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Abstract

We study how the presence of non-exclusive contracts limits the amount of insurance
provided in a decentralized economy. We consider a dynamic Mirrleesian economy
in which agents are privately informed about idiosyncratic labor productivity shocks.
Agents sign privately observable insurance contracts with multiple firms (i.e., they are
non-exclusive), which include both labor supply and savings aspects. Firms have no re-
striction on the contracts they can offer, interact strategically. In equilibrium, contrary
to the case with exclusive contracts, a standard Euler equation holds, the marginal rate
of substitution between consumption and leisure is equated to the worker’s marginal
productivity. Also, each agent receives zero net present value of transfers. To sustain
this equilibrium, more than one firm must be active and must also offer latent con-
tracts to deter deviations to more profitable contingent contracts. In this environment,
the non-observability of contracts removes the possibility of additional insurance be-
yond self-insurance. To test the model, we allow firms to observe contracts at a cost.
The model endogenously divides the population into agents that are not monitored
and have access to non-exclusive contracts and agents that have access to exclusive
contracts. We use US survey data and find that high school graduates satisfy the
optimality conditions implied by the non-exclusive contracts while college graduates
behave according to the second group.
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1 Introduction

What type of contractual arrangements are available to workers in a decentralized economy
when firms compete for the provision of social insurance? In this paper, we study how, in
a decentralized economy, the presence of non-exclusive contracts endogenously limits the
contracts offered and hence the amount of insurance. We find that competition and non-
observability of insurance contracts significantly reduce the amount of insurance provided:
the equilibrium allocation in our environment is equivalent to a self-insurance economy and

only linear contracts are offered.

Multiple credit and labor relations are an important aspect of everyday life. Survey data
shows that individuals and households receive insurance against idiosyncratic risk from a
multitude of sources: publicly provided insurance (unemployment, Medicare, Medicaid, dis-
ability, food stamps, progressive income taxation); privately provided insurance (employer,
between and within family transfers);' financial instruments in credit markets; and hous-
ing and other large durable goods. The same consideration is true for labor relationships.
Paxson and Sicherman (1994) look at the number of concurrent labor relationships held by
survey respondents of the Panel Study of Income Dynamics (PSID) between 1977 and 1990
and the Current Population Survey (CPS) of 1991. They find that for any given year, 20%
of working males held at least a second job, and during their working life there is at least a
50% probability of holding a second job. However, monitoring all the transactions an agent
might engage in with other firms is very costly for an individual firm, especially if these
relationships include activities in the informal labor market, private savings, and the ability
to transfer leisure into consumption through either home production or shopping time (see
Aguiar and Hurst (2005)). Motivated by these considerations, the key friction addressed in
this paper is the non-exclusivity and non-observability of contractual relations. In the first

part of the paper, we characterize the optimal contract under the assumption that none of

!The Panel Study of Income Dynamics reports for the years 1969 to 1985 a measure of income transfer
received by households. We find that, in a given year, 24% of the households report receiving a transfer and
67% of the households received a transfer at some stage. These transfers are significant, averaging $1,930
(1983 dollars) and represent between 70% to 90% of total food expenditures.



the labor and credit relations an agent engages in can be observed by an individual firm.” We
interpret this friction as reflecting both the costs that a firm might incur when monitoring
the transactions agents engage in and the inability of firms to offer contracts contingent on
the agents’ actions with other firms in the economy. In the second part of the paper, we
endogeneize the observability of contracts by allowing firms to costly monitor contracts and
take the model to the data.

The environment studied is a finite horizon dynamic Mirrleesian economy in which agents
are privately informed about idiosyncratic labor productivity shocks that evolve over time.
Agents wish to insure this risk by signing contracts with insurance providers (firms). Agents
are not limited to a single insurance/labor relationship and can sign contracts with multiple
firms. The contracting arrangements are private information of the contracting parties.
Given this friction, in general, the communication between agent and firms cannot be limited
to the exogenous private shock of agents (firms might also seek information about the other
relations the agent has engaged in), as in the case with observable contracts. We extend
the results in the common agency literature to our dynamic environment and characterize
equilibrium using a menu game.”® In this game, each firm offers collections of payoff relevant
alternatives — menus — and delegates to the agent the choice within these menus. The choice
of the agent from a menu can reveal information about his type and the other contractual
arrangements in which he might be involved. We impose no restriction on the contracts that
firms can offer. A firm can, for example, offer a spot labor contract, a linear intertemporal

borrowing and saving contract, a state contingent dynamic insurance contract, and so on.

The non-observability of contracts removes the possibility of additional insurance beyond
self-insurance and only linear contracts arise in equilibrium. We find that three optimality
conditions must hold in equilibrium. First, the intertemporal marginal rate of substitution
between consumption at time ¢ and consumption at t + 1 is equal to the marginal rate of

transformation (a standard Euler equation holds).” Second, the marginal rate of substitution

2The characterization under exclusive contracts is well understood, see Prescott and Townsend (1984).
3See Peters (2001), Martimort and Stole (2002), and Epstein and Peters (1999).
4If contracts are exclusive, the Euler equation does not hold and agents are savings constrained (see



between consumption and leisure is equated to the marginal productivity for any time and
any history.” Third, the net present value of the transfers received in equilibrium is equal
zero for every agent in the economy. These optimality conditions imply that the unique
equilibrium allocation is equivalent to an economy in which agents can trade non-contingent
bonds and are paid their marginal productivity and in which there is no redistribution.
The intuition for this result is the following. If, for example, a firm offers an intertemporal
contract at an implicit rate of return lower than the marginal rate of transformation, it would
provide a profitable opportunity for an entrant: it can offer a contract with a return slightly
higher and make profits.” Such entry cannot be prevented by the first firm by also offering

latent contracts because it cannot induce negative profits to the entrant.

These results, linking side trading and linear contracts, are reminiscent of Allen (1985),
Hammond (1987), Cole and Kocherlakota (2001). We contribute to this literature by explic-
itly modeling competition between firms and determining endogenously the market structure.
To sustain the equilibrium allocation we show that an incumbent firm must offer latent con-
tracts to deter deviations of other incumbent firms.” Moreover, in equilibrium more than
one firm must offer the equilibrium allocation. The intuition for this result is that the equi-
librium allocation is the most profitable non-contingent contract; however some contingent
contracts deliver higher profits. If there is a unique incumbent or no latent contracts, a firm

will deviate and offer one of these contracts.

To derive testable implications between non-exclusivity of contracts and the availability
of insurance in the data, we generalize the model, relaxing the assumption about the ob-
servability of contracts. We assume that at time 0, a firm can pay a cost for each agent

which allows the firm to observe all the contracts the agent signs. We assume that agents

Golosov, Kocherlakota, and Tsyvinski (2003)).

SThis is also different with respect to the exclusive contracting environment (see, for example, Mirrlees
(1971) and Golosov, Tsyvinski, and Werning (2006)), where this relation holds only for the highest skill type,
while all of the remaining types face a distortion on the intratemporal margin that discourages consumption
and hours provided.

60r similarly, offering a labor contract at an implicit wage lower than marginal productivity.

In our equilibrium characterization, restricting to direct mechanisms, while not restrictive in the previous
papers, results in non-existence of equilibrium.



are heterogeneous with respect to the probability distribution of the productivity shock:
some agents draw the productivity shock from a low mean distribution, while others draw
from a distribution with higher mean. If the cost is paid, a firm offers the optimal contract
under exclusivity (as in Golosov, Kocherlakota, and Tsyvinski (2003) and Albanesi and Sleet
(2006)). If the cost is not paid, firms offer the contract described in this paper, which imple-
ments the self-insurance allocation. With this extension, the model endogenously partitions
the population into groups with access to different insurance contracts. Agents with lower
average productivity have access to non-exclusive contracts while agents with higher pro-
ductivity have access to exclusive contracts. We use US survey data to test whether agents’
consumptions and hours allocations, when grouped by education attainment, satisfy the op-
timality conditions under exclusive or non-exclusive contracts. We find that the consumption
of college graduates evolves according to the inverse Euler equation, while for individuals
with less than college, the consumption satisfies the standard Euler equation. Looking at the
static consumption-leisure distortion calculated in the data, we investigate how it evolves as
agents age. The model prescribes a constant distortion over age if workers have access to
non-exclusive contracts while an increasing distortion in the other case. We find that also in
this dimension, we cannot reject the hypothesis that high school graduates behave according

to the linear contracts whereas the other group is closer to the constrained efficient contract.

Related Literature

This paper is related the literature on optimal social insurance contracts and its implementa-
tion through taxation, commonly referred to as new dynamic public finance.® In general, the
environment studied in these papers assumes that insurance is provided by a unique provider
-the government- who perfectly controls both consumption and labor decision of the agents.
With respect to this literature, this paper has two distinct implications. Our main result
suggests that the constrained efficient allocation cannot be implemented in decentralized

environments unless every aspect of the contracting is observable, thus making necessary the

8For a review, refer to Kocherlakota (2006) and Albanesi (2008).



provision of insurance via taxes or a centralized institution that makes information public.
However, our results also highlight that the presence of hidden and self-enforcing activi-
ties (for both consumption and labor) might undo any incentives the government provides
through taxes. Related to this last point, our work is also related to a literature on optimal
contract in the presence of hidden trades.” In particular, Cole and Kocherlakota (2001)
show that, in an private information endowment economy, equilibrium is equivalent to self-
insurance when agents can secretly save in a storage technology. In an environment similar
to ours, Golosov and Tsyvinski (2007) characterize equilibrium when agents can engage in
hidden trades of Arrow-Debreu securities. They show that a standard Euler equation holds
and that the decentralized equilibrium is not efficient, since firms do not internalize the
effects of the contracts offered on the market rate of return. This paper can be seen as a
generalization of the previous two papers, in the sense in that those the recontracting possi-
bilities are assumed exogenously (a market with linear prices or a storage technology) while
in this paper the recontracting market is a result of an equilibrium game between insurance
providers.

This paper also relates to Bisin and Guaitoli (2004), who analyze a static moral hazard
environment under non-exclusive contracting. Their main result shows that latent contracts
are used to sustain the equilibrium. However, the nature of the moral hazard environment,
differently from our environment, enables latent contracts to prevent any profitable entry
by additional insurance providers, thus delivering a positive profit equilibrium to the incum-
bents.

The quantitative analysis in this paper is related to Townsend (1995) and Ligon (1998).
These papers investigate whether the consumption patterns in villages in Thailand and India,
respectively, are consistent with the predictions of a constrained efficient allocation or the
full information model. Ligon (1998) estimates the inverse Euler equation and the Euler
equation for three villages in India. He finds that in two villages the consumption behavior

is consistent with the Euler equation while in one village it is consistent with the constrained

9For example Cole and Kocherlakota (2001), Golosov and Tsyvinski (2007) and Abraham and Pavoni
(2005).



efficient allocation. Townsend (1995) investigates the consumption in Thai villages and finds
that for some the constrained efficient allocation describes accurately the fluctuations while
for others the full information model is a good benchmark. The study also emphasizes how
villages differ in information flows between households (including assets and transactions)

and how this could be responsible for the different insurance regimes observed.

