled (a change in pH) affect
public-goods provision, redistribution, and marginal tax rates.

It follows from Proposition 2 that, absent the requirement of coalition-proofness, an in-
crease of pL or pH leads to a higher level of public good provision. However, this is neither
accompanied by a departure from optimal utilitarian redistribution (we have throughout that
fHVH1 + 1− fH = 0) nor by a change in marginal tax rates. By contrast, given the social choice
function (q∗∗, c∗∗, y∗∗), preference shocks induce simultaneous changes of public-goods provision,
redistribution, and taxation. Figure 4 illustrates this pattern. In this figure, a “ + ” sign in-
dicates more public-goods provision, redistribution and taxation as compared the undistorted
allocation. Likewise, a “− ” sign indicates that there is less in any one of those dimensions.

To see why the pattern in Figure 4 gives rise to a positive correlation, suppose first that pL
and pH are both low in the sense that public-goods provision is low, redistribution is insufficient
(in the sense that fHVH1 + 1 − fH > 0) and marginal tax rates are low. As we increase pL or
pH , we eventually reach a region where public-goods provision is high, redistribution is excessive
and marginal tax rates are high. The picture is a bit more involved if we start in the region just
below the solid line in Figure 4 and increase pL or pH slightly. In this case, we could locally see
an increase in the public-goods provision level being accompanied by a decrease in the level of
redistribution and a decrease of marginal tax rates. An overall assessment of both possibilities
does still give rise to a positive correlation between public-goods provision, redistribution and
taxation: Even if we start from a (pL, pH) pair in the region below the the solid line in Figure
4, a sufficiently large increase of pL and pH would still be associated with increased public-
goods provision, redistribution and taxation. To sum up, the imposition of coalition-proofness
requirements yields the prediction of a positive correlation between the demand for public goods,
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Figure 5: The pattern of distortions
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the level of redistribution and marginal tax rates. Such a correlation is absent with the standard
version of the Mirrlees-model in Section 3.

7 Concluding Remarks

This paper has analyzed a large economy in which individuals are privately informed about
their productive abilities and their preferences for public goods. Moreover, there is aggregate
uncertainty with respect to the cross-sectional distribution of these characteristics. The analysis
has identified two sets of incentive conditions for public policy. Individual incentive compatibility
constraints take into account how individuals respond to an income tax system that determines
their after-tax income as a function of their labor supply. Collective incentive compatibility
constraints take care of the possibility that individuals may lobby for certain tax and expenditure
policies and thus addresses the political reactions that may be triggered by the policy mechanism.

Collective incentive compatibility requires that if a group of individuals experiences a shift in
their public-goods preferences such that their willingness to pay for a public good is increased,
then it must be true that more of the public good is provided (otherwise these individuals under-
state their public-goods preferences) and that these individuals pay more taxes (otherwise they
exaggerate their preferences). More generally speaking, the tax system confronts individuals
with prices for public goods. These prices have to be set in an “appropriate” manner, namely
in such a way that the “true” demand for public goods can be determined. While such argu-
ments are familiar from mechanism design approaches to the free-rider problem in public-goods
provision, they have not been introduced into the literature on optimal taxation. This paper’s
contribution is to develop a framework that makes it possible to address problems of preference
elicitation and optimal taxation simultaneously.
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A Appendix

Proof of Proposition 1

We fix T, T , and τ . By the standard version of the revelation principle, a social choice function
(q, c, y) is implementable as a Bayes-Nash equilibrium by some mechanism M on a given type
space, if and only if it is truthfully implementable, i.e., if and only if their exists a direct
mechanism M with an action set A = T and outcome functions Q, and C and Y such that (i)
truthtelling is a Bayes-Nash equilibrium; i.e., for all t,

t ∈ argmaxt′∈T

∫
M(T )

U(Q(δ), C(δ, t′), Y (δ, t′), w(t), θ(t)) dβ(δ | t) , (17)

and (ii) the equilibrium allocation is equal to the allocation stipulated by the social choice
function; for every δ,

Q(δ) = q(s(δ)) (18)

and, for every t,

C(δ, t) = c(s(δ), w(t), θ(t)) and Y (δ, t) = y(s(δ), w(t), θ(t)) . (19)

We first show that (b)⇒ (a). Consider an incentive compatible social choice function (q, c, y).
For an arbitrary belief system β construct a direct mechanism M = [(T, T ), Q,C, Y ] such that
(18) and (19) hold. We seek to verify that, for every t,

t ∈ argmaxt′∈T
∫
M(T ) U(Q(δ), C(δ, t′), Y (δ, t′), w(t), θ(t)) dβ(δ | t)

= argmaxt′∈T
∫
S U(q(s), c(s, w(t′), θ(t′)), y(s, w(t′), θ(t′)), w(t), θ(t)) dβ̂(s | t) ,

where, for any S′ ⊂ S, β̂(S′ | t) := β ({δ ∈M(T ) | s(δ) ∈ S′} | t). Equivalently, for every t,
(w(t), θ(t)) solves

max(w′,θ′)∈W×Θ

∫
S
U(q(s), c(s, w′, θ′), y(s, w′, θ′), w(t), θ(t)) dβ̂(s | t) .

