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1 Introduction

Search models of the labor market have traditionally treated the production side

very simplistically: Each firm wants to hire one worker, which is usually equivalent

to having several workers with constant marginal product (see e.g. the surveys

by Mortensen and Pissarides (1999) and Rogerson, Shimer, and Wright (2005)).

While successful in many dimensions, these models are silent about all aspects that

relate to employer size, even though firm size and firm dynamics are important for

both wages and employment. Larger firms are on average more productive and

they tend to pay more (e.g., Brown and Medoff (1989), Oi and Idson (1999)). In

percentage terms, older and larger firms grow less but also exit the market less

(Evans (1987a, 1987b)). After controlling for worker characteristics, young and

fast–growing firms pay higher wages (Brown and Medoff (2003), Belzil (2000)). And

larger firms create and destroy more jobs (Davis, Haltiwanger, and Schuh (1996)),

they are more sensitive to the business cycle than smaller firms (Moscarini and

Postel-Vinay (2009a)), and therefore contribute to aggregate employment dynamics

in very different ways. Abstracting from firm size not only misses important labor

market facts that we might like to understand, it also limits the ability of labor

market models to account for business cycle behavior.

To capture firm size phenomena, a series of recent work has introduced multi-worker

firms with decreasing returns to labor into standard labor search models, consid-

ering among others the implications for wages and unemployment (e.g., Bertola

and Caballero (1994), Smith (1999), Bertola and Garibaldi (2001), Acemoglu and

Hawkins (2006), Cahuc, Marque, and Wasmer (2008), Mortensen (2009)), for la-

bor market regulation (Koeniger and Prat (2007)), for business cycles (Elsby and

Michaels (2008), Fujita and Nakajima (2009)) and for trade-based employment ef-

fects across countries (e.g., Helpman and Itskhoki (2010), Helpman, Itskhoki and

Redding (2010a,b)). A central part of all labor market models concerns the wage

formation, and all of these contributions rely on a combination of random search

together with extensions of the bargaining framework of Stole and Zwiebel (1996).

The latter might be viewed as the analogue of standard one-worker-one-firm bar-

gaining for multi-worker settings. The validity of this wage setting assumption has

never been analyzed; nonetheless, it dominates the current developments, possibly
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due to a lack of alternatives.

One particular concern about the bargaining model with multi-worker firms is that

it introduces inefficiencies by assumption. If the marginal product of labor is de-

creasing, each individual firm hires too many workers (Stole and Zwiebel (1996),

Smith (1999), Cahuc, Marque, and Wasmer (2008)).1 This inefficiency arises before

accounting for general equilibrium effects, since the interaction between a single firm

and its workers is not even efficient within the match: the firm employs workers up

to a point where their marginal product is lower than the hiring cost, since the

reduction in marginal product by an additional worker depresses the wages of all

inframarginal workers. Such excess employment within the match arises indepen-

dently of the bargaining power. Inefficiency is therefore an unavoidable feature of

this setup, and beneficial government interventions exist by assumption.

Note that this is very different from the standard one-worker-one-firm (or constant

returns) setup, where each match (worker-firm-pair) takes decisions that are efficient

for the matched parties; whether this leads in equilibrium to efficient job creation and

job destruction on the aggregate level depends on the exact bargaining parameter

(Hosios (1990)). Therefore, applied work in this area has focused on the planner’s

solution (see e.g. Merz (1995), Andolfatto (1996), Shimer (2005b)) or compared it

with inefficient solutions (e.g. Hall (2005), Hagedorn and Manovskii (2008)) to see

which seems to be closer to reality. The current multi-worker setup does not allow

for such a horse race between efficient and inefficient outcomes, partly because we do

not have plausible search models that justify an analysis of the planner’s problem.

The aim of this paper is to propose an alternative wage formation process based on

directed search, explore its positive potential for explaining firm dynamics, and to

evaluate its implications for efficiency. The main idea behind directed job search is

that firms set wages to attract workers rather than to split surplus ex-post. There-

fore, firms that have a strong desire to grow do not just post more vacancies, but

1Pissarides (2000) notes that a decreasing marginal product of labor does not affect the results

if the production function has constant returns in multiple inputs, and the other inputs such as

capital can be adjusted instantaneously. In this case the marginal return of labor, after accounting

for adjustment of the other factors, is in fact constant. Cahuc and Wasmer (2001) show that in this

case their is no overhiring because the wages of inframarginal workers are not affected. Therefore,

the idea of decreasing returns to labor effectively means decreasing returns to scale for a production

function with multiple, freely variable inputs.
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they also attract more workers for any given vacancy and hence fill jobs at a higher

rate. Recent empirical work supports this view: Davis, Faberman, and Haltiwanger

(2009) find that firms that double their employment growth rate do so by posting

20% more vacancies (relative to workforce) but they fill a given vacancy with 50%

higher probability.2 While there are also random search models in which job-filling

rates differ between firms,3 this is absent in most papers with bargained wages but

constitutes an integral part of competitive search. In such models, firms compete

by publicly posting employment contracts and workers react by applying more for

attractive contracts. We model both the extensive and intensive margin by allowing

entry of new firms and exit of existing firms (extensive margins) and hiring and

firing of workers by existing firm (intensive margins). While each firm can post

many vacancies at a time, in general it will not immediately jump to its desired size

because monetary recruitment costs and human resource costs in hiring and training

of prospective employees make such immediate adjustment prohibitively expensive.

An important question is whether our model delivers on the interesting margins of

firm dynamics mentioned above that inspired the use of multi-worker firms in the

first place. It does. We show analytically that wages are higher in more productive

firms and in firms that grow faster. Conditional on firm age, larger firms pay higher

wages. Conditional on size, firms that grow faster post more vacancies and fill each

vacancy with higher probability.

Furthermore, these factual implications on firm dynamics are indeed socially op-

timal: A social planner would choose the same path of job flows for each of the

firms. Multi-worker firms create and destroy jobs efficiently both on the extensive

and intensive margin, even though bargaining would never lead to efficiency on the

latter. The model retains tractability in steady state and even in the presence of

idiosyncratic and aggregate shocks, and we show that efficiency arises regardless.

The notion of competitive search builds on existing work with one-worker-per-firm

(e.g., Peters (1991), Moen (1997), Acemoglu and Shimer (1999b), Burdett, Shi, and

Wright (2001) Shi (2001), Mortensen and Wright (2002), Shimer (2005a)). While

these contributions have long established efficiency on the extensive entry margin,

2 The numbers refer to firms that grow at 20% instead of 10%, and rely on Figures 5 and 9 in

Davis, Faberman, and Haltiwanger (2009).
3On this issue, see our discussion of on-the-job search models in the next section.

3



efficiency on the intensive margin is not obvious: For example Guerrieri (2008) in-

troduces an intensive margin through moral hazard into one-worker-one-firm models

and finds efficiency in steady state but not out of steady-state. We show that effi-

ciency on all margins obtains in and out of steady state.4 Our analysis suggests a

plausible environment where the decentralized market achieves efficiency, giving a

justification for the study of the planners’ solution and its comparisons with other

decentralizations. We discuss further related competitive search models such as

Garibaldi and Moen (2010) and Hawkins (2006) in detail below.

Our framework is intended as a possible alternative to the existing bargaining frame-

work. The model has the ability to account for important firm dynamics, and there-

fore can be used to assess their implications for the levels and changes in aggregate

employment. And this is achieved without any systematic imperfections in the

market mechanism. While it will be a matter of empirical investigation whether

alternative wage setting mechanisms lead to inefficient market outcomes, this work

shows that fixed setup costs in combination with decreasing returns at the firm level

does not need to induce any inefficiencies. Unless wages by themselves are of crucial

importance, this model suggests that many of the allocation processes in the labor

market might be analyzed as solutions to a planner’s allocation.

We also show that the planner’s choice of firm dynamics retains tractability be-

cause it can be obtained from the solution of a recursive equation at the level of an

individual firm in combination with an optimal firm–creation condition. This fea-

ture remains true in the presence of aggregate shocks which is particularly helpful

for computational applications. In particular, we show that any planner allocation

with positive firm entry can be calculated without knowledge of the distribution of

employment across existing firms. In this way, our solution method avoids the need

for approximation techniques, such as those of Krusell and Smith (1998), that have

been applied in the multi-worker search models of Elsby and Michaels (2008) and Fu-

jita and Nakajima (2009) to analyze aggregate labor market dynamics. Technically,

our solution method exhibits the feature of “block recursivity” where each agent’s

value and policy functions are independent of the firm and worker distribution, as

in Menzio and Shi (2008).

4On an intuitive level, the main difference to Guerrieri (2008) is that future unemployment

rates do not have unpriced externalities on current productivity.
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After a brief review of further related literature, we first present in Section 3 a simpli-

fied setup without aggregate or idiosyncratic shocks, except some initial productivity

differences and exogenous firm death. This allows for a teachable representation, it

establishes the most important insights for dynamics of employment and pay over

the life-time of a firm, and it demonstrates the efficiency of the decentralized allo-

cation clearly. In Section 4, we lay out the notationally more complex analysis that

takes account of aggregate and idiosyncratic shocks and we characterize the efficient

allocation and the decentralized allocation. Since it is not obvious that efficiency ex-

tends beyond the stationary environment, we formally prove the equivalence of both

of these allocations. Beyond the focus on these theoretical contributions, we conduct

numerical examples in Section 5 to illustrate that the model has the potential to

account jointly for the magnitudes of firm and unemployment dynamics.

2 Related Literature

Most work on labor search relies on undirected search with bargaining, where the

number of matches is determined as a function of the ratio of unemployed workers to

vacant jobs. Directed search (or competitive search) retains the idea of the matching

function, but different contracts form different markets and workers can decide where

to search. In most of these models, each firm can hire at most one worker in any

given period. Properties of the matching function are reviewed in Petrongolo and

Pissarides (2001), and Mortensen and Pissarides (1999) and Rogerson, Shimer, and

Wright (2005) review models of undirected and directed search.

