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Abstract

Central banks and other public actors often perceive a tradeoff between providing the pub-

lic with useful information and the risk of overwhelming it with excessive communication. I

model this tension in a heterogeneous-information environment in which an information author-

ity chooses how many signals to provide regarding an aggregate state. Agents respond by choosing

how many signals to observe. When agents desire coordination in actions, I show that the num-

ber of signals they acquire may decrease in the number released by the authority. Regardless

of whether agents and the authority value coordination equally, the optimal quantity of commu-

nication is positive, but does not maximize agents’ acquisition of information. In contrast to a

model without information choice, the authority always prefers to provide more precise signals.
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1 Introduction

How much should central bankers talk? Should they appoint a single speaker and provide a

unified message, or allow different policymakers to discuss many topics and express dissent? Should

central banks offer a detailed outlook on the economy and their objectives in setting policy? Or ought

they limit themselves to very narrow statements on these topics? And, in these communications, is

it better for policymakers to speak very precisely or with a degree of intentional vagueness? Central

banks routinely struggle with these questions, balancing the benefits of greater transparency with

the perceived risks of over-communicating. And, though communication policy varies greatly across

the world’s central banks, all ultimately place substantial limits on their public communication.

The priority that central banks place on crafting their communications and the preponderance

of self-imposed restrictions on communication suggest that policy-makers perceive tradeoffs in the

choice to reveal more or less about their views on the economy. What might those tradeoffs be? The

literature following Morris and Shin (2002) discusses one possibility: agents might “over-coordinate”

on public information, placing more emphasis on central bank statements than is socially efficient.

When public signals are imprecise, agents’ over-reliance on public information may be harmful

enough to warrant withholding that information altogether.

This paper provides a new account of why limits on public communication may be socially

beneficial, emphasizing individuals’ choices regarding the information they acquire. I propose a

model in which agents’ ability to coordinate their information depends on the communication policy

of a benevolent information authority. The authority chooses the scope and precision of its public

communications regarding an aggregate state. Scope is measured by the number of signals that the

authority releases, while precision is measured by the variance of random noise contained in each

signal. Agents choose the number of public signals to observe, and pay a cost for each. However,

they cannot select precisely which of the public signals they see. Instead, the set of signals each

agent observes is randomly selected from among all public signals.

In this environment, the consequences of increasing the scope of communication depend on

agents’ equilibrium information choices. On the one hand, if agents acquire the additional signals,

increasing scope enables them to learn more about the realization of the state and, therefore, to

align their actions more closely with economic fundamentals. On the other hand, if agents do not
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increase acquisition one-for-one with the additional signals released, the information they observe

becomes more dispersed and their actions become less coordinated. When social welfare depends

on coordination, this is a potential cost. Which effect predominates depends on agents’ information

choices and, therefore, on their strategic incentives.

This model of endogenous information choice captures the tradeoff, faced by central banks and

other public actors, between providing as much information as possible and ensuring common un-

derstanding among agents. Morris and Shin (2007) argue that similar considerations are important

in a range of contexts, including the design of accounting rules. This motivation is often expressed

colloquially as the desire to prevent confusion on the part of the public. Blinder (2007), for exam-

ple, argues that too many speeches by different members of the Federal Open Market Committee

(FOMC) can result in counterproductive “cacophony.” In this paper, cacophony occurs when indi-

viduals each receive different parts of the central bank’s overall message. This diminishes the amount

of information about others’ actions contained in each statement made by the bank and ultimately

reduces the amount of information that agents choose to acquire.

Although my model nests a standard “global games” environment, I derive a number of new

results regarding the consequences of communication policy. First, I find that increases in scope

have a non-monotonic impact on the amount of information acquired by agents. Revelation beyond

a certain critical level causes agents to decrease the amount of information they gather. This result

arises because private agents with complementarities in actions find it more desirable to obtain

information that they know other agents will also obtain and act on. When the authority releases

signals beyond the threshold amount, an individual agent rightfully anticipates that each signal will

be observed by a smaller fraction of other agents and will therefore be less valuable in her own

decision problem. Each agent is thus less inclined to purchase the public signals, which further

decreases their value, and so on. As a consequence, too much information revelation results in less

information acquisition, and lower welfare overall.

Second, despite the fact that releasing additional signals entails no direct cost for the authority,

I find that the optimal level of scope is interior: the authority always releases a positive but finite

amount of information. When agents and the authority value coordination equally, the logic behind

this result is especially direct. Complete silence is never optimal, since the first bit of information

released by the authority is acquired by all agents and therefore improves agents’ forecast of the state
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without jeopardizing information coordination. Nor is releasing an unbounded number of signals

optimal. The desire to create common understanding among agents ensures that the authority

never chooses to release more information than agents willingly acquire in equilibrium. Because of

the non-monotonicity in agents’ information acquisition, providing more information would result

in both lower overall information acquisition and reduced coordination.

Third, I find that the optimal degree of scope entails providing substantially less information

than agents would willingly acquire if it were available. This result obtains because communication

policy influences the costs of coordination faced by agents, despite the fact that the cost-per-signal-

acquired remains constant. When more signals are publicly available, agents must purchase more

signals in order to ensure the same degree of coordination amongst themselves. If the authority

desires coordination, then it chooses to limit this cost, even though agents would pay for and acquire

extra signals if they were released by the authority.

Fourth, I find that the authority always chooses to provide the most precise signals possible. A

literature characterizes cases where increases in the precision of a public signal is socially harmful

(Morris and Shin, 2002; Hellwig, 2005; Angeletos and Pavan, 2007a,b). My model nests these cases,

but the addition of information choice reverses this result: an authority that is free to adjust the scope

of its communication always prefers to use this margin of adjustment rather than reduce the precision

of its signals. Thus, although the model rationalizes limits to the extent of public communication,

it does not support a policy of “constructive ambiguity” in central bank communication. The

distinction between the scope and precision in communication policy offers one resolution to the

apparent conflict between practitioners’ consensus about the benefits of “transparency” and banks’

common practice of limiting their own communications.

Finally, I extend the model to allow agents to choose the probability with which they observe

each individual signal. Allowing for such directed search opens a new avenue by which agents can

coordinate their information, and might be expected to reduce the cause for limiting the scope

of communication. Under plausible conditions, however, the equilibrium in the extended model is

precisely that of the (constrained) baseline model, and all of the policy implications are identical

to the baseline case. As an alternative, I consider a case in which the model has many equilibria.

In this case, I show that if the authority is concerned about robustness - if the authority considers

the worst possible equilibrium - then the implications for optimal communication policy remain
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essentially unchanged.

My conclusions both complement and contrast with those from the earlier literature on the

social value of public information, including Morris and Shin (2002) and Angeletos and Pavan

(2007a). Like Morris and Shin (2002), I find that more public information is potentially harmful.

However, the mechanism behind this result is very different. In my model, increases in scope

may be harmful because they prevent agents from coordinating their information. In the earlier

literature, increases in public signal precision lead to over-coordination in actions. To obtain this

result, these studies require a misalignment between the preferences of agents and those of the social

planner. However, Hellwig (2005) and Roca (2010) show there is no such misalignment in new-

Keynesian models with micro-founded preferences. My conclusions regarding scope do not rely on

any preference misalignment.

Woodford (2005) and Svensson (2006) further argue that, even if one accepts the assumption of

misaligned preferences, the parameter values under which increases in precision may be harmful are

implausible: public information would need to be of extremely low quality in order for the release

of a public signal to be harmful. By contrast, the results in this paper are robust to a wide range

of parameters. Finally, the results of Morris and Shin (2002) imply that the authority should reveal

as much information as possible, or nothing at all. In my model, optimal scope is always positive,

finite, and in most instances varies continuously as a function of the parameters in the model.

This paper builds on a growing literature modeling the endogenous acquisition of information,

including the foundational contributions of Sims (2003) and Reis (2006). Hellwig and Veldkamp

(2009) argue that multiple equilibria may become prevalent in models of information acquisition

when agents face strategic complementarities in their actions. Multiplicity arises because a signal

that is observed by other agents is informative about their actions and, thus, is discretely more

valuable than a signal that is not observed by others. Myatt and Wallace (2010) overcome this

multiplicity by assuming that agents choose the precision with which they observe a given signal. The

baseline version of my model achieves uniqueness by ensuring that all signals are equally informative

about aggregate actions. I later extend the model of information acquisition to nest both my baseline

model and that of Hellwig and Veldkamp (2009). I show that this general approach accommodates

both cases with extensive multiplicity and cases of equilibrium uniqueness, despite the presence of

complementarities. The model with multiple equilibria is still policy-relevant: a policymaker who
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cannot predict precisely which equilibrium will arise may still wish to influence the set of possible

equilibria.

The few studies of communication with endogenous information choice come to mixed conclusions

about the benefits of transparency. These studies typically explore models in which private sector

actors pay a cost to acquire private information but receive an information authority’s signals for free.

Wong (2008) and Ueda (2010) argue that providing more precise public information may be harmful,

as it crowds out agents’ acquisition of private information, making aggregate actions less informative

to the policy maker. In contrast, Colombo and Femminis (2008) focus on the real resource savings

generated when agents substitute away from private information acquisition towards a more precise

public signal and find a “pro-transparency” result. Instead, I emphasize the costs of acquiring public

messages, and explore implications for both the scope and the precision of public communication.

Reis (2010) studies the question of when a policy maker should release its own private infor-

mation about a coming change in regime, under a version of rational inattention. Among other

results, he finds that announcements made too early may be ignored by agents, and that optimal

communication policy takes this into account. Reis (2010) and this paper share a common theme:

good communication policy requires that public institutions take care to ensure agents pay the right

amount of “attention” to their message.

This paper proceeds as follows. Section 2 details agents’ preferences and the model of informa-

tion acquisition. Section 3 characterizes equilibrium in the model, and describes the consequences of

communication policy for information choice. Sections 4 derives implications for optimal communi-

cation policy when agents’ preferences are aligned with those of the social planner and when agents

and the planner value coordination to differing degrees. Section 5 extends the model to allow agents

to direct their search towards particular signals, and studies the consequences for determinacy in

the model. Section 6 concludes.

2 Model

The model is a static “global games” model, with endogenous information acquisition. The

preference structure follows that of Angeletos and Pavan (2007a) and nests Morris and Shin (2002).

Prior to choosing their actions, agents and the authority choose information in a two-stage game,
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in which the authority is a Stackelberg leader. In this section, I first detail agents’ preferences and

then describe the information game.

2.1 Preferences

The economy consists of a continuum of expected utility-maximizing agents, indexed by i ∈

[0, 1], and an information authority, denoted G. Each agent chooses an action, pi ∈ R, given their

information. Agent i’s preferences (exclusive of information costs, which are introduced below) are

given as minus a quadratic loss function, so that

− ui(pi|θ, p) = (1− α)
(
pi − θ

)2
+ α(pi − p)2 (2.1)

where θ represents an aggregate economic fundamental relevant to all agents and p =
∫ 1

0 p
jdj gives

the cross-sectional average action across agents. The degree of strategic complementarity in the

agent’s choice is measured by α ∈ [0, 1).1 Under these preferences, agent i’s optimal response

function given her information is

pi
∗
(Ii) = (1− α)Ei[θ] + αEi[p] (2.2)

where the notation Ei[x] denotes expectations conditional on agent i’s information set, Ii.

Social welfare in the economy is measured by

− uG({pi}, θ) = (1− α?)
∫ 1

0

(
pi − θ

)2
di+ α?

∫ 1

0
(pi − p)2di (2.3)

In equation 2.3, the parameter α? ∈ [0, 1] measures the degree of complementarity from the social

planner’s perspective, which may be different from that perceived by agents.

The definition of the dispersion-loss term,
∫ 1

0 (pi − p)2di, used here follows Angeletos and Pavan

(2007a). Although it differs slightly from the definition used in Morris and Shin (2002), none of their

computations depend on this choice. The alternative definitions, however, do have consequences

whenever α? > 0. When α = α?, this choice of preferences ensures agreement between the agents’

and planner’s preferred actions given information (Angeletos and Pavan, 2007a). In proposition 3, I

1Avoiding the case α = 1 ensures uniqueness in agents’ equilibrium actions, given their information.
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establish that whenever α = α? agents’ individual information choices are socially optimal, as well.

Consequently, when α = α?, I will say that the agents’ and planner’s preferences are “aligned.”

Many models can be cast in or approximated by the preference structure described above. Hellwig

(2005) and Roca (2010) derive such preferences in pricing models with imperfect competition and

monetary policy, and show that coordination in prices is desirable at both the individual and social

levels (α ≈ α?). Because of its relevance to central banking, this example motivates my initial focus

on the case of aligned preferences. Other examples in which coordination is both individually and

socially desirable (α ≤ α?) include the model of strategic investment decisions by Angeletos and

Pavan (2004) and the model of political leadership by Dewan and Myatt (2008). In other cases,

such as the asset market beauty contest described by Allen et al. (2006) or the model of corporate

board decision-making by Malenko (2011), agents desire coordination even though it brings no social

benefit (α > α? = 0).

2.2 The Communication Game

Before the realization of random variables, the information authority and agents choose infor-

mation in a two stage game. In the first stage, the information authority selects its communication

policy, which consists of selecting the number of signals to release (scope) as well as their precision.