This follows immediately from the fact that (q, c, y) is incentive compatible.
We now show that (a) ⇒ (b). Consider a type space where β is such that for some s′,

β({δ | s(δ) = s′} | t) = 1, for all t. Suppose that a direct mechanism (T,Q′, C ′, Y ′) truth-
fully implements (q, c, y). Using conditions (18) and (19) to substitute for Q′, C ′, and Y ′, the
equilibrium condition in (17) becomes: for all t and all t′,

U(q(s′), c(s′, w(t), θ(t)), y(s′, w(t), θ(t)), w(t), θ(t))

≥ U(q(s′), c(s′, w(t′), θ(t′)), y(s′, w(t′), θ(t′)), w(t), θ(t)) ;

or, equivalently, for all (w, θ) and (w′, θ′),

U(q(s), c(s, w, θ), y(s, w, θ), w, θ) ≥ U(q(s), c(s, w′, θ′), y(s, w′, θ′), w, θ) .

Since the choice of s′ was arbitrary, the latter inequality holds for all s ∈ S. Hence, (q, c, y) is
individually incentive compatible. �
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Proof of Proposition 3

Suppose there is a mechanism M = [(A,A), Q,C, Y ] with an equilibrium σ∗ that robustly
implements a social choice function (q, c, y) as a coalition-proof Bayes-Nash equilibrium. In
particular, this requires that the mechanism reaches the social choice function; i.e., for every δ,
conditions (12) and (13) are fulfilled.

We show that this implies that V (s, wL, θH) must be a non-decreasing function of pL. (All
other claims in Proposition 3 follow from a symmetric argument.) Suppose otherwise, then there
exist fH , pH pL and p′L with p′L > pL so that

V ((fH , pL, pH), wL, θH) > V ((fH , p′L, pH), wL, θH) . (20)

In the following we will construct a deviation and show that there is a type space so that it
satisfies conditions (a), (b) and (c) in Definition 1. This contradicts the assumption that σ∗ is
a coalition-proof Bayes-Nash equilibrium on every type space.

Step 1: Construction of a deviation

Intuitively, we seek to construct a deviation σ′T ′ for individuals with a type in T ′ = {t |
(w(t), θ(t)) = (wL, θH)} which works as follows: a type t′ ∈ T ′, plays according to σ∗(t′)
with probability pL

p′L
and plays according to σ∗(t̂), where t̂ ∈ T̂ = {t | (w(t), θ(t)) = (wL, θL)},

otherwise.
It proves convenient to define first two strategies that, with a direct mechanism, could be

interpreted as a “lie” by a set of deviating types and as “honesty” or truthtelling by all others.
For types in T ′, define the “lie” `′T ′ : T ′ →M(T ) such that, for every t′ ∈ T ′, `′T ′({t′} | t′) = pL

p′L
,

and `′T ′(T̂ | t′) = 1− pL
p′L

. Let the function hT\T ′ : T \T ′ →M(T ) be such that for all t ∈ T \T ′,
hT\T ′({t} | t) = 1. Observe that the pair (`′T ′ , hT\T ′) induces, for each δ ∈M(T ), an announced
cross-sectional distribution of types δ̄(δ) with

δ̄(T̃ | δ) =
∫
t′∈T ′

`′T ′(T̃ | t′)dδ(t′) +
∫
t∈T\T ′

hT\T ′(T̃ | t)dδ(t) , (21)

for any subset T̃ of T .
With reference to `′T ′ we now define a strategy σ′T ′ for the game induced by mechanism M

in the following way: For every t′ ∈ T ′ and every subset A′ of A, let

σ′T ′(A
′ | t′) =

∫
t̂∈T

σ∗(A′ | t̂) d`′T ′(t̂ | t′) . (22)

This construction ensures that, for every δ, the distribution of actions that results if individ-
uals with types in T ′ behave according to σ′T ′ and all others follow σ∗T\T ′ equals the distribution
of actions that results if all individuals follow σ∗ and the distribution of types equals δ̄(δ).
Formally, for every δ,

α(δ̄(δ), σ∗) = α(δ, (σ∗T\T ′ , σ
′
T ′)) . (23)
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To see that this true, note that for any subset A′ of A,

α(A′ | δ̄(δ), σ∗)
=
∫
t′∈T σ

∗(A′ | t′)dδ̄(t | δ)
=
∫
t′∈T σ

∗(A′ | t′)d
(∫

t∈T ′ `
′
T ′(t

′ | t)dδ(t) +
∫
t∈T\T ′ hT\T ′(t

′ | t)dδ(t)
)

=
∫
t∈T ′

∫
t′∈T σ

∗(A′ | t′)d`′T ′(t′ | t) dδ(t) +
∫
t∈T\T ′

∫
t′∈T σ

∗(A′ | t′)dhT\T ′(t′ | t) dδ(t)
=
∫
t∈T ′ σ

′
T ′(A

′ | t) dδ(t) +
∫
t∈T\T ′ σ

∗
T\T ′(A

′ | t) dδ(t)
= α(A′ | δ, (σ∗T\T ′ , σ

′
T ′)) .

Step 2: Consider a specific type space

Consider a type space with a belief system so that, for some δ such that s(δ) = (fH , pH , p′L),
β({δ} | t) = 1, for all t. The distribution of types δ̄(δ) that is communicated to the mechanism
if types in T ′ behave according to σ′T ′ and types in T \ T ′ behave according to σ∗T\T ′ , therefore
is such that

s(δ̄(δ)) = (fH , pH , pL) , (24)

with probability 1.