Closely related to our contribution is the work by Garibaldi and Moen (2010). They

consider a directed search model where workers can search on-the-job and firms can

hire many workers. They derive a number of new insights for on-the-job search. In

contrast to our paper, though, they consider constant returns production functions,

and the only determinant of firm size arises from convex vacancy creation costs.

Even in the standard search model a linear frontier eliminates inefficiencies as long as

the bargaining power is set according to the Hosios (1990) condition, irrespective of

convex vacancy creation costs, since employment of any one worker does not diminish

the marginal product of another worker.5 In contrast, the difference between average

5By the standard model we mean the model with random search and bargaining when only the
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and marginal product in large firms and the possible complications for wage setting

and efficiency is exactly what is at the heart of this study. Moreover, due to constant

returns the current size of the firm ceases to be a state variable in Garibaldi and Moen

(2010), and therefore firm growth and wage levels depend only on its productivity

type but are independent of firm size. That is, the model is silent about the role

of employer size and age for job creation. Additionally, it might be non-obvious

that it is the convexity of the vacancy posting cost that limits the immediate jump

in employment to the desired size. We additionally consider the possibility that

screening and training of prospective employees requires time involvement of existing

employees, which might be the more relevant restriction in the expansion of a firm.

Firm–specific knowledge needs to be transmitted to the prospective hires, and this

naturally limits the growth of the firm. Finally, our analysis also allows idiosyncratic

and aggregate shocks.6

For settings where each firm can only hire one worker, the combination of wage

competition and matching frictions that underlies directed search has been micro-

founded as a coordination game in Peters (1991), Burdett, Shi, and Wright (2001)

and Galenianos and Kircher (2009). In such games, sometimes multiple workers

apply for the same job and only one of them can be hired. These micro–foundations

can be extended to our multi–worker firms if one assumes that excess applicants for

one position cannot fill another position at the same firm. This arises if different

vacancies relate to different qualifications: for example, vacancies for an electrician

cannot be filled by applicants for the position of a mechanic or a carpenter, even

though each position yields roughly the same contributions in terms of marginal

product (therefore labor productivity is modeled homogeneously). An alternative

interpretation is that workers are literally identical and excess capacity can be sub-

stituted from one job to another, which means that posting additional jobs exhibits

increasing returns; see Burdett, Shi, and Wright (2001), Hawkins (2006) and Lester

(2009) for variations along these lines. In accordance with most work on large firms,

unemployed can search, where the efficiency result for constant returns was shown e.g. in Cahuc

and Wasmer (2001). We are not aware of efficiency results when on-the-job search is introduced

into such a model.
6Productivity shocks might induce some firms to shed some of their workforce. We note that

a linear frontier such as in Garibaldi and Moen (2010) would imply that a firm that fires some

workers will fire all of them, unless there are strictly convex firing costs.
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we adopt the first interpretation and abstract from possible increasing returns in

hiring.

Hawkins’s (2006) contribution considers a directed search model where firms hire

multiple workers and produce output according to a decreasing–returns production

function. He assumes that firms post a finite number of vacancies, and then receive

a stochastic number of applications. Since the number of applicants is stochastic,

he shows that posting a wage alone is not sufficient to induce efficiency. Rather, the

posted contract has to condition on the realized number of applicants. These con-

tingencies make the model somewhat intractable, and results on efficiency and firm

dynamics out of steady state are missing. The standard assumption for large firms

that many vacancies are posted eliminates some of the random elements. In fact, we

assume that any firm advertises a continuum of vacancies (and employs a continuum

of workers), thus eliminating uncertainty about the number of applicants entirely.

By implication, the contract does not have to condition on the number of applicants,

which can be inferred in advance. This feature simplifies the model considerably and

allows us to obtain explicit and tractable solutions for firm dynamics.

Gourio and Rudanko (2009) consider a model of the product market where firms

acquire a customer base. Some of the elements of their model are related, in the

sense that a firm tries to attract a continuum of customers through price offers, and

is limited by the current sales force. The research question is very different, though,

in that their model does not speak to unemployment questions, and their analysis

does not consider efficiency. Rather, they consider the relation between Tobin’s q

and investment.

This work focuses primarily on job flows, and all worker flows are transitions between

unemployment and employment. Work following the lines of Burdett and Mortensen

(1998), Moscarini and Postel-Vinay (2009b), Menzio and Shi (2008), and Garibaldi

and Moen (2010) focussed additionally on worker flows between firms, and used this

feature to address some puzzles in the literature. Except for the last contribution,

none of these models allows a given firm to increase the number of vacancies that

it posts, and so employment growth has to arise solely out of additional hiring per

vacancy. None of these contributions allow for a difference between average and

marginal productivity of labor.7 A natural next step seems to be the merger of on-

7Mortensen (2009) develops a model with on-the-job-search, decreasing-returns production func-
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the-job search as in Garibaldi and Moen (2010) with a notion of decreasing returns

on the intensive margin as explored here.

In addition to the relationships to random search models mentioned in the intro-

duction, it is worth pointing out that current applied work on business cycles using

multi-worker random search only focusses on the intensive margin of hiring by con-

sidering a fixed number of firms (Elsby and Michaels (2008), Fujita and Nakajima

(2009)). Similarly, Cooper, Haltiwanger, and Willis (2007) assess business cycle

implications for a fixed number of firms assuming that firms make each period

take-it-or-leave offers without commitment to future wages, which is equivalent to

bargaining with zero bargaining power for the workers. Our paper addresses addi-

tionally the entry and exit of firms, and this feature is in fact decisive to obtain a

tractable solution based on block recursivity. The problem that bargaining might

introduce unwarranted inefficiencies by assumption has also spurred other solutions

than ours. For example, Veracierto (2008) and Samaniego (2008) consider general–

equilibrium versions of the Hopenhayn and Rogerson (1993) model with frictionless

labor markets and competitive wage setting. These approaches eliminate involun-

tary unemployment altogether. Veracierto (2009) introduces unemployment in an

adaptation of the Lucas-Prescott island model that includes recruitment technolo-

gies. Competitive search allows the market to operate through decentralized wage

setting, which attracts workers that optimally choose between search markets and

are matched according to a standard matching function.

3 A stationary model of firm creation and firm

growth

3.1 The environment

The model is set in discrete time and is stationary; that is, there are neither idiosyn-

cratic nor aggregate shocks.

Workers and firms

tions, random search and Stole–Zwiebel wage bargaining.
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There is a continuum of workers and firms, and workers are negligibly small relative

to firms. That is, every active firm employs a continuum of workers.8 The mass

of workers is normalized to one. Each worker is infinitely–lived, risk–neutral, and

discounts future income with factor β < 1. A worker supplies one unit of labor

per period and receives income b ≥ 0 when unemployed. On the other side of the

labor market is an endogenous mass of firms. Firms are also risk neutral and have

the same discount factor β. Upon entry, the firm pays a set–up cost K > 0 and

draws productivity x with probability π0(x) from the finite set x ∈ X. In this

section, productivity stays constant during the life of the firm. In each period,

a firm produces output xF (L) with L ≥ 0 workers, where F is a differentiable,

strictly increasing and strictly concave function satisfying F ′(∞) = 0. Firms die

with exogenous probability δ > 0 in which case all its workers are laid off into

unemployment. Furthermore, each employed worker quits the job with exogenous

probability s ≥ 0. Thus, workers’ separation probability is exogenous at η ≡ 1 −

(1 − δ)(1 − s).

Recruitment

Search for new hires is a costly activity. A firm with current workforce L that

posts V vacancies incurs recruitment cost C(V, L, x) where C is differentiable and

satisfies C ′
1 > 0, C ′′

1 > 0, C ′
2 ≤ 0, C ′′

12 ≤ 0, C ′′
13 ≥ 0. We also assume that

output net of recruitment cost xF (L)−C(V, L, x) is strictly increasing in x for any

(V, L, x). This formulation trivially covers the benchmark case where recruitment

costs are independent of (L, x) and strictly convex in V (for applications of this

specification, see e.g. Cooper, Haltiwanger, and Willis (2007), Koeniger and Prat

(2007), Garibaldi and Moen (2010)). We also use this simplification in the next

section. The more general formulation has the main advantage that it captures

more intuitive justifications for the strict convexity of the recruitment costs. Most

notably, our specification allows for the possibility that each vacancy requires h units

of labor input to screen and train prospective applicants. Even if pecuniary vacancy

costs are linear, the overall costs are strictly convex since the workers involved in

8Although the set of individuals has the same cardinality as the set of firms, it is helpful to

think of the set of firms as a closed interval in IR, and the set of workers as a two–dimensional

subset of IR2. When both sets are endowed with the Lebesgue measure, an active firm employs a

continuum of workers, albeit of mass zero.
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hiring cannot participate in this period’s production. In this case C(V, L, x) =

xF (L)− xF (L− hV ) + cV , where the difference in the first two terms captures the

loss in output and the last term captures linear pecuniary costs of vacancy postings.9

Concavity of F implies that C is strictly convex in V .

Search and matching

A recruiting firm announces a flat flow wage income w to be paid to its new hires

for the duration of employment relation. The assumption that the firm offers the

same wage to all its new hires is no restriction. Indeed, it is straightforward to show

that it is not optimal to post vacancies with different wages at a given point in

time.10 Further, because of risk neutrality, it is no restriction to consider flat wage

contracts, although this leads to the dispersion of flow wages within the firm, as we

see below.

There is no search on the job. Unemployed workers observe all vacancy postings

and direct their search towards wages promising the highest expected income value.