The paper is organized as follows. In Section 2, we describe the environment and show
that any equilibrium can be implemented by a menu game. Section 3 characterizes the
equilibrium of our benchmark environment and shows that it is equivalent to self-insurance.
We also show that latent contracts are necessary to implement the equilibrium allocation.
Section 4 extends the model, allowing firms to observe contracts, and analysis its implications

using US survey data. Section 5 is the conclusion.

2 Environment

Consider an economy populated by a continuum of measure one of ex ante identical agents
and I firms (insurance providers), with [ > 2. The economy lasts for a finite number 7" of
periods. Agents’ period utility is defined over consumption ¢ and labor [ and is given by
u(c) — v(l). Agents discount future utility at rate 0 < § < 1. Assume u : R, — R is twice
continuously differentiable, increasing and strictly concave function, lim. o u'(¢) = oo and
lim._o %' (¢) = 0; and v : R, — R is twice continuously differentiable, increasing and strictly
convex function and lim,_,; v/(I) = oo, where L is the maximum feasible number of hours in
a period. At every time t = 1,2,...,T, each agent draws a privately observed productivity
shock 0, € ©, where © is a finite set and its smallest element is strictly positive. 'V We
assume the law of large numbers holds. The shock is distributed according to probability
distribution 7(-) and is independent and identically distributed over time and across agents.
Let 6" = (04, ...,6;) denote the history of uncertainty of an agent up to time t. Given a

sequence of consumption and leisure {c,l} = {c;, s}, the expected discounted utility of

10 Assume mingee 6 > 0.



an agent is given by .,
U({e,1}) =Eo ) B [uler) = v(le)]. (1)

For a given realization of the labor productivity shock 6, an agent can produce y units of
effective output according to y = 0l, where [ denotes his labor input. We assume the labor
input is private information of the agent while output y is publicly observable to each firm
for which the agent is producing output .

Each firm ¢ € {1,...,I} offers labor and credit contracts to agents to insure against
productivity shocks. A contract prescribes, at every time ¢, output requirement ! and
consumption transfer y! + bi. The period profit of firm i is given by V(') = —b'. Firms can
transfer resources over time at constant rate ¢.'!

An important feature of our environment is that agents can sign contracts simultaneously
with more than one firm, and the terms of the contract between an agent and a firm ¢ are
not observed by other firms.'” We do not impose any restriction on the contracts offered by
each firm. For example, a firm can offer a contract for the entire time horizon t = 1, ..., T
for a particular set of dates; only credit contracts (y; = 0, Vt); only labor contracts, or both.
We also do not impose any specific contingency on the contracts; in particular, we do not
restrict to linear contracts.

At time 0, before any uncertainty is realized, agents sign a contract with each firm
i.'% To take into account the voluntary participation of agents, every firm is required to
offer at time 0 a null contract that determines no output requirement and no consumption
transfers in every period. The contracts offered by a firm at time 0 are contingent on the
future communication between that firm and the agent. We assume that contracts must be

honored and neither firms nor agents can renege on them.'*

' This fixed interest can be interpreted as the firm having access to external credit markets.

12\We assume that each agent is atomless and no interaction between agents is allowed.

13The ability of a firm to offer a contract prescribing transfers and output requirement at any future date
t and giving the agents the option of not entering the contract (offering the (0,0) pair at time ¢) is, for the
agent, a costless option of entering into that contract at time ¢. This, together with the fact that, for a firm,
not contracting with an agent between time 0 and time t does not reveal any additional, makes our analysis
equivalent to the case where agents decide to enter or not a contract at any future date, not only at time 0.

4We interpret contracts as self-enforcing in the following way. Both agents and firms have access to



2.1 Communication and Menu Games

Communication
Firms and agents communicate according to communication mechanism,'” which consists
of message spaces R’ for time 0 and message spaces M! for each t € {1,...,T}, for each
firm i € {1,...,1}. Denote the set of all possible messages that can be exchanged by an
agent and firm i up to time ¢t by M* = M} x ... x M!. Each firm chooses allocation
functions ¢¢ : M%" — R? which specify transfers of consumption and output at time ¢, and
¢ R — GEHMPY) x ... x GL(MPT), where Gi(M™?) is the set of all measurable mappings
from message space M®*' to the allocation space R%. Let (b(m®'),y(m"")) = gi(m*') denote
the allocation received by an agent who sends messages m®' = (m!,...,m!) to firm i. The
function ¢' determines the contracts an agent will face in all subsequent periods. Denote by
GI(M') = GLMP) x .. X GH(MPT) and M* = M x ... x M. Let ®(R?, M) be the set of
all measurable mappings from message space R’ to the set G' and note that ¢* € (R’ M*).
Let M = x!_,M" and R = x/_;R". Denote the game associated with the communication
mechanism (M, R) by I'yvx.

At time 0, before any uncertainty is realized, each firm ¢ simultaneously offers a collection
of allocation functions ¢‘, and agents communicate with firms sending a message 7. This
message determines, through ¢*, the functions g at every period ¢t. The timing of the game

I' vz is the following:
e At time 0:

1. Each firm 4 simultaneously offers contract ¢ : Rt — G*(M?);

2. Agents send a report r* € R to each firm 4.

e At time ¢:

an enforcement mechanism (“court”) upon the payment of a cost, whenever one of the parties reneges on a

contract. If this cost is paid, the terms of the contract between the two parties in consideration become public,

and this court can enforce a punishment to the party that reneged on the contract. If either firms or agents

falsely report a breach on the contracts, they can also be punished by court. We assume this punishment

can be made large enough so that in equilibrium neither firms nor agents will renege the contracts signed.
15No communication between firms is allowed.



1. Agent learns his private type 6;;
2. Firm offers allocation rule g : M* — R? according to ¢'(r’);
3. Agent sends a message m! € M} to each firm i;

4. Payofts are realized.

Given messages (M, R), we consider a static Nash equilibrium played by firms at time 0
when choosing the contracts that are offered in future periods. Given these contracts, agents

optimize choosing the report at time 0 and messages in every period t =1, ..., 7.

Definition 1 (Equilibrium of Communication Game). A pure strategy equilibrium of

Cmr is (r*,m*, ¢*, g*) such that:'°

1. Agent’s message m;: G} x ... x GI x @' — M, solves for each t € {1,....,T}:

U (m'™',6:]g") = max u (Z (b (m™) +y(m’?t))> — <Zz:+t(m’)> L

meEMy -
=1

+8Y  w(01) Ui (m', 0141197

Ot 41

subject to S°1_, (B(m™*) +y(m™)) >0, S y(m™') >0, vt
where (W), y(m)) = g7 (')

2. Agent’s reporting strategy at time 0, r* : G' x ... x G — R solves:

IPE%%( s 7(01)Uh (m0,91|g)

where g' = ¢"*(r;).

3. For each i € {1,...,1}, taking as given the choices of the other firms and the agents’

6We do not allow random strategies.
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choices, firm’s i allocation function ¢“* solves:

T
Vi@ o) = miny 3 w(0)q'0)(6),

t=0 @t
B (0) = B(mt(01), g = & (r**) and g™ = 675 (r2).
Denote the equilibrium allocation of a general communication game by (b*, y*).

Menu Games

If contracts are exclusive (or equivalently observable), the environment is equivalent to a stan-
dard dynamic Mirrleesian environment as in Golosov, Kocherlakota, and Tsyvinski (2003).
In this case, the revelation principle guarantees that without loss of generality, firms can
restrict to direct mechanisms that are incentive compatible. However, under non-exclusive
contracting, the preference ordering of the agents is influenced not only by their exogenous
private information, but also by the set of contracts offered. In particular, the choice of an
agent in the contracts offered by firm 7 depends on the contracts offered by other firms. This
implies that restricting to a direct mechanism may not allow a firm to have a rich enough
communication with the agent in order to obtain information on the other contracts.

In order to characterize the contracts offered by each firm, we extend the delegation prin-
ciple proved by Peters (2001) and Martimort and Stole (2002) to our environment. This
principle states that, without loss of generality, the equilibrium outcomes of any communi-
cation game can be implemented as an equilibrium of a menu game. The key idea is that any
communication in the original communication mechanism can be replaced by firms offering
menus of payoff-relevant alternatives and delegating to the agents the choice within this
menu. To incorporate a richer communication between firms and agents, firms might offer
menus with elements that are not chosen in equilibrium (latent contracts). As highlighted by
Arnott and Stiglitz (1991), offering latent contracts might be necessary to sustain particular
equilibria by deterring entry of additional insurance providers and by preventing deviation

of the incumbent insurance providers.'”

7Our environment differs from the previous literature along two dimensions. First, the environment is

11



A communication mechanism induces allocation functions and, hence, distribution over
allocations. This means that to prove the equivalence between the equilibrium allocation of
a given communication mechanism and the equilibrium of a menu game, it is essential that
the menus offered are rich enough to capture the strategies used to implement equilibrium in
a communication mechanism. In our environment, a menu is a sequence of sets, where each
set is a subset of the allocation space R x R,. For a message space (M, R), define, for each
firm 7, the set C!(m"*~! M!G!) as the menu that can be implemented through a message

1

space M. at time ¢ given a history of messages m*'~! and a set of allocation functions G'.

Formally, a menu at time ¢ is the following set:
Ci(m™ ™, MY|G}) ={C} SR xRy g; € G} C Gi(M™) - Cf = Tm(gy|m™ 1)} Ve, Vi (2)
where
Im(g)jm"" ") ={z e Rx R | Imj e M} 1z =g, (m"" m)} Vt, Vi. (3)

Each set defined in (2) contains all subsets of R? with cardinality at most M:.
For any subset Gi C GL{( M), let G' = G} x ... x Gi and define a sequence of menus

offered by firms at time 0 as:
C(G") ={C; S C{(m" " MIGY), t=1,.., T, Ym" ™" € M"* m; e Mi}.  (4)

At time 0, each agent chooses a sequence of menus in the collection offered by firm

i. Define C' as the collection of menus that are consistent with a communication system
(M, R).

C(R', M) ={C"'CC'(G') |3 ¢ € ' (R", M") : G' =Tm(¢')}. (5)

dynamic in the sense that the exogenous uncertainty is realized in every period. Second, agents choose a
communication-contingent contract from each firm i before any uncertainty is realized. This is important
since at time 0, agents are identical thus might be possible to extract more information about the contracts
being offered by other firms.

12



This set contains all the collections of sets C* with cardinality less than or equal to the
cardinality of R?. Without explicitly writing the dependence on the message spaces, let
C' = CY(R", M") and let C" be a generic element of C'. Let C' =[], C" and C = [, C* be the

collection of all menus. Let I'c¢ be the game associated with menus (C,C).