Step 3: Show that, on this type space, the deviation makes the deviators better off

By equations (12) and (13), given the strategy (σ∗T\T ′ , σ
′
T ′), the expected payoff of a type t′ ∈ T ′

equals

Π(t′) :=
pL
p′L
V (s(δ̄(δ)), w(t′), θ(t′)) +

(
1− pL

p′L

)
Φ(t′) ,

where

Φ(t′) := E

[
θ(t′)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t̂), θ(t̂)))− y(s(δ̄(δ)), w(t̂), θ(t̂)))

w(t′)
| t̂ ∈ T̂

]
.

By Proposition 1 robust implementability of a social choice function as a Bayes-Nash equilibrium
implies individual incentive compatibility of a social choice function. As we observed in Section
3.2 this in turn implies that, for any s, c and y may depend on w, but not on θ. Also, note that,
by construction of the set T̂ , types in T ′ choose only actions that communicate their skill level
truthfully to the mechanism. Hence, Φ(t′) = V (s(δ̄(δ)), w(t′), (t′)) so that so that, for every t′

in T ′,

Π(t′) = V (s(δ̄(δ)), w(t′), (t′)) .

This observation in conjunction with equations (20) and (24) implies that types in T ′ are made
strictly better off by this deviation.
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Step 4: Show that, on this type space, (σ∗T\T ′ , σ
′
T ′) is a Bayes-Nash equilibrium

Consider an alternative type space with a belief system so that, for all t,

β({δ | s(δ) = (fH , pL, pH)} | t) = 1 .

Since, σ∗ robustly implements the given social choice function, behaving according to σ∗(t) is
a best response for every type t, given these beliefs. Since, for any s, c and y may depend on
w, but not on θ, behaving according to σ∗(t̂), for some t̂ ∈ T̂ is also a best response for an
individual with type t′ ∈ T ′.

But this implies that behaving according to (σ∗T\T ′ , σ
′
T ′) is also a best response for each type

t under the assumption made in Step 2, namely that the type space is such that

β({δ | s(δ) = (fH , p′L, pH)} | t) = β({δ | s(δ̄(δ)) = (fH , pL, pH)} | t) = 1 ,

which implies that the deviation satisfies (24).

Step 5: Show that, on this type space, the deviation is subcoalition-proof

The deviating individuals have the same preferences, (w(t′), θ(t′)) = (wL, θH), for all t′ ∈ T ′,
and the same beliefs, by the assumptions made in Step 2. Hence, there exists no strict subset
of T ′ which could undermine the subcoalition-proofness of the deviation σ′T ′ . �

Proof of Proposition 4

Given a measure space of types (T, T ) and a function τ = (w, θ) : T 7→ W × Θ, and given a
social choice function (q, c, y) ∈ Ω(ε), we construct a direct mechanism M = [(T, T ), Q,C, Y ] so
that, for all δ ∈M(T ) and all t ∈ T ,

Q(δ) = q(s(δ)), C(δ, t) = c(s(δ), w(t)), and Y (δ, t) = y(s(δ), w(t)) . (25)

This construction ensures that the mechanism achieves the social choice function in a truthtelling
equilibrium. More formally, the strategy h : T →M(T ) with h({t} | t) = 1, for all t, is Bayes-
Nash equilibrium of the game induced by this mechanism, for every belief system β. This was
shown in the proof of Proposition 1. In the following we seek to show that this equilibrium is
coalition-proof on every type space with a moderately uninformative belief system β.

Step 1: No deviations that involve lies about skills

Suppose there is a set of types T ′ who deviate from h and instead behave according to a lie
`′T ′ : T ′ →M(T ). We say that such a lie involves lies about skills if there is t′ ∈ T ′ so that

l(ŵ | t′) := `′T ′({t̂ | w(t̂) 6= w(t′)} | t′) > 0 . (26)

We show in the following that any such deviation violates condition (a) in Definition 1 and
therefore does not challenge the coalition-proofness of the truthtelling equilibrium.

Let δ̄(δ) ∈ M(T ) (see the definition in equation (21)) be the cross-section distribution of
types that is communicated to the mechanism if types in T ′ behave according to `′T ′ and types
in T \ T ′ behave according to hT\T ′ .
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Given that (25) holds, the expected payoff of an individual with a type t′ ∈ T ′ whose behavior
satisfies (26) can be written as∫

M(T ) l(ŵ | t
′)
{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ))), ŵ)− y(s(δ̄(δ)),ŵ)

w(t)

}
+(1− l(ŵ | t′))

{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t))− y(s(δ̄(δ)),w(t))

w(t) )
}
dβ(δ | t) ,

(27)

where ŵ 6= w(t).
Now suppose that the individual in question would instead communicate his skill level truth-

fully with probability 1. The resulting payoff equals∫
M(T )

{
θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t))− y(s(δ̄(δ)),w(t))

w(t)

}
dβ(δ | t) . (28)

By the constraints in (14) we have that

θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), w(t)))− y(s(δ̄(δ)),w(t))
w(t)

> θ(t)q(s(δ̄(δ))) + u(c(s(δ̄(δ)), ŵ)− y(s(δ̄(δ)),ŵ)
w(t) ,

which implies that the expression in (28) is strictly larger than the expression in (27). This
shows that, for a type t′ ∈ T ′, behaving in such a way that (26) holds is not a best response.
Hence, (hT\T ′ , `′T ′) is not a Bayes-Nash equilibrium strategy.