As is standard in models of competitive search, the labor market segments into a

continuum of submarkets identified by different wages. In any of these submarkets,

unemployed workers and vacant jobs are matched according to a constant–returns

matching technology. When λ is the unemployment–vacancy ratio in such a sub-

market, a vacancy is matched with a worker with probability m(λ) and a worker

finds a job with probability m(λ)/λ. The function m is differentiable, strictly in-

creasing, strictly concave, and it satisfies m(0) = 0 and m(λ) ≤ min(1, λ) for all

λ ∈ [0,∞). The law of large numbers together with the assumption that workers are

small relative to firms ensures that firms know with certainty that they hire m(λ)V

workers when they post V vacancies in some submarket with worker–job ratio λ.

Timing

Every period is divided into four stages. First, new firms are created and draw their

9Clearly no more workers can be engaged in hiring than are present at the firm already. To get

the hiring process started, we therefore need to assume that a newborn firm is endowed with some

initial workforce Le (e.g., the entrepreneurs) who can undertake the initial hiring or production.

In this case the production function is defined on the interval L ∈ [−Le,∞); and recruitment

activities of any firm are then constrained by its labor endowment: hV ≤ L + Le.
10An intuition for this result is provided in the discussion of equation (8) below.
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productivity. Second, production and search activities take place. Third, vacancies

and unemployed workers are matched, and a fraction s of workers leave their firm.

And fourth, a share δ of firms dies. Newly hired workers may never work (and

receive no wage income) in the unlucky event that their employer exits the market

at the end of the period.

3.2 Equilibrium

Given that there are no aggregate shocks, we characterize a stationary equilibrium

where a constant number of firms enters the market in every period and where the

workers’ unemployment utility and reservation wage are constant over time.

Workers’ search problem

Let W (w) be the present value of income for a worker employed at wage w, and let

U be the present value of income for worker who remains unemployed this period

and searches optimally thereafter. The surplus of having a job with wage w over

staying unemployed can be written as

W (w) − U = w − R
1 − β(1 − η)

, (1)

where R = (1−β)U is the worker’s reservation wage (flow utility of unemployment).

Unemployed workers anticipate that different wages attract different worker–job ra-

tios λ and thus differ in their job–finding probabilities m(λ)/λ. They choose between

all combinations (w, λ) ∈ Ω where Ω is the set of existing submarkets. Hence, they

choose the submarket that gives the highest probability-weighted surplus. Weight-

ing the surplus in (1) by the job finding probability m(λ)/λ and accounting for the

probability that the employing firm remains active 1−δ, yields the expected surplus

ρ from optimal job search:

ρ ≡ max
(w,λ)∈Ω

m(λ)
λ

(1 − δ) w −R
1 − β(1 − η)

. (2)

Since any submarket can only have a strictly positive λ if indeed workers choose to

search in that market, it has to be the case that under optimal job search m(λ)
λ

(1 −

δ)[W (w) − U ] = ρ, or equivalently

w = R + λ
m(λ)

1 − β(1 − η)
1 − δ

ρ whenever λ > 0 . (3)
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This condition says that a firm can only recruit workers when its wage offer matches

the workers’ reservation wage plus a premium which is needed to attract workers

into a submarket with job–finding probability m(λ)/λ. This premium is increasing

in λ. The determination of worker-job ratios as the outcome of optimal search

decisions by workers is standard in the competitive search literature (e.g., Moen

(1997), Acemoglu and Shimer (1999b)).11 Finally, the reservation wage is linked to

ρ from the unemployed worker’s Bellman equation:

R ≡ (1 − β)U = b+ βρ . (4)

Firms’ recruitment policy

Let Jx(L,W ) be the profit value of a firm with productivity x, an employment stock

of L workers and a commitment to a total wage bill of W . An entrant firm’s profit

value is then Jx(0, 0).

The firm’s recruitment choice involves deciding the number of posted vacancies V as

well as the submarket where these vacancies are posted, characterized by the tuple

(w, λ). Its recursive profit maximization problem is expressed as

Jx(L,W ) = max
(w,λ,V )

xF (L) −W − C(V, L, x) + β(1 − δ)Jx(L̂, Ŵ ) , (5)

s.t. L̂ = L(1 − s) +m(λ)V , Ŵ = W (1 − s) +m(λ)V w ,

V ≥ 0 , and condition (3) .

Because of m(0) = 0, we can substitute (3) into the dynamic equation for the firm’s

wage bill to obtain

Ŵ = (1 − s)W + V
[

λρ
1 − β(1 − η)

1 − δ
+m(λ)R

]

.

The observation that the firm’s objective and constraints are separable in L and

W and linear in W suggests that the value function takes the form Jx(L,W ) =

−BW + Gx(L) for some constant B > 0. Using this conjecture, the first–order

11Note that we view each vacancy as a separate job requiring individual skills. See the discussion

on increasing returns to hiring in Section 2.
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conditions with respect to V and λ are

C ′
1(V, L, x) ≥ β(1 − δ)

{

m(λ)Gx′

(L̂) − B
[

λρ
1 − β(1 − η)

1 − δ
+m(λ)R

]}

,

V ≥ 0 , (6)

0 ≥ m′(λ)V Gx′

(L̂) −
[

ρ
1 − β(1 − η)

1 − δ
+m′(λ)R

]

V B , λ ≥ 0, (7)

which are both satisfied with complementary slackness. It is no loss of generality to

consider only solutions where the first inequality in (7) binds,12 so this equation can

be substituted into (6) to get

C ′
1(V, L, x) ≥ βρ

m(λ) − λm′(λ)
m′(λ)

, V ≥ 0 , (8)

with complementary slackness. This condition describes intratemporal optimality

between the two recruitment tools of the firm: the number of posted vacancies V

on the one hand, and the posted wage w (and thus the worker–job ratio λ) on the

other. The RHS is the firm’s marginal revenue from an additional vacancy which

is increasing in λ. The LHS is marginal cost of an additional vacancy; from the

assumptions on C follows that it is (weakly) decreasing in L and strictly increasing

in V . Hence the implicit solution to this equation is a function V = V x(L, λ)

which is increasing in λ and (weakly) increasing in L. Intuitively, with higher λ the

probability to fill a vacancy increases, and hence the firm is willing to bear higher

marginal recruitment costs by advertising more jobs. And with higher L, marginal

recruitment costs fall and hence the firm is inclined to post more vacancies. Equation

(8) also provides an intuition why it is never optimal to offer different wages at a

given point in time: any one of its V vacancies adds marginal cost C ′
1; this marginal

cost must be balanced against the marginal return of the vacancy which depends

upon the job–filling rate; Hence, the firm will choose the same λ (and thus post

the same wage) for any of its vacancies. Moreover, since the RHS attains any value

between 0 and +∞ as λ varies between 0 and +∞, the firm will always recruit

workers when λ is large enough and it will never recruit at low enough values of λ

(unless C ′
1(0, L, x) = 0).

12It follows from the complementary–slackness condition (6) that λ = 0 implies V = 0. This “no

recruitment” solution is also obtained from (8).
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The envelope conditions for problem (5) are

Gx′

(L) = xF ′(L) − C ′
2(V, L, x) + β(1 − η)Gx′

(L̂) , (9)

B = 1 + β(1 − η)B . (10)

This shows that B = 1/[1−β(1− η)] is a constant. Condition (9) together with the

first–order conditions (6) and (7) further confirms that the conjecture Jx(L,W ) =

−BW +Gx(L) is correct: the firm’s choices of λ and V depend on the employment

stock L but not on the wage bill W . The firm’s value and policy functions can be

characterized as follows.

Proposition 1: For a given value ρ > 0 and the corresponding reservation wage

R defined by (4), the firm’s value function is −BW +Gx(L; ρ) where Gx is strictly

increasing, strictly concave and differentiable in L, continuous and decreasing in ρ,

and increasing in x. The firm’s policy function λx(L) is strictly decreasing in L and

strictly increasing in x whenever λx(.) > 0. Posted vacancies V x(L, λ) are weakly

increasing in L and strictly increasing in λ whenever V x(L, λ) > 0.

Proof: Appendix.

Corollary: Conditional on productivity, younger (and smaller) firms pay higher

wages and have a higher job–filling rate. Conditional on firm size, more productive

firms pay higher wages and have a higher job–filling rate.

To see how the firm grows over time, consider a firm with productivity x that enters

in some period τ . Its job creation policy is then described by a sequence (Lt, λt, Vt)t≥τ

starting from Lτ = 0. Posted vacancies Vt = V x(Lt, λt) are the implicit solution of

equation (8). The employment stock accumulates according to

Lt+1 = (1 − s)Lt +m(λt)V
x(Lt, λt) . (11)

And from (7) and (9) follows the Euler equation

xF ′(Lt+1) − C ′
2(Vt+1, Lt+1, x) −R =

ρ
1 − δ

[

1
m′(λt)

−
β(1 − η)
m′(λt+1)

]

. (12)

This equation says that the firm recruits fast in period t (i.e. λt is large) when the

expected marginal product in t + 1 is high. In the example with recruitment cost

14



C(V, L, x) = xF (L) − xF (L − hV ) + cV , equations (12) and (8) can be further

simplified to an equation which is independent of Lt:
13

βρ
[

m(λt+1)−λt+1m
′(λt+1)

]

−[Rh+c]m′(λt+1) =
ρh

1 − δ

[

m′(λt+1)
m′(λt)

−β(1−η)
]

. (13)

In Lemma 1 of the Appendix, we show that this equation has a unique steady state

λ∗ > 0 if recruitment costs are low enough, and λt converges to λ∗ from any initial

value λτ > 0. Figure 1 shows the phase diagram for the system (11) and (13). The

curve where the employment stock is constant is downward sloping since (8) implies

that V x(L, λ)/L is increasing in L. If the condition

xF ′(0) > R+
ρ[1 − β(1 − η)]
(1 − δ)m′(λ∗)

holds, there exists a unique stationary employment level L∗ > 0. The corresponding

dynamics imply further that there is a downward–sloping saddle path converging to

the long–run employment level. Graphically, the firm’s policy function λx(L) traces

this saddle path.