Definition 2 (Equilibrium of Menu Games). A pure strategy equilibrium of a menu game
is a collection of menus C and agents’ choices C € C and (b, §) € Ci(b=1 §it=1|C%) Vit e
{1,..,T}, Vie{l,.. I}:*

1. Agents’ choice at time t, (b, ;) : Co(b'™1, 5171 C) x ©F — C, (b, 5" 1| C) solves:

I I i
) = (S <o (Z5)

(be.ye)€Ce (bt=1,4t-1|C =1

+6)  m(0r1)Ups (bt, v 9t+1|é> ;

Or+1
subject to .1 (bi + i) >0, S yi>0 Vi

2. Agents’ choice at time 0, C:C — C solves:

0.)U; (8°,4°,6,|C) .
rg?g;ﬂ-( 1) 1( 'Y 1| )

3. Foreachi € {1,....I}, C* solves, taking as given C_; chosen by firms —i and the agents’
choice C_;, {b4(6Y), 91(0")}L_, :

5?(93 c C«ti(l;i,t—l’ Ai,t—l‘éi)} thz‘([)z‘,t—g Ai,t—1|éi) e (i
b (07) € Gt (b g and G (b g O € O

18We do not allow for random menus.
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Denote the equilibrium allocation of a menu game by (b, §).

Note that a menu might contain more alternatives than the cardinality of the type space,
implying that some alternatives are not chosen in equilibrium. Similarly, at time 0 a firm
might offer more than one set of contracts, also implying that some contracts are offered
and not chosen by agents in equilibrium. We denote a contract as latent if it is offered
in equilibrium by a firm but is not chosen in equilibrium by any agent. As we show in
this paper, latent contracts have an important role in sustaining equilibrium allocations by
preventing other firms from deviating to other contracts.

The following proposition shows that an equilibrium in a general communication system
can be implemented as an equilibrium of a menu game. In this menu game, the collection of
menus offered by each firm must be compatible with the general communication mechanism

as defined above.

Proposition 1 (Delegation Principle). Let (b*,y*) be an equilibrium allocation of a general
communication game I'ypyr. Then there exists (13, y) that is an equilibrium allocation of a

menu game I'ce and (b, y*) = (b, ).
Proof. In Appendix A. O]

Proposition 1 states that for given message spaces (M, R), there exists a menu game that
implements the same equilibrium allocation. It is important to note that message spaces
restrict the menus that can be offered in a menu game. From the previous result, if firms
are allowed to use unrestricted message spaces, the same equilibrium can be implemented if
firms can offer unrestricted menus as stated in Corollary 1 in Martimort and Stole (2002).
From now on, we focus on unrestricted menu games.

The presence of two rounds of communication (at time 0 and at every time t) allows to
further simplify the unrestricted menu game. We show that any time ¢ menu that contains
latent points (allocations not chosen in equilibrium) can alternatively be replaced by a time
t menu with the same number of elements as the type space and latent menus at time 0.
This implies that, without loss of generality, we can restrict firms to offering time ¢ menus

that have the same cardinality of the type space, which we call minimal menus.

14



Definition 3 (Minimal Menus). A menu C* € C' is minimal if for all C~" € C™" and
(bi,yt) € CL, for all C) € C*, there exists 0; € ©, such that (b, y!) = (b**(0"), y*"(6")).

Intuitively, a menu is minimal if all of its elements are chosen by some agent in equilibrium.

Proposition 2. Let C = {C!,C™"} be an equilibrium of a menu game. There exists a payoff

equivalent equilibrium C, such that every C* € C' is a minimal menu for all i.

Proof. In Appendix A. n

3 Equilibrium Characterization

An important message of the previous section is that direct mechanisms might not be suf-
ficient when characterizing the optimal contract. This means that firms might offer latent
(off-equilibrium) contracts. In this section, the use of latent contracts plays an important
role, in particular to show that an equilibrium exists. We show that equilibrium would fail

to exist if firms were restricted to offer direct mechanisms."’

3.1 Characterization under Exclusive Contracts

Before characterizing the optimality conditions in our environment, we review two robust
equilibrium conditions in an environment in which there is competition between insurance
providers and contracts are exclusive.”’ The seminal paper of Prescott and Townsend (1984)
shows that in a general class of private information economy, the first welfare theorem holds.
The decentralized economy is equivalent to a planning problem that maximizes the ex ante
lifetime utility of the agents subject to feasibility and incentive compatibility constraints (in

every period for every realization agents weakly prefer the allocation designed for them).

Throughout the paper, an incumbent refers to a firm that offers a menu that contains transfers and/or
output recommendations other than the null contract and some agent chooses some of these contracts in
equilibrium. An entrant refers to an insurance provider that, at all times, every agent chooses the null
contract from the menus offered by this firm. We assume the number of firms I is large enough so that an
entrant always exists.

20 Alternatively, the allocation can be implemented in an economy in which all the contracts an agent signs
are observable and a firm can offer a contract contingent on agent’s actions with all other firms.
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In an environment similar to ours, and in the presence of exclusive contracting, the

equilibrium allocation has the following features:*!

1. The marginal rate of substitution between consumption and leisure is equated to the

marginal productivity only for the highest type, originally shown by Mirrlees (1971):

s1et0) = 30 (4. R
%U(M> V0£0,0co, (7)

where § = maxgcg 0. The intuition for this result is the following: in order to separate
types, it is optimal to discourage less productive agents to work. This implies that all
but the most productive agents work and consume less than they would in a competitive

environment.

2. If preferences are separable in consumption and leisure, the marginal rate of substi-
tution of consumption between any two periods differs from the intertemporal rate of
transformation for all types (the standard Euler equation does not hold):

1 1 [ 1

w(e(@) ~ BR M’ V6. ®)

u/(c(61)
This equation, derived originally by Rogerson (1985) and generalized in Golosov,
Kocherlakota, and Tsyvinski (2003), implies that for all periods u/(c(6")) < BRE [u'(c(6"1))|6"].
This means that it is optimal to make any type of agent saving constrained in order

to encourage the truthful revelation of productivity in future periods.

3.2 Optimality Conditions under Non-exclusivity

We now derive the equilibrium conditions in the presence of non-exclusive contracting. This

friction implies that the above equilibrium conditions cannot be implemented.

21For a review of the results of constrained efficient allocation in dynamic Mirrleesian environments, refer
to Golosov, Tsyvinski, and Werning (2006).
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Under exclusivity, the optimal contract provides incentives to more skilled workers by
discouraging less skilled agents to work (with respect to the full information allocation).
The next lemma shows that this distortion cannot be implemented when contracts are not

exclusive, since agents can work an extra amount to other firms.

Lemma 1. In any equilibrium for every 6t € ©t, for all t the following holds:

w000 + 0 <o (1) 5 )
where b(6') = >, b°(0") and y(0") = >,y (6") and where (b'(0"),y"(0")) are the contracts

chosen by an agent with history 6° from firm ¢ at time t.

Proof. Suppose that for some history 6* equation (9) does not hold:

u' (b(0") +y(0") > <M> l (10)

0 ) O
In this case, the agent would like to consume and work more than the equilibrium contract.
An entrant can make strictly positive profits offering a supplemental contract with more
consumption and output. Consider an entrant that offers the contract at time ¢, CF =
{(—=¢,0%(¢)),(0,0)} where §* and ¢ are constructed as follows. Let 6*(¢|6;) be the solution

of the following problem:

(11)

Ulelby) = rglza(%(u(b(ﬁt) +y(0")+6—¢)—wv (M) .

0y

A necessary first order condition for this problem is:

(12)

W (b(0) + y(0) + 6" (el0) —2) <0 (y n= 5*<s|et>) 1

2 0
If ¢ = 0, the solution for the above problem is §*(0]¢;) > 0 given that (53) holds. From

the Theorem of the Maximum, the solution §*(¢) is continuous on €. Fix € > 0 such that

|6*(0) — 0] > €. There exists 3 > 0 such that if |¢ — 0] < e, then [0*(g) — 0%(0)| < €;. Let €
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be such that 0 < € < €.

An entrant offering this contract makes strictly positive profits, proportional to ¢, and
the agent is strictly better off given that his utility is higher in some history with positive
probability. This contract is always profitable for the entrant even if other type 0, accepts
the deviating contract. The only way to deter this deviation is to have some latent contract
that makes no agent willing to choose it. However, if such a contract existed, it would have

been chosen in the original equilibrium, contradicting the fact that it is a latent contract. [

When contracts are exclusive, the provision of incentives imply that agents are savings

constrained. The following lemma shows that this fails under non-exclusivity.

Lemma 2. In any equilibrium for every ' € ©%, for all t, the following holds:

W(6l0) = 2 Sl (0B, (13)

Ot y1
where ¢, (6") = Zle (b3(0") + yi (0")).
Proof. In appendix B. =

The intuition for the result is the following. If the equilibrium allocation does not satisfy
the Euler equation, an entrant firm can offer a savings (borrowing) contract at time ¢ with
an implicit interest rate lower (higher) than the marginal rate of transformation. As long as
this contract is accepted, the entrant makes strictly positive profits and such contract can
be constructed in a way that provides higher utility to the agent.

In the next proposition, we show that in equilibrium the marginal rate of substitution
(MRS) between consumption and leisure is equated to the marginal productivity for every
history and also that the lifetime transfer received under any history is equal to zero, so that

there is no cross-subsidization between types.

Proposition 3. In any equilibrium the following two conditions hold:
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1. Zero net present value of transfers:
T o\
> (-) () =0 Vo eo. (14)

2. MRS equal to marginal productivity:

W« (0" + y(0) =/ (y éft)) elt v 0t (15)

Proof. In appendix B. O]

So far we characterized three necessary properties of the equilibrium allocation: (13),
(14), and (15). In subsection 3.3, we show that there is a unique allocation that satisfies
these conditions, which we denote by {b, §} = {(b(6"),y(6"))L, 6" € ©!}. The next propo-
sition shows that an equilibrium exists by determining strategies of the firms (menus) that
sustain this allocation as an equilibrium. A crucial element of the proof is that the equi-
librium strategies must contain latent menus. These menus are similar to the ones derived
in the characterization of equilibrium to show that any contract other than self-insurance is

unprofitable.
Proposition 4. Allocation {l;, U} is the unique equilibrium allocation of a menu game.