In the second stage, each agent i chooses her individual information allocation, taking as given the

information choice of other agents as well as the communication policy of the authority. Once com-

munication policy and information allocations are made, uncertainty is realized, signals are observed,

and agents choose their actions in an individually optimal manner given their information. Figure

1 summarizes the sequence events in the model.

Author i ty Chooses
Pol i cy, {n, σ 2

η}
Agent s Choose
In f ormat i on , k

Sho cks Rea l i zed ,
S i gna l s R el eas ed

Agent s Choose
Act i on s , p i

Figure 1: Timeline of the Communication Game
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2.2.1 Authority’s Communication Policy

The aggregate state θ is normally distributed with mean zero and variance σ2
θ normalized to one.

Its realization is known perfectly to the information authority. The authority can choose to share

its information with the public by costlessly providing one or more signals, indexed by l = 1, ..., n,

of the form

gl = θ + ηl (2.4)

The error in each signal is assumed to be gaussian white noise, i.i.d. across signals, with variance

σ2
η ≥ σ2

η. Since I later show that the authority always selects the most precise (lowest σ2
η) signals

possible, I initially take this value as exogenous. In this case, the only choice of the authority is

scope, measured by n, the number of signals it wishes to make available for public observation. The

assumption that the authority knows the state exactly is for expositional convenience only. I relax

this assumption and study the consequences in section 4.2.

Why is scope an interesting dimension of communication? The idea behind this formulation is

that providing more information about a complex concept (e.g. “the state of economy”) requires

more communication on behalf of the authority or central bank. To “listen” to the authority’s

communication is demanding of agents’ resources; they cannot make use of additional communication

unless they expend the resources needed to process it. This gives agents’ incentives an important

new role in shaping the consequences of public communication. This view of communication fuses

the main insights of the literature on information choice (that agents influence the information

embodied in their actions) and the literature on public information (that policy-makers influence

the informational environment faced by agents.)

Because of the emphasis on costly information acquisition, the scope concept maps most naturally

into current debates about how much communication to undertake. For example, should the central

bank provide the public with the details of its internal debates about policy, as is the case for the

Bank of England, or with a more unified view, as the European Central Bank currently does? Should

it provide forecasts of the policy rate, as a number of inflation-targeting banks do? Should it describe

the details of its models and forecasting assumptions? In contrast, changes in the precision of signals

are free and are necessarily “absorbed” as greater information flows to the private sector. This
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dimension of communication maps more naturally into the debate about “constructive ambiguity,”

the question of whether intentional obfuscation in a given public statement might be warranted.

2.2.2 Agent’s Information Choice

Agents are Bayesian, and share a model-consistent prior on the state. In addition to any public

information they choose to acquire, agents are exogenously endowed with a private signal

ri = θ + ξi (2.5)

where ξi is i.i.d. N(0, σ2
ξ ) across agents.2

Given the authority’s communication policy, each agent must choose how many of the public

signals to observe, k ≤ n, taking as given the information choices of other agents. To make these

observations, agents must pay a utility cost of c(k) = λk. I assume that agent i cannot select

precisely which of the n signals to observe, and instead observes a subset drawn randomly without

replacement from among the signals released by the authority. This assumption is important; I

discuss its relevance below and show how it may be substantially relaxed in section 5.

At the time of her actions, I assume agent i knows the realizations of k out of the n public

signals and can associate each of her observations with the index of a particular signal, l. To

rigorously define agent i’s information, let Gi be a random n-vector of indicator variables. The

lth element of its realization, Gil , is set to one if that signal is observed by agent i. Under these

assumptions, the information set of agent i at the time of her action is denoted by Ii = {Gi,Gi},

where Gi = {gl ∈ G;Gil = 1} is the ordered set of signals observed by agent i. With a slight abuse

of notation, I will say gl ∈ Ii whenever Gil = 1. Implicitly, the set of values that are feasible for Ii

depends both on the communication policy of the authority, and on the agent’s information choice.

Under these conditions, agent i must infer the state θ, as well as the average action p. As

I demonstrate in the appendix, the later requires forming expectations of both private signals and

those public signals observed by other agents but not by agent i. Fortunately, all of these expectations

2The assumption of exogenous private information is not without loss of generality. However, as long as the cost-
per-unit-precision of private information exceeds that of public information, agents will always exhaust all available
public signals before considering the acquisition of additional private information. In this case, the subsequent theorems
follow with very few modifications.
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can be written in terms of the conditional expectation of θ. This expectation is given by

E[θ|Ii] = γ1

∑

gl∈Ii
gl + γ2r

i (2.6)

where γ1 =

(
k + σ2

η

(
1 + 1

σ2
ξ

))−1

and γ2 =
σ2
η

σ2
ξ
γ1. The details of the agent’s inference problem are

enumerated in appendix A.1.

An alternative assumption is that the agent cannot verify ex-post which of the signals she has

observed. Since responses could not be conditioned on a signal’s index, this assumption would

simplify the analysis by ensuring that agents respond in the same way to all signals that they

observe. In contrast, under the baseline assumption, agent i may in principle respond more strongly

to a signal if they know it is observed by a relatively large portion of the population. When all

signals are selected with equal probability, however, the two assumptions yield identical results.

The assumption that agents cannot influence which of the n signals to observe is important. This

assumption, and the assumption of Hellwig and Veldkamp (2009) that agents can perfectly select

their preferred signals, are each special cases of a general model, in which agents “search” across

signals with a limited ability to direct that search towards their most preferred signals. The current

setup is analogous to an environment of “undirected” search, since agents cannot influence which

of the public signals they observe. Permitting “perfectly directed” search, with no corresponding

cost, introduces a large multiplicity of equilibria into the model, for precisely the reasons described

by Hellwig and Veldkamp (2009). In section 5, I extend the model to allow agents to choose

the probability of observing each individual signal, nesting both of the above cases, and establish

conditions on the cost of information that are sufficient to ensure that search is “undirected” in

equilibrium.

The presumption of imperfectly directed search is plausible for a number of reasons. First, agents

may find it difficult or costly to determine which signals they would prefer: a force that is distinct

from the cost of information acquisition per-se. Second, real agents must acquire information about

a great deal of relevant variables in order to make all of their economic (and non-economic) decisions

and almost always gather multiple kinds of information from a single source, for example the New

York Times or Google searches. Since these information aggregators are separate entities, they quite
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plausibly could provide agents with information that is not their most preferred: their incentives

may be different than their users’ or they may not know precisely what information their customers

find most useful.

2.3 Definitions

In this section, I define concepts of equilibrium and efficiency, taking communication policy as

given. Let U i(k, pi(Ii); p(G)) ≡ E[ui] − c(k) be the unconditional expected utility of agent i as a

function of her information allocation, k, and her action rule pi(Ii), and the aggregate mapping of

the state and authority’s signals to aggregate actions, p(G). Similarly, define UG
(
k, pi(Ii); p(G)

)
≡

E[uG]− c(k) to be the unconditional expected value of aggregate social welfare.3

Definition 1. Given communication policy, {n, σ2
η}, a pure strategy symmetric equilibrium consists

of an information allocation and an action rule mapping information to actions, {k∗, pi∗(Ii)}, such

that

1. Each agent’s choice of information and actions maximize expected utility, taking other agents’

actions as given:

{k∗, pi∗(Ii)} = argmax
k,pi(Ii)

U i(k, pi(Ii); p(G)) subject to k ≤ n (2.7)

2. The average action is given by p(G) =
∫ 1

0 p
i∗(Ii)di.

The restriction to pure strategy equilibria simplifies notation, and will not exclude any equilibria

under assumption 1, which I present shortly and maintain throughout the paper.

I now define a benchmark that will be helpful in evaluating the efficiency of the decentralized

equilibria in the model.

Definition 2. Given a communication policy, {n, σ2
η}, the socially optimal symmetric information-

action plan consists of an i-common information allocation and an action rule, {k•, p•(Ii)}, which

satisfy

{k•, pi•(Ii)} = argmax
k,pi(Ii)

UG(k, pi(Ii); p(G)) subject to k ≤ n and p(G) =

∫ 1

0
pi(Ii)di (2.8)

3This notation reflects a restriction to symmetric information allocations and action rules.
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The definition of the planner’s information-action plan corresponds to the efficiency criterion

used in Angeletos and Pavan (2007a), in that it considers efficiency given the constraint on infor-

mation. This definition extends theirs, however, by considering efficiency over a range of potential

information allocations, rather than considering actions for a fixed information structure.

When α = α?, the key difference between definitions 1 and 2 is that the former takes aggregate

actions as given, while the latter imposes that aggregate actions are those induced by the planner’s

choice of k and pi
•
(Ii). I will later establish that, in this case, the allocations satisfying each

definition correspond as long as the equilibrium allocation is unique. When α 6= α?, the objective

functions U i and UG differ, in which case either actions, information acquisition, or both, may be

inefficient.

3 Equilibrium and Efficiency

The model is solved by optimizing sequentially, first choosing actions taking information as given,

and then choosing the information allocation assuming that the use of information is individually

optimal.

3.1 Exogenous Information

In this section, I solve for the equilibria of the model taking the information choice of agents as

given. I restrict myself to the space of linear equilibria, such that the mapping from signals to the

aggregate action can be represented by a linear rule

p = ψ∗1

n∑

l=1

gl + ψ∗2θ (3.1)
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In appendix A.2, I use a method of undetermined coefficients and iterate on agent’s optimal action

given in equation 2.2 to solve for ψ∗1 and ψ∗2. The equilibrium coefficients are

ψ∗1 =

(
n+

(n
k
− α

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

(3.2)

ψ∗2 =

(
1 + σ2

ξ

(
1

1− α +
k

1− α kn
1

σ2
η

))−1

(3.3)

Conditional on observing a particular public signal, individual i’s response to that signal is

n

k
ψ∗1 =

(
k +

(
1− αk

n

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

≡ ψi1
∗

(3.4)

Compare now the expression for ψi1
∗

in equation 3.4 with the optimal weight of inference on the

corresponding observation, γ1 =

(
k + σ2

η

(
1 + 1

σ2
ξ

))−1

. Clearly, γ1 = ψi1
∗

whenever agents have no

strategic complementarities and they acquire all of the public signals (α = 0 and k = n). Further

inspection reveals that, when agents acquires all signals but α > 0,

ψi1
∗
> γ1 (3.5)

Conversely, in this case, ψ∗2 < γ2. Thus, agents “overweight” the public signal relative to the Bayesian

weights. This is the effect highlighted by Morris and Shin (2002): agents’ desire to coordinate actions

causes them to respond more strongly to public signals than they otherwise would.

Note, however, that when k
n is sufficiently small, this conclusion is reversed and it may be that

ψi1
∗
< γ1. In this case, the randomness of agent’s observations means that the signals released

by the authority are no longer common enough to drive this “over-reaction”, and agents actually

underweight these signals relative to the Bayesian weights. This may be surprising, since these

signals still contain some “public” component. Recall, however, that agents share a common prior

about the signal. The common prior plays a role that is identical to a common public signal and

so, in this case, agents overweight the prior relative to all other information. Thus, depending on

the information choices of agents, the signals of the authority can play either the role of public

information or the role of private information.
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3.2 Morris and Shin (2002) Result

When k = n = 1 and α? = 0, the model nests that of Morris and Shin (2002). The fundamental

result of that paper and the subsequent literature (e.g. Angeletos and Pavan, 2007a), is that social

welfare may be decreasing in the precision of public information when agents place inefficiently high

weight on coordination.4 This basic result is captured in proposition 1, which is proved in appendix

A.3.

Proposition 1. Suppose n = k = 1 and α? = 0. Then social welfare is decreasing in 1
σ2
η

if and only

if

(2α− 1)(1− α) > σ2
ξ

(
1 +

1

σ2
η

)
(3.6)

As pointed out by Svensson (2006), the prerequisites of condition 3.6 are stringent, for it requires

both that α > 1
2 and that private information is much more precise than public information. Explic-

itly including agents’ common prior highlights an additional requirement: private information must

also be very precise in an absolute sense. If this requirement is not met, then agents do not update

their beliefs much in response to either signal, and the resulting inefficiency in actions is too small

to offset the benefits of making the public signal more precise.

An important implication of proposition 1 is that an authority choosing the precision of its signal

subject to a lower bound always chooses to provide the most precise signal possible or no signal at all.

To see this, note that whenever the condition in 3.6 holds for a particular value σ2
η, it must also hold

for values of σ2
η > σ2

η. In such cases the authority selects the variance of its signal to be arbitrarily

large: the authority provides no information at all to the public. I call this the “bang-bang” feature

of the Morris and Shin (2002) result.

3.3 Endogenous Information

In this section, I solve for the equilibrium information choice, assuming that information is used

in the equilibrium manner. In appendix A.4, I show that the loss function of agent i can be written

4Conversely, when agents underweight coordination, increases in the precision of private information may be harm-
ful.
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as

−U i
(
k, pi

∗
(I); p(G)

)
= (1− α)

[(
kψi1 + ψi2 − 1

)2
+ ψi1

2
kσ2

η + ψi2
2
σ2
ξ

]

+ α

[(
kψi1 + ψi2 − nψ̃1 − ψ̃2

)2
+
(
ψi1 − ψ̃1

)2
kσ2

η +
(
ψ̃1

)2
(n− k)σ2

η + ψi2
2
σ2
ξ

]
+ λk

(3.7)

where ψ̃1 and ψ̃2 represent the coefficients of the aggregate pricing rule, which are taken as given by

agent i.