It follows from these considerations that the firm’s recruitment policy is character-

ized by a path of declining wage offers and job–filling rates along the transition to

the firm’s long–run employment level. Concavity of the firm’s production function

implies that the firm wants to spread out its recruitment costs across several pe-

riods. This statement remains true for other forms of the recruitment technology.

Only when recruitment costs are linear in vacancies, C(V ) = cV , the firm would

choose a constant λ∗ (and hence post the same wage in all periods). In that case,

it would recruit L∗ workers in the entry period and then keep the employment level

constant. As soon as recruitment costs are strictly convex, such a policy is not

optimal, and it may not be feasible due to the capacity constraint on labor input in

recruitment. This feature of our model is similar to models of optimal investment

with convex adjustment costs. A novel feature is that the firm’s wage policy reflects

the desire to recruit fast in the start–up phase and more slowly in the convergence

phase. This finding is in line with the empirical observation that wages are higher

in fast–growing firms. On the other hand, the model’s predictions on the relation

between productivity, firm size and wages are standard; more productive firms pay

13This equation becomes an inequality in the no–recruitment case V x(Lt+1, λt+1) = 0.
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Figure 1: The firm’s optimal recruitment policy follows the declining saddle path.

higher wages, they are bigger, and they also grow faster in the start–up phase. Fur-

thermore, there is within–firm wage dispersion; workers receive higher wages when

they were hired in an earlier phase of the firm’s life.14

Firm creation

No entrant makes a positive profit when the expected profit income of a new firm

equals the entry cost, that is,

∑

x∈X

π(x)Jx(0, 0) = K . (14)

This condition implicitly pins down the worker’s job surplus ρ and therefore, via

the firm’s optimal recruitment policy, worker–job ratios in all submarkets. In a

14Because of risk–neutrality, there is a payoff–equivalent equilibrium where each firm pays the

same constant flow wage income to all its workers in addition to an initial hiring premium which

is declining as the firm is growing.
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stationary equilibrium, a constant mass ofN0 firms enters the market in every period,

so that there are Na = N0(1 − δ)a firms of age a in any period. Let (Lx
a, λ

x
a, V

x
a )a≥0

be the employment/recruitment path for a firm with productivity x. Then, a firm of

age a with productivity x has Lx
a employed workers, and λx

aV
x
a unemployed workers

are searching for jobs in the same submarket where this firm searches for workers.

Because there is a unit mass of workers, the mass of entrant firms N0 is uniquely

pinned down from aggregate resource feasibility:

1 =
∑

a≥0

N0(1 − δ)a
∑

x∈X

π(x)[Lx
a + λx

aV
x
a ] . (15)

General equilibrium

We now define a stationary equilibrium with positive firm creation. When K is

large enough, there may also be an uninteresting equilibrium without firms which is

ignored in the following.

Definition: A stationary competitive search equilibrium is a list
(

ρ,R,N0, (L
x
a, λ

x
a, V

x
a )x∈X,a≥0

)

such that

(a) Unemployed workers’ job search strategies maximize utility. That is, the reser-

vation wage R satisfies (4) with ρ defined in (2).

(b) Firms’ recruitment policies are optimal. That is, given ρ and R, and for all

x ∈ X, (Lx
a, λ

x
a, V

x
a )a≥0 describes the firm’s growth path, obtained from the

policy functions solving problem (5).

(c) There is free entry of firms, equation (14).

(c) The number of entrant firms is consistent with aggregate resource feasibility,

equation (15).

Proposition 2: A stationary competitive search equilibrium with active firms exists

and is unique, provided that K is sufficiently small and F ′(0) is sufficiently large.

17



There is wage dispersion both within and across firms. Wages are increasing in firm

productivity and decreasing in firm age. Conditional on firm age, larger firms pay

higher wages.

Proof: Appendix.

3.3 Efficiency

The social planner decides at each point in time about firm creation, vacancy cre-

ation and worker–job ratios in different submarkets of the economy. The planner

takes as given the numbers of firms that were created in some earlier period, as well

as the employment stocks of all these firms. Formally, the planner’s state vector is

σ = (Na, L
x
a)a≥1,x∈X ,

where Na is the mass of firms of age a ≥ 1, and Lx
a is employment of a firm with

productivity x and age a. Of course, it is no restriction to impose that all firms of

a given type (a, x) are equally large. The planner maximizes the present value of

output net of opportunity costs of employment and net of the costs of firm creation

and vacancy creation. With σ̂ to denote the state vector in the next period, the

recursive formulation of the social planning problem is

S(σ) = max
N0,(V x

a ,λx
a)a≥0

{

∑

a≥0

Na

∑

x∈X

π(x)
[

xF (Lx
a)) − bLx

a − C(V x
a , L

x
a, x)

]

}

−KN0 + βS(σ̂)

s.t. Lx
0 = 0, L̂x

a+1 = (1 − s)Lx
a +m(λx

a)V
x
a , a ≥ 0, x ∈ X , (16)

N̂a+1 = (1 − δ)Na , a ≥ 0 ,
∑

a≥0

Na

∑

x∈X

π(x)
(

Lx
a + λx

aV
x
a

)

≤ 1 .

The last condition is the economy’s resource constraint. It states that the mass of

of all individuals that are attached to some firm of type (a, x), either as workers Lx
a

or as unemployed workers queuing up for a job at this firm λx
aV

x
a , may not exceed

one. We say that a solution to problem (16) is socially optimal.

Proposition 3: The stationary competitive search equilibrium is socially optimal.

Proof: Appendix.
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4 Productivity shocks and firm dynamics

We now extend the previous model to include both idiosyncratic (firm–specific) and

aggregate productivity shocks. This extension allows us to explore not only two

margins of job creation (firm entry and firm growth), but also the two margins

of job destruction (firm exit and firm contraction). We simplify by assuming that

recruitment costs C(V ) depend on vacancies alone; again, C is an increasing and

convex function. Output of a firm with L workers is xzF (L) where x ∈ X is

idiosyncratic productivity and z ∈ Z is aggregate productivity. Both x and z

follow Markov processes on finite state spaces X and Z with respective transition

probabilities π(x+|x) and ψ(z+|z). An entrant firm pays fixed cost K and draws an

initial productivity level x ∈ X with probability π0(x). For a firm of age a ≥ 0,

let xa = (xa, . . . , x0) ∈ Xa+1 denote the history of idiosyncratic productivity, and

let zt = (zt, . . . , z0) be the history of aggregate shocks at time t. Write ψ(zt) and

π(xa) for the unconditional probabilities of aggregate and idiosyncratic productivity

histories.

We assume that an active firm incurs a fixed operating cost f ≥ 0 per period. This

parameter is required to obtain a non–trivial exit margin.15 Each firm exits with

exogenous probability δ0 ≥ 0 which is a lower bound for the actual exit rate δ ≥ δ0.

Similarly, workers quit a job with exogenous rate s0 ≥ 0 which provides a lower

bound for the actual separation rate s ≥ s0.
16

The timing within each period is as follows. First, aggregate productivity is revealed,

new firms enter, all existing firms draw their idiosyncratic productivities and decide

about exit. Second, firms decide about recruitment and separations, and recruiting

firms are matched with unemployed workers. An unemployed worker who has just

left another job (due to firm exit, quit or layoff) can search for reemployment within

the same period. And third, production takes place. In the following, we first

describe the planning problem before we show its equivalence to a competitive–

search equilibrium in Section 4.4.

15A non–trivial exit margin would also obtain in the presence of firing costs when f = 0.
16Although this model ignores many important worker flows, such as those between jobs and

the flows in and out of the labor force, s0 represents a measure of exogenous worker turnover, as

in Fujita and Nakajima (2009).
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4.1 The planning problem

The planner decides at each point in time about firm entry and exit, layoffs and job

creation, as well as worker–job ratios in different submarkets. In a given aggregate

history zt, we denote byN(xa, zt) the mass of firms of age a with idiosyncratic history

xa. Similarly, L(xa, zt) is the employment stock of any of these firms. At every

history node zt and for every firm type xa, the planner decides an exit probability

δ(xa, zt) ≥ δ0, a separation rate s(xa, zt) ≥ s0, vacancy postings V (xa, zt) ≥ 0, and

a worker–job ratio λ(xa, zt) for the submarket in which vacancies of that firm are

matched with unemployed workers.17 The numbers of firm types change between

periods t− 1 and t according to

N(xa, zt) = [1 − δ(xa, zt)]π(xa|xa−1)N(xa−1, zt−1) , (17)

and the employment stock at any of these firms adjusts to

L(xa, zt) = [1 − s(xa, zt)]L(xa−1, zt−1) +m(λ(xa, zt))V (xa, zt) . (18)

At time t = 0, the planner takes as given the numbers of firms that entered the

economy in some earlier period, as well as the employment stock of each of these

firms. Hence, the state vector at date 0, prior to the realization of productivities,

is summarized by the initial firm distribution (N(xa−1, .), L(xa−1, .))a≥1,xa−1∈Xa . In

a given history zt, the planner also decides the mass of new entrants N0(z
t) ≥ 0, so

that

N(x0, z
t) = [1− δ(x0, z

t)]π0(x0)N0(z
t) and L(x0, z

t) = m(λ(x0, z
t))V (x0, z

t) . (19)

The planning problem is

max
δ,s,V,λ,N0

∑

t≥0,zt

βtψ(zt)

{

−KN0(z
t) + (20)

∑

a≥0,xa

N(xa, zt)
[

xaztF (L(xa, zt)) − bL(xa, zt) − f − C(V (xa, zt))
]

}

17To save on notation, we do not allow the planner to discriminate between workers with dif-

ferent firm tenure. Given that there is no learning-on-the-job, there is clearly no reason for the

planner to do so. Nonetheless, the competitive search equilibrium considered in 4.4 allows firms

to treat workers in different cohorts differently, which is necessary because each firm offers con-

tracts sequentially and is committed to these contracts. See the proof of Proposition 6 for further

discussion of that issue.
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subject to the dynamic equations for N and L, namely (17), (18) and (19), and

subject to the resource constraints, for all zt ∈ Zt+1,

∑

a≥0,xa

N(xa, zt)
[

(1 − s(xa, zt))L(xa−1, zt−1) + λ(xa, zt)V (xa, zt)
]

≤ 1 . (21)

This constraint says that the labor force (employment plus unemployment) cannot

exceed the given unit mass of workers. The first part of the sum, namely

∑

a≥0,xa

N(xa, zt)(1 − s(xa, zt))L(xa−1, zt−1) ,

are the workers that are employed in some firm after separations have taken place.