Proof. We construct strategies of the firms and the agents that sustain allocation {l;, U} as

an equilibrium. Let firm i € {1,2} offer the following menus:

ci= {0t e R st e Rel v (4 0t) = v (9) woc o),
~i (14, T—1 i, T—1 i i i ! L, i L, le
Cr( "y ) = (bpyp) 0 =0, yp € Ry [ u _5bT71+yT “9' o ACASECR

and for periods t = 2,...,T — 1:

ol . o ) . 1 . 4 . 1 i
i) = { et e Rt e Rl (<D tiat) =o' (%) we o),
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These firms also offer the following latent menus:

Dynamic Contract: for allt =1,...,T
CrP =ty = {(bLyi) b, € R, y; = 0[b) = _abf‘,fl +a, T € R} , bp=0=0

Static Contract: forallt =1,...,T
Cp® ={(0,6): 6 e Ry}

Remaining firms ¢ € {3,...,1} offer the null contract. Given these menus, the agents
choose at time zero menu C' from one of the two firms. We derive the agents’ choices
by backward induction. At time 7', an agent with history (67!,67) and past choices
(b(8T1), 5(AT1)) chooses from menu Ci(b'(A71), 77 (671)) the allocation (b'(AT), 7 (7))
such that v’ <—$5i(9T_1) —{—gji(GT)) = ot <%9TT)) For time t € {1,...,T — 1}, an agent
with history 6% and past choices (b°(6°~1), ' (6""")) chooses from menu C{(b'(6"1), 7*(6"1))
allocation (b(8"), 7(6")) such that

u (-%B@‘(et—l)+Ei(9t)+gi(9t)> = gEt [u (-éé@‘(@t)+z§i(et+1)+gi(9t+l>>}, (16)
. (—ééi(et1)+B@'<eﬁ)+gi(et>> - (?7(;:))). (17)

Given agents’ choices, firm i’s profit is 2, S, ¢'b*(6") = 0.

We next show that such strategies constitute an equilibrium by showing that there are no
profitable deviations by firms. In particular, the latent contracts C*° and C*” are sufficient
to deter any potential deviations.??

As a first step, we show that is not profitable for any firm to offer a contract that specifies
only intertemporal transfers (without any output requirements). Suppose firm j # 1,2

offers a menu C” containing sequences of transfers {b;}7_,. For each feasible sequence in

22Note that only offering menus C' is not an equilibrium since either an incumbent or an entrant will
deviate, offering profitable welfare increasing menu, in the shape of a contingent contract. As an example,
consider the following profitable deviation (motivated by Abraham and Pavoni (2005)). Let {b(b=1),7(b=1)}
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this menu,” define the net present values of a sequence by: NPV ({b},) = 31, =ebr.
The menu C7 is chosen by agents and is profitable only if contains at least one feasible
sequence with NPV > 0 and one with NPV < 0.*! Denote by {b;}7_, the feasible transfer
with highest NPV. In the presence of menu CP, all agents choose this sequence, implying
that the entrant makes negative profits. Suppose not: there is an agent with history 67
that chooses a sequence {b;}7_, # {b;}7_,. This agent is better-off by choosing the sequence
{b,}T_, and the following strategy in the menu C?: &, = b, — b;. This strategy enables him
to replicate his original allocation and have extra resources, since the net present value of

{6}, is negative:
T T

1 1
b= b= ) b <0
t=1 t=1

These additional resources can be used to increase consumption in any period, making the

agent better-off.

The next step is to rule out contracts that offer jointly consumption transfers and output

requirements. In appendix C we show that, in the last period, a contract that specifies

be the solution to the following problem:

G071) = xS 700) [utv0) +w00) - o (V)] (18)

st ulo0)+900) — 5o (U0 2 w0+ 90 - 3o (%@) |
> w(0)b(0) = bt

0

Note that U(b~1) is strictly larger than the utility of autarky with b~! additional (possibly negative) re-
sources. The firm can deviate from the set of menus C* defined above by substituting the 7' — 1 menu with
the original time T" menu, and by replacing the time T menu with

CT W1yt Tt = {{l;( =€), G(bl_ | — )} solves (18)and & > 0} ,

For a sufficiently small ¢, the agent prefers this contract to the original, and in addition, this deviation

provides additional qﬁT profits.

A sequence {by}L_; is feasible if b, € CY (b'1)Vby, t.
241f all sequences have NPV=0, the menu is not chosen, since the equilibrium allocation {b,4} is the

allocation that maximizes agents’ welfare with no redistribution. Similarly, if all transfers are negative, the
menu is also not chosen, while if all transfer have NPV > 0 the firm makes a loss.
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transfers from productive to unproductive is unprofitable and any contract that implies
redistribution from unproductive to more productive agents reduces agents’ welfare with
respect to the equilibrium allocation. Thus, in the last period, a firm can only provide a
contract with no redistribution.?’

For the dynamic case we focus on a two period example with two values of productivity
shock, 0y > 6. If the firm provides negative redistribution at time 1, given appendix C, the
contract will not be chosen at time zero. The remaining alternative is to provide, at time 1,
some redistribution from the productive to the unproductive agent. To do this, a firm must
offer transfers with higher net present value together with higher output requirement. If not,
the productive agent deviates, using both C*” and C%°, replicating his original allocation
and receiving transfers with higher NPV. Suppose now that at time 1, the 85 agent receives
transfers equal to by — A while 0, agent receives by + A (with A > 0). The best case for both
agents is to receive transfers at time 2 that does not depend on the realization of the type in
that period. Thus we can write transfers for the high type as by i and for the low type b 1.
These transfers are such that by — A+4¢gby y > by +A+¢qbs . This implies that a lower rate of
return is charged to low productivity agents relative to high productivity agents. Since the
low agent has lower consumption, this interest rate differential is welfare decreasing. Hence
the benefits to the high agent are offset by the utility loss of the low agent. And, from an
ex-ante perspective, the agent is better-off choosing the original equilibrium.

Finally for {l;, g} to be sustained as an equilibrium allocation, at least two firms must
offer the equilibrium and the latent contracts. If not, the unique firm active in equilibrium
will re-optimize, and offer a contract that implies some redistribution (as the example in

footnote 22) since no latent contract is preventing such deviation. O

Summarizing, the allocation {b,j} can be sustained in equilibrium by at least two in-
cumbents simultaneously offering the menu (' and the latent contracts 5, and C*P. This

is necessary to prevent deviations by any firm to a more profitable and ex ante welfare

25Tn a static environment this completes the proof since it rules out the existence of a contract that is, at
the same time, profitable and preferred by the agents.
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improving contract that features redistribution. This result highlights the importance of
allowing firms to offer latent contracts. If offering such contracts were not allowed, as in

direct mechanisms, equilibrium would fail to exist in this environment.

3.3 Equivalence to Self-Insurance

In the previous propositions we showed that the equilibrium allocation satisfies a standard
Euler equation, the marginal rate of substitution between consumption and leisure is equated
to marginal productivity in every period, and the net present value of transfers received under
any history is equal to zero (there is no redistribution). These equilibrium conditions are
the same optimality conditions in a decentralized economy in which agents can borrow and
save at rate R = 1/q.

Let {c*,y*} = {c*(0Y), y*(6")}1_, be the solution to the following problem:

3 Y 50 () ) - o (2] (19)

T c(0Y) — y(6")

= VR

s.t.
t=1

where R is taken as given.

Proposition 5. Let {B, u} = {B(Gt),gj(et)}le be the equilibrium allocation of a menu game.
Let the agents’ consumption be ¢(0%) = b(0Y) + §(0) for all 0' and for all t. If R = 1/q,
c*(0") = ¢(0%) and y*(0") = §(6") for all 6" and for all t.

Proof. The first order conditions of (19) are:

d(e(8) = BRY u(c(07))m(0), (20)

041

W (c(0h) = 9%“/ (y;(it)) | (21)

XT:M =0, voT. (22)
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A solution to (19) exists. Also, the maximization problem (19) has a strictly concave objec-
tive function and the constraint set is convex; hence, the first order conditions are necessary

and sufficient for the optimum and the optimum is unique. O]

The previous proposition summarizes how non-exclusivity and non-observability of con-
tracts limit the ability to provide insurance and also the contracts that are offered in equi-
librium. Our environment with firms interacting strategically and being allowed to offer any
type of contracts, in equilibrium, is equivalent to an environment with competitive firms
offering linear contracts with no redistribution. A immediate implication of the proposition

is that the equilibrium is unique in terms of allocation.

Corollary 1. There is a unique equilibrium allocation of a menu game.

4 Endogenous Insurance and Quantitative Analysis

In this section, we derive a simple testable model that endogenously generates heterogeneous
insurance regimes. To do this, we relax the assumption on observability of the contracts. As
in a costly state verification model, we give firms the option of paying a fixed cost, v > 0, to
monitor all the transactions an agent engages in.”® We assume that agents are heterogeneous
with respect to the probability distribution of the productivity shock. There are two groups
of agents: the first group draws the productivity shock from a low mean distribution, while
the second draws from a distribution with higher mean. We show that in this modified
environment, different groups of agents will have access to different insurance possibilities.
Using US survey data, we show that this extension can rationalize the coexistence of multiple

insurance regimes observed in the data.

26Note that costly state verification models as in Townsend (1979) allow, upon paying the cost, the
realization of uncertainty to be observable. Here we keep the realization of uncertainty private but allow the
contracts an agent sign to be observable.
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4.1 Monitoring Costs

At time 0 (and only at time 0), before offering a set of contracts to an agent of type j € {1, 2},
each firm chooses between the following two options: pay a cost 7y to observe all the contracts
an agent engages in, and choose which contract to offer under full observability; or not pay the
cost and offer the most profitable contract under non-exclusivity. Agents are heterogeneous
with respect to the probability distribution of the productivity shock. A fraction of agents
(“low mean agents”) draws, at every time ¢, a shock 0; € ©, distributed according to 7(-)
while the a fraction of agents (“high mean” agents) draws the productivity shock A;, where
0, € O, distributed according to 7(-) and A > 1. Let § and \d be the average productivity of,
respectively, low and high mean agents. Whether an agent is a low or high mean is publicly
known by all the firms. For each group of agents, a firm decides whether to pay or not the
monitoring cost and which contracts to offer in each case.

If a firm monitors an agent, the environment is equivalent to the one described in Prescott
and Townsend (1984). We refer to optimal contract in this case as the “exclusive contract”.
If the monitoring cost is not paid, the environment is the one studied in previous sections
of this paper. From Proposition 5, this environment is equivalent in terms of allocation to
a self-insurance economy, in which agents can borrow and save at fixed rate R and are paid
wages equal to marginal productivity. We refer to the optimal contract in this case as the
“non-exclusive” contract.

To determine which contract each group of agent will have access to, for a given value
of monitoring cost v, firms compare the lifetime utility delivered under exclusive and non-
exclusive contracts. This means that a firm finds profitable to pay the cost and offer the
exclusive contract if agent’s utility is higher in this case. If firms do not find it profitable to
pay the cost, an agent will receive the lifetime level of utility associated with non-exclusive
contracts. We show that, under a particular assumption on the utility function, there exists
a level of the monitoring cost such that low mean agents have access to the non-exclusive
contract, whereas high mean agents have access to the exclusive contracts. In appendix D,

we show that if v = 0, the exclusive contract is always preferred over the non-exclusive, since
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is cheaper to provide a given level of lifetime utility under exclusive contracts. For analytical

convenience, we assume the following utility specification.
Assumption 1. u(c¢) =logc; v(l) = —alog(l —1).

