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Abstract

I study the long-run behavior of a two-agent economy when agents differ in their

beliefs and are endowed with homothetic recursive preferences of the Duffie-Epstein-Zin

type. When preferences are time-separable, the economy is dominated in the long run

by the agent whose beliefs are relatively more precise, a result consistent with the mar-

ket selection hypothesis. However, deviations from time-separable preferences lead to

equilibria in which both agents survive, or to ones where either agent can dominate the

economy with a strictly positive probability. In this respect, the market selection hy-

pothesis is not robust to deviations from time-separability. I show that nondegenerate

stationary equilibria exist for plausible parameterizations when risk aversion is larger

than the inverse of the intertemporal elasticity of substitution, providing a justification

for models that combine belief heterogeneity and recursive preferences.
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1 Introduction

The market selection hypothesis first articulated by Alchian (1950) and Friedman (1953)

is one of the supporting arguments for the plausibility of the rational expectations theory.

The hypothesis states that agents who systematically incorrectly evaluate the distributions

of future quantities (and are therefore called ‘irrational’) lose wealth on average, and will

ultimately be driven out of the market. Thus in the long-run equilibrium, the dynamics of

the economy is determined by the behavior of the rational agents whose beliefs about the

future are in line with the true probability distributions.

Survival of agents with incorrect beliefs has been studied extensively in complete market

models populated by agents endowed with time-separable preferences. The existing litera-

ture on market survival has demonstrated how differences in beliefs can be counteracted by

differences in preferences. Yan (2008) analyzes a model with constant relative risk aversion

(CRRA) preferences and constructs a quantity called the survival index that aggregates the

role of intertemporal elasticity of substitution (IES), time preference, and belief distortion

into a single number that determines survival. However, when preferences are identical across

agents, then only agents whose beliefs are closest to the truth will survive in the long run.

This insight is central for the understanding of the survival mechanism and can be

rephrased as follows. If rich and poor agents are alike, in the sense that rich agents behave

as scaled versions of poor ones, then agents with relatively more incorrect beliefs cannot

survive in the long run. This is precisely correct for the homothetic CRRA preferences. In

their lucid analysis, Kogan, Ross, Wang, and Westerfield (2009) show that this statement is

also true for a class of preferences with bounded relative risk aversion, i.e. preferences which

are in some norm uniformly ‘close’ to the homothetic case.

Sandroni (2000) and Blume and Easley (2006) show that agents with incorrect beliefs also

vanish in economies where aggregate endowment is bounded from above and away from zero,

with preferences satisfying much milder conditions. This result is again based on the same

idea. The boundedness of aggregate endowment limits the differences in local properties of

the utility functions that can arise between rich and poor agents, and belief distortions thus

cannot be overcome by the local characteristics of preferences.

This paper analyzes the robustness of these results with respect to departures from time-

separability of preferences. In order to focus solely on the impact of belief heterogeneity, I

endow agents with identical homothetic recursive preferences of the Duffie-Epstein-Zin type.

These preferences can be viewed as a generalization of the CRRA utility that allows to

disentangle risk aversion and IES. Homotheticity assures that survival results are not driven
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by exogenous differences in the local properties of the utility functions.

The decoupling of risk aversion and IES proves to have a crucial impact. Consider the

case of an agent who is optimistic about the growth rate of aggregate endowment stream,

and an asset which pays the aggregate endowment stream as dividend. An increase in risk

aversion limits the willingness of the agent to take excessively large levered positions in the

asset vis-à-vis its perceived underpricing. Leverage increases optimism about the growth

rate of the portfolio, which in turns increases consumption today in line with the permanent

income model. A higher risk aversion and less leverage therefore imply more frugal behavior

of the optimistic agent.

Similarly, an increase in IES increases the willingness of the agent who is optimistic

about the growth rate of his portfolio to tilt the consumption profile toward the future, thus

increasing his saving rate.

When preferences are time-separable, an increase in the risk aversion is coupled with

a decrease in IES. Promoting more frugal behavior of an optimistic agent by limiting the

leveraged positions through an increase in risk aversion is always accompanied by a decrease

in IES, implying less incentives for tilting the consumption profile toward the future and

saving his way out of extinction. These two effects always offset each other as we change

the coefficient of relative risk aversion, which leads to the extinction results described above.

Similar results also hold for a pessimistic agent who becomes optimistic about the growth

rate of his portfolio once he takes a short position in the risky asset.

When the two effects can be disentagled, I find that increasing the risk aversion inde-

pendently of IES (or, equivalently, increasing the IES independently of the risk aversion

coefficient) improves the conditions for the long-run survival of agents with incorrect beliefs.

More precisely, I study a two-agent continuous-time endowment economy with complete

markets. Aggregate endowment is modeled as a geometric Brownian motion, and agents

have common homothetic recursive Duffie-Epstein-Zin preferences and differ only in their

beliefs. I find that both agents survive and a nondegenerate stationary distribution exists

for wide regions of the parameter space when risk aversion is larger than the inverse of the

IES. Moreover, the rate of convergence to the stationary distribution is exponential. In the

opposite case, only one agent survives but each agent may survive with a strictly positive

probability. The results hold both for optimistic as well as pessimistic deviations from ratio-

nality, although quantitative outcomes in terms of average long-run wealth or consumption

shares captured by the agent with beliefs distorted toward optimism or pessimism differ

substantially.
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The market selection hypothesis is thus not robust to departures from time-separable pref-

erences. Survival crucially depends on the interaction between risk attitudes that drive the

portfolio selection decision, and the IES that influences the consumption-saving decision. Re-

cursive preferences provide an additional degree of freedom compared to the time-separable

case that allows to separate these two effects.

1.1 Methodology and literature overview

The modern approach in the market survival literature orginates from the work of De Long,

Shleifer, Summers, and Waldmann (1991), who study the wealth accumulation in a partial

equilibrium setup with exogenously specified returns and find that irrational noise traders

can outgrow their rational counterparts and dominate the market. Similarly, Blume and

Easley (1992) look at the survival problem from the vantage point of exogenously specified

saving rules, albeit in a general equilibrium setting.

Subsequent research has shown that taking into account general equilibrium effects and

intertemporal optimization eliminates much of the support for survival of agents with incor-

rect beliefs generated in models with ad hoc price dynamics. Sandroni (2000) and Blume and

Easley (2006) base their survival results on the evolution of relative entropy as a measure of

disparity between subjective beliefs and the true probability distribution. In their models,

aggregate endowment is bounded from above and away from zero. As a result, changes in the

curvature of the utility function are immaterial for survival when mild regularity conditions

are satisfied, and long-run fate of economic agents is determined solely by the time preference

and belief characteristics. Controlling for time preference, only agents whose beliefs are in a

specific sense asymptotically ‘closest’ to the truth can survive.

With unbounded aggregate endowment, intertemporal elasticity of substitution becomes

an additional survival factor, as shown in Yan (2008). In a growing economy, a low IES

is a disadvantage, since it diminishes the willingness of an agent to tilt the consumption

profile toward the future. In Yan’s model, agents have homothetic CRRA utility, so once

preferences are identical across agents, only belief disparities determine survival.

Kogan, Ross, Wang, and Westerfield (2009) show that imposing identical preferences

across agents is not sufficient for belief disparities to be the sole determinant of survival. Even

if agents are given identical utility functions, these functions may have very different local

properties conditional on the level of consumption or wealth. When aggregate endowment is

unbounded, these differences may outweigh the divergence in beliefs, and lead to survival of

agents with relatively more incorrect beliefs. A sufficient condition to prevent this outcome
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is the boundedness of the relative risk aversion coefficient. This condition can be interpreted

as a bound on deviations of the utility function from homotheticity.

This paper shows that support in favor of the market survival hypothesis weakens con-

siderably once the assumption of time-separability in preferences is relaxed. I focus on the

recursive preferences axiomatized by Kreps and Porteus (1978), and developed by Epstein

and Zin (1989) and Weil (1990) in discrete time, and by Duffie and Epstein (1992b) in con-

tinuous time. These preferences are homothetic, allow to disentagle the risk aversion with

respect to intratemporal gambles from the intertemporal elasticity of substitution, and in-

clude the CRRA utility as a special case. Thanks to the additional degree of flexibility, this

class of preferences is widely used in the asset pricing literature to provide a better fit of the

constructed models to empirically observed patterns in asset returns.

The agents assess future distributions of underlying economic variables according to their

own subjective beliefs which may differ from the objective probabilities. Agents ‘agree to

disagree’ about their beliefs, and do not view the belief differences as a result of information

asymmetries. Consequently, there is no room for strategic trading behavior and prices do not

convey any additional information on the evolution of the economy. Competitive equilibria

with complete markets can be therefore characterized by solving a planner’s problem, and

subsequently decentralizing the allocations.

While the market survival literature generally investigates the asymptotic behavior of

the ratio of subjective beliefs to the true probability distribution, I develop a method that is

more suitable for the nonseparable nature of the preferences. I utilize the planner’s problem

derived in Dumas, Uppal, and Wang (2000) and extend it to include heterogeneity in beliefs.

The solution of the planner’s problem involves endogenously determined processes that can

be interpreted as stochastic Pareto weights.

The analysis of market survival then corresponds to investigating the long-run behavior of

scaled Pareto weights. I present tight sufficient conditions for the existence of nondegenerate

stationary distributions, and for dominance and extinction, and investigate numerically in

which regions of the parameter space are these conditions satisfied.

The applicability of the derived solution method is not limited to fixed distortions. I

demonstrate how to extend the procedure to include model uncertainty and learning, and

robust preferences of Anderson, Hansen, and Sargent (2003). Explicit solutions of these

problems are left for future work.

Heterogeneous agent models populated by agents endowed with recursive preferences

have been analyzed in the literature along several dimensions. Lucas and Stokey (1984)
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study such models under certainty, and link the existence of a stable interior steady state

in a simple two-agent economy to a sufficient condition called the increasing marginal impa-

tience. This condition postulates that agents discount future less as they become poorer. I

show that my analysis crucially depends on a similar quantity that I call relative impatience.

The key difference lies in the determination of the two quantities. While Lucas and Stokey

require that the time preference exogenously encoded in the utility specification changes

with the level of consumption, preferences used in this paper are homothetic and the coef-

ficient of pure time preference is constant. However, differences between the agents in the

preference for consuming early or delaying consumption and accumulating wealth are deter-

mined endogenously as an equilibrium outcome driven by belief differences. These changes

in relative impatience are specific to nonseparable preferences and vanish as we move to the

time-separable case.