The remaining part of the sum are unemployed workers queueing up for employment

in one of the active firms posting V (.) vacancies in submarkets with worker–job ratios

λ(.). For instance, there are N(xa, zt) active firms with productivity history xa, each

of which posts V (xa, zt) vacancies that meet λ(xa, zt)V (xa, zt) unemployed workers

in a particular submarket.

4.2 Characterization of the planning solutions

There is a convenient characterization of a planning solution which says that exit,

layoff, and hiring decisions follow a recursive equation at the level of the individual

firm. Let βtψ(zt)µ(zt) ≥ 0 be the multiplier on the resource constraint (21) in history

zt. Intuitively, µ(zt) is the social value of a worker in history zt. Let Gt(L, x, z
t)

denote the social value of an existing firm with employment stock L, idiosyncratic

productivity x and aggregate productivity history zt. The sequence Gt obeys the

recursive equations

Gt(L, x, z
t) = max

δ,s,V,λ
(1 − δ)

{

xztF (L̂) − bL̂− f − C(V ) − µ(zt)[(1 − s)L+ λV ]

+β
∑

x̂∈X

∑

zt+1∈Z

π(x̂|x)ψ(zt+1|zt)Gt+1(L̂, x̂, (zt+1, z
t))

}

(22)

s.t. L̂ = (1 − s)L+m(λ)V ,

δ ∈ [δ0, 1], s ∈ [s0, 1], λ ≥ 0, V ≥ 0 .
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The interpretation of these equations is rather straightforward. The planner wants

a firm with characteristics (L, x) to stay active in aggregate history zt whenever

the term in braces is non–negative, otherwise he sets δ = 1. The term in braces

gives the value of an active firm. In the current period, this value encompasses

the firm’s output net of the opportunity cost of employment, net of fixed costs

and recruitment costs, and net of the social cost of workers tied to the firm in

this period; these workers include those that are retained from the previous period,

namely (1−s)L, and also λV unemployed workers who aim to find a job at the firm

(of which m(λ)V ≤ λV eventually find a job).

Proposition 4: There exist value functions Gt : IR+ ×X × Zt+1 → IR, t ≥ 0,

satisfying the system of recursive equations (22). The firm dynamics obtained from

the solution of the planning problem (20) is the same as the one obtained from (22),

and optimal entry satisfies the complementary–slackness condition

∑

x∈X

π0(x)Gt(0, x, z
t) ≤ K , N0(z

t) ≥ 0 . (23)

Whilst Proposition 4 is a convenient characterization of planning solutions, it cannot

be applied for computational purposes. The difficulty is that the multipliers µ(zt) are

non–stationary and depend on the initial firm distribution; furthermore, the firm–

specific value functions Gt are defined on a high–dimensional state space. However,

a much more powerful characterization can be obtained under the provision that

firm entry is positive in all states of a particular planning solution, so that the first

inequality in (23) is binding in all states of the world. When this is the case, the

firm–level value function turns out to be independent of the firm distribution, a

feature coined “block recursivity” by Menzio and Shi (2008). Crucially, the social

value of a worker only depends on the current aggregate state and not on the state

history.

To see this, suppose there are n aggregate states z1 ≤ . . . ≤ zn and let µ =

(µ1, . . . , µn) ∈ IRn
+ be a vector of social values in these states. Let Gi(L, x, µ) be the

social value of a firm with employment stock L, idiosyncratic productivity x and

aggregate productivity zi, for i = 1, . . . , n. G = (Gi) : IR+ ×X× IRn
+ → IRn

+ satisfies
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the Bellman equations

Gi(L, x, µ) = max(1 − δ)

{

xziF (L̂) − bL̂− C(V ) − µi[(1 − s)L+ λV ] (24)

−f + β
∑

x̂∈X

∑

zj∈Z

π(x̂|x)ψ(zj |zi)G
j(L̂, x̂, µ)

}

,

where maximization is subject to the same constraints as in problem (22). Positive

entry in all aggregate states requires that the expected social value of a new firm is

equal to the entry cost
∑

x∈X

π0(x)G
i(0, x, µ) = K . (25)

This characterization of planning solutions by (Gi, µi)i=1,...,n is particularly helpful

for numerical applications. Despite the high degree of heterogeneity, the model can

be solved by a recursive problem on a low–dimensional state space (24) and the (si-

multaneous) solution of a finite–dimensional fixed point problem (25). Importantly,

the distribution of firms is irrelevant for that computation. Ex post, the actual

number of entrants, and hence the evolution of the firm distribution, is obtained

as a residual in the economy’s resource constraint in simulations of the model. Be-

cause the number of entrant firms N0(z
t) does depend on the full history of aggregate

states (or, equivalently, on the current firm distribution), it cannot be proved math-

ematically that the planning solution has indeed positive entry in all state histories.

Nonetheless, in any quantitative application of the model this possibility should not

play a role. Further, the welfare theorem proven in the next section holds generally

and hence does not rest upon positive entry in all states. Analytically, we can only

prove that a planning solution with positive entry exists in the absence of aggregate

shocks. For small aggregate shocks, we show that equations (24) and (25) have a

solution.

Proposition 5:

(a) If K, f , and b are sufficiently small and if z1 = . . . = zn = z, equations (24)

and (25) have a unique solution G(L, x, µ) with µ1 = . . . = µn. There exists a

planning solution with positive entry and a stationary firm distribution.
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(b) If, moreover, the transition matrix ψ(zj |zi) is strictly diagonally dominant and

if |zi − z| is sufficiently small for all i, equations (24) and (25) have a unique

solution.

4.3 Recruitment and layoff strategies

The reduction of the planning solution to problem (22) permits a straightforward

characterization of the optimal layoff and hiring strategies. A firm with productivity

xz and employment stock L should dismiss workers (that is, s > s0) in state i =

1, . . . , n iff

xziF
′(L(1 − s0)) − b− µi + β

∑

x̂

∑

zj

π(x̂|x)ψ(zj |zi)G
j′(L(1 − s0), x̂, µ) < 0 . (26)

This expression is the marginal social surplus of a worker at the employment stock

L(1−s0) after worker turnover. If marginal worker surplus is negative, the firm lays

off some workers so as to equate the left–hand side to zero.

Conversely, for the firm to recruit workers, it must be that λ > 0 and V > 0. In

that case, it follows from the first–order conditions for λ and V that18

C ′(V ) = µiλ
(

m(λ)
λm′(λ)

− 1
)

. (27)

As in the previous section, it follows from concavity of m and convexity of C that

there is an increasing relation between the worker–job ratio and the number of posted

vacancies at the firm. With higher λ, the probability to fill a vacancy increases, and

hence the planner is willing to post more vacancies at higher marginal recruiting

cost. Denote the solution to equation (27) by V = Vi(λ). It is straightforward to

see that Vi(λ) → ∞ when λ→ ∞, and there is some λi ≥ 0 such that Vi(λ) > 0 iff

λ > λi. Note also that the function Vi(λ) is independent of the firm’s idiosyncratic

productivity and of its current employment stock. The planner’s optimal choice of

λ for firm (L, x) in aggregate state i satisfies

xziF
′(L̂) − b+ β

∑

x̂

∑

zj

π(x̂|x)ψ(zj |zi)G
j′(L̂, x̂, µ) =

µi

m′(λ)
,

18This equation is analogous to (8). See the derivation of (47) in the proof of Proposition 3.
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with L̂ = L(1− s0) +m(λ)Vi(λ). Therefore, the firm recruits workers, if and only if

xziF
′(L(1 − s0)) − b+ β

∑

x̂

∑

zj

π(x̂|x)ψ(zj |zi)G
j′(L(1 − s0), x̂, µ) >

µi

m′(λ)
. (28)

The two conditions (26) and (28) illustrate how the firm’s strategy depends on

its characteristics (L, x). Small and productive firms recruit workers and grow,

whereas large and unproductive firms dismiss workers and shrink. Depending on the

functional forms for C(.) and m(.), there can also be an open set of characteristics

where firms do not adjust their workforce.19

4.4 Decentralization

We now describe a competitive search equilibrium that gives rise to the same allo-

cation as the planning solution characterized in Proposition 4. Firms offer workers

a sequence of state–contingent wages, to be paid for the duration of the match.

They also commit to cohort–specific and state–contingent separation probabilities.

Contracts are contingent on the idiosyncratic productivity history of the firm at age

k, xk, and on the aggregate state history zt at time t. Formally, a contract offered

by a firm of age a at time T takes the form

Ca =
(

wa(x
k, zT+k−a), ϕa(x

k, zT+k−a)
)

k≥a
,

where wa(x
k, zt) is the wage paid to the worker in firm history (xk, zt), conditional

on the worker being still employed by the firm in that instant. ϕa(x
k, zt) ≥ δ0 +(1−

δ0)s0, for k > a, is the probability of a job separation prior to the production stage

in history xk. In the hiring period, a separation cannot occur, so ϕa(x
a, zT ) = 0 by

definition.

The workers’ search problem

Let U(zt) be the utility value of an unemployed worker in history zt, and let

W (Ca, x
k, zt) be the utility value of a worker hired by a firm of age a in contract Ca

19Similar patterns for employment adjustment are obtained in the models of Bentolila and

Bertola (1990) and Elsby and Michaels (2008).
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who is currently employed at that firm in history xk, with k ≥ a. The latter satisfies

the recursive equation

W (Ca, x
k, zt) = ϕa(x

k, zt)U(zt) + (1 − ϕa(x
k, zt))

[

wa(x
k, zt) (29)

+β
∑

xk+1

∑

zt+1

π(xk+1|xk)ψ(zt+1|zt)W (Ca, x
k+1, zt+1)

]

.

