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1 Introduction

Several papers document how price setting behavior, as summarized by the size-distribution

and by the timing of price changes, varies systematically with the number of products sold.

The recent empirical work of Bhattarai and Schoenle (2010) documents that firms selling

more goods display a higher frequency of price adjustment as well as smaller adjustments.

Lach and Tsiddon (1996, 2007) show that price changes are synchronized within stores, but

staggered across stores. Cavallo (2010) studies online large supermarket chains, and finds

that price changes of similar goods are synchronized within a store.1

Despite the rich and growing evidence on this phenomenon, there is scant theoretical

work on this problem. Midrigan (2007, 2009) begun to study this problem by explicitly

writing down and solving numerically a model where a firm is selling 2 goods, subject to

a common menu cost.2 Compared to the classic case of one good, his model generates a

distribution of price changes with “small” price adjustments. Indeed the main motivation on

the seminal paper by Lach and Tsiddon (1996) was to argue that, due to the synchronization

of adjustments, the presence of small price changes does not imply that menu cost are not

important. But some important questions remain to be answered: what forces shape the

optimal pricing decisions as the number of goods n sold by the firm changes? Going beyond

the n = 2 case is important, as the number of goods sold by the retail stores, where much of

the micro data are measured, is much larger.3

This paper provides a simple model to study how the price setting decision depends on

n, the number of goods sold by a firm. The model allows us to answers some questions that

are hard to tackle without a formal frame. Examples of these questions are: Is the higher

1 An incomplete list of additional contributions documenting these type of behaviour includes Lach and
Tsiddon (1992), Baudry et al. (2007), Dhyne and Konieczny (2007), Dutta et al. (1999), Midrigan (2007,
2009), and Neiman (2010).

2 Importantly, he also put this model into a general equilibrium framework, and analyzed the effect of a
monetary shock. Bhattarai and Schoenle (2010) also solve numerically the problem for a firm selling three
goods.

3Bhattarai and Schoenle (2010) analyze the BLS data on US producer’s prices. The median number of
goods sampled by the BLS for each producer is between 3 to 5. Obviously this is a lower bound of the median
number of goods sold by each firm.
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frequency of price adjustment the mechanical consequence of a fixed menu ψ cost split over

a larger number of goods, so that it is as if each good pays a smaller menu cost ψ/n as n

increases? In other words, how does the frequency of price adjustment behaves as a function

of n if the menu cost paid by the firm increased linearly with the number of goods: n ψ? Is

the synchronization of price adjustment arising from the fact that a single fixed cost applies

to a bundle of goods, or is there a systematic association between the number of products

and the volatility σ of the shock that hit each product? Does the shape hazard rate of

price adjustments varies systematically with the number of products? Does the shape of

the distribution of price changes varies systematically with the number of products? One

purpose of this note is to provide some guidance for the empirical examination of these

concerns by analyzing the identification of the different factors, such as the n, the volatility

of the determinant of prices, the size of the fixed cost, and the benefit of adjusting prices in

a tractable set up. Another purpose of the note is to advance on the understanding of the

impact effect of an aggregate monetary shock in this set-up. This question that has been

tacked numerically by Midrigan (2007) for the case of n = 2, but as we explain below we

provide tools that help to analyze in the case of n > 2.

We study a stylized version of the problem of a multi-product firm that can revise prices

only after paying a fixed cost. The key assumption, introduced by Lach and Tsiddon (1996,

2007) and Midrigan (2007, 2009), is that once the fixed menu cost is paid the firm can adjust

the price of all its products. The problem is set up as to minimize the deviations of the profits

incurred relative to the flexible price case, i.e. the case with no menu cost. We assume that

the static profit maximizing price for each of the n products, which coincide with the price

that will be charged without menu cost, follows n independent random walks without drift

and with volatility σ per unit of time. We refer to the vector of the difference between the

frictionless prices and the actual prices charged as the vector of the price gaps. The period

return function is assumed to be proportional to the sum of the squares of the price gaps.