Anderson (2005) studies Pareto optimal allocations under heterogeneous recursive prefer-

ences in a discrete time setup using similar methods but he does not consider survival under

belief heterogeneity. Mazoy (2005) discusses long-run consumption dynamics when agents

differ in their IES. Isaenko (2008) analyzes the behavior of the term structure of interest

rates when agents have differently parameterized Kreps-Porteus utilities. However, none of

these papers treats systematically the case of belief heterogeneity. This work aims at filling

this gap.

1.2 Organization of the paper

The paper is organized at follows. Section 2 outlines the economic environment, provides

a theoretical exposition to recursive preferences, and derives the planner’s problem that is

central to the analysis. Section 3 discusses the survival results. Sufficient conditions for

survival and extinction are provided, followed by a discussion of the numerical analysis.

Section 4 decentralizes the allocations obtained a solution to the planner’s problem and

provides economic intuition underlying the survival results. Section 5 outlines extensions

of the developed framework to the case of model uncertainty with learning, and to robust

preferences. Section 6 concludes. The Appendix contains derivations omitted from the main

text.
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2 Optimal allocations under heterogeneous beliefs

I analyze the dynamics of equilibrium allocations in a continuous-time endowment economy

populated by two infinitely-lived agents. Each agent ranks the available consumption streams

using a version of time-nonseparable preferences axiomatized in discrete-time finite-period

environment by Kreps and Porteus (1978), and extended to continuous time in the work of

Duffie and Epstein (1992b). In addition, agents differ in their beliefs about the distribution

of future quantities. I refer to the heterogeneous economy as to one where both agents have

strictly positive wealth shares. A homogeneous economy is populated by a single agent only.

Without introducing any specific market structure, I assume that markets are dynami-

cally complete in the sense of Harrison and Kreps (1979). Moreover, agents are firm believers

in their probability models, so that there is no strategic trading behavior. This allows to

sidestep the problem of directly calculating the equilibrium by considering a planner’s prob-

lem. The discussion of market survival then amounts to the analysis of the dynamics of

Pareto weights associated with this planner’s problem. Optimal allocations and continua-

tion values generate a valid stochastic discount factor and a replicating trading strategy for

the decentralized equilibrium.

In this section, I specify agents’ preferences and belief distortions, and lay out the plan-

ner’s problem. I utilize the framework introduced by Dumas, Uppal, and Wang (2000),

and exploit the observation that belief heterogeneity can be analyzed in their framework

without increasing the degree of complexity of the problem. The method then leads to a

Hamilton-Jacobi-Bellman equation for the planner’s value function.

2.1 Information structure and beliefs

The stochastic structure of the economy is given by a filtered probability space (Ω,F , {Ft} , P )

with an augmented filtration defined by a family of σ-algebras {Ft} , t ≥ 0 generated by a

univariate Brownian motion W . Given the continuous-time nature of the problem, equal-

ities are meant in the appropriate almost sure sense. I also assume that all processes, in

particular belief distortions and permissible trading strategies, satisfy regularity conditions

like square integrability over finite horizons, so that stochastic integrals are well defined and

pathological cases are avoided.

The scalar aggregate endowment process Y satisfies

dYt

Yt

= µydt+ σydWt, Y0 > 0 (1)
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with constant parameters µy and σy.

Agents n ∈ {1, 2} are endowed with identical preferences but differ in their subjective

probability measures Qn that they use to assign probabilities to future events. I assume

that measures Qn and P are equivalent for all finite-horizon events, so that there exists the

Radon-Nikodým derivative

(

dQn

dP

)

t

=̇Mn
t = exp

(

−
1

2

∫ t

0

|un
s |

2 ds+

∫ t

0

un
sdWs

)

(2)

where un is an adapted process. The martingale Mn measures the disparity between the

subjective and true probability measure and is commonly called the belief ratio. The main

results of the paper are developed using a constant un but the computational strategy al-

lows to incorporate more general distortion processes. Section 5 discusses endogenously

determined distortions in models with learning and robust utility.

The Girsanov theorem implies that agent n whose beliefs are distorted by Mn views the

evolution of the Brownian motion W as distorted by a drift component un

dWt = un
t dt+ dW n

t (3)

where W n is a Brownian motion under Qn. Consequently, the aggregate endowment is

perceived to contain an additional drift component unσy, and un can be interpreted as a

degree of optimism or pessimism about Y .

2.2 Recursive utility

Agents endowed with time-separable preferences reduce intertemporal compound lotteries

(different payoff streams allocated over time) to atemporal simple lotteries that resolve un-

certainty at a single point in time. In the Arrow-Debreu world with time-separable prefer-

ences, once trading of state-contingent securities for all future periods is completed at time 0,

uncertainty about the realized path of the economy can be resolved immediately without

any consequences for the ex-ante preference ranking of the outcomes by the agents.

Kreps and Porteus (1978) relaxed the time-separability assumption by axiomatizing

discrete-time preferences where temporal resolution of uncertainty matters. While intratem-

poral lotteries in the Kreps-Porteus axiomatization still satisfy the von Neumann-Morgenstern

expected utility axioms, intertemporal lotteries cannot be in general reduced to atemporal

ones. Kreps and Porteus motivated preference for early resolution of uncertainty as a re-
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duced form for an underlying auxiliary decision model in which resolving the uncertainty

early allows the agent to take utility-improving actions that lie outside of the main model.

The representation result in Kreps and Porteus (1978) shows how to characterize the

preference relation using a recursion in which the continuation value at a given point in

time is calculated by aggregating the contribution of consumption today and of the expected

continuation value tomorrow using a nonlinear function, called the aggregator.

The work by Epstein and Zin (1989, 1991) extended the results of Kreps and Porteus

(1978), and initiated the widespread use of recursive preferences in the asset pricing lit-

erature. Duffie and Epstein (1992a,b) formulated the continuous-time counterpart of the

recursion.

The recursive utility process V n (Cn) of agent n associated with a given consumption

process Cn is defined as

V n
t (Cn) ≡ EQn

t

[
∫ ∞

t

f (Cn
s , V

n
s ) ds

]

(4)

where f is the aggregator that links together consumption Cn
s at time s ∈ [t,∞) with the

continuation value V n
s . Agents prefer early resolution of uncertainty when the aggregator is

convex in the expected continuation value. Time-separability in preferences is achieved as a

special case when the aggregator is linear in the expected continuation value and additive in

the contribution of the two components.

Existence and concavity of the recursive utility process are often difficult to prove. Duffie

and Epstein (1992b) focus on the finite-horizon case and prove concavity only for a concave

aggregator f . Appendix C in their paper discusses the infinite-horizon case but the sufficient

conditions are too strict for this paper. However, the Markov structure of the problem

allows me to utilize the infinite-horizon extensions demonstrated in Duffie and Lions (1992).

Schroder and Skiadas (1999) prove that V n (Cn) is concave even when f is convex in its

second argument, a case that is central in this work.

I am interested in a particular functional form of the aggregator that is the continuous-

time counterpart of the constant elasticity of substitution preferences used in Epstein and

Zin (1989, 1991)

f (C, V ) =
β

ρ

[

(C)ρ (γV )1−
ρ
γ − (γV )

]

(5)

with parameters satisfying γ, ρ < 1, and β > 0. Preferences specified by this form of

the aggregator1 are homothetic, exhibit a constant relative risk aversion with respect to

1The cases of ρ → 0 and γ → 0 can be obtained as limits with an ordinally equivalent aggregator in which
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intratemporal wealth gambles α = 1− γ, and (under intratemporal certainty) a constant in-

tertemporal elasticity of substitution η = 1
1−ρ

. Parameter β is the time-preference coefficient.

Assumption 2 below restricts parameters to assure sufficient discounting for the continuation

values to be finite.

In the case when γ = ρ, the utility reduces to the time-separable CRRA utility with

the coefficient of relative risk aversion α. Preferences given by (4–5) thus can be viewed as

a natural extension of the CRRA utility case that allows to disentangle the bond between

intratemporal risk aversion and intertemporal elasticity of substitution. Appendix A shows

how to derive the aggregator f as the limiting continuous-time case of the discrete-time

preferences formulated by Epstein and Zin (1989).

Duffie, Geoffard, and Skiadas (1994) were the first to study optimal and equilibrium

allocations with stochastic recursive utility specified in (4). Dumas, Uppal, and Wang (2000)

offer a different way of defining the recursive utility that is more convenient for the purposes of

this paper.2 They show that the recursive utility process V n can be equivalently represented

as a solution to the minimization problem

λn
t V

n
t = inf

νn
EQn

t

[
∫ ∞

t

λn
sF (Cn

s , ν
n
s ) ds

]

(6)

subject to

dλn
s

λn
s

= −νn
s ds, s ≥ t (7)

λn
0 = 1

where νn is called the discount rate process, and λn the discount factor process. The felicity

function F and the aggregator f are linked through the Legendre transformation

F (C, ν) ≡ inf
V ∈R

[f (C, V ) + νV ] (8)

f (C, V ) ≡ sup
ν∈R

[F (C, ν)− νV ] (9)

The transformation (8-9) assumes that f is convex in its second argument. When f is

concave, it suffices to swap the sup and inf operators in the above definitions.

For the case of the Duffie-Epstein-Zin preferences (5), taking the first order condition in

γu is replaced with 1 + γu. To save notation, the analysis in the text is formally limited to ρ 6= 0 6= γ but
the results hold for the limiting cases as well.

2This specification is based on the more general variational utility approach studied by Geoffard (1996)
in the deterministic case, and El Karoui, Peng, and Quenez (1997) in stochastic environment.
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(8) leads to

F (C, ν) =
β

γ
Cγ

(

γ − ρ

β
ν

γ − ρ

)1− γ
ρ

Formula (6) together with an application of the Girsanov theorem suggest that it is ad-

vantageous to combine the contribution of the discount factor process λn and the martingale

Mn that specifies the belief distortion in (2):

Definition 1 A modified discount factor process λ̄n is a discount factor process that incor-

porates the martingale Mn arising from the belief distortion

λ̄n=̇λnMn. (10)

Applying Itô’s lemma to (10) leads to a minimization problem under the true probability

measure

λ̄n
t V

n
t = inf

ν
Et

[
∫ ∞

t

λ̄n
sF (Cn

s , ν
n
s ) ds

]

(11)

subject to

dλ̄n
s

λ̄n
s

= −νn
s dt+ un

sdWs, s ≥ t (12)

λ̄n
0 = 1.