The zero profits level of lifetime utility (w™¥F (+)) is defined as:

oV (20) = n%%xi S a6 [u (c(et))—u(y(et))] (23)

:E@t
t=1 z0tczO

£ [0

where the argument = = 1, X refers to the agents’ productivity distribution.

Similarly for the exclusive contracts, define w® (-|y) as follows. Note that for the exclusive
contracts, the lifetime utility level that delivers zero profits also depends on the monitoring

cost.

w? (20]y) = Ilgzxi 3 5 [u (c(6") — v (y(et))} (24)

t=1 z0tcz® w
;ﬁt—lﬂ(et) {u (C(9t>) o (yizz))} > ezt;ﬁt—lyr(et) [u (C(ét)> - (yézz))] V6!
> RIS 20)

The following proposition states that there exists a value for the monitoring cost so that

different agents have access to different insurance contracts.

Proposition 6. There exists v* > 0 such that:

Proof. In appendix D. O]
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The steps to show the result are the following. We first show that, under non-exclusive
contract, indirect lifetime utility of high mean agents is proportional to the lifetime utility
of low mean agents (by a factor proportional to A). The assumption on the utility function
is crucial to show this result. Second, we show that, under exclusive contracts, the lifetime
utility is scaled by a factor larger than A. This implies that, for a given A, there is a
value of the monitoring cost so that the firms can promise a higher lifetime utility under
the exclusive contract than under the non-exclusive. The same result can also be proved

1o -l

arl—a)l—c
if u(el) = Gl The general CRRA case, with u(¢,l) = S 4+ a

1—0o 1—0o 1—0;?

is verified

numerically.?”

4.2 Quantitative Implications

So far we showed that our extended model implies that different groups of agents have access
to different insurance contracts. This implies that, along some dimensions, the allocations
is characterized by a different set of equilibrium conditions. To test the implications of the
model, we use US household survey data and divide the population by education attainment:
those with less than a college degree and those who completed college or more. We estimate
for each of the groups two implications of the model: an intertemporal optimality condition
on consumption and an intratemporal condition on consumption and leisure. We consider the
education level a proxy for a worker’s average productivity and according to our model, agents
with higher average productivity (college graduates) satisfy the optimality conditions of the
exclusive contracts, while agents with lower average productivity (high school graduates)

satisfy the optimality conditions of non-exclusive contracts.

Data

We use the Krueger and Perri Consumer Expenditure Survey (CEX) dataset for the period

27 Another way to endogenously divide the population in two different insurance regimes is to assume
agents are heterogenous with respect to the monitoring cost . In this case, we show that there exists a
cutoff value v* such that if agents have cost v, with 0 < v < ~*, they have access to the exclusive contract
and receive lifetime utility w(y). While agents with cost «, with v > ~*, have access to the non-exclusive
contract, receiving lifetime utility @w™¥.

27



1980 to 2003 and divide the population by the education level of the reference person. To
abstract from college and retirement decisions, we restrict our sample to households with
the reference person age is between 25 and 55.2° We only consider reference person who
worked more than 520 hours and less than 5096 hours per year and with positive labor
income. We exclude households with wage less than half of the minimum wage in any given
year and households who responded to all four interviews and with no missing consumption
data. Table 8 (appendix E) describes the number of households in each stage of the sample
selection. All the nominal data are deflated using the consumer price index calculated by
the Bureau of Labor Statistics with base 1982-84=100.* In Table 9 (appendix E) we present
some descriptive statistics of the sample considered. All the earnings variables and hours
refer to the reference person, while the expenditure variables are total household expenditure
per adult equivalent.”’ The consumption measure used includes the sum of expenditures on
nondurable consumption goods, services, and small durable goods, plus the imputed services

from housing and vehicles, as calculate by Krueger and Perri (2006).

Intertemporal Optimality Conditions
The first implication we test is an intertemporal optimality condition regarding the evolution
of consumption. We showed that if agents have access to exclusive contracts, the consumption

allocation satisfies the following inverse Euler equation:

IR 1
e @) g [u o <et+1>>] ' (26)

On the other hand, if agents have access to non-exclusive contracts, the allocation must

satisfy the following standard Euler equation:

(e (69) = 2B (e (6] (27)

28By stopping at age 55 we also minimize the disconnection between consumption expenditure and actual
consumption (due to the progressive larger use of leisure in both preparation and shopping time) highlighted
in Aguiar and Hurst (2005).

29For a more detailed description of the data and sample selection, refer to Ales and Maziero (2008).

30We use the Census definition of adult equivalent.
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Assuming u(c) = i—_;, these equations imply, respectively:

a0 = Eufern (6], (29)
(077 = gEt [cesa (0 77] (29)

These two equations can be nested in the following:

b

[b]
(60 (g) = B, [eran (011)1] . (30)

If the inverse Euler equation (28) holds, then b > 0, whereas if the standard Euler equation

(29) holds, b < 0. Taking expectation of (30) at time ¢, we get

b
o]

> w0 e (é) — e (07 =0, Ve (31)
gt+1 q

For a given education group, we test whether the intertemporal consumption decision is
compatible with exclusive or non-exclusive contracts by estimating the parameter b in (31).
If, for an education group, the value of b is negative, the consumption of these agents is
consistent with the predictions of (23). If the estimation of b has a positive value, it implies
that agents’ consumption satisfies the implications of (24). Our theory predicts that for

more educated individuals the value of b is positive. The analysis here closely follows Ligon

(1998) and Kocherlakota and Pistaferri (2008).%!

Estimation Procedure and Results
A typical household is on the sample for a total period of four quarters. For the estima-
tion, we construct sample averages as follows. Denote by ¢;; the consumption for household

7 in the quarter that ends with month ¢, and let N; be the number of observations available

3n particular, Ligon (1998) tests whether the standard Euler or inverse Euler condition better describes
the consumption behavior for three Indian villages. His results indicate that two out of three village provides
evidence for the inverse Euler equation.
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at time t. We de-seasonalize consumption with dummies corresponding to the month the

household was interviewed. The sample analog of equation (31) is:

1 T /8 [0] 1 Nt—3 1 Nt
b) = — — e E— &l 32
CEE>Y (q) P ILIREEL) OE (32)

As shown by Kocherlakota and Pistaferri (2008), this sample analog is still valid in the
presence of multiplicative classical measurement error in the consumption data.

The main disadvantage of this sample analog is that, by taking means over the population,
it does not take into account individual changes on consumption over time. An alternative

valid sample analog is the following:

b
b

i0-13[(2) (e )

t=3

where in this equation N; is the total number of households with consumption data for
time t and t — 3. The estimation of this equation, in the presence of multiplicative classical
measurement error in consumption, implies inconsistent estimation of the parameter 5. A
standard approach in the literature is to estimate the log-linearized version of this sample
analog.”” Simple algebra shows that the log-linearized versions of equations (26) and (27)
result in the same log-linearized equation. This means that this procedure cannot be used
to test whether the consumption of a group of household satisfy (26) or (27).

In table 1 we report the estimation of parameter b for the two education groups, assuming

B — 1. We estimate the parameter b in (32) using non-linear generalized method of moments.

q
We find that for college graduates b = 0.855, which is consistent with exclusive contracts.
While for individuals with education less than college the estimation indicates b = —1.128,
which corresponds to consumption evolving as predicted by non-exclusive contracts. Note

that for agents with education less than college we reject that b is positive, while for college

graduates we cannot reject a negative value for b.

32Gee Attanasio and Low (2004) and Ludvigson and Paxson (2001).
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Table 1: Estimation results for risk aversion

Education Group
Consumption Less than College | College | All Sample
Baseline de-seasonalized -1.128 0.855 -1.030
(0.459) (0.716) (0.728)
Baseline truncated™® -1.128 0.864 -1.030
(0.458) (0.726) (0.728)

Estimation results for risk aversion from (31). A positive solution denotes the coefficient of risk aversion
consistent with the household’s decision under the constrained efficient contract, while a negative solution
denotes the estimated risk aversion consistent with the group being under a borrowing and saving contract.

*We drop households with consumption changes bigger than 5 times in absolute value.

As a robustness check, we perform the same estimation by dividing the population into
four education groups: those with less than a high school education, those who completed
high school, those with some college, and those who completed college or more. The results
are reported in table 2 and are consistent with the previous one: for individuals with edu-
cation less than college the estimated value of b is negative, while for college graduates, this
value is positive.

Another robustness check performed is to estimate the moment condition for all the

Table 2: Estimation results for risk aversion: multiple education groups

Education Group
Consumption Less than HS HS Less than College | College
Baseline de-seasonalized -0.773 -1.346 -0.962 0.855
(0.355) (0.415) (0.865) (0.716)
Baseline truncated -0.774 -1.348 -0.962 0.864
(0.355) (0.414) (0.864) (0.726)




Table 3: Estimation results for risk aversion

Education Group
Consumption Less than College | College | All Sample
Baseline de-seasonalized -0.970 1.157 -0.898
(0.206) (0.467) (0.341)
Baseline truncated -1.00 1.155 -0.904
(0.210) (0.486) (0.360)

Estimation results for risk aversion from (31) with households who answered at least one interview.

Table 4: Estimation results for risk aversion

Education Group
Consumption Less than College | College | All Sample
Baseline instrumented -0.972 1.167 -0.890
(0.213) (0.450) (0.365)

Estimation results for risk aversion from (31) using previous period interest rate as instrument.

households that have answered at least one of the interviews, not only for the households
who have answered the four interviews. The results are reported in table 3 and are consistent
with the results for the baseline sample. For both groups, the estimation of the coefficient
of risk aversion is bigger than in the benchmark case and the standard errors are smaller.
In this case, for both education groups, we can reject the value of b being the sign than the
estimated.

We also perform our benchmark estimation by using the previous period interest rate as
an instrument. The results are displayed in table 4 and are consistent with the benchmark

results.

Intratemporal distortions
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The second tested implication of the model regards the joint consumption and leisure decision

at a given time. Define, for an individual j, the intratemporal labor distortion as

J
1 U'(Z—%)

) = g (34)

ct)
As shown in Ales and Maziero (2008), if contracts are exclusive, an individual faces an
increasing average value of 7, over the course of his working life. This result relies on the
age dependent provision of incentives. As workers age (and the termination of the optimal
contract gets closer) it is optimal to progressively provide more incentives using current
promises of consumption and leisure (thus distorting more the static consumption-leisure
condition) rather than promises of future consumption and leisure.

On the other hand, as proved in the previous section, if agents have access to non-exclusive
contracts, 7,4(t) is constant over age, since in this case the MRS is always equated to agent’s
marginal productivity. Hence evaluating how this distortion evolves over the working life
provides another testable implication of the model.

Estimation Procedure and Results

ajl—a)1—7
(=)

1—0o

Using the following utility function u (¢,l) = , equation (34) is:

l—al CZ
a ¢l L-1

Th(t) =1 (35)

The main advantage of using this utility is that the intratemporal distortion is not affected
by the risk aversion parameter and a does not affect the behavior of 7,4(¢) over time.