Step 2: No deviation so that all participating individuals have the same preferences

Suppose the deviating set of types T ′ is such that t′ ∈ T ′ and t̂′ ∈ T ′ imply that τ(t′) = τ(t̂′).
For the sake of concreteness assume that τ(t′) = (wH , θL) for all t′ ∈ T ′. We know by Step 1
that there is no deviation that involves lies about skills and challenges the coalition-proofness of
equilibrium h. Hence, suppose that all participating individuals truthfully communicate their
skills

`′T ′({t̂ | w(t̂) 6= w(t′)} | t′) = 0 , (29)

and that some lie about their taste parameter with positive probability,

`′T ′({t̂ | θ(t̂) = θH} | t′) > 0 . (30)

Consequently, for every δ, s(δ) = (fH(δ), pH(δ), pL(δ)) and s(δ̄(δ)) = (fH(δ̄(δ)), pH(δ̄(δ)), pL(δ̄(δ)))
are such that

fH(δ) = fH(δ̄(δ)), pH(δ) < pH(δ̄(δ)) and pL(δ) = pL(δ̄(δ)) .

Since the given social choice function satisfies the monotonicity constraint

∂V (s, wH , θL)
∂pH

≤ 0 ,

this deviation will fail to make the participating types better off, i.e., it violates condition
(b) in Definition 1, and therefore does not challenge the coalition-proofness of the truthtelling
equilibrium.
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Step 3: No deviation with heterogeneous preferences

Now suppose that the deviating set of types T ′ is such that there are t′ ∈ T ′ and t̂′ ∈ T ′ so that
τ(t′) 6= τ(t̂′). Again, we may assume that the deviation involves no lies about skills so that (29)
holds. Consequently, we have for all δ that fH(δ) = fH(δ̄(δ)).

Assume, for the sake of concreteness, that there is T ′′ ⊂ T ′ so that t′′ ∈ T ′′ implies that
τ(t′′) = (wH , θL) and that these individuals lie about their taste parameter with positive prob-
ability,

`′T ′({t̂ | θ(t̂) = θH} | t′′) > 0 . (31)

Given that the monotonicity constraint

∂V (s, wH , θL)
∂pH

≤ 0 ,

holds, these types will benefit from the deviation `′T ′ only if there is a subset D of M(T ) with
β(D | t′) > 0 for all t′ ∈ T ′ with τ(t′) = (wH , θL), which has the following property: δ ∈ D

implies that

pL(δ) 6= pL(δ̄(δ)) , or pH(δ) > pH(δ̄(δ)) .

Since we have limited information to type spaces with moderately uninformative belief sys-
tems, β(D | t′) > 0 for all t′ ∈ T ′ with τ(t′) = (wH , θL) implies in fact that β(D | t′) > 0 for all
t′ ∈ T ′, i.e., all participants of the deviation assign positive probability mass to the set D.

Suppose that the set D is such that pH(δ) > pH(δ̄(δ)), for all δ ∈ D. (The alternative cases
so that δ ∈ D implies pL(δ) < pL(δ̄(δ)) or pL(δ) > pL(δ̄(δ)) can be treated in exactly the same
way.) This implies that the set T ′ includes high-skilled individuals with a high taste parameter
who announce a low taste parameter with positive probability: There is T̂ ′′ ⊂ T ′ so that t̂′′ ∈ T̂ ′′

τ(t̂′′) = (wH , θH), and

`′T ′({t̂ | θ(t̂) = θL} | t̂′′) > 0 . (32)

The assumptions that, for every s, at most one of the monotonicity constraints in Propo-
sition 3 is binding and that the belief system is moderately uninformative have the following
implication: There is a subset D̃ of D so that β(D̃ | t′) > 0 for all t′ ∈ T ′, and conditional on
δ ∈ D̃, types in T ′′ or types in T̂ ′′ are made strictly better off if they reduce the probability of
a lie, taking the behavior of all other individuals as given. To see this, suppose first that types
in T̂ ′′ change their behavior and now follow a strategy `′′

T̂ ′′
with

`′′
T̂ ′′

({t̂ | θ(t̂) = θL} | t̂′′) < `′T ′({t̂ | θ(t̂) = θL} | t̂′′) . (33)

Let δ̂(δ) be the cross-section distribution of types that is communicated to the mechanism given
that the true cross-section distribution of types is δ and that individuals behave according to
the strategy profile (hT\T ′ , `′T ′\T̂ ′′ , `

′′
T̂ ′′

). We have that, for all δ ∈M(T ),

pH(δ̂(δ)) > pH(δ̄(δ)) and pL(δ̂(δ)) = pL(δ̄(δ)) .
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Given that the monotonicity constraint

∂V (s, wH , θH)
∂pH

≥ 0 , (34)

holds, for all s, the outcome of this deviation makes all types in T̂ ′′ weakly better off. It makes
them also strictly better off, provided that there is a subset D̃ with β(D̃ | t′) > 0 so that (34)
holds as a strict inequality. Finally, observe that (hT\T ′ , `′T ′\T̂ ′′ , `

′′
T̂ ′′

) is a Bayes-Nash equilibrium
strategy because individuals communicate their skill levels truthfully, and, individual outcomes
do not depend on announced taste parameters (see equation (25)). Hence, if there is a subset
D̃ of D with β(D̃ | t′) > 0 so that so that (34 holds as a strict inequality, the deviation `′T ′ fails
to be subcoalition-proof.