An unemployed worker searches for contracts which promise the highest expected

utility, considering that more attractive contracts are less likely to find. The worker

observes all contracts Ca and he knows that the probability to sign a contract is

m(λ)/λ when λ is the worker–job ratio in the submarket where the contract is

offered. That is, potential submarkets are parameterized by the tuple (λ, Ca). Un-

employed workers enter those submarkets where expected surplus is maximized:

ρ(zt) = max
(λ,Ca)

m(λ)
λ

[

W (Ca, x
a, zt) − b− βEzt

U(zt+1)
]

. (30)

Because an unemployed worker gets one chance to search in every period, his Bellman

equation reads as

U(zt) = b+ ρ(zt) + βEzt
U(zt+1) . (31)

The firms’ problem

A firm of age a with history (xa, zt) takes as given the employment stocks of workers

hired in some earlier period, (Lτ )
a−1
τ=0, as well as the contracts signed with these

workers, (Cτ )
a−1
τ=0. The firm chooses an exit probability δ and cohort–specific layoff

probabilities sτ . For these probabilities to be consistent with separation probabilities

specified in existing contracts, it must hold that δ ≤ ϕτ (x
a, zt) for all τ ≤ a − 1,

and sτ = 1 − (1 − ϕτ (x
a, zt))/(1 − δ) when δ < 1, with arbitrary choice of sτ when

δ = 1. The firm also decides new contracts Ca to be posted in V vacancies in a

submarket with worker–job ratio λ. It is no restriction to presuppose that the firm

offers only one type of contract and searches in only one submarket. When Ja is the

value function of a firm of age a, the firm’s problem is written as

Ja

[

(Cτ)
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

= max
(δ,λ,V,Ca)

(1 − δ)

{

xaztF
(

a
∑

τ=0

L̂τ

)

−W − f (32)

−C(V ) + β
∑

xa+1

∑

zt+1

π(xa+1|xa)ψ(zt+1|zt)Ja+1

[

(Cτ )
a
τ=0, (Lτ )

a
τ=0, x

a+1, zt+1
]

}
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s.t. L̂a = m(λ)V, , λ ≥ 0, V ≥ 0, L̂τ = Lτ
1 − ϕτ (x

a, zt)
1 − δ

, τ ≤ a− 1 , (33)

δ ∈ [δ0, min
0≤τ≤a−1

ϕτ (x
a, zt)], s0(1 − δ) ≤ (1 − ϕτ (x

a, zt)) , (34)

W =
a

∑

τ=0

wτ (x
a, zt)L̂τ , (35)

W (Ca, x
a, zt) ≥ b+ βEzt

U(zt+1) +
λρ(zt)
m(λ)

when λ > 0 . (36)

The last condition is the workers’ participation constraint; it specifies the minimum

expected utility that contract Ca must promise in order to attract a worker queue

of length λ per vacancy. In (33), the ratio (1−ϕτ (x
a, zt))/(1− δ) is (arbitrarily) set

to zero when δ = ϕτ (x
a, zt) = 1.

Definition: A (stationary) competitive search equilibrium is a list

[

U(zt), ρ(zt), Ca(x
a, zt), λ(xa, zt), V (xa, zt), δ(xa, zt), Ja(.), (Lτ (x

a, zt))0≤τ≤a, N(xa, zt), N0(z
t)

]

,

for all t ≥ 0, a ≥ 0, xa ∈ Xa+1, zt ∈ Zt+1, and for a given initial firm distribution,

such that

(a) Firms’ exit, hiring and layoff strategies are optimal. That is, Ja is the value

function and Ca(.), δ(.), λ(.), and V (.) are the policy functions for problem

(32).

(b) Employment evolves according to

Lτ (x
a, zt) = Lτ (x

a−1, zt−1)
1 − ϕτ (x

a, zt)
1 − δ(xa, zt)

, 0 ≤ τ ≤ a− 1 ,

La(x
a, zt) = m(λ(xa, zt))V (xa, zt) , a ≥ 0 .

(c) Firm creation is optimal. That is, the complementary slackness condition

∑

x

π0(x)J0(x, z
t) ≤ K , N0(z

t) ≥ 0 (37)

holds, and the number of firms evolves according to N(x0, z
t) = π0(x0)[1 −

δ(x0, z
t)]N0(z

t) and (17).
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(d) Workers’ search strategies are optimal, i.e. (ρ, U) satisfy equations (30) and (31).

(e) Aggregate resource feasibility:

∑

a≥0,xa

N(xa, zt)
[

λ(xa, zt)V (xa, zt) +

a−1
∑

τ=0

Lτ (x
a, zt)

]

= 1 . (38)

Proposition 6: The competitive search equilibrium is socially optimal.

Proof: Appendix.

Discussion of wages and employment commitment

It is not hard to see that a wage commitment is sufficient for a firm to implement its

desired policy, even if it cannot commit to separation rates. Given risk neutrality, the

firm can set the wages following any future history exactly equal to his reservation

wage which is the sum of unemployment income and the worker’s shadow value

b + µ(zt). It can achieve any initial transfer to attract workers through an initial

hiring bonus. The costs of an existing worker therefore always equal his value in

his best available alternative: unemployment and search for another job. Since the

flow surplus for any retained worker equals his shadow value, the firm’s problem in

this case coincides with the planner’s problem (22), and firing will be exactly up

to the socially optimal level even though the firm only commits to the wages and

not to the employment levels. Workers do not have any incentive to quit the job

unilaterally, either, because they are exactly compensated for their social shadow

value from searching, which in this setting is equal to their personal shadow value.

Similarly, given employment commitment the wage–tenure profiles for individual

workers are arbitrary because of risk–neutrality, as long as they satisfy the workers’

participation constraint with equality. As we show in the proof of Proposition 6,

firms do not need to discriminate in separation rates between workers in different

cohorts. Nonetheless, such equilibria are also possible; then workers with higher

separation rates will be compensated through higher wage transfers, whereas workers

with more stable jobs earn lower wages. Put differently, this model does not say

anything about individual wage–tenure profiles. It only pins down the surplus split

between workers and firms.
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In our numerical examples, we consider the benchmark case where wage profiles are

not dispersed within the firm. That is, all workers within firm (L, x) in history zt

earn the same flow wage w(L, x, zt). In a block–recursive equilibrium, such a wage

profile can be easily calculated using (29) and the binding condition (36).

5 A numerical example

HIGHLY PRELIMINARY

Consider the following illustrative example with arbitrary parameter choices.

Consider first a stationary economy without aggregate shocks to generate a station-

ary firm distribution. Set β = 0.95 and suppose that idiosyncratic productivities

are drawn from X = {1.2, 1.5, 1.8, 2.1, 2.4}. Upon entry, the initial draw is uni-

form; then from period to period, firm productivity stays constant with probability

0.9 and it changes to a neighboring state with equal probability. We use the urn–

ball matching function m(λ) = 1 − e−λ and set F (L) = L0.7, f = 0.3, b = 1.1,

δ0 = s0 = 0.01 and K = 4.27. For these parameter values the social value of an

unemployed worker is µ = 0.2, the unemployment rate is 2.8% and the unemploy-

ment hazard rate is at 57%. Optimal exiting prescribes that firms with the lowest

productivity x = 1.2 leave the market whereas all other firms stay. Figure 5 shows

value and policy functions (separations and recruiting strategies) for firms in the five

different productivity states. Hiring and separation policies for firms with x = 1.2

are irrelevant as these firms leave the market.

To find the stationary firm distribution, we simulate the evolution of 1000 entrant

firms over time, using the stationary policy functions describing firm growth and

exiting. We set the maximum firm age at 200 periods and let all firms exit at

age 201 if they have not exited earlier. This gives a total of 43,094 observations;

aggregate employment and unemployment are calculated to be E = 52, 454.5 and

U = 1, 514.9, so we normalize the labor force at E+U . Equivalently, for a given size

of the labor force, the number of entrant firms must be rescaled accordingly. We

find that total job creation (which equals total job destruction in the stationary firm

distribution) is at 1,619.9 (3.1% of employment). About 32.5% of all job creation

happens at entering firms and about 46% of job destruction is due to firm exit.
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Figure 2: The firms’ value functions (upper left), policy functions for s and λ (upper

right and lower left), and the transition maps for employment (lower right).

Figure 5 shows how job creation and job destruction is distributed between various

firm growth ranges.

To study the impact of aggregate shocks, we presuppose that entry is positive in

all periods and proceed as suggested in Section 4.2. Let the aggregate productivity

state be drawn from Z = {0.99, 1, 1.01}, and consider a symmetric Markov process

which stays in the same state with 70% probability. The numerical solution to (24)

and (25) yield then µ1 = 0.215, µ2 = 0.233 and µ3 = 0.250, and we obtain policy

functions depending on (L, x, z) ∈ [0, L] × X × Z. Starting with the stationary
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Figure 3: The distribution of job creation and job destruction. Percentages are for

intervals of firm growth rates of size 0.01 (ranging from 0 to 1 for job creation and

from -1 to 0 for job destruction).

firm distribution obtained before, we simulate the evolution of these firms over 50

periods using the numerical policy functions. At every point in time, the number

of firm entrants is calculated as the residual of the economy’s resource constraint

(whenever positive). That is, in state z ∈ Z, every entrant with idiosyncratic

productivity x ∈ X attracts λ(0, x, z)V (0, x, z) unemployed workers. The sum of

these workers together with those workers who are either employed or who search

for jobs at one of the existing firms must sum up to the constant size of the labor

force. Figure 5 shows exemplary time series for employment, firm entry, job creation

and job destruction.