To estimate the dependence of 7, on age, we regress its value on age. We run the
regression on the standardized values of all variables.*> We calculate the labor distortion
as follows. We use as proxy for a worker’s marginal productivity the imputed hourly wage,
which is calculated dividing the total labor income by the total number of hours in a year

For the measure of consumption, CZ we use total consumption expenditure, l{ is the yearly

33Precisely: Tgl(age) = Te + 0 x age + sége'
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Table 5: Intra temporal distortion: singles

Education Group
4] Less than College College
OLS 0.011 (0.008) 0.016 (0.009)
Robust Regression -0.0018 (0.005) 0.021(0.005)
t-statistic -0.36 3.93

hours worked, and L is the feasible amount of yearly working hours, set at 5200. To abstract
from changes in family composition, we restrict the sample to individuals who are single.**
The results of this estimation are displayed in table 5. To control for heteroscedasticity and
outliers, we estimate d using a robust regression and for completeness we also report the OLS
estimation. The coefficient on age for the entire sample is positive, as highlighted in Ales
and Maziero (2008). We find that a zero coefficient (implying independence over age) cannot
be rejected for individuals with education less than college, whereas for college graduates
the value of the coefficient is positive and significant, indicating that the labor distortion
increases with age.

We also estimate (34) for a specification of the utility function that is separable on

consumption and leisure. We assume u(c) = $— and v(l) = ll::i with o = 2. Table

6 shows the results using for the coefficient of risk aversion the estimation of the Euler
equation.®” The result is the same as in the non-separable case: for less educated individuals,
the coefficient on age is not significantly different than zero, while for college graduates this
coefficient is positive. As a robustness check, we also calculate the labor distortion including
married individuals in the sample. In this case, we consider as measure of consumption the
total household consumption. For the labor variables, we assume that leisure for the husband

and the wife are perfect substitutes and use total household earnings and hours to compute

34Tn our baseline sample the single individuals represent 18% of the population.
35We also estimate the equation for different values of risk version, within the range estimated in the
literature, and the result is qualitatively unchanged.
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Table 6: Intra temporal distortion: singles

Education Group
) Less than College College
OLS 0.011 (0.008) 0.016 (0.009)
Robust Regression -0.0078 (0.005) 0.05(0.006)
t-statistic -1.44 7.28

Intra temporal distortion by age and education group for singles using estimates for risk aversion derived

from the estimation of the Euler equation.

Table 7: Intra temporal distortion: couples

Education Group
) Less than College College
OLS -0.0007 (0.0003) 0.0003 (0.0005)
Robust Regression | -0.0004 (0.0002) 0.0011 (0.0003)
t-statistic -1.76 3.99

Intra temporal distortion by age and education for household containing two adults.

the distortion. Due to data limitation,’® we restrict the sample to households with two or
less adults, the reference person and the spouse. In this case, the results are also consistent

with our benchmark estimation, as reported in table 7.

5 Conclusion

In this paper, we study a decentralized environment when firms compete for the provision
of insurance. We focus on how the presence of non-exclusive trades endogenously limits the

contracts offered, and consequently the amount of insurance implemented. We consider an

36The CEX records hours and earnings for the reference person and the spouse.
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environment in which consumers are privately informed about their skill shocks that evolve
over time and can sign non-observable contracts with insurance providers. Our main results
are that competition reduces the amount of insurance provided, the equilibrium is equivalent
to a self-insurance economy, and only linear contracts are offered. Also, in equilibrium there
is no redistribution.

To derive testable implications of the model, we extend the model and relax the assump-
tion on the observability of contracts: firms can pay a cost to observe all the contracts an
agent signs. Assuming agents are heterogeneous with respect to this cost, we find that agents
with lower monitoring costs have access to the constrained efficient contract, while agents
with higher monitoring costs have access to contracts that implement the self-insurance al-
location. This implies that the first group of agents attains a higher level of lifetime utility.
Considering education as a proxy for lifetime utility, we test the different intertemporal and
intratemporal implications of this model using US data. We find that agents with a high
level of education satisfy the optimality conditions of the constrained efficient model while
the consumption and hours of agents with less education evolve according to the borrowing-

savings economy.
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A Proofs of Section 2

Proof of Proposition 1

Proof. The proof is by construction. Starting from the equilibrium strategies of a general
communication game, we construct strategies for a menu game and show that these strategies
constitute an equilibrium.

Define as in (2) and (5) respectively the menus and the collection of menus that are
compatible with message spaces (M, R). Define the strategy of firm i in this menu game as:

C'={C"C " (G") |G = Im(¢")}. (36)

The collection of menus C' contains all the subsets of the allocation space that are consistent
with the collection of allocation functions in the original equilibrium. Agents’ strategies are
defined as follows.

C = (G} € ¢ i = Tn(gl"m1) and g = 6°(r°°)}

(b'(6"),9'(6") = g™ (m"*(6")).

Note that by construction C? € Ci and (b(6"), 5'(0")) € Ci, V6", Vt. The menu C! is the
subset of allocation space, R?, that corresponds to the allocation function chosen by the
agent in the original equilibrium. Also (IA)l, ') corresponds to allocation determined by the
allocation function given the equilibrium message sent by each type #'. If agents and firms
follow these strategies, the equilibrium allocation in the menu game is the same as in the
original equilibrium.

First let’s show that the agents’ strategies are an equilibrium. Suppose that at some time
t, for some firm i 3 (bi,4i) € C! such that:

1 I i A .
u (Z(bi + yi)) —v (Zllet> + ﬂzﬂ(etﬂ)Utﬂ (bt_17bt7gt_1ayt76t+1|c> >

i=1 Ory1
1 I~ . A

u (Z(bi + @?)) —v (Zze;tlyt> + 5277(9t+1)Ut+1 (bt,ﬂtaetﬂ‘C) :
i=1 Or+1

Since (bi,y!) € C?, there exists mi € Mi such that (bi,y!) = gi*(m*"). Replacing in the
agents’ payoff:

u Z (bi(mi7t) —{—y(mi’t))) — v (z;1=+t(mm)> +527T(9t+1)Ut+1 (mt,9t+1|g*) >

Ot 41

u (Z (bi(mi,t,*) + y(mi,t,*))> —v (Z;:+W> —+ ﬁZW(QtJrl)UtJrl (mt’*, 9t+1|g*) .

Ot v1
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But this contradicts m®* being an equilibrium in the original game. Now suppose C? is not
an equilibrium for some i. There exists some C* € C* such that:

Ut C.) > U(C).

Since C' € Cf, 3 7t € R such that ¢ = Im(g’) and ¢g' = ¢“*(r"). Replacing in the agents’
payoft:
U (9i>9*_i») >U (gi’*,gii).

But this contradicts r®* being an equilibrium in the original game.

Finally, we check that firms’ strategies constitute an equilibrium. Suppose 3 C' €
C/(R!, M?) such that V(C',C~%) > Vi(C!,C™).

Since C' € CY(R', M?), there exists ¢' such that g* = ¢'(r**). Replacing in the firm’s
payoff in the original game Vi(¢', ¢*,) > Vi(¢"* ¢*,). But this contradicts ¢** being an

equilibrium in the original game. [

Proof of Proposition 2

Proof. We show the equivalence by construction. For a given firm ¢, by assumption there
exists at least one O € C? which is not minimal. As notation let C* x C~" = C' x C%... x C¥V,
and let U(C*, C~%) be the lifetime utility of a sequence of menus C' as defined in equilibrium.
Define the set

P(C) = (C',C™H > U(C,C™") VYC' e} (37)
The set P (C") contains all the menus C~* offered by other firms —i that resulted in C* being

chosen from firm i. Note that if C* is the unique element of C* the set P (C*) = C'.
For each C~% € P (C"), construct the following sequence of menus:

Ci(C7|cy) = {(by (0", C",C7") ,yp* (0°,C",C7")) € CL, YO, €0}, VeVt

(38)
Each set CN’Z (C7YCY) contains the actual equilibrium choices of each type of agent and
is a minimal menu. Let C'(C~%) = {C/(CICHY C;* € C'Vt}. Finally let C? =
{C"(C) ¥ C7" € P(C)}. We now replace the menu ¢ € C* by C' and show that
the equilibrium is the same. Let C' = {(C"\C"?), C"}. We prove the statement in two steps.
We first show that each element of C is chosen by the agent if and only if C? was chosen
in the original equilibrium. We then show that C = {C’,C~"} is an equilibrium of the menu
game by showing that none of the firms —i deviates to any C .

To show the first step, given that C? was chosen in the original equilibrium U (C*, C~%) >
U(C',C~") V(' € C'. By construction, we have that U(C*(C~%),C~") > U(C",C~") and
U(éi(c B,C7) > U(C",C7), for all C' € C*, so that U(C'(C™7),C™)) > U(C",C7) for
allC"" e C'. To prove the reverse, suppose Ci e Ctis chosen by the agent. By the definition of
Ci, if (05, yt) € C! e C' then (b@,yt) €CleCsoUC,C7) > U(CZ, C and U(C*,C™%) >
U(CZ C~7) for all C* € €. Given that C? is chosen then U(C?, C~%) > U(C¥,C) for all
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C" € ¢'\C'. Combining these inequalities, we get that U(C?,C~%) > U(C*,C~) for all
C" € €', implying that C? is chosen in the original equilibrium.

Suppose there exists a collection of menus C~ so that V=/(C~% C?) > V=(C~% C"). Let
C* denote the equilibrium choice of the agent, such that U (C**, C~*) > U(C?, C—), for
all (C',C~) € C' x C~*. The first case is if C*N P (CH) = 0. If C7* € C"NCF, we
immediately reach a contradiction since C* was also chosen in the previous equilibrium so
that profits must be equal. If C~%* ¢ C~* N C~*, then we reach a contradiction with C being
an equilibrium, since firm —i would have deviated from offering the menu C~*\ P (C*)UC'~%*
and would make strictly greater profits.

The second case is if C~* N P (C?) # 0. In this case, if C~%* € P (C?) we immediately
reach a contradiction since the agent chooses the same menu in both equilibria so profits are
the same. If C~%* ¢ P (C") then we contradict C being an equilibrium, since firm —i would
deviate from offering C~\ P (C*) U C~"*.