Substituting in optimal actions for agent i, ψi1 and ψi2 (and therefore overall utility) can be

written in terms of agent i’s information choice, k:

ψi1 =
1

k + σ2
η +

σ2
η

σ2
ξ

(
(1− α) + ψ̃1

(
n+ σ2

η +
σ2
η

σ2
ξ

)
+ αψ̃2

)
(3.8)

ψi2 =
1

k
σ2
ξ

σ2
η

+ 1 + σ2
ξ

(
(1− α) + αψ̃1(n− k) + αψ̃2

)
(3.9)

3.3.1 Continuous Information

For analytical simplicity, I focus on a version of the model in which the information choices of

the authority and agents can each be described by continuous parameters k̂ and n̂, rather than the

integers k and n. To transform the model into its continuous analogue, I divide each “unit” of

information provided by the authority into a set of sub-units, and so on, ad infinitum. The details of

this transformation are given in appendix A.4.1, where I show that the discrete expressions for the

equilibrium coefficients and social welfare can be mapped into isomorphic expressions with n̂ and

k̂ as continuous choice variables. Accordingly, I drop this distinction in the main text and simply

treat n and k as continuous choices.

3.3.2 Equilibrium with Information Choice

Assumption 1 is maintained throughout the remainder of the paper and is necessary to ensure

that agents choose to acquire a non-zero quantity of information.
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Assumption 1. Information costs are not too high:

λ <
1

σ2
η

(
1

1−α + 1
σ2
ξ

)2 (3.10)

Letting τ ≡
(

1
1−α + 1

σ2
ξ

)
, assumption 1 reduces to λ < (σ̂ητ)−2. The assumption states that the

costs of information should not be too high, relative to the precision of public information.5 When

complementarities are high, the assumption requires a relatively low cost of information. This is

natural, since in this case agents are more concerned with coordination than with the value of the

state per se. This logic is especially straightforward when agents have no private information. In

this case, agents can coordinate perfectly if no one acquires any information about the state.

Proposition 2, proved in appendix A.4, establishes the characteristics of equilibrium information

choice in the model.

Proposition 2. Let n̂ ≡
(
σ2
η

λ

) 1
2 −(1−α)σ2

ητ . Then, the equilibrium information allocation is unique

and is given by

k∗ =

{
n if n ≤ n̂ (3.11)

k̈(n) otherwise

where

k̈(n) =

(
σ2
η

λ

) 1
2 − σ2

ητ

1− α
nσ

2
ητ

(3.12)

The contrast between the uniqueness result here and the pervasive multiplicity in Hellwig and

Veldkamp (2009) stems from the fact that, in their paper, agents may coordinate perfectly on the

signals they wish to observe. From an agent’s perspective, this creates a discontinuity in value

between signals that are already observed by other agents (and therefore contain information about

their actions as well as the state) and those that are not observed by others (and therefore only

contain information about the state.) This discontinuity generates a range of values of information

5Of course, if the cost of information is so high that agents never acquire any information in equilibrium, then the
choice of scope is irrelevant.
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acquisition in which agents have no incentive to acquire either more or less information, given the

information choices of other agents.6

Uniqueness in this case follows from the assumption that agents must randomize in selecting the

signals that they observe. As a result, all signals are observed with equal probability by other agents

and an agent deciding whether to observe an additional signal knows that all signals are equally

informative about others’ actions. Decreasing returns to additional observations arise only because

agents update their beliefs less in response to new information once they are already observing a

great deal of information.

3.4 Scope and Information Acquisition

How does communication policy affect equilibrium information acquisition? Corollary 1 estab-

lishes the important result that, for levels of scope beyond the critical value n̂, an increase in the

amount of scope by the central bank actually decreases the amount of information acquired by

agents.

Corollary 1. Suppose that n > n̂. Then information acquisition is decreasing in scope:

∂k̈(n)

∂n
< 0 (3.13)

Proof of Corollary 1. To see this result, compute the derivative of k̈(n):

∂k̈(n)

∂n
= −k̈(n)

ασ2
ητn

−2

1− α
nσ

2
ητ

(3.14)

Since k̈(n) is always positive, expression 3.14 is negative so long as the term 1 − α
nσ

2
ητ is positive.

This follows from assumption 1 and the assumption that n is large enough to ensure k∗ interior.

What is the mechanism behind this result? Consider what happens as the authority increases

revelation, starting from a very low level. As long as agents attend to all public signals, increasing

revelation increases their learning about the state. At the threshold point n̂, however, agent i no

6I am ignoring a different sort of multiplicity that occurs because agents could select to observe any set of k signals.
Because I assume that signals are a priori identical, the set of equilibria, each focusing on a different set of k signals,
are equivalent from a welfare perspective.
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longer finds it worthwhile to attend to all signals, even if she believes that other agents do observe

all signals. When this happens, the equilibrium cannot entail agents observing all signals. However,

since each agent now observes only a subset of the public signals, each signal becomes less informative

about others’ actions, and therefore less valuable to agent i. Each agent is now less inclined to acquire

even the previous quantity of signals, and aggregate information acquisition is reduced to a level

below that obtained with slightly less revelation.

One economic interpretation of this result is that over-revelation on the part of the information

authority, or central bank, results in harmful “cacophony” (Blinder, 2007). The central bank may, in

principle, wish to communicate more information to the public, but speaking with too many voices

(sending too many signals) may overload agents’ interest or capacity to process that information.

When this happens, extra communication is not only unhelpful, it actually reduces knowledge about

the state in the private sector, which responds to the cacophony by collecting yet less information

from the public announcements than it otherwise would.

Figure 2 plots the consequences of greater scope of communication for aggregate information

acquisition. The figure shows that the effect of excessive scope on information acquisition can be

substantial. When strategic complementarities are weak, information acquisition reaches a maximum

at n̂, and declines only slowly thereafter. However, when complementarities are strong, the effect

described above creates a dramatic reduction in information acquisition, to less than half of its

maximum value as the number of signals released become arbitrarily large.

3.5 Efficiency of Equilibrium Information

Angeletos and Pavan (2007b) establish that α = α? implies that actions given information are

efficient. Proposition 3 extends this result to the endogenous choice of information, for a case with

a unique equilibrium. This proposition explains the decision to call α = α? the case of “preference

alignment.”

Proposition 3. Suppose α = α?. Then, given any communication policy, {n, σ2
η}, the equilibrium

of the model is a socially optimal information-action plan.

Proposition 3 is a consequence of a more general theorem proved in Chahrour (2011), which

states under very general conditions on the cost of information that the socially optimal action plan
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is an equilibrium of the model.7 Other equilibria can (and often do) exist. For example, when

assumption 1 does not hold, the model may have two equilibria, one in which agents acquire all

of the authority’s signals and one in which agents acquire no information. The different equilibria

obviously have different welfare implications. The theorem establishes that one of the two equilibria

is efficient, but gives no guidance as to which that may be.

4 Optimal Communication

This section studies the consequences of endogenous information acquisition for the information

authority’s communication policy. I first establish the basic features of optimal scope and signal

precision when agent’s preference are aligned with the authority’s. Next, I extend the model to

study the case when the authority itself is uncertain about the realization of the state. Finally, I

consider the choice of communication policy when preferences are misaligned, and agents and the

authority value coordination to different degrees.

Definition 3 formally states the information authority’s problem. The information authority

selects its communication policy in order to maximize social welfare.

Definition 3. The information authority’s optimal communication policy, denoted by {n?, σ2
η
?},

maximizes the social welfare of the resulting equilibrium allocations:

{n?, σ2
η
?} = argmax

n,σ2
η

UG
(
k∗, pi

∗
(Ii); p(G)

)
subject to p(G) =

∫ 1

0
pi
∗
(Ii)di;σ2

η ≥ σ2
η;

k∗, pi
∗
(I) are equilibrium allocations given policy n.

7Let the agent’s information choice, Ii, consist of a reproduction alphabet, M̂ , and a conditional distribution l(m̂|θ)
on the message “received” by agent i, given the realization of the state. Then, for any information cost functional
c(Ii) mapping information allocations to a real number, the optimal information-action plan is a equilibrium of the
model.
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The social loss function, given the equilibrium choices of agents, can now be written

−UG
(
k∗, pi

∗
(I); p(G)

)
= (1− α?)

(
(nψ∗1 + ψ∗2 − 1)2 + (ψ∗1n)2 σ

2
η

k∗
+ (ψ∗2)2 σ2

ξ

)

+ α?

(
(nψ∗1)2

(
1− k∗

n

)2 σ2
η

k∗
+ (nψ∗1)2

(
1− k∗

n

)
σ2
η

n
+ (ψ∗2)2 σ2

ξ

)
+ λk∗

(4.1)

where

ψ∗1 =

(
n+

( n
k∗
− α

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

(4.2)

ψ∗2 =

(
1 + σ2

ξ

(
1

1− α +
k∗

1− αk∗n
1

σ2
η

))−1

(4.3)

4.1 Optimal Communication with Aligned Preferences

In this section, I maintain the assumption that α = α?, and study the implications for optimal

communication. I begin by focusing on this case for two reasons. First, it corresponds the benchmark

environment of firm price-setting decisions with imperfect competition (again see Hellwig, 2005;

Roca, 2010). More generally, this case is relevant to communication policy in a wide range of

economic environments. Second, this choice ensures that agents are using their information in an

efficient manner, allowing me to isolate the consequences of the coordination problem created by

excessive scope. In section 4.3, I examine the robustness of these results when α 6= α?.

4.1.1 No-Waste Result

Lemma 1 establishes that, under optimal communication policy, agents must attend to all signals

released by the central bank.

Lemma 1. The optimal choice of scope induces agents to select k = n.

Proof. The form of k∗ ensures that for any value n that implies k∗(n) < n, there exists another value

n′ < n, such that k∗(n′) = n′ = k∗(n). I want to show that social welfare is always higher under

communication policy n′. Using the simplified expression for social welfare derived in B.3, welfare
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under n′ is greater if and only if

k + (1− α)σ2
ητ

k +
(
1− k∗

n α
)
σ2
ητ
≥ 1− α

1− k∗

n α
(4.4)

But, since k∗

n < 1 this must always be true.

Intuitively, the social welfare function in 4.1 is composed of three terms: those that refer to

the “fundamental” portion of utility (multiplied by 1 − α?), those that refer to the “coordination

motive” (multiplied by α?), and the information costs. Under both policies, the information costs

are equal and agents achieve the same precision of inference about the state. However, for the n′

policy, agents’ information is more highly correlated. If only a fraction of agents observe each signal,

then each signal becomes less valuable for coordination, with no corresponding gain in the signal’s

informativeness about the state. Inducing this kind of dispersion in agent’s information is always

inefficient.

4.1.2 Optimal Scope

Using lemma 1, I can now compute the authority’s preferred scope of communication.

Proposition 4. The optimal choice of scope is given by

n? =

√
σ2
η(1− α)

λ
− (1− α)σ2

ητ (4.5)

Proposition 4 is established by 1) assuming full information acquisition on the part of agents, 2)

maximizing the resulting social welfare function, and 3) checking that full information acquisition is

indeed an equilibrium for the implied scope. The details of the proof are in appendix C.1.

Given the result in lemma 1, it might be tempting to guess that the authority seeks to maximize

agents’ information acquisition. Expression 4.5 immediately shows that this is not the case.

Corollary 2. When α = α? > 0, the optimal scope is positive but entails providing fewer signals

than agents would willingly acquire in equilibrium. That is,

0 < n? < n̂ (4.6)
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Figure 3 show this result graphically. With strong complementarities, the wedge between the

number of signals agents would willingly acquire and the amount optimally provided by the authority

is large. This result follows from the fact that higher complementarities decrease the social (and

individual) value of learning about the state. To see this, consider the social welfare function when

agents purchase all public information:

−UG
(
k∗, pi

∗
(I); p(G)

)
= (1− α)

(
(nψ1 + ψ2 − 1)2 + ψ2

1nσ
2
η

)
+ ψ2

2σ
2
ξ + λn (4.7)

When α is close to one, additional signals from the authority provide relatively little benefit because

the “fundamental” portion of the loss function becomes small while the cost of each signal remains

constant. As a result, the value of providing the public with more information is lower, reducing

optimal scope.

Figure 4 provides additional intuition for this result. The figure plots the information cost paid

by agent i as a function of the correlation of her expectation of the state, conditional on the signals

that she observes, with “market expectations” that are assumed to rely on the full set of signals

released by the information authority. As the figure shows, higher levels of revelation increase the

cost of informational coordination for agents. Since agents value coordination, they choose to pay

this cost and acquire additional signals even beyond n?. Because of randomization, agent i knows

that any additional signals released beyond n? will be observed by some others, and therefore will

choose to acquire that signal. Since agent i observes the signal, however, other agents also find it

worthwhile. And so on. In order to ensure coordination, agents choose to purchase all the signals

that are released, even though they would prefer that the signals were withheld entirely by the

authority.

Figure 5 plots social welfare as a function of scope, for two different degrees of complementarity.

In both cases, incomplete information revelation is the optimal communication policy. The figure

suggests that the optimal degree of revelation is decreasing in α. In fact, this result holds whenever

exogenous private information is sufficiently imprecise.