The proportionality constant B measures the second order per period losses associated with
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charging a price different from the optimum, i.e. it is a measure of the curvature of the profit

function.4 We assume that if a fixed cost ψ is paid the firm can simultaneously change all

the prices. The firm minimizes the expected discounted cost, which include the stream of

lost profit from charging prices different from the frictionless as well as the fixed cost at the

time of adjustments. We completely characterize the solution of a simple symmetric problem

in terms of the structural parameters: the variability of the flexible prices σ, the curvature

of the profit function B, the size of the menu cost ψ, the discount rate r, and the number of

products n. We also provide analytical expressions for the invariant distribution of the price

gaps, the frequency of adjustment, the hazard rate of price adjustments, and the marginal

distribution of price changes in terms of the fundamental parameters.

The solution of the firms’ problem involves finding the set over which prices are adjusted,

and the set where they are not, i.e. the inaction set. Due to the lack of drift, when prices

are adjusted they are set equal to the frictionless prices, i.e. the price gaps are set to zero

in all dimensions. We show that the optimal decision is to control the price gap as to

remain in the interior of the n-dimensional ball centered at the origin. The economics of

this is clear: the firm will adjust either if all the prices of its product have a medium size

deviation, or if only one has a large deviation, since in the margin a larger deviation hurst

profits more. The size of this ball, whose square radius we denote by ȳ, is chosen optimally.

We solve for the value function and completely characterize the size of the inaction set ȳ

as a function of the parameters of the problem. As we let r ↓ 0 the ratio ȳ/σ2 can be

written as an increasing function of two arguments: σ2B/ψ and n. We also obtain a very

accurate approximation for small cost ψ, where we show that ȳ takes the form of a square

root function, ȳ ≈ [2(n+ 2)σ2B/ψ]
1/2

. To compare the model with tabulation for the US

economy as functions of n, we consider two extreme cases of how the the technology to adjust

prices. In one case we assume that the fixed cost increases proportionally with the number

of products, i.e. ψ = ψ1 n for some ψ1 > 0, a case that we referred to as constant returns

4The first order losses are zero, since the maximum per period profits are obtained at the frictionless price.
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to scale. In the other extreme the fixed cost remains constant as n changes, an assumption

that we referred to as constant fixed cost, so ψ = ψ1 for all n. Thus, when a prediction of the

model depends on how the technology varies across n we present both cases.

To our knowledge this is the first fixed cost adjustment problem in n-dimensions whose

solution is analytically characterized. We believe that this is because of the difficulty of

finding a tractable boundary condition and a candidate solution that is smooth enough

on the boundary of the inaction region. Baccarin (2009) gives a recent statement of the

general problem, and an existence results of a viscosity solution. Instead we look for a strong

solution, i.e. a smooth one. In our case we can reduce the dimension of the problem to

one, by keeping track of y, the square of the radius of the vector of the price gaps. This

reduction is possible because of the quadratic nature of the objective function, and the lack

of drift of the uncontrolled price gap. Thus, we trade off high dimension for a non-linearity

on the evolution of the system. Our proof strategy is to convert back the one dimensional

problem into the original n dimensional problem and check the conditions of the obtained

solution using the n-dimensional variational inequality verification theorem for stopping time

problems from Øksendal (2000).

As mentioned, Midrigan (2007, 2009) analyzes the effect of monetary policy shock in a

general equilibrium model with n = 2. He shows that it differs from the one with n = 1

because, among other things, the mass of firms that are close to the inaction region just

before the shock and find it optimal to adjust right after the shock is smaller when n = 2.

The reason is that, for n = 2, some price adjustments are small because not all individual

prices being adjusted are close to the inaction boundary. In the language of Golosov and

Lucas (2007), there is a smaller selection effect among the firms that adjust in the n = 2

case, compared to the n = 1 case. Indeed Caballero and Engel (2007) argue that the cross

section distribution of the “desired adjustments”, or price gaps in our set up, is one of the

key ingredients to understand the aggregate effect in a model with sS policies. Motivated

by these findings, we compute the density of the invariant distribution of y, the sum of
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the square of the price gaps. This density is downward sloping, and, except for its scale,

it depends exclusively on the number of products n. As n increases this distribution puts

relatively more mass on the points close to the boundary of the sphere, i.e. there are more

firms close to the point where they want to adjust. As n→ ∞, the distribution is uniform.