6 Conclusion

The introduction of multi-worker firms into labor search models bridges the separate

literatures on firm dynamics and labor search. It has the potential to address issues

in both fields, and most importantly to create new insights into the interplay be-

tween firm size, entry and exit and the levels and fluctuations in employment. This
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Figure 4: A simulated time series for employment, firm entry, job creation and job

destruction when the aggregate state z fluctuates between 0.95, z = 1 and z = 1.05.

particular project proposes a wage formation process for such environments that

takes into account standard competitive elements adjusted for the fact that search

behavior does not allow for perfect market clearing. The model turns out to match

the stylized facts regarding firm growth and pay, and implements a socially efficient

allocations both in and out of steady state. It can be viewed as a benchmark against

which to judge actual labor market allocations.

To conclude, it might be worthwhile to highlight a particular asymmetry between

the bargaining approach and the competitive search approach to wage setting with
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large firms. While the former never yields an efficient benchmark, the latter does

allow to capture both efficient and inefficient scenarios. In particular, in a search

environment individuals are faced with uncertainty regarding their success in finding

a job. If workers are risk-averse, then treating them as if they are risk-neutral is

only applicable in the benchmark case where risk is perfectly insurable through

other assets. In reality some insurance through buffer savings seems possible, but

full insurance might not be attainable. Lack of perfect insurance induces workers

to search too much for low-paying but safe jobs, and leads to excess employment

in low-productivity jobs and overall to inefficient over-employment in the absence

of unemployment insurance, and they arise even in one-worker-one-firm models (see

Acemoglu and Shimer (1999a)). Our environment can therefore be regarded as a

benchmark not only relative to bargaining models, but also relative to alternative

scenarios within the class of competitive search models.

Appendix

Proof of Proposition 1:

We have already shown that the value function can be written as −BW +Gx(L; ρ)

with B = 1/[1 − β(1 − η)]. Moreover, from (5) follows that Gx(L; ρ) satisfies the

recursive problem

Gx(L; ρ) = max
(λ,V )≥0

xF (L) − C(V, L, x) − β[λρ+ (1 − δ)Bm(λ)R(ρ)]V

+β(1 − δ)Gx(L̂; ρ) , (39)

s.t. L̂ = L(1 − s) +m(λ)V , V ≥ 0 .

This problem is equivalently defined on a compact state space L ∈ [0, L] where

L is so large that it never binds. This is possible because of the Inada condition

limL→∞ F ′(L) = 0. The RHS in problem (39) defines an operator T which maps

a continuous function Gx
0(L; ρ), defined on [0, L] × [0, ρ] into a continuous function

Gx
1(L; ρ) = T (Gx

0)(L; ρ) defined on the same domain. This operator is a contraction

and it maps functions which are increasing in L and decreasing in ρ into functions

with the same property. Furthermore, it maps functions which are concave in L

and differentiable in (L, ρ, x) into functions with the same property. Therefore,
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the unique fixed point Gx inherits all these properties. Strict concavity and strict

monotonicity of F further implies that Gx is strictly increasing and strictly concave.

Moreover, the fixed point must be decreasing in ρ and strictly increasing in x, which

follows from differentiation of Gx with respect to ρ and x (and the assumptions on

C).

Because of strict concavity of the problem, policy functions λx(L) and V x(L, λx(L))

exist. Properties of V x(L, λ) follow from the discussion in the text. To see how λx(L)

depends on L, differentiate the first–order condition (7) at a point where λx(L) > 0

and V x(L, λx(L)) > 0 to obtain

dλx(L)
dL

= −
Gx′′

(L̂)
[

(1 − s) +m(λ)
dV x

dL

]

ρ

1 − δ

m′′(λ)

(m′(λ))2
+Gx′′

(L̂)
[

m′(λ)V x +m(λ)
dV x

dλ

]

< 0 .

This shows that λx is decreasing in L. To verify the last claim, observe first that

(8) and C ′′
13 ≥ 0 imply that V x is (weakly) decreasing in x. Furthermore, since the

operator T maps a function Gx
0 whose derivative Gx′

0 is increasing in x into a function

Gx
1 whose derivative Gx′

1 is strictly increasing in x, the unique fixed point Gx also

has a marginal product which is strictly increasing in x. Hence, differentiation of

(7) with respect to x implies that

dλx(L)
dx

= −
Gx′′

(L̂)m(λ)
dV x

dx
+
dGx′

dx
ρ

1 − δ

m′′(λ)

(m′(λ))2
+Gx′′

(L̂)
[

m′(λ)V x +m(λ)
dV x

dλ

]

> 0 .

This shows that λx(L) is increasing in x. 2

Lemma 1: Equation (13) has a unique steady state solution λ∗ > 0 if, and only if,

h <
β(1 − δ)m

1 − β(1 − η)
, (40)

with m = limλ→∞m(λ) − λm′(λ) > 0. Under this condition, any sequence λt > 0

satisfying this equation converges to λ∗.

Proof: A steady state λ∗ must satisfy the condition

βρ[m(λ) − λm′(λ)] =
ρh[1 − β(1 − η)]

1 − δ
+ [Rh+ c]m′(λ) . (41)
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The LHS is strictly increasing and goes from 0 to βρm as λ goes from 0 to +∞.

The RHS is decreasing in λ with limit ρh(1 − β(1− η))/(1− δ) for λ→ ∞. Hence,

a unique steady state λ∗ exists iff (40) holds. Furthermore, differentiation of (13) at

λ∗ implies that
dλt+1

dλt

∣

∣

∣

λ∗
= h
β(1 − δ)m(λ∗) + hβ(1 − η)

,

which is positive and smaller than one iff

h <
β(1 − δ)m(λ∗)
1 − β(1 − η)

.

But this inequality must be true because (41) implies

h =
βρ[m(λ∗) − λ∗m′(λ∗)] − cm′(λ∗)

ρ[1 − β(1 − η)]

1 − δ
+Rm′(λ∗)

<
β(1 − δ)m(λ∗)
1 − β(1 − η)

.

Therefore, the steady state λ∗ is locally stable. Moreover, equation (13) defines a

continuous, increasing relation between λt+1 and λt which has only one intersection

with the 45–degree line. Hence, λt+1 > λt for any λt < λ∗ and λt+1 < λt for any

λt > λ∗, which implies that λt converges to λ∗ from any initial value λτ > 0. 2

Proof of Proposition 2:

It remains to prove existence and uniqueness. From Proposition 1 follows, that

the entrant’s value function Jx(0, 0) is decreasing and continuous in ρ. Hence the

expected profit prior to entry,

Π∗(ρ) ≡
∑

x∈X

π(x)Jx(0, 0)

is a decreasing and continuous function of ρ. Moreover, the function is strictly

decreasing in ρ whenever it is positive. This also follows from the proof of Proposition

1 which shows that Gx(0; ρ) is strictly decreasing in ρ when the new firm x recruits

workers (V (0, x) > 0). If no new firm recruits workers, expected profit of an entrant

cannot be positive. Hence, equation (14) can have at most one solution for any K >

0. Such a solution exists provided thatK is sufficiently small and F ′(0) is sufficiently

large. To see this, when F ′(0) is sufficiently large, Π∗(0) is strictly positive: some

entrants will recruit workers since the marginal product Gx′

(m(λ)V ; ρ) is sufficiently

large relative to the cost of recruitment and relative to the wage cost which are, for
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ρ = 0, equal to m(λ)V b (see equation (39). But when Π∗(0) > 0, a sufficiently small

value of K guarantees that (14) has a solution since limρ→∞ Π∗(ρ) = 0. 2

Proof of Proposition 3:

Because the social planner’s problem (16) is concave, it suffices to show that the

stationary competitive search equilibrium satisfies the first–order conditions of this

problem. We denote by SN,a the derivative of S with respect to Na and by SL,a,x

the derivative of S with respect to Lx
a. The multiplier on the resource constraint is

µ ≥ 0. First–order conditions with respect to N0, V
x
a , and λx

a, a ≥ 0, are

∑

x∈X

π(x)
[

xF (0) − C(V x
0 , 0, x)

]

−K + β(1 − δ)SN,1 − µ
∑

x∈X

π(x)λx
0V

x
0 = 0 , (42)

−Naπ(x)
[

xF ′(Lx
a) + C ′

a(V
x
a , L

x
a, x) + µλx

a

]

+ βSL,a+1,xm(λx
a) ≤ 0 , V x

a ≥ 0 , (43)

βSL,a+1,xm
′(λx

a) − µNaπ(x) = 0 . (44)

Here condition (43) holds with complementary slackness. The envelope conditions

are, for a ≥ 1 and x ∈ X,

SL,a,x = Naπ(x)
[

xF ′(Lx
a) − C ′

2(V
x
a , L

x
a, x) − b− µ

]

+ β(1 − s)SL,a+1,x , (45)

SN,a =
∑

x∈X

π(x)
[

xF (Lx
a) − C(V x

a , L
x
a) − bLx

a

]

+ β(1 − δ)SN,a+1

−µ
∑

x∈X

π(x)
(

Lx
a + λx

aV
x
a

)

. (46)

Use (44) to substitute SL,a,x into (45) to obtain

xF ′(Lx
a+1) − C ′

2(V
x
a , L

x
a, x) − b− µ =

µ
β

[

1
(1 − δ)m′(λx

a)
−
β(1 − s)
m′(λx

a+1)

]

.