Corollary 3. Optimal scope is decreasing in α if and only if

σ2
ξ

2
≥
√

(1− α)λσ2
η (4.8)

23



The logic behind the result is that increasing the degree of complementarity both decreases the

importance agents place on choosing actions that are close to the state and decreases the informa-

tiveness of private information for the optimal action. When private information is of low quality,

agents rely relatively little on it and the latter effect is small: agents can coordinate sufficiently

well with less public information, and so the authority provides fewer signals. On the other hand,

when private information is relatively precise, an increase in complementarities causes the value of

private information to fall more greatly, and the authority compensates for that loss by increasing

information along the dimension it controls, namely increasing public signals.

These results bear a prima facie resemblance to those of Morris and Shin (2002): too much

communication may be harmful and this harm is driven by complementarities in agents’ actions.

My results differ in crucial ways, however. First, the conclusions here are not the result of any

sort of “misalignment” in preferences, the driving force behind the Morris and Shin (2002) result.

Instead, they stem from the nature of communication in the model, namely that communication

policy can be fashioned so as to facilitate coordination among agents, and that this is desirable. The

economic intuition here is quite distinct from previous literature: in this paper, limiting the extent of

communication serves to facilitate desirable coordination in agents’ information, while in the Morris

and Shin (2002) strand of literature it serves to temper over-coordination in agents’ actions.

A second important difference is that the results here rationalize partial revelation, in which

the authority communicates in a manner that is neither silent nor totally revealing. In contrast,

the Morris and Shin (2002) result is “bang-bang” in nature: the authority should either release its

message at the highest possible precision or not at all. In this model, if the authority were constrained

to choose between full revelation or complete silence, it would indeed prefer full revelation. This last

statement is a consequence of proposition 3, which states that when α = α? equilibrium allocations

are efficient for any given communication policy. Since zero public information is within each agent’s

choice set for any level of n, that they choose k∗ strictly greater than zero implies that positive scope

dominates complete silence (in which case k is constrained to be zero.)

4.1.3 Optimal Precision

Proposition 5 establishes that, when preferences are aligned, the information authority always

prefers to communicate as precisely as possible regardless of its choice of scope.
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Proposition 5. Given n, social welfare is improving with communication quality. That is

∂UG

∂σ2
η

< 0 (4.9)

Proof of proposition 5. By proposition 3, it is sufficient to show that welfare is decreasing in σ2
η,

given a fixed level of k: since agents’ information choice given σ2
η is socially efficient, any response in

information acquisition can only further increase welfare. But Angeletos and Pavan (2007a) prove

that, when preferences are aligned, actions given information are efficient and an increase in precision

must be welfare improving. The result follows.

Since the precision result of Morris and Shin (2002) relies on a misalignment of preferences,

proposition 5 may not be especially surprising. Yet, the model with endogenous information ac-

quisition still calls for a limited scope of communication. This contrast highlights the distinction

between the two dimensions of communication policy in the model. Even when the central bank

wishes to limit the quantity of information it provides, it still would like its communications to be a

precise as possible: there is no such thing as constructive ambiguity under the baseline preferences.

In section 4.3, I extend this result to show that increases in the precision of public signals are wel-

fare improving regardless of preference alignment, so long as the scope of communication is chosen

optimally.

4.2 Constraints on the Authority’s own Information

One question that arises frequently in the literature on transparency is whether the degree

of the authority’s knowledge about the state should impact how it communicates its message. The

canonical model with a single public signal does not distinguish between limitations on the authority’s

knowledge of the state and limitations on its ability to clearly communicate that knowledge. In this

section, I extend the model to allow for error in the authority’s own knowledge of the state. The

key characteristic of this type of error is that it is common across the authority’s signals: every time

it “speaks,” the authority makes the same mistake because it misapprehends the realization of the

state.
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To this end, assume the authority learns about the state from a signal of the form g = θ + ε.

The authority, in turn, may freely release as many signals gl = θ + ε + ηl, l = 1, ..., n, as it wishes.

The error term ε is assumed to be independent of all other shocks and normally distributed with

variance σ2
ε . All other assumptions in the model are unchanged.

In this more general case, the linear equilibrium pricing rule takes the same basic form as before.

Letting Γ ≡ 1 + σ2
ε + (1− α)σ

2
ε

σ2
ξ
> 1, the equilibrium action coefficients are given by

ψ∗1 =

(
nΓ +

(n
k
− α

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

(4.10)

ψ∗2 =


Γ + σ2

ξ


 1

1− α +
k

(1− α)kσ2
ε +

(
1− α kn

)
1
σ2
η





−1

(4.11)

The individual utility function is derived in appendix D. Once again, limits can be taken to

derive equilibrium information choices as a function of continuous parameters.

Proposition 2(a). Suppose that assumption 1 holds and that σ2
ε is finite. Then the equilibrium

information allocation is unique and is given by

k∗ =




n if n ≤

(√
σ2
η

λ − (1− α)σ2
ητ

)
1
Γ (4.12)

k̈(n) otherwise

where

k̈(n) =

√
σ2
η

λ − σ2
ητ

Γ− α
nσ

2
ητ

(4.13)

Since Γ > 1, the threshold at which agents cease to observe all signals released by the authority

necessarily shrinks. Furthermore, to the right of the threshold, the derivative

∂k̈(n)

∂σ2
ε

= −k̈(n)

σ2
ε

(
1 + 1−α

σ2
ξ

)

Γ− α
nσ

2
ητ

< 0 (4.14)

Thus, agent’s acquisition of public signals is always (weakly) less when the authority knows less

about the state.
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The consequences for optimal scope of limits to the authority’s own knowledge are considered in

proposition 4(a).

Proposition 4(a). Suppose that assumption 1 holds and that σ2
ε is finite. Then the optimal degree

of scope is given by

n? =



√
σ2
η(1− α)

λ
− (1− α)σ2

ητ


 1

Γ
(4.15)

The proposition shows that optimal scope with σ2
ε > 0 is just a rescaling of the optimal level when

the authority’s information is perfect. Proposition 4(a) confirms an intuitive result: an authority

which knows less about the state should provide fewer public signals about it.

Since errors in the authority’s knowledge of the state are common across all public signals, they

bear on the informativeness of the public signals with regard to the fundamental, but are not directly

related to agents’ coordination problem. For this reason, it is natural to suppose that increasing the

magnitude of such errors is always harmful to social welfare. Proposition 6 establishes this result

for the case of aligned preferences.

Proposition 6. Given n, equilibrium social welfare is increasing in the precision of the authority’s

own information. That is

∂UG

∂σ2
ε

< 0 (4.16)

Proof. Again, by proposition 3, it is sufficient to show this holds for a given choice of k. The

proposition then follows directly from the fact that actions given information are efficient when

preferences are aligned.

In summary, the addition of uncertainty in the authority’s own apprehension of the state confirms

some natural conjectures, but it does not affect the basic mechanism of the model. The results on

information acquisition and optimal scope follow with minimal modification.
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4.3 Optimal Communication with Misaligned Preferences

So far, I have emphasized the case where agents and the social planner have identical prefer-

ences. In this case, the degree to which coordination is desirable (both socially and from the agents

perspective) drives the choice of scope. Yet, Morris and Shin (2002) and the subsequent literature

emphasize the link between preference misalignment (or externalities) and the choice of communica-

tion policy. In this section, I examine the interaction between the information acquisition mechanism

I have detailed so far, and the inefficiencies (in actions and information acquisition) that may arise

when agents and the authority have different preferences. Although the basic conclusions regarding

optimal communication survive, substantial nuances emerge when agents are endowed with a very

precise private signal. I therefore divide this section in two, focusing first on the extreme case of no

private information, before turning to the model in its full generality.

4.3.1 No Private Information

In this section, I assume that agents can only access information about the aggregate via the

pronouncements of the information authority. That is, I assume that σ2
ξ → ∞. In this case, the

no-waste result holds and the authority’s desire for coordination completely drives the choice of

scope.

Lemma 1(b). The optimal choice of scope induces agents to select k = n.

The logic behind lemma 1(b) is exactly that of lemma 1, with one exception. When k < n,

actions are generally inefficient. In this case, the authority has greater incentive to choose scope to

ensure full acquisition. It is only in this case that equilibrium action coefficients are equal to the

coefficients of inference, and the inefficiency in actions is eliminated.

Proposition 4(b). The optimal degree of scope is given by

n? =

√
σ2
η(1− α?)

λ
− σ2

η (4.17)

Proof of Proposition 4(b). Because there is no inefficiency in actions so long as k ≤ n̂, agents’

own complementarities have no effect on social welfare. Furthermore, when there is no private
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information, the threshold level n̂ =

√
σ2
η

λ − σ2
η does not depend on α. In this case, the authority

can achieve its preferred outcome irrespective of α, and this outcome is achieved by n?.

Despite the strong result in proposition 4(b), private complementarity has important implications

for the consequences of sub-optimal levels of scope. Figure 6, compares social welfare for different

degree of private complementarities, when α? = .2. When complementarities are low, “excessive”

scope has very small consequences for social welfare, since information acquisition is little affected by

the extra revelation. However, when complementarities are strong, agents react to additional signals

by dramatically reducing their own acquisition of information. In this case, social welfare may be

greatly harmed by a relatively small amount of excess scope. Importantly, however, this wedge only

appears once scope exceeds the level n̂ at which agents cease to purchase all public information. As

a result, the impact of small errors in the degree of scope depends only on α?; α is only relevant in

the range where information acquisition decreases with scope.

Another natural question is whether preference mis-alignment could reverse the conclusion that

the authority prefers to provide the most precise signal possible. Proposition 5(b) establishes that,

without private information, this result does not change.

Proposition 5(b). The optimal communication policy entails signals of maximum precision:

σ2
η
∗

= σ2
η (4.18)

Proof of Proposition 5(b). Since optimal scope must ensure full information acquisition, the result

is immediate. Actions are optimal as long as information is common across all agents and, when

actions are socially efficient, increases in the signal precision increases social welfare.

Unlike proposition 5, proposition 5(b) only applies to the joint choice of precision and scope.

Yet, the proof establishes that welfare is increasing in precision for any fixed level of scope that

induces full acquisition. For a fixed level of scope beyond this threshold, however, greater precision

of communication may indeed harm welfare. Surprisingly, however, this may only be true when

α < α?. Why? This result follows from the exclusion of purely private information. In this case,

when agents observe a fraction of the authority’s signals, their observations become become relatively

private, compared to the common prior held by all agents. Following Hellwig (2005), agents tend
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to overweight such signals when α < α?. Because they overvalue private information, agents will

also tend to over-acquire these signals. In some instances with high scope, these inefficiencies can

swamp the benefit of an increase in the precision of each signal. The authority, however, avoids this

outcome by optimally ensuring that all agents receive the same message.

4.3.2 Private Information

Once endowed with a private signal, agents’ actions may be inefficient even when they observe

every signal released by the authority. This introduces a new “policy target” for the authority: it

must now use its communications to influence both equilibrium information choice and the equi-

librium use of that information. In some circumstances the authority may choose scope beyond

the threshold n̂. In these cases, the authority uses agent’s inability to coordinate information to

its advantage: by releasing more signals it ensures that agents experience some dispersion in their

information, and therefore respond in a more muted way to each signal.

Proposition 4(c). The optimal level of scope is finite:

n? <∞ (4.19)

To build some intuition for this general results, figure 7 shows optimal scope for different values

α?. When α ≤ α?, a no-waste theorems apply and finite optimal scope follows immediately. On

the other hand, when α > α?, it is indeed possible that the authority benefits from inducing some

dispersion among agent’s information by increasing scope beyond n̂. In this case, the finiteness of

optimal scope follows from the presence of a common prior and the fact that the planners’ preferred

level of information acquisition lies above the equilibrium level. Increases in scope decrease both the

level of information acquisition and the correlation of agent’s signals. When agents share a prior,

however, purely private information is underweighted by agents in their actions: conditional on the

level of information acquisition, the authority does not desire for agents to receive purely idiosyncratic

messages, as would occur with unbound scope. Nor does the authority desire to minimize information

acquisition below already inefficiently low levels. Thus, the planner necessarily settles on a finite

level of scope. See appendix E.1 for the details of this proof.
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Proposition 5(c). The optimal communication policy entails signals of maximum precision:

σ2
η
?

= σ2
η (4.20)

The argument (detailed in the appendix) is essentially as follows. Consider a small increase

of precision from σ2
η to σ2

η
′
< σ2

η. For the first case, assume the authority had optimally selected

scope to ensure full acquisition when the precision of its signals was σ2
η. Then it can always achieve

higher welfare by reducing the number of signals to achieve the same precision on the combined

public signal while decreasing agents’ expenditure on information. For the second case, assume

the authority had selected a level of scope at which agents do not acquire all signals. Taking into

account agent information choice, it is once again always possible for the authority to change scope

so as to ensure that agents maintain the precision of their inference. In doing so, however, both the

information costs paid and the correlation of agents’ information are reduced, leading to a benefit

for the planner.

The result in proposition 5(c) bears some similarity to the conclusion of Cornand and Heinemann

(2008) that, when public information is shared with only a fraction of the population and that

fraction is selected optimally, higher precision of the public signal is always desirable. In their model,

revealing a public message to a smaller fraction of the population represents an alternative, and less

costly, means of inhibiting over-coordination in agents’ actions. Here, revealing more information

causes agents to endogenously receive more dispersed messages. In each case, the authority prefers

to use an alternative dimension of communication policy, rather than reduce the precision of its

message.