The problem (11-12) indicates that F (C, ν) can be viewed as a generalization of the

period utility function with a potentially stochastic rate of time preference ν that depends

on the properties of the consumption process, and thus arises endogenously in a market

equilibrium. Moreover, belief distortions are now fully incorporated in the framework of

Dumas, Uppal, and Wang (2000) — the only difference is that the modified discount factor

process in not locally predictable.

The diffusion term un
sdWs has an intuitive interpretation. Consider an optimistic agent

with un > 0. This agent’s beliefs are distorted in that the mass of the distribution of dWs

is shifted to the right — the agent effectively overweighs good realizations of dWs. Formula

(12) indicates that under the true probability measure, positive realizations of dWs increase

the term dλ̄s/λ̄s which implies that the optimistic agent discounts positive realizations of

dWs less than negative ones.

From the perspective of the utility-maximizing agent, assigning a higher probability to

an event and lower discounting of the utility contribution of this event have the same effect.
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In fact, equation (6) suggests that we can understand the belief distortion as a preference

shock, and view λ̄F (C, ν) as a state-dependent felicity function. However, interpreting the

martingale Mn as a belief distortion is more appealing since it bears a clearer economic

meaning, separating the structure of beliefs and preferences.

2.3 Planner’s problem and optimal allocations

Although observed equilibrium prices indicate that beliefs differ across agents, the agent

does not ascribe the belief differences to superior information available to other market

participants. While a likelihood evaluation of the past observed data reveals that the view

of an agent with distorted beliefs becomes less and less likely to be correct as time passes,

absolute continuity of the measure Qn with respect to P implies that he can never refute his

view of the world as impossible. Since agents are firm believers in their subjective models,

they agree to disagree about the interpretation of commonly observed endowment dynamics,

and prices do not convey additional information.

In this environment, I can follow Dumas, Uppal, and Wang (2000) and utilize market

completeness to identify competitive equilibria in the heterogeneous agent economy with

optimal solutions to a planner’s problem. A decentralization of the solution then provides

the market prices and replicating trading strategies.

Notice first that the problem of an individual agent (6–7) is homogeneous degree one

in the discount factors, and homogeneous degree γ in consumption. In the homogeneous

economy, there exists a closed-form solution for the continuation values V n
t (Y ) = λ̄n

t Y
γ
t Ṽ

n

where

Ṽ n =
1

γ

(

β

β − ρ
(

µc + unσc +
1
2
(γ − 1) σ2

c

)

)
γ
ρ

(13)

The following assumption is needed for the continuation values in the homogeneous

economies to be well-defined:

Assumption 2 The parameters in the model satisfy the restriction

β > max
n

ρ

(

µc + unσc +
1

2
(γ − 1) σ2

c

)

.

In the heterogeneous economy, the fictitious planner maximizes a weighted average of the

continuation values of the two agents. Given a pair of strictly positive initial Pareto weights
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α = (α1, α2), the planner’s time-0 objective function J0 (α) is the solution to the problem

J0 (α) = sup
(C1,C2)

inf
(ν1,ν2)

2
∑

n=1

E0

(
∫ ∞

0

λ̄n
sF (Cn

s , ν
n
s ) ds

)

(14)

subject to the law of motion for the modified discount factors

dλ̄n
s

λ̄n
s

= −νn
s dt+ un

sdWs, s ≥ 0 (15)

λ̄n
0 = αn

for n ∈ {1, 2}, and the feasibility constraint

C1 + C2 ≤ Y . (16)

The validity of this approach for a finite-horizon economy is discussed in Dumas, Uppal,

and Wang (2000) and Schroder and Skiadas (1999). The infinite-horizon problem in (14-16)

is a straightforward extension when individual continuation values are well defined. The

planner’s objective function is bounded from above by the weighted average of continuation

values from the homogeneous economies

J0 (α) ≤ α1V n
0 (Y ) + α2V n

0 (Y )

and the supremum in (14) thus exists. Since the continuation values are concave, first-order

conditions are sufficient for the supremum problem. The following Lemma describes the

behavior of the objective function at the boundaries.

Lemma 3 The objective function J0 (α) can be continuously extended at the boundaries as

α1 ↘ 0 or α2 ↘ 0 by the continuation values calculated for the homogeneous economies, i.e.

for α2 > 0

J0

(

0, α2
)

=̇ lim
α1↘0

J0

(

α1, α2
)

= α2V 2
0 (Y ) (17)

and

lim
α1↘0

C2
(

α1, α2
)

= Y (18)

The case α2 ↘ 0 is symmetric.
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Proof. Consider the case α1 ↘ 0. Given optimal consumption streams Cn (α), we have

J0 (α) = α1V 1
0

(

C1 (α)
)

+ α2V 2
0

(

C2 (α)
)

and since V 1
0 (C1 (α)) is bounded from above as a function of α, it follows that

α1V 1
0

(

C1 (α)
) α1↘0
−→ v1 ≤ 0

and thus J0 (0, α
2) ≤ limα1↘0 α

2V 2
0 (C2 (α)) ≤ α2V 2

0 (Y ).

Assume suboptimal policies Ĉ1 (α1, α2) = (α1)
1

2|γ| Y and Ĉ2 (α1, α2) =
(

1− (α1)
1

2|γ|

)

Y .

Then

α1V 1
0

(

Ĉ1
(

α1, α2
)

)

=
(

α1
)1+ 1

2

γ
|γ| Y γ

0 Ṽ
n α1↘0
−→ 0

and

α2V 2
0

(

Ĉ2
(

α1, α2
)

)

= α2
(

1−
(

α1
)

1

2|γ|

)γ

Y γ
0 Ṽ

n α1↘0
−→ α2V 2

0 (Y )

which implies J0 (0, α
2) ≥ α2V 2

0 (Y ). Therefore (17) holds, and (18) is a direct consequence.

The planner’s problem (14-16) suggests that we can interpret the discount factor processes

λ̄n as stochastic Pareto weights. Indeed, if λ̄n
0 = αn are the initial weights, then λ̄n

t are the

consistent state-dependent weights for the continuation problem of the planner at time t.

The evolution of the weights involves the drift component νn and thus can be only

determined in equilibrium unless agent n ’s preferences are time separable in which case

νn = β. The variation in Pareto weights arises from the interaction of two components

in the model — the time-nonseparable preference structure as in Lucas and Stokey (1984)

and Dumas, Uppal, and Wang (2000), and the belief distortion that drives the diffusion

component in (15).3

Observe that the introduction of belief heterogeneity kept the structure of the problem

unchanged. For instance, Dumas, Uppal, and Wang (2000) show that in a Markov environ-

ment, the discount factor processes λn serve as new state variables that allow a recursive

formulation of the problem using the Hamilton-Jacobi-Bellman equation. The same con-

clusion is true for the modified discount factor processes λ̄n once belief heterogeneity is

incorporated. Belief distortions thus do not introduce any additional state variables into the

3The belief heterogeneity introduces an additional risk component arising through the stochastic reweight-
ing of wealth shares. The diffusive component in the weight dynamics will have a direct impact on local risk
prices. Notice that other sources of heterogeneity, including differences in risk aversion and IES parameters,
do not lead to a diffusion component in the dynamics of the Pareto weights (15), and reweighting therefore
has no impact on local risk prices in these cases.
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problem, as long as the distorting processes un are functions of the existing state variables.4

The only cost of introducing belief distortions into the problem comes from the fact that

the modified discount processes are not locally smooth but contain the diffusion component

un
t dWt (unless the agent has the correct beliefs). In the Markov setup below, this will be

reflected by the occurrence of additional second partial derivative terms.

More generally, the social planner can choose to maximize welfare as the weighted av-

erage of utilities evaluated as distorted relative to any subjective measure, as long as the

absolute continuity assumption is satisfied, and the distorting martingales Mn are properly

constructed relative to the chosen measure. Then the discount rate process νn of the agent

whose belief distortion coincides with the distortion of the social planner will be locally

predictable.

2.4 Hamilton-Jacobi-Bellman equation

From now on, I assume that both agents have constant belief distortions un, a standard as-

sumption in the survival literature. Extensions involving endogenously determined distortion

processes are considered in Section 5.

The planner’s problem has an appealing Markov structure. Denoting λ̄ =
(

λ̄1, λ̄2
)′

and

u = (u1, u2)
′
, the state vector is Z =

(

λ̄′, Y
)′

which leads to the Hamilton-Jacobi-Bellman

equation for J (Z):

0 ≡ sup
(C1,C2)

inf
(ν1,ν2)

2
∑

n=1

λ̄n [F (Cn, νn)− Jλ̄nνn] + JyµyY +
1

2
tr (JzzΣ) (19)

where

Σ =

(

(

diag
(

λ̄
)

u
) (

diag
(

λ̄
)

u
)′ (

diag
(

λ̄
)

u
)

σyY

σyY
(

diag
(

λ̄
)

u
)′

σ2
yY

2

)

and diag
(

λ̄
)

is a 2× 2 diagonal matrix with elements of λ̄ on the main diagonal.

The minimization problem in the HJB equation (19) can be solved separately by recalling

the Legendre transformation (9). Under the optimal discount rate process νn for agent n,

f (Cn, Jλ̄n) ≡ F (Cn, νn)− Jλ̄nνn. (20)

Optimal consumption shares ζn are given by the first-order conditions in the maximiza-

4This is not the case when learning is introduced but even then a tractable recursive formulation is at
hand, as shown in Section 5.
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tion problem

ζn=̇
Cn

Y
=

(γJλ̄n)
1−ρ/γ
1−ρ

(

λ̄n
)

1

1−ρ

∑2
k=1 (γJλ̄k)

1−ρ/γ
1−ρ

(

λ̄k
)

1

1−ρ

.

where Jλ̄n are agents’ continuation values under the optimal consumption allocation.