We characterize the implications for the timing of price changes given ȳ, σ2 and n. We

show that the expected number of price adjustments per unit of time is given by nσ2/ȳ, which

together with our result for ȳ gives a complete characterization of the frequency of price

adjustments. This characterization can be used to disentangle the effects on the frequency of

adjustments while comparing firms with different number of products, since it points out to

all its determinants. Moreover, when used together with other information described below,

it can be used to identify the parameters of the model and test its implications. For instance

we compare the elasticity of the formulas implied in our paper with the ones implied by

tabulations on Bhattarai and Schoenle (2010). We find that the elasticities predicted by the

theory are closer to the ones in US data in the case of constant fixed cost case.

We solve in closed form for the hazard rate of the price changes as a function of the

time elapsed since the last change. The shape of this function, except for its scale, depends

exclusively on the number of products n. The scale of the function is completely determined

by the expected number of adjustment per unit of time, which we have already solve for. For

a given n, the hazard rates are increasing in duration, have an elongated S shape, with a finite

asymptote. Comparing across different values of n, while keeping the expected number of

adjustment constant, we show that the asymptote of the hazard rate is increasing in n. As we

let n increase without bound, the asymptote diverges to +∞ and the hazard rate function

converges to the one with deterministic adjustments, i.e. towards one with an inverted L

shape. In words, as n increases, adjustment is less likely early on, and more likely later on,

converging to the extreme case of deterministic adjustment as n→ ∞.

Finally we characterize the shape of the distribution of price changes. While price changes

occur simultaneously for n products, we characterized the marginal distribution of prices,
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because this is the object that is usually computed in actual data sets. We give a close form

expression for the density of the marginal distribution of price changes as a function of ȳ

and n. Based on this results we compute several statistics that measure the size of the price

changes, such as E[|∆p|], the expected value of the absolute value of price changes. We show

that, regardless of how the fixed cost changes with n in our two extreme cases, as the number

of products increases, the size of the adjustments decreases for all n. Thus, the insight of

n = 2 generalizes, i.e. with more products the typical adjustment is smaller in each product.

We use this statistics, as well as our solution for ȳ for different n to compare it with the

tabulations in the data from Bhattarai and Schoenle (2010). We find that the elasticities

predicted by the theory are close to the ones in the US data for the constant returns to scale

case.

We show that once the size of the changes is control for, the shape of the price change

distribution is exclusively a function of the number of products n. We obtain then several

statistics that have been computed in the data, such as the coefficient of variation of the

absolute value of price changes, or the excess kurtosis, as purely functions of the n. We

compare this statistics with the tabulations in US data by Bhattarai and Schoenle (2010)

and find the same pattern: higher values of n imply higher dispersion and fatter tails. Indeed

the shape of the distribution of price changes is as follows: for n = 2 it is bimodal, with modes

at the absolute value of
√
ȳ, for n = 3 is uniform, for n = 4 peaks at zero and it is concave,

and for larger n it is bell shape. Indeed, as n → ∞, once normalized, the distribution

converged to a standard normal. We find the sensitivity of the shape of price changes with

respect to n an interesting result to identify different type of models of price adjustments. In

particular, bimodality is only predicted for n = 1 or n = 2. This helps to discriminate with

respect to other theories of price adjustments, as the ones bases on a mixture of information

and menu cost, worked out in Alvarez, Lippi, and Paciello (2010). Additionally, bimodality

receives some support in the data in studies by Cavallo (2010) and Cavallo and Rigobon

(2010) which use data from stores that sell large number of products.
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We finish the paper with two small extensions. In Section 5 we study the sensitivity

of inflation to our results. We show that, up to a first order, inflation has no effect on

the statistics that we focus, so that the analysis should be accurate for countries with low

inflation rates. In Section ?? we introduce random free price adjustments opportunities into

the basic model. This extension keeps many of the similar conclusions with respect to the

effect on the number of products n, but allows to have fatter tails on the price distribution,

a feature of the data that several researchers have focus on.