5 Directed Search

So far, I have assumed that agents cannot direct their search towards any particular signals among

those released by the authority. Since this is a strong assumption, it is important to consider the

consequences of relaxing it. In this section, I argue that such “undirected” search can be supported

as an equilibrium outcome in a version of the model in which agents choose the probability with

which they observe individual signals. Furthermore, when the cost of “directing” search is sufficiently

high, this is the only equilibrium of the model. On the other hand, when directed search is free,
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the model admits a wide-range of equilibria with different welfare implications. For simplicity, in

this section I focus on the special case in which preferences are aligned (α = α?), agents have no

exogenous private information (σ2
ξ =∞), and the authority knows the state perfectly (σ2

ε = 0).

Now, assume that in addition to choosing how many signals overall to observe, agent i can also

assign a sequence of weights µ1, µ2, ..., µn, denoting the probability that signal i is among those

selected. The weights must be between zero and one and respect the restriction
∑n

l=1 µl = k.8 In

order to make their observations, agents must pay a cost c({µl}). I assume throughout that the

function c is symmetric, continuously differentiable, and increasing in each of its arguments. Agent’s

information allocation now consists of the set {µl, 0 ≤ l ≤ k}, however the definition of equilibrium

in the extended model is otherwise identical to definition in the baseline case.

Appendix F establishes that individual i’s welfare in the continuous version of model is given by

−U i =(1− α)

[(∫ n

o
µ(l)ϕ(l)dl − 1

)2

+ σ2
η

∫ n

0
µ(l)ϕ(l)2dl

]

+ α

[(∫ n

0
(µ(l)ϕ(l)− ϕ̃(l)) dl

)2

+ σ2
η

∫ n

0
µ(l) (ϕ(l)− ϕ̃(l))2 dl

+σ2
η

∫ n

0
(1− µ(l))ϕ̃(l)2(l)

]
+ c(µ(l))

(5.1)

where ϕ̃(l) is taken as given by agent i and

ϕ(l) =
1− α
k + σ2

η

+ αϕ̃(l) +
α

k + σ2
η

∫ n

0
(1− µ(j))ϕ̃(j)dj (5.2)

The solution to agent i’s problem is characterized by

argmax
µ(l),k

Ui subject to µ(l) ≤ 1;µ(l) ≥ 0;

∫ n

0
µ(l) ≤ k (5.3)

5.1 A Condition for Uniqueness

I now suppose a particular functional form for c(µ(l)) and show that, under a plausible restriction

on the cost of information, uniqueness is recovered in the model. In particular, I assume that c(µ(l))

8Under the baseline assumption of undirected search, µl = µj = k
n

and
∑n
l=1 µl = n k

n
= k.

32



is given by the CES aggregator

c(µ(l)) = λn
ω−1
ω

(∫ n

0
µ(l)ω

) 1
ω

(5.4)

The parameter ω ≥ 1 measures the cost of directed search, in that c(µ(l)) is increasing in the

dispersion of µ(l) for a given k. That is, when ω > 1, agents pay more to sample the same number

of signals, to the extent that they act to observe certain signals of the authority and not others. The

ω−1
ω exponent of n is selected to ensure that, when µ(l) is constant for all l, this specification nests

the linear cost function used earlier in the paper.

Assumption 2. The costs of coordinating information are high:

ω >
1 + α

1− α (5.5)

Proposition 7 establishes that, for a sufficiently high cost of search, the equilibrium of the model

is exactly that studied under the baseline assumptions.

Proposition 7. Suppose that the cost of information is given by the CES aggregator in equation 5.4

and ω satisfies assumption 2. Then equilibrium of the model is unique, and is characterized by

µ(l) =
k∗

n
,∀l (5.6)

In this case, the policy and welfare implications are identical to the baseline model. To guarantee

uniqueness under the strong complementarities assumption (α = .8), for example, the theorem

requires ω ≥ 9.

This condition is sufficient for equilibrium uniqueness, but not necessary. For ω ∈ (1, 1−α
1+α), the

presence and extent of multiplicity will depend on the other parameters of the model. However, for

these cases, the complete set of equilibria is difficult to characterize in closed form.
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5.2 Efficiency of the Directed Search Equilibria

In contrast to above uniqueness result, Hellwig and Veldkamp (2009) emphasize the potential

for multiplicity in environments with endogenous information acquisition. Indeed, when the costs of

coordinating information do not satisfy assumption 2, the model may have (and indeed typically does

have) multiple equilibria. The different equilibria entail different levels of social welfare. However,

whenever α = α?, the socially optimal information-action plan satisfying the efficiency criterion in

definition 2 is always among the equilibria.9 This fact follows from the previously cited theorem in

Chahrour (2011).

5.3 Robust Communication Policy

In this section, I study a version of the model in which the equilibrium information choice is

not unique and study the consequences for scope. The simplest case is that in which the cost of

information is linear in the number of signals sampled. This corresponds to the limiting CES case

where ω = 1, so that cost of information is c(µ(l)) = λ
∫ n

0 µ(l)dl = λk. The set of solutions to the

first order conditions (described in proposition 9 in appendix F.4) is no longer unique and includes

cases where agents direct their search perfectly for all signals (choose µl ∈ {0, 1} for all l), direct

their search perfectly for some signals but randomly sample over others, and sample all signals with

equal probability.10

The two-by-two panel in figure 8 captures the range of multiple equilibria for different degrees

of strategic complementarity, at different levels of scope. In the first row, with relatively low scope,

equilibrium always entails some degree of perfectly directed search by agents. This result is closely

related to the result in baseline model where, for low levels of scope, agents always choose to observe

all signals. In this case, if agent i can be assured that no others observe a particular signal k, then

she may choose not to observe it as well. However, if others do observe that signal with positive

probability, then she desires to do so as well, which increases the signal’s informativeness, causing

others to increase the probability with which they draw that signal, and so on. Once agents have

acquired enough signals in this directed manner, however, this logic no longer bites, and agents may

9It is important to recall that this statement concerns efficiency given communication policy
10Again this multiplicity is over and above the trivial sort of multiplicity that arises from interchanging the identities

of the a priori identical signals.
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choose undirected search over some of the remaining signals.

Higher strategic complementarities generally increase the scope for multiplicity. In the current

model, this effect is apparent when scope is low. When scope is high, however, the consequences for

multiplicity are more subtle. This contrast stems from the fact that, when complementarities are

weak, agents are roughly indifferent to the degree of coordination in their information. As a result,

agent i is much less responsive in her own information choice to the degree to which other agents are

direct their search. As a result, the set of equilibria under weak complementarity includes a range

of information-search profiles that would be eliminated if agents had stronger strategic incentives.

The different equilibria have different welfare implications. If the central bank was able to choose

its preferred equilibrium from among the set of all equilibria, then its choice of scope beyond n?

would be irrelevant, since it could always direct agents to ignore (its own!) extraneous signals. Such

an authority could be said to be “optimistic” about the potential equilibrium outcome given its

policy choice. However, if the authority is concerned that another, less desirable, equilibrium might

emerge, then it may wish to take the full set of possible equilibria into account. A simple way to do

this is to consider “worst case” scenarios - the information equilibrium with the lowest welfare - for

differing degrees of scope. Such a “pessimistic” authority could then choose scope in order to place

a lower-bound on the equilibrium outcome.

Figure 9 compares welfare for the best and worst case scenarios, along with the welfare generated

under the baseline assumption that an agent must sample all signals with equal probability. The

equilibrium resulting from this assumption is always an equilibrium of the general model. I now

divide the range of scope into four regions, and describe the characteristics of each.

For extremely low levels of scope denoted by region I, all three welfare measures coincide. In

these cases, the unique equilibrium is one in which agents acquire all of the signals released by the

information authority. The boundary of this region, denoted by ň = (1−α)
σ2
η

λ

1
2 − σ2

η, is determined

by finding the value of n for which, regardless of the function µ(l) for l 6= j, the first order condition

with µ(j) = 0 cannot be satisfied.

In region II, the optimistic authority anticipates that agents will acquire all signals, while the

pessimistic authority fears one of the (equally) bad outcomes in which information agents either ac-

quire too-little information, engage in undirected search across signals, or both. Agents are therefore

too-little informed about the realization of the state or too-little coordinated in their information.
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Once scope surpasses ň, worst case welfare is invariant to scope, but the set of equilibria yielding

this outcome becomes larger. Meanwhile, for the baseline version of the model, the randomization

assumption ensures that agents acquire all information. This is desirable throughout region II, and

so the baseline model corresponds with the “best equilibrium” in this region.

In region III, the optimistic central bank remains assured that agents will focus their search on

only the number of signals it knows is optimal, ignoring all others. Again, the pessimistic authority

fears that agents will focus their attention too narrowly, ignoring worthwhile information, or engage

in undirected search. Under the baseline assumption of sampling all signals equally, however, the

agents continue to acquire all information. This outcome is suboptimal relative to the social action

plan, but still better than the low-information equilibrium. Finally, in region IV, the worst-case

scenario coincides with the equal-probability search assumption, as coordination decreases even as

agents acquire too much information from a social perspective.

The figure suggests that a robust communication policy should place the authority somewhere

in region III. In this region, the worst case scenario entails the smallest social loss. Meanwhile,

the best case scenario remains the social planner’s optimal information allocation. If, in addition,

the authority is concerned that search may be costly (or that the equal sampling equilibrium may

be more likely than others), then it can ensure the optimum is achieved in all three scenarios by

selecting scope to be precisely at the transition between regions II and III, which is given by n?, the

optimal degree of scope in the baseline model.

6 Conclusions and Extensions

This paper offers a new explanation for why central banks often decline to provide as much

information as possible about their own views on the economy. As in the previous literature on the

social value of public information, my results depend on the presence of strategic complementarities:

without these strategic incentives, limiting the scope or precision of public communication never

improves social welfare. Yet, in contrast to this earlier literature, my results do not rely on any sort

of misalignment in preferences from the agents’ and social planner’s perspective. Thus, the endoge-

nous information model used here expands the variety of contexts in which incomplete information

revelation by a public authority can be optimal.
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Although my model rationalizes limits on the scope of communication, it also implies that public

communications should always be as precise as possible. This result helps explain why even the

most ardently “transparent” central banks strictly control their public communications. My results

also explain why a central bank, or other authority, might resort to partial revelation rather than

choosing either to provide as much information as possible, or to shut down communication entirely.

Avoiding such “bang-bang” outcomes increases the plausibility of the results because it accords more

closely with the observation that public agencies typically release substantial but limited amounts

of information.

Finally, my paper highlights the point that agents’ willingness to acquire a bit of public infor-

mation need not imply that releasing this information is optimal. More communication increases

the cost agents must pay to coordinate information, and increasing this cost is counterproductive

if coordination is socially beneficial. Conversely, when agents tend to over-coordinate on public in-

formation, releasing additional signals may be beneficial precisely because all agents do not acquire

them. By communicating more, the central bank can prevent agents from relying too much on a

very small set of public communications.

Since communication is fundamentally about the transfer of information, the introduction of

agents’ information choice imposes new discipline on the study of optimal communication. One

interesting direction for further research would be to study how costly information affects the ability

of the authority to commit to truthful communication, as “cheap talk” is explicitly excluded from

the current environment. Public communication is also widely viewed as an essential component

to commitment in monetary policy itself (for example, see Woodford, 2005.) Modeling information

choice and endogenous policy together would allow further investigation of this important interaction.
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A Computing Equilibrium

A.1 Inference

Agent i’s observations can be collected in the vector y =
[
g1, g2, ..., gn, r

i
]
, which can be rewritten

as y = H ′x where x =
[
θ, η1, ...., ηn, ξ

i
]

and Q = cov(x). Under the normality assumption, optimal

signal extraction implies that

E (x|y) = (QH)(H ′QH)−1y (A.1)

The coefficient γ1 comprises the first n entries of the first row of the matrix (QH)(H ′QH)−1 and

γ2, the last entry of that row.

A.2 Equilibrium Actions

In this section, I solve for the equilibrium coefficients of the agent’s action rule, taking the

information structure k ≤ n as given. I conjecture that the aggregate action rule takes the form

given in equation 3.1, derive agent i’s optimal response, and compute aggregate actions given the

hypothesized rule. Equilibrium is a fixed point of the resulting mapping. The agent’s information

set, Ii, is defined in the text in section 2.2.2.

Throughout, I denote with a tilde any equilibrium objects taken as given by agent i. For example,

since agent i takes aggregate actions as given, the aggregate action from the perspective of agent i

is assumed to be11

p = ψ̃1

n∑

l=1

gl + ψ̃2θ (A.2)

Let γ1 and γ2 be defined as in the text. Then, agent i’s expectation of the state and aggregate

price are given respectively by

E(θ|Ii) = γ1

n∑

l=1

1
[
gl ∈ Ii

]
gl + γ2r

i (A.3)

E(p|Ii) = ψ̃1

n∑

l=1

E(gl|Ii) + ψ̃2E(θ|Ii) (A.4)

Since I assume that agents know the identity of the signals they have observed, the conditional

11Myatt and Wallace (2010) discuss the mild restrictions required to ensure the equilibrium takes a linear form.