The HJB equation (19) further implies that J is homogeneous degree one in λ̄, and

homogeneous degree γ in Y . This suggests a transformation of variables

θ1 =
λ̄1

λ̄1 + λ̄2
θ2 = λ̄1 + λ̄2 (21)

and the following guess

J (Z) = (γ)−1 Y γθ2J̃
(

θ1
)

= (γ)−1 Y γ
(

λ̄1J̃1
(

θ1
)

+ λ̄2J̃2
(

θ1
)

)

where J̃n (θ1) are scaled continuation values of the two agents

J̃1
(

θ1
)

=̇ J̃
(

θ1
)

+
(

1− θ1
)

J̃θ1

(

θ1
)

J̃2
(

θ1
)

=̇ J̃
(

θ1
)

− θ1J̃θ1

(

θ1
)

The single state variable θ1 represents the Pareto share of agent 1. The dynamics of

θ1 is central to the study of survival in this paper. Obviously, θ1 is bounded between zero

and one. It will become clear that for strictly positive initial weights the boundaries are

unattainable, so that θ1 evolves on the open interval (0, 1).

These considerations, together with Lemma 3, imply the following Proposition:

Proposition 4 The objective function for the planner’s problem (14-16) is

J0 (α) =
(

α1 + α2
) Y γ

0

γ
J̃
(

α1/
(

α1 + α2
))

where J̃ (θ1) is the solution to the nonlinear ordinary differential equation

0 = θ1
β

ρ

(

ζ1
)ρ
(

J̃1
)1− ρ

γ
+
(

1− θ1
) β

ρ

(

1− ζ1
)ρ
(

J̃2
)1− ρ

γ
+ (22)

+

(

−
β

ρ
+ µc +

1

2
(γ − 1) σ2

c +
(

θ1u1 +
(

1− θ1
)

u2
)

σc

)

J̃ +

+θ1
(

1− θ1
) (

u1 − u2
)

σcJ̃θ1 +
1

2

1

γ

(

1− θ1
)2 (

θ1
)2 (

u1 − u2
)2

J̃θ1θ1
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with boundary conditions J̃ (0) = Ṽ 2 and J̃ (1) = Ṽ 1 where Ṽ n are defined in (13).

Proof. The proof follows from the preceding derivations.

Unfortunately, equation (22) does not have a general closed-form solution. However,

the Pareto share θ1 of agent 1 remains the only state variable which considerably simplifies

numerical solutions.

The same solution method and derivation of the HJB equation applies to multi-agent

economies and more sophisticated Markov dynamics of the aggregate endowment process.

In an N -agent economy, the state vector includes N−1 Pareto shares as state variables. The

boundary conditions for θn = 0, n ∈ {1, . . . , N} associated with the N -agent version of the

PDE (22) are given by the solution of an (N − 1)-agent economy that excludes agent n. In

this way, solutions to multi-agent economies are calculated by iteratively adding individual

agents.

3 Survival

Survival chances of agents with distorted beliefs have been studied extensively under time-

separable utility. Kogan, Ross, Wang, and Westerfield (2009) show a tight link between

the behavior of the belief ratio, consumption shares, and the risk aversion coefficient as a

measure of curvature of the utility function. To provide a simple illustration, consider a

period utility function U (C) and the corresponding Euler equation that prices a payoff Zt+s

at time t

P z
t = EQn

t

[

e−βs
U ′
(

Cn
t+s

)

U ′ (Cn
t )

Zt+s

]

= Et

[

e−βs
U ′
(

Cn
t+s

)

U ′ (Cn
t )

Mn
t+s

Mn
Zt+s

]

Since prices are observed in equilibrium, agents have to agree on them. When markets

are complete, this implies that the object

U ′
(

Cn
t+s

)

U ′ (Cn
t )

Mn
t+s

Mn

has to be equalized across agents, P -a.s. Deviations in beliefs thus have to be offset by recip-

rocal deviations in marginal utilities. If agent 1 has a constant belief distortion u1 6= 0 and

agent 2 is rational, then lims→∞M1
t+s = 0 (P -a.s.), and thus lims→∞U ′

(

C1
t+s

)

/U ′
(

C2
t+s

)

=

+∞ (P -a.s.). For a class of utility functions that includes the CRRA utility case γ = ρ in

this paper, this implies lims→∞ ζ1t+s/ζ
2
t+s = 0 (P -a.s.).

When preferences are not time-separable, this straightforward link breaks down because
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marginal utilities also depend on continuation values. Since these continuation values are

not available in closed form, they have to be solved for numerically. Studying asymptotic

behavior with numerically calculated objects can be treacherous due to the propagation of

the approximation errors, and thus a different approach is called for. I derive the local

dynamics of the Pareto share θ1, and then investigate the existence of a unique stationary

distribution.

Since the analyzed model includes growing and decaying economies, I am interested in

a measure of relative survival. The following definition distinguishes between survival along

individual paths, and almost sure survival.

Definition 5 Agent 1 becomes extinct along the path ω ∈ Ω if limt→∞ θ1t (ω) = 0. Otherwise,

agent 1 survives along the path ω. Agent 1 dominates in the long run along the path ω if

limt→∞ θ1t (ω) = 1.

Agent 1 becomes extinct (under measure P ) if limt→∞ θ1t = 0, P -a.s. Agent 1 survives if

lim supt→∞ θ1t > 0, P -a.s. Agent 1 dominates in the long run if limt→∞ θ1t (ω) = 1, P -a.s.

The definition of extinction and survival differs from those in Kogan, Ross, Wang, and

Westerfield (2009) or Yan (2008) who use the consumption share ζ1. However, these defini-

tions are equivalent in this setting:

Lemma 6 Definition 5 remains unchanged when the Pareto share θ1 is replaced with the

consumption share ζ1.

Proof. The consumption share

ζ1 =
(θ1)

1

1−ρ

(

J̃1
)

1−ρ/γ
1−ρ

(θ1)
1

1−ρ

(

J̃1
)

1−ρ/γ
1−ρ

+ (1− θ1)
1

1−ρ

(

J̃2
)

1−ρ/γ
1−ρ

is continuous and monotonically increasing in θ1 and

lim
θ1↘0

ζ1 = 0 and lim
θ1↗1

ζ1 = 1.
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3.1 Dynamics of the Pareto share and stationary distributions

Recall the dynamics of the modified discount factor processes λ̄n in (15). An application of

Itô’s lemma to θ1 = λ̄1/
(

λ̄1 + λ̄2
)

yields

dθ1t = θ1t
(

1− θ1t
) [

ν2
t − ν1

t +
(

θ1t u
1 +

(

1− θ1t
)

u2
) (

u2 − u1
)]

dt+ (23)

+θ1t
(

1− θ1t
) (

u1 − u2
)

dWt

When u1 = u2, the dynamics of the Pareto share is degenerate, and the Pareto share is

constant, θ1t ≡ α1/ (α1 + α2). In this case, the individual consumption dynamics is identical

to that of an economy populated by two rational agents. In what follows, I abstract from

this situation, and assume u1 6= u2.

The drift term of the Pareto share contains the difference of the discount rates ν2 − ν1

which I call the relative patience of agent 1. When preferences are non-separable, the discount

rates are determined endogenously in the model as a solution to problem (14–16), and are

given by the first-order condition in problem (8):

νn =
β

ρ

(

γ + (ρ− γ) (ζn)ρ
(

J̃n
)− ρ

γ

)

(24)

The discount rates νn are twice continuously differentiable functions of the state variable

θ1, and thus θ1 is an Itô process on the open interval (0, 1) with continuous drift and volatility

coefficients.5 Intuitively, one would expect a stationary distribution to exist if the process

exhibits sufficient pull toward the center of the interval when close to the boundaries. This

is formalized in the following Proposition:

Proposition 7 Given the dynamics of the Pareto share (23), it is sufficient for the existence

of a unique stationary density q (θ) that the following two conditions hold

(i) lim infθ1↘0 [ν
2 (θ1)− ν1 (θ1)] > 1

2

[

(u1)
2
− (u2)

2
]

(ii) lim supθ1↗1 [ν
2 (θ1)− ν1 (θ1)] < 1

2

[

(u1)
2
− (u2)

2
]

.

The conditions are also the least tight bounds of this type.

Proof. Given an initial condition θ10 ∈ (0, 1), the process (23) lives on the open interval

(0, 1) with unattainable boundaries (the aggregator satisfies an Inada condition at zero).

5The unattainability of the boundaries follows from the proof of Proposition 7.
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For any numbers 0 < a < b < 1, the process θ1 has bounded and continuous drift and

volatility coefficients on (a, b), and the volatility coefficient is bounded away from zero. It is

thus sufficient to establish appropriate boundary behavior of θ1 in order to make the process

positive Harris recurrent (see Meyn and Tweedie (1993)). Since the process will also be ϕ -

irreducible for the Lebesgue measure under these boundary conditions, there exists a unique

stationary distribution.

Denote µθ (θ) and σθ (θ) the drift and volatility coefficients in (23). The boundary be-

havior of the process θ1 is captured by the scale measure S : (0, 1)2 → R defined as

s (θ) = exp

{

−

∫ θ

θ0

2µθ (τ)

σ2
θ (τ)

dτ

}

S [θl, θh] =

∫ θl

θh

s (θ) dθ

for an arbitrary choice of θ0 ∈ (0, 1), and the speed measure M : (0, 1)2 → R

m (θ) =
1

σ2
θ (θ) s (θ)

M [θl, θh] =

∫ θl

θh

m (θ) dθ

Karlin and Taylor (1981, Chapter 15) provide an extensive treatment of the boundaries.

The boundaries are nonattracting if and only if

lim
θl↘0

S [θl, θh] = ∞ and lim
θh↗1

S [θl, θh] = ∞ (25)

and this result is independent of the fixed argument that is not under the limit. With

nonattracting boundaries, the stationary density will exist if the speed measure satisfies

lim
θl↘0

M [θl, θh] < ∞ and lim
θh↗1

M [θl, θh] < ∞ (26)

again independently of the argument that is not under the limit.

In our case,

s (θ) = exp

{

−

∫ θ

θ0

2 (ν2 (τ)− ν1 (τ))

τ (1− τ) (u1 − u2)2
dτ

}

sTS (θ)

where

sTS (θ) =

(

1− θ

1− θ0

)− 2u1

u1−u2
(

θ

θ0

)
2u2

u1−u2

(27)

is the integrand of the scale function in the time-separable case, when ν2 (θ)− ν1 (θ) ≡ 0.