2 A stylized multiproduct menu cost model

Let n be the number of goods produced by the firm. Each price pi evolves according to a

random walk without drift, so that dpi = σ dWi where dWi is a standard Brownian Motion.

The n Brownian Motions (BM henceforth) are independent, so E [Wi(t)Wj(t
′)] = 0 for all

t, t′ ≥ 0 and i, j = 1, ..., n. The problem is:

V (p) = min
{τj ,∆pi(τj )}∞j=1

E

[ ∞
∑

j=1

e−rτjψ +

∫ ∞

0

e−rtB

(

n
∑

i=1

p2i (t)

)

dt

∣

∣

∣

∣

∣

p(0) = p

]

(1)

where

pi(t) = σWi(t) +
∑

j:τj<t

∆pi(τj) for all t ≥ 0 and i = 1, 2, ..., n, (2)

and p(0) = p.

So that τj are the (stopping) times at which control is exercised. At these times, after

paying the cost ψ, the state can be changed to any value in R
n. We denote the vector of price

changes as ∆p(τj) ∈ R
n. This is a standard adjustment cost problem subject to a fixed cost,

with the exception that after paying the adjustment cost ψ the decision maker can adjust

the state in the n dimension.

At an abstract level equation (1) and equation (26) can be used to solve a symmetric

quadratic loss tracking problem in n dimensions, subject to a fixed adjustment cost. To map
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it into a tracking problem, let the state of the system be two n dimensional vectors p̂(t),

and p∗(t). The interpretation of p̂(t) is the location of the system, and p∗(t) a bliss point,

the location that the decision maker is tracking. The instantaneous cost of the decision

maker is proportional to the distance between the location of the system and the bliss point,

B||p∗(t)− p̂(t)||2, where B > 0. Each component of the bliss points evolve as an independent

random walk without drift, with variance σ2 per unit of time. If the decision maker pays a

fixed cost ψ/n she can change the location of the system anywhere that she desires. For the

purpose of finding the times at which the decision maker chooses to change the state, and

to find the value of the changes of the state, we can simplify the problem and consider the

distance between the location of the state and the bliss point the of the system, and simple

let the state be p(t) = p̂(t) − p∗(t). We have written equation (1) and equation (26) using

this “gap” notation.

For future reference we note if B and ψ are multiplied by a constant γ > 0 the value

function is scaled by γ with no change on the decisions. This explains why all the decision

are functions of B/ψ. We will use this property to interpret different assumptions about how

these parameter vary firms with different number of products n.

We describe now an economic interpretation of the problem, which can be summarized

to say that the firms “tracks” the prices that will maximize instantaneous profits from the n

products. Consider a system of n independent demands, with constant elasticity η for each

product, and a time varying constant marginal cost Ci(t). In the context of the price setting

models, our model is a stylized version of the problem introduced by Midrigan (2007, 2009)

where the elasticity of substitution between the goods produced within the firm is the same as

the one of the bundle of goods produced across firms. The instantaneous profit maximizing

price is proportional to the marginal cost, or in logs p∗i (t) = logCi(t)+log ((η − 1)/η). In this

case we assume that the log of the marginal cost evolve as a random walk with drift so that

p∗i (t) inherits this property. We can interpret the period cost as a second order expansion of

the (log) of the profit function with respect to the vector of the log of prices, around the log

8



of the profit maximized price vector. The first order term are zero because we are expanding

around p∗(t). The fact that it is an expansion of the log of the profit is equivalent to measure

the profits relative to the value of the maximized profit for the n goods. There are no second

order cross terms due to the separability of the demand. Thus we can write the problem in

terms of the gap between the actual price and the profit maximizing price: p(t) = p̂(t)−p∗(t).