This equation describes the planner’s optimal recruitment policy; it coincides with

equation (12) for µ = R − b = βρ. This is intuitive: when the social value of an

unemployed worker µ coincides with the surplus value that an unemployed worker

obtains in search equilibrium, the firm’s recruitment policy is efficient. Next substi-

tute (44) into (43) to obtain the socially optimal vacancy creation, for a ≥ 0 and

x ∈ X,

C ′
1(V

x
a , L

x
a, x) ≥ µ

[

m(λx
a)

m′(λx
a)

− λx
a

]

, V x
a ≥ 0 . (47)
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Again for µ = βρ, this condition coincides with the firm’s choice of vacancy postings

in competitive search equilibrium, equation (8). Lastly, it remains to verify that

the social value of a jobless worker is indeed equal to R − b. The planner’s choice

of firm entry, condition (42), together with the recursive equation for the marginal

firm surplus SN,a, equation (46), shows that

K =
∑

a≥0

[β(1− δ)]a
∑

x∈X

π(x)
[

xF (Lx
a)− bLx

a −C(V x
a , L

x
a, x)− µ(Lx

a + λx
aV

x
a )

]

. (48)

On the other hand, the expected profit value of a new firm is

∑

x∈X

π(x)Jx(0, 0) =
∑

a≥0

[β(1 − δ)]a
∑

x∈X

π(x)
[

xF (Lx
a) −W x

a − C(V x
a , L

x
a, x)

]

.

Hence, the free–entry condition in search equilibrium, equation (14), coincides with

condition (48) for R = b+ µ if, for all x ∈ X,

∑

a≥0

[β(1 − δ)]a
[

(b+ µ)Lx
a + µλx

aV
x
a −W x

a

]

= 0 . (49)

Now after substitution of

Lx
a =

a−1
∑

k=0

(1 − s)a−1−km(λx
k)V

x
k , and

W x
a =

a−1
∑

k=0

(1 − s)a−1−kV x
k

[

ρλx
k

(1 − δ)B
+m(λx

k)R
]

into (49), it is straightforward to see that the equation is satisfied for µ = R−b = βρ.

2

Proof of Proposition 4:

The RHS in the system of equations in (22) defines an operator T that maps a

sequence of bounded functions G = (Gt)t≥0, with Gt : [0, L] × X × Zt → IR such

that ‖G‖ ≡ supt ‖Gt‖ <∞, into another sequence of bounded functions G̃ = (G̃t)t≥0

with ‖G̃‖ = supt ‖G̃t‖ <∞. Here L is sufficiently large such that the bound L̂ ≤ L

does not bind for any L ∈ [0, L]. This follows from the Inada condition for F : the

marginal product of an additional worker xzF ′(L̂) − b must be negative for any

x ∈ X, z ∈ Z, for any L̂ ≥ L with sufficiently large L; hence no hiring will occur
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beyond L. Because the operator satisfies Blackwell’s sufficient conditions, it is a

contraction in the space of bounded function sequences G. Hence, the operator T

has a unique fixed point which is a concave function of L. This implies that the

solutions to problem (22) are characterized by its first–order conditions.

To see that the two problems (20) and (22) lead to the same choices of δ, s, λ and

V for any given firm, rewrite the Lagrange function of problem (20) in the following

way, with multipliers βtψ(zt)µ(zt) ≥ 0 on constraints (21),

L = max
∑

t≥0,zt

βtψ(zt)

{

−KN0(z
t) +

∑

a≥0,xa

N(xa, zt)

[

xaztF (L(xa, zt)) − bL(xa, zt)

−f − C(V (xa, zt)) − µ(zt)
[

(1 − s(xa, zt))L(xa−1, zt−1) + λ(xa, zt)V (xa, zt)
]

]}

The planner’s policy is obtained by maximization of this Lagrange function with

respect to δ(.), s(.), λ(.), V (.), and N0(.). Using the sequential formulation of the

recursive problem (22), the maximum of the Lagrange function is the same as the

sum of the social values of entrant firms and the social values of the firms that

already exist at t = 0, namely,

L = max
N0(.)

∑

t,zt

βtψ(zt)N0(z
t)

[

−K +
∑

x

π0(x)Gt(0, x, z
t)

]

+
∑

z∈Z

ψ(z0)
∑

a≥1,xa−1

π(xa|xa−1)G0(L(xa−1, .), xa, z
0) .

This also proves that the complementary–slackness condition (23) describes optimal

entry. 2

Proof of Proposition 5:

Part (a) Solving (22) in the stationary case involves to find a single value function

G(L, x, µ). Application of the contraction mapping theorem implies that such a

solution exits, is unique, and is continuous and non–increasing in µ and strictly

decreasing in µ when G(.) > 0.

Therefore, the function Γ(µ) ≡
∑

x π0(x)G(0, x, µ) ≥ 0 is continuous, strictly de-

creasing when positive, and zero for large enough µ. Furthermore, when f and b are
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sufficiently small, Γ(0) > 0; hence when K > 0 is sufficiently small, there exists a

unique µ ≥ 0 satisfying equation (23).

Part (b) For any given vector (µ1, . . . , µn) ∈ Rn
+, the system of recursive equations

(22) has a unique solution G = (Gi). Again this follows from the application of

the contraction–mapping theorem. Furthermore, G is differentiable in µ, and all el-

ements of the Jacobian (dGi/(dµj)) are non–positive. The RHS of (22) defines an op-

erator mapping a function Gi(L, x, µ) with a strictly diagonally dominant Jacobian

matrix (dGi/(dµj)) into another function G̃j whose Jacobian matrix (dG̃i/(dµj))

is diagonally dominant. This follows since the transition matrix ψ(zj |zi) is strictly

diagonally dominant and since all elements of (dG̃i/(dµj)) have the same (non–

positive) sign. Therefore, the unique fixed point has a strictly diagonally dominant

Jacobian. Now suppose that (z1, . . . , zn) is close to (z, . . . , z) and consider the solu-

tion µ1 = . . . = µn = µ from part (a). Since the Jacobian matrix dGi(0, x, µ)/(dµj)

is strictly diagonally dominant, it is invertible. By the implicit function theorem, a

unique solution to equation (23) exits. 2

Proof of Proposition 6: The proof proceeds in two steps. First, substitute the

participation constraint (36) into the firm’s problem and make use of the contracts’

recursive equations (29) to show that the firms’ recursive profit maximization prob-

lem is identical to the maximization of the social surplus of a firm. Second, show

that the competitive equilibrium is socially optimal.

First, define the social surplus of a firm with history (xa, zt) and with predetermined

contracts and employment levels as follows:

Ga

[

(Cτ )
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

≡ Ja

[

(Cτ)
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

(50)

+
a−1
∑

τ=0

Lτ

[

W (Cτ , x
a, zt) − U(zt)

]

.

Without loss of generality, the participation constraint in (36) always binds, and the

wage in the hiring period can be expressed as

wa(x
a, zt) = b+βEzt

U(zt+1)+
λρ(zt)
m(λ)

−β
∑

xa+1

∑

zt+1

π(xa+1|xa)ψ(zt+1|zt)W (Ca, x
a+1, zt+1) .

39



Now substitute this equation, (29) and (33) into (50), and write

S ≡
[

(Cτ)
a−1
τ=0, (Lτ )

a−1
τ=0, x

a, zt
]

and Ŝ ≡
[

(Cτ )
a
τ=0, (L̂τ )

a
τ=0, x

a+1, zt+1
]

,

with L̂τ as defined in (33), to obtain

Ga(S) = max
δ,λ,V,Ca

(1 − δ)

{

xaztF (L̂) − f − C(V ) −

a−1
∑

τ=0

1 − ϕτ (x
a, zt)

1 − δ
Lτwτ (x

a, zt) (51)

−m(λ)V
[

b+ βEzt
U(zt+1) +

λρ(zt)
m(λ)

]

+βExa
Ezt

[

Ja+1(Ŝ) +m(λ)VW (Ca, x
a+1, zt+1)

]

}

+

a−1
∑

τ=0

Lτ (1 − ϕτ (x
a, zt))

[

wτ(x
a, zt) − U(zt) + βExa

Ezt
W (Cτ , x

a+1, zt+1)

]

= max
δ,λ,V,Ca

(1 − δ)

{

xaztF (L̂) − f − C(V ) − ρ(zt)λV − bL̂− ρ(zt)

a−1
∑

τ=0

Lτ (1 − ϕτ (x
a, zt))

+βExa
Ezt

[

Ja+1(Ŝ) +

a
∑

τ=0

L̂τ

(

W (Cτ , x
a+1, zt+1) − U(zt+1)

)]

}

= max
δ,λ,V,Ca

(1 − δ)

{

xaztF (L̂) − f − C(V ) − ρ(zt)
[

λV + L̂−m(λ)V
]

− bL̂

+βExa
Ezt

Ga+1(Ŝ)

}

.

Here maximization is subject to (33) and (34), and the second equation makes use

of (31). This shows that the firm solves a surplus maximization problem which is

identical to the one of the planner specified in (22) provided that ρ(zt) = µ(zt) holds

for all zt, where µ is the social value of an unemployed worker as defined in section

4.2. The only difference between the two problems is that the firm commits to state–

contingent and cohort–specific separation probabilities, whereas the planner chooses

in every period an identical separation probability for all workers (and he clearly has

no reason to do otherwise). Nonetheless, both problems must have the same solution:

they are dynamic optimization problems of a single decision maker in which payoff

functions are the same (with ρ(zt) = µ(zt)) and the decision sets are the same.

Further, time inconsistency is not an issue since there is no strategic interaction
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and since discounting is exponential. Hence solutions to the two problems, with

respect to firm exit, layoffs and hiring strategies, are identical. In both problems

the decision maker could principally treat different cohorts differently. Because our

notation for the planner solution did not capture that possibility, there is also no

reason for competitive search to produce such an outcome. Nonetheless, there can be

equilibria where different cohorts have different separation probabilities, but these

equilibria must also be socially optimal because they maximize social firm value.

It remains to verify that worker surplus ρ(zt) in the competitive search equilib-

rium coincides with the social value of a worker in the planning solution. When

µ(zt) = ρ(zt), G0(x, z
t) as defined in (50) coincides with G0(0, x, z

t), as defined in

(22). Hence, the free–entry condition (37) coincides with the condition for socially

optimal firm creation (23). Because of labor market clearing (38), the planner’s

resource constraint (21) is also satisfied. Since the allocation in competitive search

equilibrium satisfies the first–order conditions and the constraints of the planner’s

problem, it is socially optimal. 2
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