For the left boundary, assume that in line with condition (i) there exist θ ∈ (0, 1) and
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ν ∈ R such that

ν2 (θ)− ν1 (θ) ≥ ν

for all θ ∈ (0, θ). Taking θ0 = θ, the scale measure can be bounded as

S [θl, θ] ≥

∫ θ

θl

exp

{

−

∫ θ

θ

2ν

τ (1− τ) (u1 − u2)2
dτ

}(

1− θ

1− θ

)− 2u1

u1−u2
(

θ

θ

)
2u2

u1−u2

dθ =

=

∫ θ

θl

(

θ

θ

)
2u2

u1−u2
− 2ν

(u1−u2)2
(

1− θ

1− θ

)

2ν

(u1−u2)2
− 2u1

u1−u2

dθ

The left limit in (25) thus diverges to infinity if

2u2

u1 − u2
−

2ν

(u1 − u2)2
≤ −1

which is satisfied when

ν ≥
1

2

[

(

u1
)2

−
(

u2
)2
]

.

The argument for the right boundary is symmetric. Taking θ̄ ∈ (0, 1) and ν̄ ∈ R such that

ν2 (θ)− ν1 (θ) ≤ ν̄ for all θ ∈
(

θ̄, 1
)

, the calculation reveals that we require

ν̄ ≤
1

2

[

(

u1
)2

−
(

u2
)2
]

.

It turns out that the bounds implied by conditions (26) are marginally tighter. Following

the same bounding argument as above, sufficient conditions for (26) to hold are

ν >
1

2

[

(

u1
)2

−
(

u2
)2
]

(28)

ν̄ <
1

2

[

(

u1
)2

−
(

u2
)2
]

The construction reveals that these bounds are also the least tight bounds of this type

under which the proposition holds. This completes the proof.

It is also useful to note that the unique stationary density q (θ) is proportional to the

speed density m (θ).

In empirical applications, it may be preferable for the economy to converge to the sta-

tionary distribution fast enough from any initial condition, so that data observed over finite

horizons are a representative sample of the stationary distribution. Proposition 7 gives suf-

ficient conditions for the existence of a unique stationary distribution but it does not say
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anything about the rate of convergence. It turns out that under the conditions in Proposi-

tion 7, convergence occurs at an exponential rate.

Proposition 8 Under the sufficient conditions in Proposition 7, the process θ1 is ρ-mixing

with an exponential decay rate, i.e. there exist constants B > 0 and δ ∈ (0, 1) such that for

any square-integrable function φ ∈ L2 where

L2 =

{

φ : (0, 1) → R : ‖φ‖ =̇

(
∫ 1

0

|φ (θ)|2 q (θ) dθ

)

1

2

< ∞

}

we have

sup
‖φ‖=1

∥

∥

∥

∥

E
[

φ
(

θ1t
)

| θ10 = θ0
]

−

∫ 1

0

φ (θ) q (θ) dθ

∥

∥

∥

∥

=̇ρt ≤ Be−δt.

Proof. Chen, Hansen, and Carrasco (2010) show that under the conditions that stated by

Proposition 7, the sufficient conditions for exponential convergence in L2 norm are

lim inf
θ↘0

(

µθ (θ)

|σθ (θ)|
−

|σ′ (θ)|′

2

)

> 0 and lim inf
θ↗1

(

µθ (θ)

|σθ (θ)|
−

|σ′ (θ)|′

2

)

< 0

These conditions are satisfied by imposing the same bounds as in (28). An analogous calcu-

lation to that in the proof of Proposition 7 reveals that the bounds are again the least tight

bounds of this type.

Conditions in Proposition 7 can be checked numerically from the solution of the planner’s

problem. These conditions have an intuitive interpretation. For instance, condition (i) states

that agent 1 can survive under the true probability measure even in cases when his beliefs

are more distorted, |u1| > |u2|, as long as his relative patience ν2 − ν1 becomes sufficiently

high as his consumption share vanishes. In this way, despite the fact that his investment

decisions are skewed toward making incorrectly optimistic or pessimistic bets, his savings are

sufficiently high to overcome the losses from these incorrect bets, at the cost of lowering his

current consumption. A high propensity to save implies a rightward pull on θ1, preventing

convergence of θ1 to zero.

When the assumptions of Proposition 7 are not satisfied, then either of the agents can

dominate in the long run along some paths. The following Proposition summarizes the result

from Proposition 7, and provides additional characterization of situations that do not lead

to a nondegenerate stationary distribution.

Corollary 9 Define the ‘attracting’ conditions
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(i’) lim supθ1↘0 [ν
2 (θ1)− ν1 (θ1)] < 1

2

[

(u1)
2
− (u2)

2
]

(ii’) lim infθ1↗1 [ν
2 (θ1)− ν1 (θ1)] > 1

2

[

(u1)
2
− (u2)

2
]

as alternatives to ‘repealing’ conditions (i) and (ii) in Proposition 7. Then the following

statements are true:

(a) If conditions (i) and (ii) hold then both agents survive under P .

(b) If conditions (i) and (ii’) hold then agent 1 dominates in the long run under P

(c) If conditions (i’) and (ii) hold then agent 2 dominates in the long run under P .

(d) If conditions (i’) and (ii’) hold then there exist sets S1, S2 ⊂ Ω which satisfy

S1 ∩ S2 = ∅, P
(

S1
)

6= 0 6= P
(

S2
)

, and P
(

S1 ∪ S2
)

= 1

such that agent 1 dominates in the long run along each path ω ∈ S1 and agent 2

dominates in the long run along each path ω ∈ S2.

Proof. Statement (a) is a direct consequence of Proposition 7. Conditions (i’) and (ii’)

are sufficient conditions for the boundaries to be attracting. Lemma 6.1 in Karlin and

Taylor (1981) then shows that if the ‘attracting’ condition is satisfied for a boundary then

θ1 converges to this boundary on a set of paths that has a strictly positive probability. This

probability is equal to one if the other boundary is non-attracting. Combining these results,

we obtain statements (b), (c), and (d).

The four ‘attracting’ and ‘repealing’ conditions are only sufficient and their combinations

stated in Proposition 9 are not exhaustive. There are delicate cases involving nonstrict

inequalities, which are however not relevant for the numerical analysis below.

3.2 Change of measure

The developed survival criteria are stated from the perspective of a rational agent. However,

agents whose beliefs differ from the true probability measure evaluate their suvival chances

differently. Although both agents understand that the optimal (and equilibrium) allocations

are given as a solution to the problem outlined in Proposition 4, they differ in their view

about the future consumption dynamics.
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Lemma 10 Agent n views the dynamics of the economy as if the belief distortions were

given by

(un)(n) = 0 (u∼n)(n) = u∼n − un

where ∼ n indexes the other agent in the economy and
(

uk
)

n
are the beliefs of agent k from

the standpoint of agent n.

Proof. The evolution of Brownian motion W under the beliefs of agent n is

dWt = undt+ dW n
t

Since the evolution of θ1 completely describes the dynamics of the economy, substituting

this expression into (23) and reorganizing yields the desired result.

The Lemma implies in particular that Proposition 7 applies for the survival considerations

under a subjective probability measure Qn, as long as uk are replaced with
(

uk
)

n
for k =

1, 2. Further, Proposition 9 can be modified in the same way to obtain statements about

dominance under Qn.

3.3 CRRA preferences

The framework introduced in this paper includes as a special case the time-separable constant

relative risk aversion preferences when γ = ρ. Yan (2008) or Kogan, Ross, Wang, and

Westerfield (2009) show that in the economy presented in this paper, the agent whose beliefs

are less distorted dominates in the long run under measure P . We can confirm this result

using the statements in Proposition 9.

Corollary 11 Under time-separable CRRA preferences (γ = ρ), agent n dominates in the

long run under measure P if and only if |un| < |u∼n|. Agent n survives under P if and only

if the inequality is non-strict.

Proof. Assume without loss of generality that |u2| ≤ |u1|. The sufficient part is an immedi-

ate consequence of Proposition 9. Under time-separable preferences, ν2 − ν1 ≡ 0, and thus

if |u2| < |u1| then conditions (i’) and (ii) hold, and agent 2 dominates in the long run under

P .

For the necessary part, when u2 = u1, then θ1 is constant and both agents survive under

P . When −u2 = u1 = u, then it follows from inspection of formula (27) in the proof

of Proposition 7 that conditions (25) are satisfied and the boundaries are non-attracting.
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Lemma 6.1 in Karlin and Taylor (1981) then implies that both agents survive under P . This

completes the proof.

Note that even though both agents survive when −u2 = u1, the speed density

m (θ) ∝ θ−1 (1− θ)−1

is not integrable on (0, 1) and thus there does not exist a finite stationary measure.

Corollary 12 Under time-separable CRRA preferences, agent n survives under measure

Qn, and dominates in the long run under Qn if and only if un 6= u∼n.

Proof. This is an immediate consequence of Lemma 10 and Corollary 11.

Under time-separable CRRA preferences, the dynamics of the Pareto share (23) does not

depend on the characteristics of the endowment process. The survival result in Corollary 11

thus extends to an arbitrary adapted aggregate endowment process Y that satisfies elemen-

tary integrability conditions, including a constant one, as long as the two agents can write

contracts on the realizations of the Brownian motion W . It is a special case of the analysis in

Kogan, Ross, Wang, and Westerfield (2009) who show that this survival result holds, under

mild conditions, for any time-separable preferences with bounded relative risk aversion. In

this sense, the time-separable environment generates a robust result about the extinction of

agents whose beliefs are relatively imprecise.

3.4 The time-nonseparable case

When preferences are not separable in time, the evolution of the Pareto share θ1 depends

on the dynamics of the endowment process through the endogeneously determined discount

rates νn. Proposition 7 states sufficient conditions for the existence of a stationary distri-

bution but it does not indicate whether there actually exist parameter configurations under

which these conditions are satisfied, and whether these potential configurations are empiri-

cally sensible. In this section, I investigate this question numerically. I solve for the optimal

allocations for a wide range of risk aversion and IES levels,
(

1− γ, (1− ρ)−1), and then

check whether the dynamics of the Pareto share satisfies conditions for the existence of a

stationary distribution that I developed in Section 3.1.