38



expectation of signal l is given by

E
(
gl|Ii

)
=





gl if gl ∈ Ii

E(θ|Ii) if gl /∈ Ii
(A.5)

After some simplification, we can compute the expectation of the aggregate action

E(p|Ii) =
(
ψ̃1(1 + (n− k)γ1) + ψ̃2γ1

) n∑

l=1

1
[
gl ∈ Ii

]
gl + γ2

(
ψ̃1(n− k) + ψ̃2

)
ri (A.6)

Evaluating the agent first order condition in expression 2.2, we get agent i’s choice of action as a

function of her observations:

pi =
(

(1− α)γ1 + α
(
ψ̃1(1 + (n− k)γ1) + ψ̃2γ1

)) n∑

l=1

1
[
gl ∈ Ii

]
gl

+ γ2

(
1− α+ α

(
ψ̃1(n− k) + ψ̃2

))
ri

(A.7)

Rearranging the weights on the public and private signals in equation A.7, define

ψi1 ≡ αψ̃1 + γ1

(
1− α+ α

(
ψ̃1(n− k) + ψ̃2

))
(A.8)

ψi2 ≡ γ2

(
1− α+ α

(
ψ̃1(n− k) + ψ̃2

))
(A.9)

to be the coefficients of agent i’s optimal action rule, given (any) aggregate coefficients ψ̃1 and ψ̃2.

In order to compute the average action, I must compute the cross-sectional average of 1
[
gl ∈ Ii

]
gl.

12

By assumption, the set of signals observed is unrelated to the realizations of the signals themselves.

Thus, this is just E(1
[
gl ∈ Ii

]
)gl = p(gl ∈ Ii)gl. Because sampling is purely random, all possible

combinations of signals observed are equally likely and we can immediately conclude that p(gl ∈

Ii) = k
n .

Using this fact, I integrate equation A.7 across agents to arrive at an expression for the aggregate

12See Judd (1985); Uhlig (1996) for a discussion of the issues related to using a law of large numbers when integrating
across a continuum of agents.
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action:

p =
k

n

(
(1− α)γ1 + α

(
ψ̃1(1 + (n− k)γ1) + ψ̃2γ1

)) n∑

l=1

1
[
gl ∈ Ii

]
gl

+ γ2

(
(1− α) + α

(
ψ̃1(n− k) + ψ̃2

))
θ

(A.10)

Comparing equations A.2 and A.10, I conclude that the equilibrium coefficient is a fixed point of

the recursive relationship



ψ′1

ψ′2


 = (1− α)




k
nγ1

γ2


+ α




k
n(1 + (n− k)γ1) k

nγ1

(n− k)γ2 γ2






ψ1

ψ2


 (A.11)

Solving for the fixed point and substituting in for γ1 and γ2 yields the expressions given in the text.

ψ∗1 =

(
n+

(n
k
− α

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

(A.12)

ψ∗2 =

(
1 + σ2

ξ

(
1

1− α +
k

1− α kn
1

σ2
η

))−1

(A.13)

A.3 Morris and Shin (2002) Effect

Under the assumption that n = k = 1 and α? = 0, the equilibrium action coefficients are given

by

ψ∗1 =

(
1 + σ2

η

(
1 +

1− α
σ2
ξ

))−1

(A.14)

ψ∗2 =

(
1 +

σ2
ξ

1− α

(
1 +

1

σ2
η

))−1

(A.15)

Social losses are given by

− UG = (ψ∗1 + ψ∗2 − 1)2 + (ψ∗1)2 σ2
η + (ψ∗2)2 σ2

ξ (A.16)
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Taking the derivative with respect to σ2
η yields

∂UG

∂σ2
η

= −
(σ2
ξ )

2
(
σ2
ξ (1 + σ2

η) + (1− 2α)(1− α)σ2
η

)

(
σ2
ξ (1 + σ2

η) + (1− α)σ2
η

)3 (A.17)

which is greater than zero whenever

(2α− 1)(1− α) > σ2
ξ

(
1 +

1

σ2
η

)
(A.18)

A.4 Equilibrium Information

I now solve for agent i’s choice of information, taking as given aggregate information and the

equilibrium mapping of information to actions. Following the derivation above, the aggregate price

from the perspective of agent i is given by the linear rule A.2, where

ψ̃1 =

(
n+

(
n

k̃
− α

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

(A.19)

ψ̃2 =

(
1 + σ2

ξ

(
1

1− α +
k̃

1− α k̃n

1

σ2
η

))−1

(A.20)

Suppose that agent i selects to observe k signals and reacts to her information optimally according

to the first order condition given by 2.2. Using the weights from agent i’s action rule in A.8-A.9, we

can compute the differences

pi − θ =
(
kψi1 + ψi2 − 1

)
θ + ψi1

n∑

l=1

1
[
gl ∈ Ii

]
ηl + ψi2ξ

i (A.21)

pi − p =
(
kψi1 + ψi2 − nψ̃1 − ψ̃2

)
θ +

(
ψi1 − ψ̃1

) n∑

l=1

1
[
gl ∈ Ii

]
ηl

+ ψ̃1

n∑

l=1

1
[
gl /∈ Ii

]
ηl + ψi2ξ

i

(A.22)

From here, compute the loss function and take expectations to get

−U i
(
k, pi

∗
(I); p(G)

)
= (1− α)

((
kψi1 + ψi2 − 1

)2
+ ψi1

2
kσ2

η + ψi2
2
σ2
ξ

)

+ α

((
kψi1 + ψi2 − nψ̃1 − ψ̃2

)2
+
(
ψi1 − ψ̃1

)2
kσ2

η +
(
ψ̃1

)2
(n− k)σ2

η + ψi2
2
σ2
ξ

)
+ λk

(A.23)
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A.4.1 Continuous Information

Fix exogenous parameters σ̂2
η and λ̂, which will correspond to the precision of the authority’s

communication and the cost of information in the continuous model. Now, consider a sequence of

model indexed by parameter n̄→∞, in which the public signal noise parameter is given by σ2
η = n̄σ̂2

η

and the cost-per-signal is given by λ = λ̂
n̄ . As n̄ grows, the precision of a signal and its cost each

become arbitrarily low.

The cost of information in each version of the model is invariant, in the sense that achieving a

particular posterior variance on the state θ does not depend on n̄. As an example, consider the cost

of inferring the state with variance
σ̂2
η

1+σ̂2
η

for a variety of n̄. For any n̄, doing so requires exactly n̄

signals, since

E[(E(θ|{gl; l = 1, ..., n̄})− θ)2] =
σ2
η/n̄

1 + σ2
η/n̄

=
σ̂2
η

1 + σ̂2
η

(A.24)

The cost of observing n̄ signals is always λn̄ = λ̂, establishing the invariance.13

Agent i’s loss function in 3.7 can rewritten in terms of σ̂2
η and the ratios n

n̄ and k
n̄ . The limit of

this function is well-defined, so long as the limits of these ratios are also well-defined. We can now

define two parameters to summarize information choices, each of which can take on a continuous

(rational) value. Let n̂ = limn̄→∞
n
n̄ ∈ [0,∞), be the information authority’s choice of scope. Next,

let k̂ = limn̄→∞
k
n̄ be agent i’s information choice. Since agents can only observe those signals

released by the authority, k̂ ∈ [0, n̂]. Finally, note that cost of information can be written c(k̂) = λ̂k̂.

As n̄ become large, the absolute value of ψi1 goes to zero. Let ψ̂i1 = limn̄→∞ n̄ψ
i
1 and ψ̂i2 =

limn̄→∞ ψ
i
2, so that

ψ̂i1 =
1

k̂ + σ̂2
η +

σ̂2
η

σ2
ξ

(
(1− α) +

˜̂
ψ1

(
n̂+ σ̂2

η +
σ̂2
η

σ2
ξ

)
+ αψ̃2

)
(A.25)

ψ̂i2 =
1

k̂
σ2
ξ

σ̂2
η

+ 1 + σ2
ξ

(
(1− α) + α

˜̂
ψ1(n̂− k̂) + αψ̃2

)
(A.26)

13Expression A.24 also establishes that, in terms of inference on the state, the information acquisition model here
is identical to that of Myatt and Wallace (2010). That is, in terms of posterior variances of the state, it does not
matter if I purchase n̄ signals of variance σ2

η = n̄σ̂2
η or a single signal of variance σ̂2

η. The two models have very
different implications for the cross-sectional correlation of information, however, which is crucial when agents interact
strategically.
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Finally, taking the limit of expression A.23, agent i’s welfare can now be rewritten

−U i
(
k̂, pi

∗
(I); p(G)

)
= (1− α)

((
k̂ψ̂i1 + ψi2 − 1

)2
+ (ψ̂i1)2k̂σ̂2

η + (ψ̂i2)2σ2
ξ

)

+ α

((
k̂ψ̂i1 − n̂

˜̂
ψ1

)2

+ (ψ̂i1 −
˜̂
ψ1)2k̂σ̂2

η +
˜̂
ψ1

2

(n̂− k̂)σ2
η + (ψ̂i2 − ψ̃2)2 + (ψ̂i2)2σ2

ξ

)
+ λ̂k̂

(A.27)

Aside from the substitution of variables with ˆ ’s, these equations are identical to their discrete

counterparts in A.19, A.20 and A.23. I suppress the distinction between n̂ and n, etc, in the paper,

but maintain it in the appendix for completeness.

A.4.2 Agent Loss is Convex

Twice-differentiating A.27 with respect to k̂ and simplifying substantially yields

− ∂2U i

∂k̂2
= 2

n̂

k̂

σ2
ξ σ̂

2
η

˜̂
ψ1

(
σ̂2
η + σ2

ξ (
˜̂
k + σ̂2

η)

)2

(
σ̂2
η + σ2

ξ (k̂ + σ̂2
η)
)3 > 0 (A.28)

So agent i’s loss (utility) is convex (concave) on k ∈ [0, n].

A.4.3 Interior Levels of Acquisition

Agent i’s problem is to find

argmax
k̂

U i subject to 0 ≤ k̂ ≤ n̂

Let λ1 and λ2 be the multipliers on the inequality constraints k̂ ≤ n̂ and k̂ ≥ 0 respectively. Then

the agent’s first order conditions are given by

0 = −∂U
i

∂k̂
+ λ1 − λ2 + λ (A.29)

λ1 ≥ 0;λ2 ≥ 0 (A.30)

and the complementary slackness conditions. A value of k̂ that satisfies these conditions is a unique

solution to the agent’s optimization problem.

43



Differentiating agent welfare in equation A.27 with respect to k̂, and imposing equilibrium con-

ditions
˜̂
k = k̂ yields the following expression:

− σ̂2
η

(
n̂

k̂
ψ̂∗1

)2

+ λ̂+ λ1 − λ2 = 0 (A.31)

For interior points, the extra Lagrange multipliers drop out to yield

λ̂ = σ̂2
η

(
n̂

k̂
ψ̂∗1

)2

(A.32)

which can be solved for k̂

¨̂
k(n̂) =

(
σ2
η

λ̂

) 1
2 − σ̂2

ητ

1− α
n̂ σ̂

2
ητ

(A.33)

where τ =

(
1

1−α + 1
σ2
ξ

)
.

A.4.4 Total Information Acquisition

Full information acquisition is an equilibrium if and only if individual i’s loss is (weakly) decreas-

ing in k̂ at k̂ = n̂, when other agent’s information is also full (
˜̂
k = n̂.) When

˜̂
k = n̂, we have that

ψ̂∗1 =

(
n̂+ σ̂2

η + (1− α)
σ̂2
η

σ2
ξ

)−1

and the required inequality is

λ ≤ σ̂2
η

(
n̂+ σ̂2

η + (1− α)
σ̂2
η

σ2
ξ

)−2

(A.34)

Rearrange the inequality to show that full acquisition is an equilibrium whenever

n̂ ≤
(
σ̂2
η

λ

) 1
2

− σ2
η − (1− α)

σ̂2
η

σ2
ξ

(A.35)

A.4.5 No Information Acquisition

Conversely, no information acquisition is an equilibrium if and only if agent i’s loss is (weakly)

increasing in k̂ ay k̂ = 0, when other agents’ information is also nil. Taking care to avoid dividing
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by zero, the agent’s first order condition can be rearranged when
˜̂
k = 0 to yield the condition

λ ≥
σ̂2
η

τ2

(
σ̂2
η + k̂

σ2
ξ

1+σ2
ξ

)2 (A.36)

Evaluating at k̂ = 0, the condition for no information acquisition to be an equilibrium is

λ ≥ 1

σ2
ητ

2
(A.37)

Some parameter constellations satisfy both conditions A.35 and A.37. In this case, the model

has two pure strategy equilibria. However, no interior value of k̂ can simultaneously satisfy either

the full information or no information conditions equation along with condition A.32 for an interior

equilbrium. By maintaining assumption 1, uniqueness is assured and the analysis is simplified.

B Social Welfare Function

In a symmetric equilibrium for a given n̂, ψ̂i1 = n̂
k̂
ψ∗1 and ψ̂i2 = ψ∗2. Evaluating equilibrium

actions, social welfare can be written as

−UG
(
k̂, pi

∗
(I); p(G)

)
= (1− α?)

((
n̂ψ̂∗1 + ψ̂∗2 − 1

)2
+
(
ψ̂∗1n̂

)2 σ̂2
η

k̂
+
(
ψ̂∗2

)2
σ2
ξ

)

+ α?


(n̂ψ̂∗1)2

(
1− k̂∗

n̂

)2
σ̂2
η

k̂
+ (n̂ψ̂∗1)2

(
1− k̂

n̂

)
σ̂2
η

n̂
+
(
ψ̂∗2

)2
σ2
ξ


+ λ̂k̂

(B.1)

A great deal of simplification yields the following expression

−UG = σ̂2
η

(n
k
ψ̂∗1

)2
(
k̂

1− k̂
n̂α

?