Now assume that there is no such set D̃. Then, since for every s at most one monotonicity
constraints in Proposition 3 is binding, it has to be the case that the monotonicity constraint
∂V (s,wH ,θL)

∂pH
≤ 0 holds as a strict inequality with probability 1, condiotional on the event δ ∈ D.

But this implies that now individuals with types in T ′′ benefit from reducing the probability of
a lie. Again, this implies that `′T ′ fails to be subcoalition-proof. �

Proof of Corollary 1

Consider a social choice function (q, c, y) ∈ Ω(0). Since
⋃

0≤ε≤ε̄ Ω(ε) is compact, we can construct
a sequence of social choice functions {(qk, ck, yk)}∞k=1 with (qk, ck, yk) ∈ Ω

(
ε̄
k

)
, for each k,

which converges to (q, c, y). By continuity of U this implies that also, for each s, w, and θ,
U(qk(s), ck(s, w), yk(s, w), w, θ) converges to U(q(s), c(s, w), y(s, w), w, θ). �

Proof of Proposition 5

Step 1: Reformulate problem PL(pH , fH)

The function VH , defined by

VH(vL, ρ) := max u(cH)− yH
wH

s.t. u(cH)− yH
wH
≥ u(cL)− yL

wH
, u(cL)− yL

wL
≥ u(cH)− yH

wL
,

fH(yH − cH) + (1− fH)(yL − cL) = ρ , u(cL)− yL
wL

= vL ,

is the Pareto-frontier in a simplified version of the Mirrleesian optimal income tax problem that
does not contain a decision on public-goods provision. The properties of this Pareto frontier are
extensively studied in Bierbrauer and Boyer (2010). The derivations that follow make repeated
use of these properties.

At the optimal allocation, it has to be the case that, for all possible values of pL, the utility
of the high-skilled satisfies

v∗∗H (s) = VH(v∗∗L (s), r(q∗∗(s))) . (35)

To see why this is true, note that the monotonicity constraint

∂V (s, wL, θH)
∂pL

≥ 0 ,
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restricts how the low-skilled individuals’ utility may vary with s, or, equivalently, with pL.
There is no such constraint for the high-skilled. Hence, once we have determined vL(s) and
r(q(s)), optimality considerations require that me make vH(s) as large as possible. This implies
that a solution to problem PL(pH , fH) has to satisfy (35), for every s. This makes it possible
to reformulate problem PL(pH , fH) in such a way that we can treat the utility level of the
low-skilled and the public-goods provision level as choice variables.

Since, for the analysis of problem PL(pH , fH), pH and fH are fixed parameters, we may
interpret both the utility of the low-skilled vL and the public-goods provision level as functions
of pL, and suppress the dependence on the whole vector s = (fH , pH , pL). With a slight abuse
of notation, problem PL(pH , fH) may therefore be stated as follows: Choose the functions
vL : pL 7→ vL(pL) and q : pL 7→ q(pL) in order to maximize∫ 1

κ(pH)
{θ̄(pL)q(pL) + fHVH(vL(pL), r(q(pL))) + (1− fH)vL(pL)}dpL

subject to the monotonicity constraint, that for all pL ∈ [κ(pH), 1], with κ(pH) := max{0, η(pH)},

θHq
′(pL) + v′L(pL) ≥ 0 .

Step 2: Statement of optimality conditions

We use optimal control theory in order to characterize the solution to this optimization problem.
Specifically, we treat q and vL as states variables. The control variables u1 and u2 are equal to
q′ and v′L; that is, they satisfy the following equations of motion,

q′ = g1(u1) , with g1(u1) = u1 , (36)

and

v′L = g2(u2) , with g2(u2) = u2 . (37)

The monotonicity constraint can now be formulated as a constraint on the control variables,

h(u1, u2) ≥ 0 , where h(u1, u2) = θHu1 + u2 . (38)

The optimality conditions for this problem can be conveniently stated by making use of the
following Hamiltonian

H(q, vL, u1, u2) = θ̄(pL)q + fHVH(vL, r(q)) + (1− fH)vL + µ1g1(u1) + µ2g2(u2) ,

where µ1 is the costate variable associated with (36) and µ2 is the costate variable associated
with (37); and of the Lagrangean

L(q, vL, u1, u2) = H(q, vL, u1, u2) + νh(u1, u2) ,

where ν ≥ 0, is the multiplier associated with (38). The optimality conditions are as follows:28

(i) The costate variables satisfy

µ′1 = −∂H
∂q

and µ′2 = − ∂H
∂vL

, (39)

28For a derivation of these optimality conditions, see Kamien and Schwartz (1991), pp. 195-197. These condi-

tions are necessary and sufficient provided that the Lagrangean L is concave in (q, vL, u1, u2). Since it is linear in

u1, and u2, this follows from the fact that VH is a concave function of vL and r(q). A proof of this assertion can

be found in Bierbrauer and Boyer (2010).
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or, equivalently,