The constant B is given by B = (1/2)η(η−1)/n, where the term 1/2 is due to a second order

expansion, the terms with η are due to the fact that the curvature of the profits depend on

the elasticity of demand, and the term (1/n) is the the share of profits from each product

relative to the profits across the n goods. In this interpretation the value of the fixed cost

is measured relative to the profit of the n goods, thus it costs ψ/n in units of the numeraire

good. Since all that matter for the decision is the ratio of B to ψ this normalization only

scales the units of the vale function. In Appendix D we give a derivation of the second order

expansion as well as a discussion and interpretation of the parameters B and ψ. In particular

the interpretation of how to scale B and ψ for firms with different of products.

Below we consider two cases for scaling of the cost of adjustment with respect to the

number of goods. In the first case, which we refer to as constant returns to scale (CRTS)

technology for adjustment cost, when we compare firms with different values of n, the ad-

justment cost scales linearly with it, so that ψ = n ψ1. In this case a firm with twice as

many products pays twice as much in terms of the numeraire good to adjust all the prices

simultaneously. We refer to the case of a constant fixed cost, if ψ = ψ1, so that a firm with

twice as many products pays the same cost in terms of numeraire to adjust the twice as many

prices. We think that these two extreme simple cases bracket all of the interesting setups.

We note the following basic properties of the value function and the optimal policy.

1. Given the symmetry of the BM and of the objective function around zero, and the

independence of the BM’s, one can use reflection around zero to show that the value

function only depends on the absolute values of pi, i.e. V (p) = V (|p1|, |p2|, ..., |pn|) for

all p ∈ R
n.

9



2. Due to the the symmetry of the return function, in the law of motion the target prices

and the lack of drift, it is easy to see that after an adjustment the state is reset at the

origin, i.e. p(τ+j ) = 0, or ∆p(τj) = −p(τ−j ). See Appendix A for a formal argument.

3. The state space R
n can be divided in two regions, an inaction region I ⊂ R

n and

control region C ⊂ R
n. We use Int(C) for the interior of the control region and ∂I for

the boundary of the inaction region. We have that C ∩ I = ∅, that inaction is strictly

preferred in I, that control is strictly preferred in Int(C), and that in ∂I the agent is

indifferent between control and inaction.

We write down the conditions for the solution of the problem, provided that a value

function is smooth enough, i.e. we look for a solution of the “strong” formulation of the

problem with: V ∈ C1 (Rn) and V ∈ C2 (Rn\∂I), so the function is once differentiable in

the whole domain, and twice differentiable everywhere, but in the boundary of the inaction

set. In the range of inaction the cost for the firm is given by the following Bellman equation:

r V (p1, p2, ..., pn) = B

n
∑

i=1

p2i +
σ2

2

n
∑

i=1

Vii(p1, p2, ..., pn) (3)

for all p ∈ I. In the control region we have:

V (p1, p2, ..., pn) = V (0) + ψ (4)

for all p ∈ C. The optimality of returning to the origin implies that,

Vi(0, 0, ..., 0) = 0 for all i = 1, 2, ..., n. (5)

Finally, differentiability in the boundary of the inaction region gives

Vi(p1, p2, ..., pn) = 0 for i = 1, 2, ..., n and for all p ∈ ∂I, (6)
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We refer to this condition as smooth pasting.

We briefly comments on the results on control theory that apply to our problem. Theorem

1 in Baccarin (2009) shows the existence of a continuous value function V and a policy

described by a continuation and control region for a class of problem that include ours. The

set-up in Baccarin (2009) includes a more general form of adjustment cost, more general

period return function, and more general law of motion for the state, as well as weaker

differentiability assumption on these function.5 Øksendal (2000) and Aliev (2007) analyze

a general class of slightly simpler stopping time problem in n dimensions. Their consider a

problem with a one time decision of when to collect a given reward function of the state,

denoted by g. Before that time the decision maker has either zero flow returns, or in the

case of Øksendal (2000) she receives a flow return f , as function the state. The decision

maker maximized the expected discounted value of the reward.6 Their problem maps into

our by making the reward g(p) = V (0) + ψ and the flow return f(p) = B||p||2. Aliev (2007)

shows that equation (6) is necessary for optimality, provided that p ∈ ∂I is a regular point

for the stopping set C with respect to the process {σW (t)} and that the derivatives of the

value function in a neighborhood of ∂I are bounded. Theorem 10.4.1 in Øksendal (2000) is

a verification theorem in term of variational inequalities which, when adapted to our set-up,

says that if a function V that satisfies conditions equations (3)-(6) and several additional

conditions -which we state and check in our proof- the value function solves the stopping

time problem.