1− k̂
n̂α

+

(
1− k̂

n̂
α

)
σ̂2
η

(
1

σ2
ξ

+
1− α?

(1− α)2

))(
1− k̂

n̂
α

)
+ λ̂k̂ (B.2)

When α = α?, this is just

− UG = σ̂2
η

(n
k
ψ̂∗1

)(
1− k̂

n̂
α

)
+ λ̂k̂ (B.3)
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C Optimal Communication: Aligned Preferences

C.1 Optimal Scope

Using the result of lemma 1, I compute the optimal choice of k̂ assuming that k̂ = n̂. I then

confirm that, under the implied policy, agents do choose k̂∗ = n̂. If so, this represents the optimal

level of transparency.

Under full acquisition, the social planner seeks to minimize loss given by

− UG = (1− α?)
[
(n̂ψ̂∗1 + ψ̂∗2 − 1)2 +

(
ψ̂∗1

)2
n̂σ̂2

η

]
+
(
ψ̂∗2

)2
σ2
ξ + λn̂ (C.1)

The first order condition is

− (1− α?)σ̂2
η

(
ψ̂∗1

)2
+ 2

(
ψ̂∗1

)3 (
σ̂2
η

)2 1− α
σ2
ξ

(α− α?) + λ = 0 (C.2)

When preferences are aligned, this reduces to

(1− α)σ̂2
η

(
ψ̂∗1

)2
= λ (C.3)

which can be solved for n̂?:

n̂? =

√
(1− α)σ̂2

η

λ
− σ̂2

η − (1− α)
σ̂2
η

σ2
ξ

(C.4)

Inspection shows that this is less than the threshold value ̂̂n, and so the result is established.

D Constraints on Authority’s Information

D.1 Equilibrium Actions

Suppose σ2
ε > 0. Then, the conditional expectation of signal l is given by

E
(
gl|Ii

)
=





gl if gl ∈ Ii

E(θ + ε|Ii) if gl /∈ Ii
(D.1)
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Agent i’s conditional expectation of the state and of the authority’s “mistake” are now given respec-

tively by

E(θ|Ii) = γ1

n∑

l=1

1
[
gl ∈ Ii

]
gl + γ2r

i (D.2)

E(ε|Ii) = a1

n∑

l=1

1
[
gl ∈ Ii

]
gl + a2r

i (D.3)

where γ1 =
σ2
ξ

χ+σ2
ξ (k+χ)

, γ2 = χ
χ+σ2

ξ (k+χ)
, a1 =

σ2
ε(1+σ2

ξ)
χ+σ2

ξ (k+χ)
, a2 = − kσ2

ε

χ+σ2
ξ (k+χ)

, and χ = kσ2
ε + σ2

η.

Individual i’s action is given by

pi =
[
(1− α)γ1 + α (ψ1(1 + (n− k)(γ1 + a1)) + ψ2γ1)

] n∑

l=1

1
[
gl ∈ Ii

]
gl

+
[
(1− α)γ2 + α (ψ1(n− k)(γ2 + a2) + ψ2γ2)

]
ri

(D.4)

Once again computing the expectation of the aggregate action

E(p|Ii) = (ψ1(1 + (n− k)(γ1 + a1)) + ψ2γ1)
n∑

l=1

1
[
gl ∈ Ii

]
gl

+ (ψ1(n− k)(γ2 + a2) + ψ2γ2) ri

(D.5)

Finding the fixed point as before yields the equilibrium coefficients,

ψ∗1 =

(
nΓ +

(n
k
− α

)
σ2
η

(
1

1− α +
1

σ2
ξ

))−1

(D.6)

ψ∗2 =


Γ + σ2

ξ


 1

1− α +
k

(1− α)kσ2
ε +

(
1− α kn

)
1
σ2
η





−1

(D.7)

where Γ ≡ 1 + σ2
ε + (1− α)σ

2
ε

σ2
ξ
.

D.2 Equilibrium Information

The agent’s problem is exactly as in A.4.3 and the first order conditions are identical (up the

relevant definition of ψ̂∗1.)

− σ̂2
η

(n
k
ψ̂∗1

)2
+ λ+ λ1 − λ2 = 0 (D.8)
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The derivations of equilibrium information follow exactly as before. One potentially surprising result

is that the condition for zero information to be an equilibrium does not change. That is, there is no

need to restate assumption 1 as long σ2
ε <∞.

D.3 Choice of Scope

Social welfare under the assumption k̂ = n̂ is now written

UG = (1− α)

[(
n̂ψ̂∗1 + ψ̂∗2 − 1

)2
+
(
ψ̂∗1

)2
n̂σ̂2

η +
(
n̂ψ̂∗1

)2
σ2
ε

]
+
(
ψ̂∗2

)2
σ2
ξ + λn̂ (D.9)

Taking the first order condition and solving for n̂? yields

n̂? =



√
σ̂2
η(1− α)

λ̂
− (1− α)σ̂2

ητ


 1

Γ
(D.10)

E Optimal Communication: Misaligned Preferences

E.1 Private Information

Proof of Proposition 4(c). Suppose σ̂2
η is given. Then, when α ≤ α?, the authority always prefers

that agents acquire full information. To see this compare social welfare for a given k̂, for the case

that k̂ < n̂ and the case that k̂ = n̂. In many cases, full acquisition may also be optimal when

α > α? as well. In these cases, it follows directly that n̂? is finite.

Now suppose α > α? and the the authority finds it optimal to select n̂o > ̂̂n. To find n̂o in this

case, plug in agents’ information acquisition k̈(n̂), take the first order condition with respect to n̂,

and solve. This first order condition has a unique (real) solution, n̂o, and it is finite. To show that

this is indeed an optimum, however, requires slightly more work. Taking second order condition and

evaluating at n̂o shows that the loss function is locally convex, and since there is only one critical

point, that this is indeed the global optimum.

The general expression for n̂o is unwieldy. However, when α? = 0 it simplifies substantially to

n̂o = (1− α)2



√
σ̂2
η

λ̂

(
1

(1− α)2
+

1

σ2
ξ

)
− σ̂2

ητ
2


 (E.1)
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Proof of Proposition 5(c). It suffices to show that welfare is improving in 1
σ̂2
η
, given optimal scope,

for any level σ̂2
η. If optimal scope calls for full acquisition, the authority can always decrease scope

to maintain the same total precision and benefit from lower information costs. I now demonstrate

that when optimal scope lies to the right ̂̂n, welfare is again improving if scope is adjusted optimally.

Substitute in k̈(n̂), and then n̂o, into the social welfare function given in B.2. The derivative with

respect to σ̂2
η is greater than zero by assumption 1, and the result is established.

F Directed Search

In this section, I solve a version of the model with a more general type of information choice, in

which agents may choose the probability with which they observe particular signals, but at a cost.

The logic parallels that of section A.2, despite some added complications.

Assume now that agents assign relative weights w1, w2, ..., wn to each signal released by the

information authority, so that the probability of drawing the j’th signal as the first signal drawn is

wj∑n
l=1 wl

. I again assume that signals are drawn sequentially, without replacement. Because signals

are drawn without replacement, the probability that gj is drawn on the second draw depends on

which signal was drawn in the first round, and so on. The distribution characterizing this search

process is know as the generalized Wallenius noncentral hypergeometric distribution.

Let µl = P (Gil = 1; ||Gi|| = k) be the probability that signal l is drawn among a sample of k

signals. Unfortunately, for k > 1 there is no requirement that µl is proportional to wl and, in fact,

there is no closed-form solution for µl as a function of the wl’s. Chen et al. (1994) show, however,

that a set of wl’s can be mapped unquietly into a set of µl’s and the two respect a natural ordering

relation

wl > wj ⇐⇒ µl > µj (F.1)

To simplify the analysis, and because the agents care directly about µl, I proceed as if these

are the fundamental choice of the agents, although they could always be mapped back into a set of

weights used for the sampling process. The µl’s also have the important property that
∑n

l=1 µ(l) = k.
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F.1 Equilibrium Actions

The equilibrium pricing rule must reflect the fact that some signals may, in general, be observed

by more agents than others. Therefore I guess the following form for a linear equilbrium

p =

n∑

l=1

ψ̃lgl (F.2)

Under the baseline information assumptions:

E(θ|Ii) =
1

k + σ2
η

n∑

l=1

1
[
gl ∈ Ii

]
gl (F.3)

E(gl|Ii) =





gl if gl ∈ Ii

E(θ|Ii) if gl /∈ Ii
(F.4)

Optimal action on the part of agent i implies

pi =
(1− α)

k + σ2
η

n∑

l=1

1
[
gl ∈ Ii

]
gl + α

n∑

l=1

ψ̃l


1
[
gl ∈ Ii

]
gl + 1

[
gl /∈ Ii

] 1

k + σ2
η

n∑

j=1

1
[
gj ∈ Ii

]
gj




=
n∑

l=1


 1− α
k + σ2

η

+ αψ̃l +
α

k + σ2
η

n∑

j=1

ψ̃j1
[
gj /∈ Ii

]

1
[
gl ∈ Ii

]
gl

≡
n∑

l=1

ψ̂il1
[
gl ∈ Ii

]
gl (F.5)

where ψ̂il is agent i’s optimal response to signal l conditional on gl ∈ Ii.

At this point, a new complication arises in that ψ̂il is a random variable, both cross sectionally

and from the perspective of agent i. This randomness is problematic because ψ̂il and 1
[
gl ∈ Ii

]
are

not independent and no closed form expression exists for their covariance. This complicates the step

of integrating across agents in order to determine the aggregate action rule. The key observation

required to circumvent this difficulty is that, as n̄ grows larger, ψ̂il becomes essentially deterministic.

This allows for both straightforward aggregation across agents and simple computation of expected

values.

To make this claim more precise, consider once again a sequence of models indexed by n̄, in

which limn̄→∞
n
n̄ = n̂ and limn̄→∞

k
n̄ = k̂, and σ2

η = n̄σ̂2
η. Define the set of random variables
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xj = nψ̃
l̃j
1

[
g
l̃j
/∈ Ii

]
, where the indexes l̃j , j = 1, 2, ..., n, are generated by randomly drawing an

index l, without replacement, from among the n public signals. Define

bn̄ ≡ E[x1] =
1

n

n∑

l=1

nψ̃l(1− µl) (F.6)

δn̄ ≡
1

n

n∑

j=1

nψ̃l1
[
gj /∈ Ii

]
− bn̄ =

1

n

n∑

j=1

xj − bn̄ (F.7)

Then, equation F.5 can then be rewritten after some manipulation as

pi =
n∑

l=1

[
1− α
k + σ2

η

+ αψ̃l +
α

k + σ2
η

(bn̄ + δn̄)

]
1
[
gl ∈ Ii

]
gl (F.8)

Integrate across agents to get

p =
n∑

l=1

(
α

k + σ2
η

∆n̄,l + µl

[
1− α
k + σ2

η

+ αψ̃l +
α

k + σ2
η

bn̄

])
gl (F.9)

where ∆n̄,l ≡ E
[
δn̄1
[
gl ∈ Ii

]]
. The equilibrium coefficients are then given by the fixed point of the

expression

ψ̃l =
α

k + σ2
η

∆n̄,l + µl

[
1− α
k + σ2

η

+ αψ̃l +
α

k + σ2
η

bn̄

]
(F.10)

Now, solving for ψ̃l yields

ψ̃l =
µl

1− αµl
1

k + σ2
η

(1− α+ αbn̄) +
α

(1− αµl)(k + σ2
η)

∆n̄,l (F.11)

Now, using the fact that −E(|δn̄|) ≤ ∆n̄,l ≤ E(|δn̄|), we have the inequality

ψ̃l ≤
µl

1− αµl
1

k + σ2
η

(1− α+ αbn̄) +
α

(1− αµl)(k + σ2
η)
E(|δn̄|) (F.12)

and a corresponding lower bound on ψ̃l. Substituting recursively and simplifying yields the following

bounds on ψ̃l

µl
1− αµl

ρ1 − E(|δn̄|)
α

(1− αµl)
ρ2,l ≤ ψ̃l ≤

µl
1− αµl

ρ1 + E(|δn̄|)
α

(1− αµl)
ρ2,l (F.13)
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where

ρ1 =
1− α

k + σ2
η − αq

ρ2,k =

(
1

k + σ2
η

+
αµlq̄

(k + σ2
η)(k + σ2

η − αq)

)

q =

n∑

l=1

(1− µl)µl
1− αµl

q̄ =

n∑

l=1

(1− µl)
1− αµl

Now, multiply the inequality by n̄, to get

µl
1− αµl

n̄ρ1 − E(|δn̄|)
α

(1− αµl)
n̄ρ2,k ≤ n̄ψ̃l ≤

µl
1− αµl

n̄ρ1 + E(|δn̄|)
α

(1− αµl)
n̄ρ2,k (F.14)

A law of large numbers applies to 1
n

∑n
j=1 xj , implying that limn̄→∞E(|δn̄|) = 0.14 Let

Q = lim
n̄→∞

1

n̄

n∑

l=1

(1− µl)µl
1− αµl

(F.15)

This is clearly finite, since each term in the summand is positive and bounded by a finite constant,

while the total is divided by n. For the same reasons, Q̄ = limn̄→∞
1
n̄

∑n
l=1

1−µl
1−αµl is also finite.