In all the numerical calculations, agent 2 is assumed to be rational, u2 = 0. The time-

preference coefficient is set to β = 0.05 in order to assure sufficient discounting across all

parameter combinations but the survival results are not sensitive to a particular choice of β.
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The aggregate endowment process is parameterized by µy = 0.02 and σy = 0.015 in the

baseline scenario.

The main findings are summarized in Figure 1. The graphs depict the countour lines

for the mean consumption share of agent 1 under the stationary distribution, E [ζ1t ], if this

stationary distribution exists. In the top panel, agent 1 is optimistic with u1 = 0.05. The

bottom panel captures the results for a pessimistic agent, u1 = −0.05. The dotted diagonal

line shows parameter combinations when γ = ρ, corresponding to economies where agents

are endowed with time-separable CRRA utility.

The magnitude of the distortions is relatively small — it corresponds to a 3.75 percent

relative error in the perception of the growth rate of the aggregate endowment. This mag-

nitude is chosen only as an illustration, without having a particular empirical counterpart

in mind. The sensitivity of the results with respect to the chosen parameters is discussed

below. In particular, I show that the misperception of the growth rate, u1σy, is not a key

predictor of the mean consumption share of the incorrect agent.

The results indicate that a nondegenerate stationary distribution exists when the coef-

ficient of relative risk aversion is sufficiently larger than the inverse of the intertemporal

elasticity of substitution (γ < ρ), at least for the analyzed range of parameters. An analyti-

cal proof of this numerical result remains an open question, though. In particular, it is not

possible to ‘prove’ numerically whether it is sufficient for the existence of a nondegenerate

stationary distribution that γ < ρ, or that a stricter condition is required, γ < ρ− ε (ρ) for

a strictly positive function ε (ρ) (given all other parameters in the economy). I was not able

to establish the existence of such a strictly positive function. In the neighborhood of the

set of time-separable parameterizations γ = ρ, the consumption share of agent 1 becomes

negligible, and numerically indistinguishable from zero. In Section 4 I provide an argument

that explains why increasing the risk aversion or the IES relative to the time-separable case

increases the survival chances of the agent with distorted beliefs but this argument is not

able to dissect the question about ε (ρ).

Figure 4 plots the densities q (ζ1) for the stationary distributions in several economies

with an optimistic agent for which a stationary distribution exists. As risk aversion increases,

the mass of the density shifts to the right, and the optimistic agent is indeed able to acquire

a substantial fraction of the aggregate consumption.

When risk aversion is smaller than the inverse of the IES (γ > ρ), conditions (i’) and (ii’)

from Corollary 9 are satisfied numerically, and one of the agents dominates in the long run,

each on a set of paths of strictly positive probability. A similar cautious remark regarding
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the general validity of the numerical results when γ is close to ρ applies as above.

Time-separable utility (γ = ρ) can therefore be viewed as a threshold scenario character-

ized by the almost sure long-run dominance of the rational agent. This result is not robust

to sufficiently large deviations from time-separability, and deviations in opposite directions

from γ = ρ yield qualitatively different results. In particular, nondegenerate stationary

distributions exist in the empirically plausible cases when γ < ρ.

The qualitative survival results hold regardless of whether agent 1 is optimistic or pes-

simistic but the mean consumption share of agent 1 differ substantially. While the optimistic

agent is able to acquire a substantial share of aggregate endowment in a wider region of the

parameter space, the pessimistic agent has a significantly smaller consumption share under

the stationary distribution. The reason is the correlation of the aggregate endowment growth

with the shock that the two agents bet on, and the next section elaborates on this observa-

tion. When aggregate endowment risk vanishes but the agents can still write contracts on

the outcome of the shock, optimism and pessimism become completely symmetric. Figure 3

plots the countour lines for the mean consumption share of agent 1 under the stationary

distribution when σy = 0 — the graph is identical for u1 = ±0.05.

4 Saving and portfolio decisions in a decentralized econ-

omy

In order to shed light on the economic mechanism that generates the survival results de-

scribed in the preceding section, I decentralize the solution of the planner’s problem, and

investigate the saving and portfolio decisions of the two agents. The separation of the solution

into a consumption-saving problem and a portfolio allocation problem is a recursive-utility

extension of Karatzas, Lehoczky, and Shreve (1987) and Cox and Huang (1989) analyzed in

Schroder and Skiadas (1999).

Using the construction from Duffie and Epstein (1992a), the stochastic discount factor

process is given by

Sn
t = exp

(

−

∫ t

0

νsds

)(

Yt

Y0

)γ−1(
ζnt
ζn0

)ρ−1
(

J̃n
t

J̃n
0

)1− ρ
γ
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and its evolution can be written as

dSn
t

Sn
t

= µsn
(

θ1t
)

dt+ σsn
(

θ1t
)

dt.

Since each of the agents prices asset payoffs under his subjective probability measure,

the quantities
Mn

t+s

Mn
t

Sn
t+s

Sn
t

have to be equalized across n ∈ {1, 2}, P -a.s. under complete markets. Agents have to agree

on the prices of traded assets but the subjective and objective evaluations of risk prices will

differ. In particular, while each agent subjectively perceives the local risk price to be σsn , the

local risk price under the true probability measure is σsn + un, and this quantity is identical

for n ∈ {1, 2}.

The economy is driven by a single Brownian shock, and two suitably chosen assets that

can be continuously traded are therefore sufficient to complete the markets in the sense

of Harrison and Kreps (1979). Given the scaling of the economy, it is straightforward to

conjecture that asset returns will be functions of the Markov state θ1. Let the two traded

assets be an infinitesimal risk-free bond in zero net supply that yields a risk-free rate r (θ1),

and a stock representing the aggregate wealth that pays the aggregate endowment flow as

dividend. The stock price evolves as

dΞt

Ξt

= µΞ

(

θ1t
)

dt+ σΞ

(

θ1t
)

dWt

The parameters of the return processes are determined numerically from the calculated asset

prices.

It is convenient to define the aggregate wealth-endowment ratio w = Ξ/Y and the ratios

of individual wealth to aggregate endowment wn = Ξn/Y . These ratios can be calculated

numerically using the optimal consumption shares and continuation values obtained in the

planner’s problem (22), and an application of Ito’s lemma to wn (θ1) yields the corresponding

drift and volatility coefficients µwn (θ1) and σwn (θ1).

On the other hand, a standard portfolio argument implies that (omitting the dependence

on θ1 )

dwn
t

wn
t

=

(

rt + πn
t [µΞ,t − rt − σΞ,tσy]− µy + σ2

y +
πn
t

wt

−
ζnt
wn

t

)

dt+

+ (πn
t σΞ,t − σy) dWt
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where πn is the wealth share of agent n invested in the risky asset, πn/w the dividend flow

(relative to individual wealth) accrued from holding the stock, and ζn/wn the consumption

flow relative to individual wealth. A comparison of the drift and volatility coefficients with

those obtained numerically above yields the wealth shares πn invested in the risky asset.

4.1 The risk-sharing mechanism

The key insight to understanding the survival mechanism is that while the volatility coeffi-

cient of the subjective stochastic discount factor σsn increases with the degree of risk aversion

1− γ, this coefficient under the true probability measure, σsn + un, contains a constant dis-

tortion term. The distortions thrust a larger relative wedge between the two subjective

discount factors when risk aversion is low. An optimistic (pessimistic) agent will thus accept

relatively more of the procyclical (countercyclical) variation in the consumption process in

an economy where the risk aversion is relatively low (despite the fact that both agents are

equally risk averse). Figure 7 documents this by plotting the wealth share of agent 1 invested

in the risky asset. The deviation from one is the larger the lower is the level of risk aversion.

An optimistic agent 1 with a levered stock position and a pessimistic agent 1 with a short

stock position are both optimistic regarding the growth rate of their portfolio. Although they

agree with the rational agent 2 on the equilibrium price of their wealth, their optimistic belief

leads them to consume more from their wealth. The behavior of the consumption-wealth

ratio is depicted in Figure 8. A lower risk aversion leads to a higher leverage for an optimistic

agent (or a larger short position in case of a pessimistic agent), which translates to a higher

degree of optimism and a higher consumption-wealth ratio for small levels of the consumption

share.

The behavior of the consumption-wealth ratio then decides the survival chances of the two

agents. If the consumption-wealth ratio is sufficiently low for an agent as his consumption

share declines, he will save his way out of extinction. Considering that the agent is optimistic

about his own wealth growth, he needs, under his subjective beliefs, to tilt the consumption

profile toward the future in order to survive, and he is more willing to do so under a higher

intertemporal elasticity of substition.

4.2 Sensitivity to the choice of parameters

Under time-separable preferences, analytical results presented in Section 3 show that agent 1

cannot escape extinction. An increase in risk aversion of the CRRA utility does not overturn
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this outcome — the lower relative discrepancy between the volatility terms in the stochastic

discount factor σsn is offset by a decrease in the IES which diminishes the willingness to tilt

the consumption profile toward the future.

The analysis in this paper shows that the extinction result from the time-separable case

is a specific scenario. Starting from the time-separable case, agent 1 improves his survival

chances when risk aversion 1 − γ increases, alleviating the relative discrepancy in σsn , and

when the IES (1− ρ)−1 increases, allowing to tilt the consumption profile toward the future

and outsave extinction.

This argument does not imply that the mean consumption share of the incorrect agent

has to increase monotonically with risk aversion and IES. For instance, a pessimistic agent

becomes optimistic about the growth rate of his portfolio only when he shorts the stock.

However, in an economy with high risk aversion the pessimistic agent may not have a chance

to take such a short position unless his wealth share is sufficiently small, because the rational

agent is not willing to accept the counterbalancing leveraged position. Such an effect is

pronounced in the bottom panel of Figure 1 — for high levels of IES, the mean consumption

share of the pessimistic agent is strongly non-monotonic in the degree of risk aversion.

When the belief distortion increases in magnitude, one would expect that the incorrect

agent loses his consumption share, as he makes more incorrect bets. This is to a great extent

confirmed by Figure 2 which replicates Figure 1 for larger magnitudes of the distortions.

However, there is also a counteracting effect — an agent with a larger distortion may also be

more optimistic about the growth rate of his portfolio, and avoid declines in his consumption

by increasing his propensity to save already at higher wealth shares. As expected, I find the

latter effect to dominate for some parameterizations in the region of the parameter space

with a high IES. The bottom panel in Figure 2 displays the consumption shares for a more

pessimistic agent than the one in the bottom panel of Figure 1. The region in the bottom part

of the graph, corresponding to high IES, in which the incorrect agent can gain a relatively

large average consumption share expands to the right.