µ′1 = −(θ̄ + fHVH2 r
′(q))φL (40)

and

µ′2 = −(fHVH1 + 1− fH)φL , (41)

where VHj denotes the partial derivative of the function VH with respect to its j-th argument.
(ii) The fact that we have free start and end values for the control variables implies that

µ1(κ(pL)) = µ1(1) = 0 and µ2(κ(pL)) = µ2(1) = 0 . (42)

(iii) The control variables satisfy the following first order and complementary slackness condi-
tions:

∂L
∂u1

= 0 and ∂L
∂u2

= 0 , (43)

and

ν ≥ 0 , and νh(u1, u2) = 0 . (44)

Equations (43) can equivalently be written as

µ1 + νθH = 0 , (45)

and

µ2 + ν = 0 . (46)

Step 3: Some implications of the optimality conditions

We know that, for pL ∈ (κ(pH), 1) the constraint (38) is binding so that, over this range, we
have

ν(pL) > 0 . (47)

Also, equations (42), (45), and (46) imply that

ν(κ(pL)) = ν(1) = 0 . (48)

Finally, (45), and (46) also imply that

µ′1 = − 1
θH

ν ′ , (49)

and

µ′2 = −ν ′ . (50)

Using (49) and (50) in conjunction with (40) and (41) yields

1
θH

(θ̄ + fHVH2 r
′(q)) = fHVH1 + 1− fH . (51)

The following three Lemmas establish some properties that will prove useful subsequently.
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Lemma 1 Condition (51) implies that, for all pL ∈ (κ(pH), 1), r′(q(pL)) ≥ θHwL.

Proof We first note that the function VH introduced in Step 1 has the following property,29

VH2 =
VH1

wL
− 1
wH

. (52)

Now suppose that the Lemma is false. Then we have

r′(q) < θHwL .

Using the optimality condition (51) we may solve for r′(q) and state this inequality equivalently
as

θ̄ − θH(fHVH1 + 1− fH) ≤ −θHwLfHVH2 .

Using (52) to substitute for VH2, we can rewrite this condition once more as

θ̄

λ
< θHwL ,

which contradicts the assumption that pL ≥ κ(pL). �

Lemma 2 For all pL ∈ (κ(pH), 1), q′(pL) > 0.

Proof If we totally differentiate equation (51) with respect to pL, we obtain

θ̄′ = fH
(
VH11v

′
L + VH21r

′q′ − (VH21v
′
L + VH22r

′q′)r′ − VH2r
′′)

Using that constraint (38) is binding, this can be equivalently written as

θ̄′ = −fH
(
Q+ VH2r

′′) q′
where

Q := VH11θ
2
H − 2VH12θHr

′ + VH22(r′)2

is a quadratic form which is non-positive because the function VH is jointly concave in vL and
ρ, see Bierbrauer and Boyer (2010) for a proof. Using that VH2 < 0 (again, see Bierbrauer and
Boyer (2010)), and that r′′ > 0 establishes the result. �

Lemma 3 For all pL ∈ (κ(pH), 1), ν ′′(pL) ≤ 0.
29See Bierbrauer and Boyer (2010) for a proof.
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Proof Optimality conditions (50) and (41) imply that

ν ′ = fHVH1 + 1− fH .

Hence,

ν ′′ = fHVH11v
′
L + fHVH12r

′(q)q′

Using that constraint (38) is binding this can be equivalently written as

ν ′′ = q′(−fHVH11θH + fHVH12r
′(q)) .

Since (52) implies that VH12 = 1
wL
VH11, we can rewrite this as

ν ′′ = −fHVH11wLq
′(θHwL − r′(q)) . (53)

It follows from Lemmas 1 and 2 that

q′(θHwL − r′(q)) ≤ 0 .

Moreover, it is shown in Bierbrauer and Boyer (2010) that VH11 ≤ 0. Consequently, (53) implies
that ν ′′ ≤ 0. �

Step 4: Implications for public-good provision and redistribution

Lemma 4 There exists p̂L ∈ (κ(pH), 1) so that

i) pL < p̂L implies v∗∗L (s) < v∗L(s), v∗∗H (s) > v∗H(s) and q∗∗(s) < q∗(s).

ii) pL = p̂L implies v∗∗L (s) = v∗L(s), v∗∗H (s) = v∗H(s) and q∗∗(s) = q∗(s).

iii) pL > p̂L implies v∗∗L (s) > v∗L(s), v∗∗H (s) < v∗H(s) and q∗∗(s) > q∗(s).

Proof Part A. Equation (51) states that the marginal utilitarian welfare gain due increased
public-goods provision is proportional to the marginal utilitarian welfare gain from increased
redistribution, i.e., from an increase of vL. v∗∗L (s) < v∗L(s) implies that the latter is positive.
Equation (51) then requires that also q∗∗(s) < q∗(s), and vice versa. Moreover, since the
function VH is strictly decreasing in vL and ρ, we have that v∗∗L (s) < v∗L(s) implies that v∗∗H (s) =
VH(v∗∗L (s), r(q∗∗(s))) > v∗H(s) = VH(v∗L(s), r(q∗(s))). This proves that

v∗∗L (pL) < v∗L(pL)⇐⇒ q∗∗(pL) < q∗(pL)⇐⇒ v∗∗H (pL) > v∗H(pL) .