Repeating this procedure for every non-minimal menu C* in the original C?, we construct
C where every menu is minimal. ]

B Proofs of Section 3

B.1 Proof of Lemma 2

Proof. Suppose that for some history 6! equation (13) does not hold.
Case 1:

u' (e (0")) > 0 > ' (cia (67, 600))7 (0141). (39)
Ori1
In this case, the agent is borrowing constrained. An entrant can make strictly positive profits
offering a borrowing contract at a rate higher than 1/q, contradicting the original allocation
being an equilibrium. The first step is to construct the contract to be offered by a firm. Let
d*(e) be the solution of the following problem:

U(e) = maxu(e(0") + ) + B <ct+1(ét, 6ri1) — 0 (é + 5)> | (40)

A necessary first order condition for this problem is:

u'(c,(6%) +0) < 3 G + g) Eal (cm(éf, f141) — 0 (3 + g)> . (41)

If ¢ = 0, the solution for the above problem is §*(0) > 0 given that (39) holds. From
the Theorem of the Maximum, the solution §*(¢) is continuous on €. Fix € > 0 such that
|0*(0) — 0| > €1. There exists €5 > 0 such that if |e —0| < €, then [6*(¢) —d*(0)| < €1. Let € be
such that 0 < € < €.*" Consider an entrant that offers the contract C; = {(6*(¢),0), (0,0)}

37Note that u/(c,(0%) 4+ 6*(¢)) is a finite, strictly positive number, hence also is the right hand side of
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and Ciyq = {(—(5*(6)(% +¢),0),(0,0)}) and the contract (0,0) for all other periods. This
firm is making strictly positive profits, proportional to 6*(¢)e, and the agent is strictly better
off keeping the original equilibrium together with this contract since increases the his utility
in a history with positive probability and keeps the same utility in all other histories.
Hence, under the original equilibrium, a firm can offer a contract that makes strictly
positive profits. This contradicts the allocation being an equilibrium.
The other case can be proved using a similar argument. O]

B.2 Proof of Lemma 3

Proof. For a history #'~!, define the net present value of transfers received from time t
onwards by:

T t—n
_ 1 1
A=) =3 (1) e (42
where 07 | = (04,011, -.,0,) is the sequence of shocks following history #*~! from time ¢ to

n and b, (0", 07 ) is the equilibrium transfer chosen at time n by an agent with history 6".
We show, using a backward induction argument, that for all ¢, A,(6°~*, 67 ) is independent
of 0T | for all s > t. This implies that A;(67) is the same for all 07 € ©T. If A;(67) > 0, firms
make strictly negative profits in equilibrium and would be better off offering a null contract.
If A;(07) < 0, an entrant can offer the same sequence of transfers giving an additional
transfer € > 0 in the terminal period. Since the sequence of transfers is not contingent and
is profitable for all types, there is no latent contract that makes it unprofitable.

1. Equations (14) and (15) hold for ¢t =T

We first show that at time T, transfers are independent of realization of time 7' shock and
then show that for time 7" equation (15) holds.

Equation (14) holds at t =T

Suppose that (14) does not hold and let b(6”) = minecr—1 71y b and b(07 ", A7) the second

smallest b. Denote by 67 = 671 éT) The contradiction argument relies on the incumbent
firm deviating to an allocation that delivers higher profits. First note that it must be true
that y(07) + b(0T) > y(67) + b(T). If not, given that b(T) > b(#7) then y(A7) < y(67), an
entrant firm can offer the following contract Cp = {(—¢, y(67) — y(67)); (0,0)}, for some &
small enough. An agent with type 67 is better off by choosing allocation (b(67),y(67)) in
menu Cr together with (—e,y(67) — y(éT)) in menu Cp. With these choices, his utility is:

u (b(07) — =+ y(07)) — v (%T)) S (b(O7) + y(67)) — v (y(9T>)

T HT

equation (41). This implies that c;1(8%,0,1) — 0% (¢) (% + 6) > 0 for all (6%, 0,41).
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where the inequality holds as long as b(#7) — ¢ > b(67). No latent contracts can prevent this
deviation, since it is profitable for the entrant as long as some agent accepts it.*®
The equilibrium allocation, being optimal for the agent, must satisfy the following:

AT AT ?/(éT) T T y(QT)
w(b(67) + (0 >>—v< - )Zua)(@ )+ (0 >>—v( - ) (43)

y(67)

YD) 2 aol@") + (7)o (9—> S W

T

u(b(67) + y(67)) — v (

Case 1 If (43) holds with equality, an agent of type 67 is indifferent between his equilibrium
choice and the choice of agent . However, the insurance providers receive strictly higher
profits from the allocation 67, since by assumption b(67) > b(AT). This incumbent can
deviate to an alternative menu that differs from the original by offering at time 7" only the
allocation chosen by agent 67. No latent contract can induce lower profits to deter this
deviation, since now the deviating incumbent offers a subset of the allocations that were
available in the original equilibrium. The argument also holds if the equilibrium allocation
is divided between multiple insurance providers.
Case 2 Suppose that (43) holds with strict inequality. Following the argument in the
previous case, for any type 0 such that b (0}) > bp(67), it must be true that:
oT T
@) + ™)~ (U)o ey -0 () )

T éT

Otherwise, the incumbent firm will offer only the contract containing br(67).

Consider the following deviation by an incumbent firm b(#7) = b(67) — ¢ and b(0T) =
b(0T) + e —§ for e,6 > 0 and € > § (to be defined explicitly below) and keeping unchanged
all the other allocations.”” This deviation reduces the spread of transfers and increases
incumbent’s profit by a factor proportional to J.

To show that such deviation is profitable, thus reaching a contradiction, we show that
there is no latent contract o = (ay, ay,) that can induce a reduction in the profits of this
firm. Suppose such contract exists. One possibility is to induce 67 agents, when faced with
the deviating allocation b, to choose B(éT) This would imply a reduction of profits, since
b(0T) > b(0T). Such latent contract has to satisfy:

) ) ) <o (W05 ) i) ) - o (%5) .

38Note that this case arises in the solution of the constrained efficient allocation: high skilled agents work
more and make positive transfers to less skilled agents. The deviation Cr makes this allocation unprofitable
in our environment, since it induces skilled agents to choose the allocation designed for low skilled agents
and working an additional amount with entrant.

39Tf there are multiple 0 with values equal to b(éT) or b(A7), the same deviation applies to all such transfers.
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Since « is not chosen in the original equilibrium, it must also be true that

u(b(0T) +y(6")) —v (M) > u(b(éT) - y(éT) +op+ay) —v (%j%) .4

~ A~

However, u(b(87) 4 y(67)) > u(b(87) + y(67)) and u(b(8T) + y(67) + ay + a,) > u(b(67) +
y(6") + a4 + a,), which combined with (47) implies

u(B(67) +y(07)) — v <y(;T )> > u(b(07) +y(07) + ap + ) — v (W) . (48)

contradicting (16). As before, consider any other type 07 # 67 with b (67) > b (67):

u(b(0") + y(0") + oy + ) — v <m) > u(b(07) + y(67)) — v (@) . (49)

QT T

Since a latent contract is not chosen in the original equilibrium, it must also be true that

@0 + (07— v (B) 2 w007 + 9067 + s+ ) o (U)o

T HT

The previous equation must hold with equality, otherwise in the original equilibrium the
deviating firm would not offer contract b (HT). Let

A(f) = min {u(b(eT) +y(01)) — v (@> + (51)

acCr’ QT

—u(b(07) + y(07) + oy + o) + v <m) } .

O

This gives the minimum utility gain agent 7 receives from choosing allocation (b(67), y(67))
instead of (b(67),y(6")) combined with any other latent contract . Since (50) holds with
strict inequality, A (5) is strictly positive for each . Let @ = argmin A(f). There exists
€ (5) > 0 such that

a0+ - (1) 2 52)
u(b(0”) +y(0") + @+ a, +£(0)) — v (W) >

w(b(07) + y(67) +  + Gy + ¢ (8) — 8) — v (%) .
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Let ¢ = ming,ye (5) Under this choice of €, the above equation contradicts (50). Equation
(52) also implies that for all 8 # 6, choice following the deviation is the same as in the
original equilibrium.

The last step in the proof requires checking that the time 7' — 1 incentive constraints
hold. This is necessary in order to leave the decision of the agents unchanged at time 7' — 1.
Note that for a given € > 0, there exists 0* > 0 that makes the utility, calculated in time
T — 1, of the modified contract the same as in the original contract. To see this, note that
if = € the change in utility of the agent is negative following the proposed deviation, while
if 0 = 0 the utility change is positive, since the agent now faces a reduction in the spread
of consumption at time T because y(87) + b(67) > y(67) + b(67). This implies that there
exists an intermediate value of §* such that ¢ > 6* > 0 so that the change is zero. Hence,
the time 7" — 1 decision will be unchanged if 6 = §*.

Equation (15) holds at time t = T*

Lemma 1 implies that there is only one case left to consider. Suppose that for some 7 =
(9T—17 ‘9T)

T
u' (b(0TY) +y(07)) < (y (6 )> i (53)
Or ) Or

In this case, the agent would like to consume and work less than the equilibrium contract. A
deviation that reduces the total output and consumption by agent §7 cannot be provided by
an entrant, since a worker cannot deliver negative hours. However, an incumbent firm will
find it optimal to deviate from the equilibrium contract, offering an allocation with lower
consumption and lower output requirement and making strictly positive profits. Formally,
it offers the original contract at all time ¢ < T and at time 7', a menu that contains a null
contract, the modified allocation chosen by #7 and the original allocation chosen by the
remaining types:

Cr (b(67 1), y(671)) = A
{(6(67) + y(67) + 5 (elor) — =, y(67) + 5" (e107) 1 (0,0); (w07 +b(87), y(67)) 67 £ 6"}

where 0* and ¢ are constructed in a similar fashion to the proof of Lemma 1, with the
constraint § < 0.

With this deviation, the incumbent makes strictly positive profits, proportional to e, and
there exists € so that agents’ utility is unchanged following this deviation. This guarantees
that no deviation at time 7" — 1 takes place. This contract is always profitable for the
incumbent even if another type 07 accepts it. If an agent with type 67 is able to choose the
pair (b(67) + y(67) + 6*(|0r) — &, y(6T) + 6*(€|07)) at time T, it implies that he must also
have chosen the allocation sequence {(b(6") + y(0™),y(6™))}.=} in previous periods. From
the previous step in the proposition, transfers from any history are independent of time T
i.e., this agent will receive transfers with the same net present value as in the original choice.
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Hence, the deviation is profitable.
2. Equations (14) and (15) hold for ¢t < T.

As an inductive assumption, suppose (14) holds for ¢ + 1. We now show it holds for period
t. Rewrite the net present value of transfers as:

T t—n
_ 1 1
A0 07 ) => <5> b (001,61 ,) =

=t

NS

1 t+1—n
b6 0) g S ( ) a6 61) = (6, 6,) + g Aeen (61,60

n=ir1 4
By way of contradiction, there exist 6; and 0, following history #'~! such that
D01, 00) + q A1 (0771, 0,) < b6, 0,) + q A (07, 6y). (54)

By the inductive assumption b,(0"~1,6,) < b,(#""1,8,). As in the proof for time T, the
contradiction argument relies on deviations by entrants to guarantee that (15) holds and on
deviations by entrant and incumbent firms to imply that the net present value of transfers
is zero.