An increase in the volatility of the aggregate endowment process σy has a similar effect

as a decrease in the magnitude of the belief distortion. These two adjustments both decrease

the relative importance of the belief distortion in the volatility of the stochastic discount

factor under the true probability measure, σsn + un. For the investigated parameterizations,

proportional marginal increases in both σy and u1 roughly offset each other and have very

little overall impact on the mean consumption share of agent 1.

In this respect, the misperception of the growth rate of aggregate endowment, u1σy, is
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not a good predictor for the mean consumption share of agent 1. A marginal increase in

u1σy caused by an increase in u1 has an analogous effect as a marginal decrease caused by a

decrease in σy. Economies with different misperceptions u1σy produce plots very similar to

those in Figure 1, as long as the ratio u1/σy is held constant.6

The discussion in this section can be completed by noting that the described results are

not sensitive to changes in the time-preference coefficient β and the growth rate µy. These

parameters influence the willingness of the agents to tilt the consumption profiles but since

the changes in these parameters influence both agents in a symmetric way, they have to a

great extent an offsetting character.

4.3 Comparison to economies with only terminal consumption

Agents in economies that I analyze in this paper consume at every instant in time. Kogan,

Ross, Wang, and Westerfield (2006) deal with a different framework with two agents endowed

with CRRA preferences. In their economy, there is no intermediate consumption and the

agents split and consume an aggregate dividend payoff at a terminal date T . The dividend

evolves according to a geometric Brownian motion (1), and agents can continuously retrade

claims on the terminal payoff during the lifetime of the economy. The notion of survival in

this framework is captured by analyzing the limit of the consumption share distribution in

a sequence of economies as T → ∞.

Without intermediate consumption, the agent’s intertemporal decision is reduced to the

maximization of the (risk-adjusted) expected growth rate of the portfolio, i.e. the agent

behaves as an agent with unitary elasticity of substitution. Although the differences between

the two frameworks are substantial, the results presented in this paper suggest that the

survival chances of the incorrect agent will increase with the degree of risk aversion.

Indeed, Kogan, Ross, Wang, and Westerfield (2006) find that the incorrect agent survives

(and actually dominates the economy) for moderate degrees of optimism when the risk

aversion is larger than one, and the region of belief distortions that guarantees survival widens

as risk aversion increases. However, in their model, economies in which both agents survive

correspond only to knife-edge parameterizations. This is due to the absent consumption-

saving decision that enables the agents to save their way out of extinction in situations when

their wealth share becomes small.

6This statement is correct for the range of examined parameterizations, and is not a result that is neces-
sarily true in general.
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5 Extensions

In this section, I consider two extensions of the analyzed model. The first extension in-

troduces learning and leads to an endogenously varying belief distortions un. The second

extension incorporates robust utility models.

While I do not solve these variants, I describe the solution method and suggest interesting

open questions. Answering these questions is left for future research.

5.1 Model uncertainty and learning

The survival analysis in the previous text assumed a constant belief distortion un. However,

the framework developed in Section 2 includes more general processes that can be used to

model the distortions. This allows to incorporate agents who learn about the true mean

growth rate µy of aggregate endowment as they receive new information about the evolution

of the economy.

There are various ways of introducing learning into this model. One is to specify for agent

n a continuous prior F n
0 (µ) on M ⊆ R such that µy ∈ supp F n

0 , and update the prior as new

information arrives. The disadvantage of this approach for a numerical implementation are

unclear boundary conditions at the boundaries of M.

Instead, I assume that the agent has in mind a set of K models that differ in the mean

growth rate. The set of models is represented by a vector of distorting components un =

(un
k)

K

k=1, with the true model being ordered first, i.e. un
1 = 0. At time t, the agent assigns

a probability distribution pnt = (pnkt)
K

k=1 to this vector. The vector pn0 denotes the prior

distribution independent of the realizations of the Brownian motion W . In order to avoid

pathologies, I assume pnk0 > 0 for all k ∈ {1, . . . , K}.

As in the previous text, agents agree to disagree about the subjective probability measures

Qn. Each agent understands from observed prices that their beliefs differ, he however does

not ascribe this differences to superior information of the other agent. Agents therefore only

learn from the observed realizations of the aggregate endowment process.

In the setup with time-separable utility, the aggregator f (C, V ) in (4) is additive and

linear in V , and the law of iterated expectations can be utilized to solve the problem of

a Bayesian learner in two steps. First, calculate the continuation values in the recursive

formula (4) conditional on a particular model, and then integrate out across models. This

two-step solution works because posterior distributions of a Bayesian learner are martingales

under the subjective probability measure of the learner.
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This method cannot be used when f (C, V ) is not separable. Instead, I will show how

to approach the problem in a similar manner as one with a constant (or, more generally,

exogenously specified) distortion. I construct the appropriate distorting martingale that

accounts for model uncertainty. The marginal distorted measure, integrated out across

models, is again absolutely continuous with respect to the true probability measure P . As a

result, a modified discount factor can be defined as in (12), and the solution method for the

problem (14–16) applies.

Recall that under model k, agent n perceives the trend component of the aggregate

endowment process (1) to be µn
y,k = µy + un

kσy. It is well-known from the literature on

Bayesian updating (see Wonham (1964)) that the evolution of the probability distribution

across models for a Bayesian learner follows

dpnt = ∆(pnt )

(

dYt

Yt

−
(

µn
y

)′
pnt dt

)

(29)

where

∆ (pnt ) = |σy|
−2 (diag (pnt )− pnt (p

n
t )

′)µn
y

is the regresssion coefficient in the regression of the true state on the evolution of the observed

variable under the agent’s information set, and diag (p) is a diagonal matrix with elements

of vector p on the main diagonal.

The agent perceives the local trend component of the evolution of Yt to be Yt

(

µn
y

)′
pnt ,

and thus

Yt −

∫ t

0

Ys

(

µn
y

)′
pnsds

is a martingale under Qn. This leads to the construction of a Brownian motion W n under

Qn defined by

dW n
t ≡

dYt

Yt
−
(

µn
y

)′
pnt dt

σy

= − (un)′ pnt dt+ dWt

The Brownian motion W that is a martingale under the true measure is distorted by the

trend component (un)′ pnt under the subjective measure. The martingale

Mn
t = exp

(
∫ t

0

−
1

2

[

(un)′ pns
]2
ds+

∫ t

0

(un)′ pnsdWs

)

is therefore the distorting martingale that replaces (2) in the case of a learning agent. The

agent acts as if there was a time-varying average distortion process ūn
t = (un)′ pnt . The

optimization problem (14–16) is extended by the filtering equation (29) and the evolution of
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the modified discount factor becomes

dλ̄n
t

λ̄n
t

= −νn
t dt+ (un)′ pnt dWt

Conjecturing a new Markov state

Z =
(

λ̄′, Y,
(

p1
)′
,
(

p2
)′
)′

it is possible to derive a new version of the HJB equation (19) on a multidimensional but

compact set with well defined boundary conditions that can be built up sequentially from

solutions of lower-dimensional problems. The algorithm is the same as in the case of a

multi-agent economy described in Section 2.4.

What impact does the introduction of a learning agent 1 have on the survival problem

analyzed in Section 3.4? It is reasonable to expect that both agents survive in the long run

for parameterizations satisfying γ < ρ, at least as long as they survive conditionally on each

distorted model u1
k that agent 1 has in mind. Under learning, beliefs of agent 1 converge

to the true probability distribution, which improves the survival chances of agent 1. As the

beliefs converge, the evolution of the process θ1 settles. The limiting distribution of θ1 as

t → ∞ from which we can deduce the wealth and consumption distribution remains an open

question.

When γ > ρ, the survival problem is more complicated. Under a constant belief distortion

of agent 1, each of the agents may dominate the economy with a strictly positive probability.

Survival under learning will depend on the relative rates of learning and extinction. Again,

this problem is an open question for future research.

5.2 Robust utility

Consider an agent who believes that the model for the aggregate endowment dynamics is

misspecified and views (1) only as a reference model that approximates the true dynamics.

Anderson, Hansen, and Sargent (2003) and Skiadas (2003), among others, suggest to model

the misspecification by modifying the continuation value problem (6) as

λn
t V

n
t = inf

un,νn
E

Qn
u

t

[
∫ ∞

t

λn
s

[

F (Cn
s , ν

n
s ) +

θs
2
|un

s |
2

]

ds

]
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subject to

dλn
s

λn
s

= −νn
s ds, s ≥ t

λn
0 = 1

The measure Qn
u is specified by the Radon-Nikodým derivative (2) and the explicit

subindex expresses the fact that the minimization problem also includes the choice of the

appropriate subjective measure. The set of permissible processes un needs to satisfy some

regularity conditions like square integrability.

The minimization over un expresses agent’s fear about the realization of the worst case

scenario, characterized by the least favorable dynamics

dYt

Yt

= µydt+ σy (u
n
t dt+ dW n

t )

where W n is a Brownian motion under Qn
u. At the same time, the agent understands that

specifications which are statistically easy to discriminate from the approximate dynamics

are unlikely to be correct, and thus large distortions are penalized by the penalty process
θ
2
|un|2. Anderson, Hansen, and Sargent (2003) consider a constant θ, while Maenhout (2004)

makes θ proportional to the continuation value V to retain homogeneity of the optimization

problem.

Except the penalty process in the objective function and the endogenous choice of the

distortion process un, the calculation of the continuation value is analogous to that introduced

in Section 2. Optimal allocations in an economy with two agents endowed with robust

preferences are then found by solving an suitably modified planner’s problem (14–16).

Under time-separable preferences, agents who fear misspecification more (and therefore

assign a lower penalty θ to deviations from the reference model) choose a more distorted

worst case scenario, which worsens their survival chances.7 However, the results for constant

belief distortions u indicate that survival chances of the more fearful agents are likely to

improve for appropriate non-separable parameterizations of preferences.

This characterization of robust decision-making suggests that it is possible to under-

stand robust preferences merely as a specific belief distortion. Such a simplification however

conceals the economic content of the decision-theoretic foundations underlying the robust

preferences. Reverting the argument, the framework introduced in this paper can be used to

7An exact statement about survival naturally depends on the model and the choice of the process θ for
each of the agents.
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analyze stationary equilibria in heterogeneous agent economies endowed with a much wider

class of preferences than the constant belief distortions that I focused at in Section 3.