Analogously, one shows that

v∗∗L (pL) = v∗L(pL)⇐⇒ q∗∗(pL) = q∗(pL)⇐⇒ v∗∗H (pL) = v∗H(pL) ,
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and

v∗∗L (pL) > v∗L(pL)⇐⇒ q∗∗(pL) > q∗(pL)⇐⇒ v∗∗H (pL) < v∗H(pL) .

Part B. It thus remains to be shown that there is p̂L so that pL < p̂L implies v∗∗L (s) < v∗L(s),
pL = p̂L implies v∗∗L (s) = v∗L(s), and pL > p̂L implies v∗∗L (s) > v∗L(s). Optimality conditions (50)
and (41) imply that

ν ′ = fHVH1 + 1− fH .

Hence, this is equivalent to showing that there is p̂L so that pL < p̂L implies ν ′ > 0, pL = p̂L

implies ν ′ = 0, and pL > p̂L implies ν ′ < 0. This follows from the following observations:
ν(pL) > 0, for pL ∈ (κ(pH), 1) since the constraint (38) is binding; ν(κ(pL)) = ν(1) = 0 as an
implication of the optimality conditions (42), (45) and (46); and finally the observation that
ν ′′(pL) ≤ 0, for pL ∈ (κ(pH), 1), in Lemma 3. �

Lemma 5 Suppose the given parameter pH is such that η(pH) ≥ 0, then v∗∗L (κ(pH)) = v∗L(pL),
q∗∗L (κ(pH)) = q∗L(pL), and v∗∗H (κ(pH)) = v∗H(pL).

Proof By the arguments in Part A. of the proof Lemma 4 it suffices to show that q∗∗L (κ(pH)) =
q∗L(κ(pH)). Suppose otherwise, i.e., q∗∗L (κ(pH)) 6= q∗L(κ(pH)). Lemma 1 implies that, for all pL,
q∗∗L (pL) ≥ q∗(κ(pL)). Hence, q∗∗L (κ(pH)) > q∗L(κ(pL)), i.e., there is overprovision of the public
good, so that, for pL = κ(pH) we have, 30

θ̄ + fHVH2r
′(q) < 0 .

From (40) this implies that for pL = κ(pH), µ′1 > 0. Optimality condition (49) then implies
that ν ′ < 0. However, ν(pL) > 0, for pL ∈ (κ(pH), 1) since the constraint (38) is binding;
and ν(κ(pH)) = 0 as an implication of the optimality conditions (42). As a consequence, (45)
and (46) imply that, for pL = κ(pH), we need to have ν ′ > 0. Hence, the assumption that
q∗∗L (κ(pH)) 6= q∗L(κ(pL)) has led to a contradiction, and must be false. �

Step 6: implications for marginal tax rates

For an undistorted allocation the marginal tax rates are those in Proposition 2. It is shown
in Bierbrauer and Boyer (2010) that more redistribution in comparison to this benchmark, i.e.,
v∗∗L (pL) > v∗L(pL) implies that τ∗∗(pL, wL) > τ∗(pL, wL), i.e., the distortion at the bottom gets
more severe, whereas τ∗∗(pL, wH) = τ∗(pL, wH), so that there is no distortion at the top. It is
also shown that v∗∗L (pL) < v∗L(pL) implies that τ∗∗(pL, wL) < τ∗(pL, wL) and that τ∗∗(pL, wH) ≤
τ∗(pL, wH).

The reason is as follows, if starting from v∗L(pL), redistribution in favor of the low-skilled

30Note that q∗∗L (κ(pH)) > q∗L(κ(pH)) implies that v∗∗L (κ(pH)) > v∗L(κ(pH)). Jointly, these two observations

imply that | VH2 | is larger than at an undistorted allocation.
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is reduced, we eventually reach a region of the Pareto-frontier where no incentive constraint is
binding and the implicit marginal tax rates of high- and low-skilled individuals are equal to
0; τ∗∗(pL, wL) = 0 and τ∗∗(pL, wH) = 0. If we reduce vL further we get to a region where
the low-skilled individuals’ incentive constraint binds which implies no distortion at the bottom,
τ∗∗(pL, wL) = 0, and an upward distortion of labour supply for the high-skilled, τ∗∗(pL, wH) < 0.

Combining these observations with Lemmas 4 and 5 proves the statements about implicit
marginal tax rates in Proposition 5. �

Proof of Proposition 6

The proof of Proposition 6 is the exact mirror image of the proof of Proposition 6, and is
therefore omitted. �

Proof of Proposition 7

We fix fH at an arbitrary level so that we may suppress the dependence of s on fH , and
write simply s = (pH , pL). Suppose that θ̄(pH ,pL)

λ > θHwL so that the social choice function
(q∗∗, c∗∗, y∗∗) is determined as the solution to a collection of subproblems of the PL(pH , fH)-
type. (The proof under the alternative assumption that θ̄(pH ,pL)

λ < θHwL would follow from
exactly the same arguments.) The proof makes use of the following Lemma:

Lemma 6 Suppose that θ̄(pH ,pL)
λ > θHwL. Then

∂v∗∗L (pH , pL)
∂pH

= −θH
∂q∗∗(pH , pL)

∂pH
.

Proof Since ∂V (s,wL,θH)
∂pL

≥ 0 is binding for θ̄(pH ,pL)
λ > θHwL, we have that, for a given pH ,

∂v∗∗L (pH , pL)
∂pL

= −θH
∂q∗∗L (pH , pL)

∂pL
.