Under the inductive assumption, the agent faces no distortion on both his intratemporal
margin and intertemporal margin (recall Lemma 2) from time ¢ + 1 onward. This implies
that the equilibrium allocation from time ¢ + 1 onwards is equivalent to a self-insurance
economy (this will be formally proved in Proposition 5). Let Siy1(x) be the utility the
agent receives from entering time ¢ + 1 with a level x of net present value of assets. The
value function S is monotonically increasing in the level of assets. Given this, the agents’
equilibrium choices at time ¢ satisfy the following:

u(b(@) + y(8") — v (yé@t)) + BSu (aua(8) — b)) 2
b0+ 9(0) = o (X0 4 50t (enn0) — 50, (59

t

and

00+ 9(09) o () 4 851 (00 - 00) 2

U(b(ét) + y(ét)) —v (%) + St (thH(ét) - b(ét>> : (56)
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If y(0") > y(0"), an entrant can offer the following menu that enables the agent to work
additional hours and move resources between time ¢ and time ¢ + 1:

o = {08 — b8, y(6") — y(8)) : (0,0)}.

Cror — { (—é[b(@t) b)) — e, o) } |

This menu generates strictly positive profits to the entrant, proportional to . If this menu
is offered, agent 6* will deviate, accepting the allocation for i together with the allocation
specified in the entrant’s menu. This is due to the fact that the agent can now replicate
his original time ¢ level of output and have access to a strictly higher net present value of
transfers at a cost equal to €.

Suppose now that y(6") < y(ét) The first case we consider is when consumption at time ? is
higher for the agent with a higher net present value of transfer, y(6*) + b(6") < y(6") + b(6").
As in the argument for period T, inequality (55) cannot hold with equality. This enables us

to reduce the time ¢ spread of consumption between histories 6 and ot. Following the same
steps of time T', a contradiction can be reached.

The final case is y(0Y) < y(6') and y(0") + b(6") > y(6") + b(A"). This case violates the
inter-temporal Euler equation for at least one of the two types, thus contradicting Lemma
2. To see this, suppose that the Euler equation (13) holds for agent 6. We have

' (y(6") + b(6Y)) _b Z (Opi)0 (c(6"F1))

9t+1
= )+ 60) 2 S wlB il (c(0)
9t+1
o (y(8) + b(@")) ﬁ}j (O ({0, Bus ),
9t+1

where the last implication follows from the fact that an agent with higher transfer will have
higher consumption at time t 4 1, thus a lower expected marginal utility of consumption.
To conclude, given that it was shown that the net present value of transfers is independent
of the time ¢ choice, we can follow the same steps as in time 7" to show that equation (53)
holds for time t. O]

C No profitable deviation with redistribution.

We show that there is no profitable deviation at time 1" that implies redistribution between
agents.
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We first show that any deviation, if chosen by agents, is such that transfers {b(67 1, 6;)}s.co
satisfy the following ordering: for all 4, j if 6; > 6; then b(67~',6;) > (7', 6;). Suppose not,
so there exists 6; > 6, with (67", 8;) < b(67",6;). Let {bp(87~1),5(7)} be the allocation
chosen from the contract C' at time T.%° The agents’ choices must satisfy the following, for

all 0, 6:

u (be(07) 4 (07) + 5(07) + y(67)) — v (M) >

~r0T—1 T-1 p
u BT eTfl +b eTfl é + 4§ eTfl é + eTfl é —v y<0 7(9) + y(e 79) )
( ( 0)+9 ) +y ,

7

Using this equation for 6; and 6; and from convexity of v, we have that §(67) + y(67) >
GOT1,0) +y(671,0). Agent 0; is better-off with the following strategy: choosing the pairs
(br(67-1),5(07-1,6)) and (b(6T1,0),y(671,0)) and from menu C5 choosing 8; = §(07) +
y(0T) — (§(07-1,0) + y(07*,)). This allows him to have the same output requirements as
in the original choice but higher consumption transfers.

We now show that such intratemporal transfers (transferring from less to more productive
agents) reduce agents’ welfare with respect to the original equilibrium. Let N = |©| be the
number of possible shock realizations. We only need to consider the case with transfers
{b(671,6;) }o,co ordered so that for all i,; if 6; > 6, then b(67~1,6;) > b(#7~1,6;). Define
the time T utility of an agent with type 6 and transfers b, that can optimally chose the
amount to work by the following;:

Y

W(b,0) = max ulb+y)—v <5> : (57)

Denote by y*(b, 0) the solution of problem (57) characterized by:

Wb+ (b,0)) = %v' (y(z 9)> | (58)

Note that, for a given b, y* is increasing in 6, since v is convex. The envelope condition for
(57) implies:
oW (b, 0)
0b

Given the definition of W, the time T utility under equilibrium menu C can be written as:

= '(b+y*(b,0)) > 0. (59)

ap = Z 7(0)W (br(6771), 6,). (60)

40From proposition (3), transfers in contract C do not depend on time T realization of the shock.
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Let W be the time 7T utility level attained accepting a deviation that delivers transfers b and
let WY (b) be the following:

= w(B)W (b + br (8771, 6,), (61)

=1

where each individual W is as in (57). Abusing notation, set W (b;, 0;) = W (b; +br(671), 6;)
. Consider the most favorable case for the consumer and assume that the deviation incurs
zero profits, so that le\il m;bi = 0. To show that any deviation reduces welfare (W < ),
we first show the following

N
> mbW'(0,6;) <0, (62)

Multiplying and dividing the above by W’(0, 8), where 0 is the smallest 6;, implies that the
sign of (62) is determined by the sign of the following

N /
> mbW(0,6;) = W'(0,0) Zm zW 0 0>
i=1

which is negative given the zero profit assumption and the fact that W’(0, 6;) is decreasing in
0;. Define a scale parameter g € [0, 1] for all the transfers, and define the following function
of the scale parameter

Z W (g - bi, 0;) (63)

Note that G(0) = 47 and by definition of W, W < G(1). Also, G is monotonically decreasing
in g since
0G'(9)
dg

N
=Y mbW'(g-bi,6,), (64)

=1

where W'(g - b;,0;) =4 (g-b; + y*(g - bi,0;)). As in the previous case, we also have that

u(g-bi +y*(g-b;,0:) < u(y*(0,6,)), if by >0,

This implies that G'(g) < G'(0) for all g > 0 and from (62) G’(0) < 0 so that G(1) < G(0) =
Ur.

D Proofs of Section 4

Optimality of Exclusive Contracts under Zero Costs.
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Lemma 3. For all feasible utility levels w, V(w) > TI(w):*!

Proof. Let {cVF yVE} and {cF,yF} be the solution of (23) and (24), respectively. Since
{cNE yNEY is in the constraint set of (24), V(w) > II(w) for all w. Suppose there exists w
such that V(w) = II(w). This implies that {cV ¢~} is one of the solutions of (24) for this
w. Let §; = ming ©. A necessary first order condition for a solution of (24) is for all feasible
w:

t—1
u'(c(01,6,)) > eilv’ (y(ge—l’el)> A (65)

However, since {cV¥ yNF} is a solution of (23), it must satisfy the following necessary first
order condition:

1 o106
u'(c(071,6)) = — ylo™ . 6) , VoL (66)
0, 0,
This contradicts {¢VF, yVE} being a solution of (24)."> So no such w exists. O

Proof of Proposition 6
To prove the proposition, we first show the following two lemmas. For notation, let

U (¢,y,©) the life-time utility of any allocation {c¢(6"),y(6")} when shocks are in ©.

Lemma 4. w™¥ (\) = II__B; log A + w’ ().

Proof. Let {c(0"),y(6")} be the solution of (23) for low mean agents. To prove the claim, we
show that {A\c(6"), Ay(6")} solves the above problem for high mean agents. Suppose not, then
there exists an allocation {¢(A\6"),5(A0")} that delivers higher utility U (¢, 3, A©). Consider

the allocation {é(%t), %et)} This allocation is in the constraint set of problem (23) and
delivers utility
PN 1— T
U (§§@) = U (6,5.00) - - 7 log . (67)

By the contradicting assumption, U (¢, 9, A0) > U (Ac, Ay, \O) = U (¢,y,0) + %log A,

which implies U (¢, 3, \0) — 11__5; logA > Ul(c,y,®). Using (67), we get U (f,g,@) >

U (e,y,0), contradicting allocation {c(6"),y(6")} solving (23) for low mean agents. O

Lemma 5. w” ()\é) > w? (é) + %log A

Proof. Let {c(6"),y(6")} be the solution of (24) for low mean agents. Consider the relaxed
problem with the surplus constraint (25) holding as a weak inequality. Note that the al-
location {Ac(A0"), A\y(A0")} is in the constraint set of this relaxed problem when agents are

41The set of feasible initial utility levels is the open interval (1_BT+1 U, 1-p7 " U) , where U = inf, ;>0 u(c)—

N i-8 -8
v(l) and U = sup, ;> u(c) — v(l).
42Note that (65) holds with equality only for the highest realization of utility.
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high mean. Also, this constraint must hold with equality (otherwise the extra surplus can
be distributed in an incentive compatible way, increasing agent’s utility). This implies that
the allocation that solves the problem must deliver strictly higher utility. This implies
w (M) > w¥ (6) + 11__/6; log \. O

Proof of Proposition 6

Proof. Let v* =V (w™¥ ()), where the function V is the solution of the following problem:

V(wp) = max > dm(0)[y(e") — c(6")] (68)

5700 [ute(o) — v (45| = wo

0t t

5007 ta(0) fatete) - o (D7) = X tae [u<c<ét>> v (@)] v

ot t ¢ ot ¢t

When writing problems (68), we abuse notation by denoting by 6 the agents’ labor produc-
tivity for both groups of agents.
_ — — T — T
This implies w” (9|7*) = wVF (0) Also, w¥ (9|7*) + lf_ﬁﬁ log A = wVF (9) - lf_ﬁﬁ log A.
Using the previous lemmas,

_ [T B AT
11 _% log A = wVE (9)~|—11 _ﬂﬁ

It is possible to break the indifference of the firms with respect to low mean agents by
considering the monitoring cost v = v* + ¢ for some ¢ small enough. The result holds in this
case, since w™¥ (é) > wf (§|7*) and w¥ (9|7*) is continuous on v, so we can replicate the
same steps. ]

w? ()\é\fy*) > wk (é[’y*) +

log A = wE ()\é) .

E Data
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Table 8: Sample selection for CEX data

CEX

Baseline sample
Hours restriction
Earnings <=0
Labor income <=0

Minimum wage restriction

Age >=25 and <= 55

69,816
46,559
46,002
45,745
43,802
36,871

Final sample

36,871

Numbers indicate total observations remaining at each stage of the sample selection.

Table 9: Summary statistics for the CEX sample used.

CEX (80-04)
Age 39.17 (8.74)
Education
High school dropout 6.99
High school graduate 29.26
College 60.46
Race
White 86.95
Black 9
Family composition 3.07 (1.58)

Average earnings ($)

Average annual consumption ($)

Food ($)
Rent ($)
Hours

30,340 (20,406)
13,542 (6,842)
3,791 (1,965)
262 (487)
2.123 (567)

Note - All dollar amounts in 1983 dollars.
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