6 Conclusion

Survival of agents with heterogeneous beliefs has been studied extensively in the time-

separable framework. The main conclusion arising from the literature is a relatively robust

argument in favor of the market selection hypothesis. Under complete markets, a two-agent

economy is dominated in the long run by the agent whose beliefs are closest to the true

probability measure for a wide class of preferences and endowments. In particular, Kogan,

Ross, Wang, and Westerfield (2009) show elegantly that this result holds irrespective of the

specification of the aggregate endowment process as long as relative risk aversion is bounded.

This paper shows that the robust survival result is specific to the class of time-separable

preferences. I analyze a two-agent continuous-time economy with iid aggregate endowment

growth populated by agents endowed with recursive preferences of the Duffie-Epstein-Zin

type. I show that nondegenerate stationary distributions exist for a broad set of param-

eterizations when risk aversion is larger than the inverse of the intertemporal elasticity of

substitution. In this region, the high risk aversion relative to the time-separable case pre-

vents an optimistic (pessimistic) agent from taking excessively large long (short) positions in

the asset that pays the aggregate endowment as dividend. In this way, he does not become

overly optimistic about the growth of his portfolio which would otherwise lead to excessively

high current consumption rate and loss of wealth in the long run. Similarly, a high IES

relative to the time-separable case induces the agent to tilt the consumption profile toward

the future, and outsave extinction.

An opposite result occurs when risk aversion is lower than the inverse of the IES. When

the wealth share of an agent declines, he takes excessively large positions in the risky asset,

becomes overly optimistic about the growth rate of his portfolio, increases his consumption

beyond a sustainable level and becomes extinct. Since this can happen to either of the agents,

each agent can dominate the economy in the long run with a strictly positive probability.

In this sense, the robust survival result from the time-separable case is a threshold sce-

nario in the class of recursive preferences which may only extend to a neighborhood of

the time-separable case when the mean consumption share of the distorted agent becomes

numerically indistinguishable from zero. In the class of recursive preferences, the market

selection hypothesis fails for sufficiently large deviations of the risk aversion coefficient from
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the inverse of the IES. Also, the results highlight the different roles of risk aversion and IES

in the portfolio allocation and consumption-saving decisions.

The survival results are obtained by extending the solution method of Dumas, Uppal,

and Wang (2000) to a setting with heterogeneous beliefs. Long-run survival of the agents

is determined by the behavior of a stochastic process that models the Pareto share of one

of the agents. I provide tight sufficient conditions that guarantee survival or extinction.

Unfortunately, these conditions need to be checked numerically as part of the solution of

the model. These conditions can be interpreted as relative patience conditions analogous

to those in Lucas and Stokey (1984). An agent survives in the long run if his relative

patience becomes sufficiently large as his wealth share vanishes. However, in this framework

the relative patience arises endogenously as an equilibrium outcome, and is not a direct

property of agents’ preferences.

These results are obtained for a two-agent economy with an aggregate endowment process

that is specified as a geometric Brownian motion but the theoretical framework can also be

utilized to derive an analog HJB equation for multi-agent economies with more sophisticated

Markov dynamics. In principle, the qualitative survival results should extend to a wider

class of models with stable consumption growth dynamics, although the analysis of the

existence of a stationary distribution for the Pareto share becomes more complicated in a

multidimensional state space.

Importantly, the developed solution method is not limited to constant distortions and

applies to a much wider class of preferences that are interpretable as deviations in beliefs. I

outline how to use the method in a framework with model uncertainty and learning, and in

a model where agents are endowed with robust preferences. Solutions of these problems are

left as open questions for future research.

The bad news for the market selection hypothesis is in some sense good news for models

with heterogeneous agents. Models with agents who differ in preferences or beliefs often have

degenerate long-run limits in which only one class of agents survives. Although this paper

does not provide a general result, it suggests that coupling belief heterogeneity (including

preferences that can be interpreted as belief distortions) and recursive preferences with em-

pirically plausible parameters leads to models in which the heterogeneity does not vanish

over time.
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A Epstein-Zin preferences in continuous time

In this section, I show informally how to derive the continuous-time recursive preferences of

Kreps and Porteus (1978) as a limiting case of the Epstein and Zin (1989) preferences.

The continuation value process Ṽ for an agent with Epstein-Zin preferences is given by

Ṽt =
[

(

1− e−β
)

(Ct)
ρ + e−βR̃t

(

Ṽt+1

)ρ] 1

ρ

(30)

R̃t

(

Ṽt+1

)

=
(

Et

[(

Ṽt+1

)γ]) 1

γ

where ρ < 1 and γ < 1 are parameters with the same interpretation as in (5). For the sake of

simplicity, I omit the situations when γ = 0 or ρ = 0 but these can be treated as appropriate

limiting cases. Observe that when γ = ρ, the preferences reduce to the time-separable CRRA

utility.

Specification (30) does not directly yield an aggregator of the form (5) as its limit since the

certainty equivalence R̃t (Vt+1) = h−1 (Et [h (Vt+1)]) is not linear in V . As shown by Duffie

and Epstein (1992b), this nonlinearity leads in continuous-time case to a compensation using

a variance multiplier that introduces an additional term to the recursive utility definition

(4).

To avoid this issue, it is advantageous to consider an ordinally equivalent transformation

of the utility process

Vt =
1

γ

(

Ṽt

)γ

(31)

which leads to

Vt =
1

γ

[

(

1− e−β
)

(Ct)
ρ + e−β (γEtVt+1)

ρ
γ

]
γ
ρ
. (32)

This transformation reduces the certainty equivalence to an expectation8.

Instead of using a discrete time interval of length one, take a time step of length ε and

analyze the limit as ε → 0. Express Et [Vt+ε] from (32) to obtain

Et [Vt+ε] =
[

eβε (Vt)
ρ
γ −

(

eβε − 1
)

γ− ρ
γ (Ct)

ρ
]

γ
ρ
.

8Notice that γ and V will always have the same sign, so that (γEtVt+1)
ρ

γ is well-defined.
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Applying the L’Hospital rule leads to

lim
ε↘0

Et [Vt+ε]− Vt

ε
= lim

ε↘0

[

eβε (Vt)
ρ
γ −

(

eβε − 1
)

γ− ρ
γ (Ct)

ρ
]

γ
ρ
− Vt

ε
=

= lim
ε↘0

γ

ρ

[

eβε (Vt)
ρ
γ −

(

eβε − 1
)

γ− ρ
γ (Ct)

ρ
]

γ
ρ
−1

·

·
(

βeβε (Vt)
ρ
γ − βeβεγ− ρ

γ (Ct)
ρ
)

= β
γ

ρ
(Vt)

1− ρ
γ

(

(Vt)
ρ
γ − γ− ρ

γ (Ct)
ρ
)

=

= −
β

ρ

(Ct)
ρ − (γVt)

ρ
γ

(γVt)
ρ
γ
−1

≡

≡ −f (Ct, Vt) (33)

Integrating this expression over time and taking expectations yields

Et

[
∫ ∞

t

−f (Cs, Vs) ds

]

= lim
T→∞

Et [VT ]− Vt

which, assuming the transversality condition limT→∞ Et [VT ] = 0, implies formula (4).
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Figure 1: Average consumption share of the agent with distorted beliefs for an optimistic
(top panel) and a pessimistic (bottom panel) distortion. The graphs depict the contour lines
for E [ζ1t ] under the stationary distribution in the (1− γ, (1− ρ)−1) space. Belief distortions
are u1 = 0.05, u2 = 0 for the top panel, and u1 = −0.05, u2 = 0 for the bottom panel.
Remaining parameters are β = 0.05, µy = 0.02, σy = 0.015.
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Figure 2: Average consumption share of the agent with distorted beliefs for an optimistic
(top panel) and a pessimistic (bottom panel) agent with a larger distortion than in Fig-
ure 1. The graphs depict the contour lines for E [ζ1t ] under the stationary distribution in
the (1− γ, (1− ρ)−1) space. Belief distortions are u1 = 0.1, u2 = 0 for the top panel, and
u1 = −0.1, u2 = 0 for the bottom panel. Remaining parameters are β = 0.05, µy = 0.02,
σy = 0.015.
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Figure 3: Average consumption share of the agent with distorted beliefs in a model with
deterministic growth. The graph depicts the contour lines for E [ζ1t ] under the stationary
distribution in the (1− γ, (1− ρ)−1) space, and is identical for symmetric optimistic and
pessimistic distortions |u1| = 0.05, u2 = 0. Remaining parameters are β = 0.05, µy = 0.02,
σy = 0.
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Figure 4: Stationary distributions for the consumption share of the agent with distorted
beliefs ζ1. All models are parameterized by u1 = 0.05, u2 = 0, IES = 1.5, β = 0.05,
µy = 0.02, σy = 0.015, and differ in levels of risk aversion.
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Figure 5: Scaled relative patience [ν2 (θ1)− ν1 (θ1)] / (u1)
2
as a function of the consumption

share ζ1. All models are parameterized by u1 = 0.05, u2 = 0, IES = 1.5, β = 0.05,
µy = 0.02, σy = 0.015, and differ in levels of risk aversion. The solid line corresponds to the
time-separable case.
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Figure 6: Drift component of the Pareto share evolution Et [dθ
1
t ] /dt as a function of the

consumption share ζ1. All models are parameterized by u1 = 0.05, u2 = 0, IES = 1.5,
β = 0.05, µy = 0.02, σy = 0.015, and differ in levels of risk aversion. The solid line
corresponds to the time-separable case.
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Figure 7: Wealth shares πn invested in the risky asset as a function of the consumption share
ζ1 of agent 1. All models are parameterized by u1 = 0.05, u2 = 0, IES = 1.5, β = 0.05,
µy = 0.02, σy = 0.015, and differ in levels of risk aversion. The solid line corresponds to the
time-separable case.
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Figure 8: Propensity to consume from wealth ζn/wn a function of the consumption share
ζ1 of agent 1. All models are parameterized by u1 = 0.05, u2 = 0, IES = 1.5, β = 0.05,
µy = 0.02, σy = 0.015, and differ in levels of risk aversion. The solid line corresponds to the
time-separable case.
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