Therefore, n̄ρ1 and n̄ρ2,l each converge to a finite values and we can conclude that

lim
n̄→∞

n̄ψ̃l =
µl

1− αµl
ρ ≡ ϕ̃(l) (F.16)

lim
n̄→∞

n̄ψ̂l =
1− α
k̂ + σ̂2

η

+ αϕ̃l +
α

k̂ + σ̂2
η

∞∑

k=0

(1− µl)ϕ̃l ≡ ϕ(l) (F.17)

where ρ = 1−α
k+σ̂2

η−αQ
.

14This follows from the construction of xj as a sequence of exchangeable random variables. See McCall (1991) for a
detailed discussion and additional references on the topic of exchangeability.
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F.2 Agents’ Information Choice

I now follow a similar strategy to compute the loss of agent i, taking aggregate actions as given.

To begin, compute the deviations

pi − θ =

(
n∑

l=1

ψ̂l1
[
gl ∈ Ii

]
− 1

)
θ +

n∑

l=1

ψ̂l1
[
gl ∈ Ii

]
ηl (F.18)

pi − p =

(
n∑

l=1

ψ̂l1
[
gl ∈ Ii

]
− ψ̃l

)
θ +

n∑

l=1

(
ψ̂l − ψ̃l

)
1
[
gl ∈ Ii

]
ηl +

n∑

l=1

ψ̃l1
[
gl /∈ Ii

]
ηl (F.19)

of the discrete model. We are interested in computing E
[
(pi − θ)2

]
and E

[
(pi − p)2

]
.

First, consider the “fundamental deviation” given by

E
[
(pi − θ)2

]
= E

(
n∑

l=1

ψ̂l1
[
gl ∈ Ii

]
− 1

)2

+
n∑

l=1

E(ψ̂l1
[
gl ∈ Ii

]
)2σ2

η

= E

(
1

n̄

n∑

l=1

n̄ψ̂l1
[
gl ∈ Ii

]
− 1

)2

+
1

n̄

n∑

l=1

E(n̄ψ̂l1
[
gl ∈ Ii

]
)2
σ2
η

n̄

= E



(

1

n̄

n∑

l=1

n̄ψ̂l1
[
gl ∈ Ii

]
)2

− 2
1

n̄

n∑

l=1

n̄ψ̂l1
[
gl ∈ Ii

]
+ 1




+
1

n̄

n∑

l=1

E(n̄ψ̂l1
[
gl ∈ Ii

]
)2
σ2
η

n̄

(F.20)

Taking the limit n̄ → ∞ and rewriting the infinite sum as an integral over the domain l ∈ [0, n̂],

expression F.20 now simplifies considerably to

E
[
(pi − θ)2

]
=

(∫ n̂

o
µ(l)ϕ(l)dl − 1

)2

+ σ̂2
η

∫ n̂

0
µ(l)ϕ(l)2dl (F.21)

The limiting “coordination loss” term can be derived in the same manner:

E
[
(pi − p)2

]
=

(∫ n̂

0
µ(l) (ϕ(l)− ϕ̃(l)) dl

)2

+ σ̂2
η

∫ n̂

0
µ(l) (ϕ(l)− ϕ̃(l))2 dl

+ σ̂2
η

∫ n̂

0
(1− µ(l))ϕ̃(l)2dl

(F.22)

Finally, write the cost of information as the functional mapping µ(l) to the cost c(µ(l)). Now,
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combining all terms yields agent i’s welfare function

−U i =(1− α)

[(∫ n̂

o
µ(l)ϕ(l)dl − 1

)2

+ σ̂2
η

∫ n̂

0
µ(l)ϕ(l)2dl

]

+ α

[(∫ n̂

0
(µ(l)ϕ(l)− ϕ̃(l)) dl

)2

+ σ̂2
η

∫ n̂

0
µ(l) (ϕ(l)− ϕ̃(l))2 dl

+σ̂2
η

∫ n̂

0
(1− µ(l))ϕ̃(l)2dl

]
+ c(µ(l))

(F.23)

The solution to agent i’s problem is characterized by

argmax
µ(l),k̂

U i subject to µ(l) ≤ 1;µ(l) ≥ 0;

∫ n̂

0
µ(l)dl ≤ k̂

Let λ1(l), λ2(l), λ3 be Lagrange multipliers on the three constraints respectively.

F.2.1 Equilibrium Characterization

Taking derivatives with respect to µ(l) and k̂ yields

0 = 2(1− α)

[
(φ− 1)

(
ϕ(l)− αk̂

k̂ + σ̂2
η

ϕ̃(l)

)
+ σ̂2

η

(
ϕ2(l)

2
− αϕ̃(l)

k̂ + σ̂2
η

∫ n̂

0
µ(j)ϕ(j)dj

)]

+ 2α

[(
φ−

∫ n̂

0
ϕ̃(j)dj

)(
ϕ(l)− αk̂

k̂ + σ̂2
η

ϕ̃(l)

)
+ σ̂2

η

(
ϕ(l)2

2
− ϕ(l)ϕ̃(l)

− ϕ̃(l)
α

k̂ + σ̂2
η

∫ n̂

0
µ(j)(ϕ(j)− ϕ̃(j))dj

)]
+ λ1(l)− λ2(l) + λ3 + cl(µ(l))

(F.24)

−λ3 = 2(1− α)
∂ϕ

∂k̂

[
(φ− 1)

∫ n̂

0
µ(j)dj + σ̂2

η

∫ n̂

0
µ(j)ϕ(j)dj

]

+ 2α
∂ϕ

∂k̂

[(
φ−

∫ n̂

0
ϕ̃(j)dj

)∫ n̂

0
µ(j)dj + σ̂2

η

∫ n̂

0
µ(j) (ϕ(j)− ϕ̃(j)) dj

] (F.25)

where φ =
∫ n̂

0 µ(l)ϕ(l)dl and

∂ϕ

∂k̂
≡ −

(
1

k̂ + σ̂2
η

)2(
(1− α) + α

∫ n̂

0
(1− µ(j))ϕ̃(j)dj

)
=
∂ϕ(l)

∂k̂
(F.26)

is constant across l.
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Substituting the equilibrium relationships

k̂ =

∫ n̂

0
µ(j)dj (F.27)

ϕ̃(l) = µ(l)ϕ (F.28)

ϕ =

(
1

1− αµ(l)

)
ρ (F.29)

into equation F.24 and simplifying substantially yields

2(1− α)ρ(φ− 1) + σ̂2
ηρ

2 2α2µ(l)2 − 4αµ(l) + 1

(1− αµ(l))2
+ λ1(l)− λ2(l) + λ3 + cl(µ(l)) = 0

Additional algebra shows that (φ− 1) = − 1
k̂+σ̂2

η−αQ
σ̂2
η. Using this result, the first order condition

simplifies further to

− σ̂2
η

(
ρ

1− αµ(l)

)2

+ λ1(l)− λ2(l) + λ3 + cl(µ(l)) = 0 (F.30)

Furthermore, algebraic manipulations of F.25 establishes that in equilibrium λ3 = 0

Let λ̄1(l) = λ1(l) (1− αµl)2 and λ̄2(l) = λ2(l) (1− αµl)2. Proposition 8 combines the above

results to characterize the set of equilibria in the extended model.

Proposition 8. The set of equilibria in the model are characterized by 1) the set of equalities indexed

by l

cl(µ(l)) (1− αµl)2 = σ̂2
ηρ

2 − λ̄1(l) + λ̄2(l) (F.31)

the inequality constraints

µ(l) ≤ 1;µ(l) ≥ 0;

∫ n̂

0
µ(l)dl ≤ k̂ (F.32)

the complementarity slackness conditions, λ̄1(l)(µ(l) − 1) = 0, λ̄2(l)µ = 0, and the inequalities,

λ̄1(l) ≥ 0, λ̄2(l) ≥ 0.

55



F.3 A Sufficient Condition for Uniqueness

Suppose that the cost the information is given by the CES aggregator in equation 5.4, with

ω > 1. The derivative of cost with respect to µl is

cl(µ(l)) = λn̂
ω−1
ω

(∫ n̂

0
µ(l)ωdl

) 1−ω
ω

µ(l)ω−1 (F.33)

The model has a unique equilibrium whenever the left-hand side of F.31 is monotonically in-

creasing in µ(l). To see this, note first that one can immediately rule out µl = 0, since the derivative

of the cost function with respect to µ(l) is always zero when µ(l) = 0. Second, note that if µl ∈ (0, 1)

satisfies

cl(µ(l)) (1− αµl)2 = σ̂2
ηρ

2 (F.34)

for any k, then monotonicity implies that cl(µ(l)) (1− αµl)2 > σ̂2
ηρ

2 at µ(l) = 1, ruling out the

possibility that λ1(l) ≥ 0, and therefore that µl = 1, for any k. Finally, when λ̄1(l) = λ̄2(l) = 0 and

the lefthand side is monotonic, only one value µ(l) can simultaneously satisfy equation 8, so that

µ(l) = ν and the equilibrium conditions reduce to the those from the baseline model.

The required monotonicity is achieved whenever

µ(l)ω−1(1− αµ(l))2 (F.35)

is monotonic on [0, 1]. Taking a derivative and imposing the inequality quickly establishes the

requirement that

ω >
1 + α

1− α (F.36)

F.4 Multiple Equilibria when Information Cost is Linear

Suppose now that that the derivative of the cost function cl(µ(l)) = λ̂. An immediate implication

of proposition 8 is that, in equilibrium, the function µ(l) can take on no more than one interior value,

in addition to µ(l) = 0 or µ(l) = 1. To see this, consider expression F.31 for a value of l for which

neither constraint one nor constraint two is binding. In this case, the left-hand side of 8 is strictly

decreasing in µ(l), implying that no more than one interior value of µ(l) can simultaneously satisfy

the equation. In contrast to case the case where the left hand side is increasing, however, it still
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may be that λ̄1(l) > 0 or λ̄2(l) > 0 or both, creating the potential for a great deal of multiplicity.

Imposing the restriction that µ(l) take on no more than one interior value, a set of simple

conditions can be derived characterizing the set of equilibria in the model. Let n̂1, n̂2, n̂3; n̂ ≥ n̂i ≥

0; n̂ =
∑3

i=1 n̂i denote the “mass” of signals taking on values µ∗ ∈ (0, 1), µ̄ = 1, µ = 0, respectively.

Solving the first order condition for µ∗ yields

µ∗ =
(1− α)

(
σ̂2
η

λ̂

) 1
2 − σ̂2

η − n̂2

(1− α)n̂1 − α(n̂2 + σ̂2
η)

(F.37)

Since {n̂1, n̂2} imply values for µ∗ and n̂3, they are sufficient to characterize all equilibria. As-

sumption 1 ensures that agents acquire at least some information, so that n̂1 + n̂2 > 0. Furthermore,

if n̂1 + n̂2 < n̂, the requirement that λ1(l) ≥ 0 and λ2(l) ≥ 0 ensures µ∗ ∈ [0, 1]. Proposition 9

describes the necessary and sufficient conditions for this.

Proposition 9. Suppose that the cost of information is given by c(µ(l)) = λk̂. The the set of

equilibria is characterized by {n̂1, n̂2} that satisfy the one of the two sets of conditions below

• Case 1: Full Acquisition Only: n̂ ≤ (1− α)
(
σ̂2
η

λ̂

) 1
2 − σ̂2

η

1. n̂1 = 0 and n̂2 = n̂

• Case 2: Multiple Equilibria: n̂ > (1− α)
(
σ̂2
η

λ̂

) 1
2 − σ̂2

η

– Case 2a

1. (1− α)n̂1 < α(n̂2 + σ̂2
η)

2.
(
σ̂2
η

λ̂

) 1
2 ≥ σ̂2

η + n̂1 + n̂2

3. (1− α)
(
σ̂2
η

λ̂

) 1
2 ≤ σ̂2

η + n̂2

– Case 2b

1. (1− α)n̂1 > α(n̂2 + σ̂2
η)

2.
(
σ̂2
η

λ̂

) 1
2 ≤ σ̂2

η + n̂1 + n̂2

3. (1− α)
(
σ̂2
η

λ̂

) 1
2 ≥ σ̂2

η + n̂2
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Figure 2: Information acquisition versus the scope of communication, for different degrees of strategic
complementarity. Information acquisition is decreasing for scope greater than n̂.
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Figure 3: Information acquisition versus the scope of communication, for the case of strong com-
plementarities (α = .8). The optimal degree of scope, n?, does not exhaust agents’ willingness to
acquire information.
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Figure 4: Information costs versus the degree of correlation with market information, for different
degrees of scope. Higher scope increases the cost of coordinating information.
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Figure 5: Social welfare as a function of the degree of scope, for different degrees of strategic
complementarity. When private information is not very precise, optimal scope decreases with higher
strategic complementarity.
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Figure 6: Social welfare as a function of the scope of communication, when agent’s and the planner’s
preferences are misaligned. When α? = .2, high complementarities perceived by agents imply large
losses to scope greater than n̂.
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Figure 7: Optimal scope when preferences are misaligned. When preference misalignment is strong
(α = 0.8, α? = 0), optimal scope may exceed the threshold level, n̂.
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Figure 8: Multiple equilibria for different degrees of scope and strategic complementarity. The
characteristics of the “best” and “worst” equilibria from the social planners perspective depend on
the degree of scope.
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Figure 9: Social welfare for alternative equilibrium scenarios. Robust (min-max) communication
policy selects n? within region III.
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