This implies that there exists a number α(κ(pH)) so that, for every pL ∈ [κ(pH), 1],

α(κ(pH)) = θHq
∗∗(pH , pL) + v∗∗L (pH , pL) . (54)

To proof the Lemma we show that α′(α(κ(pH)))κ′(pH) = 0. For values of pH so that 0 ≥ η(pH),
this follows trivially from the observation that κ(pH) = 0 and hence also κ′(pH) = 0. For values
of pH so that 0 < η(pH), it follows from Proposition 6 that α(κ(pH)) is the utility level induced
by an undistorted allocation. Hence,

α(κ(pH)) = θHq
∗(pH , κ(pH)) + u(c∗(pH , κ(pH), wL))− y∗(pH , κ(pH), wL)

wL
.

Upon using Proposition 2 we find that

α′(κ(pH))κ′(pH) =
(
θH −

1
wL

r′(q∗(pH , κ(pH)))
)

d

dpH
(q∗(pH , κ(pH)))κ′(pH) ,
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where

θH −
1
wL

r′(q∗(pH , κ(pH))) = θH −
1
wL

θ̄(pH , κ(pH)))
λ

= 0 .

�

Step 1: if ∂V (s,wL,θH)
∂pL

≥ 0 binds, then ∂V (s,wH ,θL)
∂pH

< 0

We seek to show that

∂V (s, wH , θL)
∂pH

= θL
∂

∂pH
q∗∗(pH , pL) +

∂

∂pH
v∗∗H (pH , pL) < 0 .

From Step 1 in the proof of Proposition 6 we know that

v∗∗H (pH , pL) = VH(v∗∗L (pH , pL), r(q∗∗(pH , pL))) .

Hence, we seek to show that

θL
∂

∂pH
q∗∗(pH , pL) + VH1

∂

∂pH
v∗∗L (pH , pL) + VH2r

′ ∂

∂pH
q∗∗(pH , pL) < 0 ,

or, equivalently, by Lemma 6, that(
θL − θHVH1 + VH2r

′) ∂

∂pH
q∗∗(pH , pL) < 0 .

A straightforward adaptation of the arguments in the proof of Lemma 2 reveals that

∂

∂pH
q∗∗(pH , pL) > 0 .

To complete the argument, it therefore remains to be shown that

θL − θHVH1 + VH2r
′ < 0 . (55)

To see that this is true note that optimality condition (51) in the proof of Proposition 6 implies
that

−θHVH1 + VH2r
′ =

1− fH
fH

θH −
θ̄(pH , pL)

fH
.

Consequently, (55) holds if and only if

θLfH + θH(1− fH) < θ̄(pH , pL) . (56)

To see that this is always fulfilled recall that, by assumption,

θ̄(pH , pL) > θHwLλ , (57)

in the interior of the region where the subproblems of the PL(pH , fH)-type determine (q∗∗, c∗∗, y∗∗).
Further, upon using that λ = fH

wH
+ 1−fH

wL
, wH = θH and wL = θL, it is straightforward to verify

that

θHwLλ = θLfH + θH(1− fH) . (58)

Hence, (58) and (57) imply that (56) is true.
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Step 2: if ∂V (s,wL,θH)
∂pL

≥ 0 binds, then ∂V (s,wH ,θH)
∂pH

> 0

We seek to show that

∂V (s, wH , θH)
∂pH

= θL
∂

∂pH
q∗∗(pH , pL) +

∂

∂pH
v∗∗H (pH , pL) > 0 .

From Step 1 in the proof of Proposition 6 we know that

v∗∗H (pH , pL) = VH(v∗∗L (pH , pL), r(q∗∗(pH , pL))) .

Hence, we seek to show that

θH
∂

∂pH
q∗∗(pH , pL) + VH1

∂

∂pH
v∗∗L (pH , pL) + VH2r

′ ∂

∂pH
q∗∗(pH , pL) > 0 ,

or, equivalently, by Lemma 6, that(
θL − θHVH1 + VH2r

′) ∂

∂pH
q∗∗(pH , pL) > 0 .

Since ∂
∂pH

q∗∗(pH , pL) > 0 it therefore remains to be shown that

θH − θHVH1 + VH2r
′ > 0 . (59)

To see that this is true note that optimality condition (51) in the proof of Proposition 6 implies
that

−θHVH1 + VH2r
′ =

1− fH
fH

θH −
θ̄(pH , pL)

fH
.

Consequently, (59) holds if and only if

θHfH + θH(1− fH) > θ̄(pH , pL) .

This inequality is obviously fulfilled for all (pH , pL) 6= (1, 1).

Step 3: if ∂V (s,wL,θH)
∂pL

≥ 0 binds, then ∂V (s,wL,θL)
∂pL

< 0

We seek to show that

∂V (s, wL, θL)
∂pL

= θL
∂

∂pL
q∗∗(pH , pL) +

∂

∂pL
v∗∗L (pH , pL) < 0 .

This follows from ∂
∂pL

q∗∗(pH , pL) > 0, the fact that θL < θH and that ∂V (s,wL,θH)
∂pL

≥ 0 binds, so
that

θH
∂

∂pL
q∗∗(pH , pL) +

∂

∂pL
v∗∗L (pH , pL) = 0 .

�
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