5 Strictly speaking, our problem does not fit one of the assumptions for Theorem 1 in Baccarin (2009).
In particular, Assumption (2.4) requires that the cost diverges to infinity as the norm of the adjustment
diverges. Nevertheless, we can artificially modify our problem by incorporating a proportional adjustment
cost that applies only when ||p|| is very large, without altering our solution.

6 While in their analysis discounting is not explicitly included, it is easy to introduce it by taking time as
one of the n states.
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3 Characterization of the solution

Before presenting the solution of this problem we change the state space, which we summarize

using a single variable. Let

y =

n
∑

i=1

p2i (7)

measure the deviation of prices from their optimal value across the n goods. We consider

policies summarized by a single number ȳ. In this class of policies the firm controls the state

so that if y < ȳ, there is inaction. The first time that y reaches ȳ, all prices are adjusted to

the origin, so that y = 0. We will find the optimal policy in this class. Then we will show

that the optimal policy of the original problem is of this form.

The variable y measures the square of the ray of a sphere centered on the origin. Since

each of the prices follows identical independent standard BM in the inaction region, then y

follows a simple diffusion in the inaction. Using Ito’s Lemma on equation (7) the evolution

of y is

dy = nσ2dt + 2σ
n
∑

i=1

pi(t)dWi

This implies that the quadratic variation of y is:

E(dy)2 = 4σ2

(

n
∑

i=1

p2i (t)

)

dt

Thus we can define a stochastic differential equation for y with a new standard BM {W (t)}

that solves:

dy = nσ2dt + 2σ
√
y dW for y ∈ [0, ȳ]. (8)

We note that for the unregulated process, i.e. when ȳ = ∞, if y(0) > 0 then y(t) > 0 for

t > 0 with probability one provided that n ≥ 2, see Karatzas and Shreve (1991) Proposition

3.22.7

7This result was obtained for Bessel processes, which are the square root of y(t). Additionally, Karatzas
and Shreve (1991) have shown in Problem 3.23 and 3.24 that for if y(0) > 0, then for n = 2 the unregulated
process can become arbitrarily close to zero but for n ≥ 3 almost every path remains bounded away from
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Note that the drift and diffusion terms in equation (8) are only functions of y. We also

note that instantaneous return is a function of y, so we can write the following

v(y) = min
ȳ

E

[ ∞
∑

j=1

e−rτjψ +

∫ ∞

0

e−rtB y(t) dt

∣

∣

∣

∣

∣

y(0) = y

]

(9)

subject to equation (8) when y ∈ [0, ȳ], where τj are the first time that y(t) hits ȳ. The

function v solves:

r v(y) = By + nσ2 v′(y) + 2σ2y v′′(y), for y ∈ (0, ȳ) . (10)

Since policy calls for adjustment at values higher than ȳ we have:

v(y) = v(0) + ψ, for all y ≥ ȳ . (11)

If v is differentiable at ȳ we can write the two boundary conditions:

v(ȳ) = v(0) + ψ and v′(ȳ) = 0 . (12)

These conditions are typically referred to as value matching and smooth pasting. For y = 0

to be the optimal return point, it must be a global minimum, and thus we require that:

v′(0) ≥ 0 . (13)

Note the weak inequality, since y is non-negative.

The next proposition finds an analytical solution for v in the range of inaction.

Proposition 1. Let σ > 0. The ODE given by equation (10) is solved by the following

zero. Furthermore, for the regulated process the classification for the boundaries of a diffusion gives that for
n ≥ 2 the point y = 0 is an entrance boundary, as verified in Karlin and Taylor (1999) Example 6, Chapter
12.6.
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analytical function:

v(y) =
∞
∑

i=0

βi y
i , for y ∈ [0, ȳ] . (14)

where the coefficients {βi} solve:

β0 =
nσ2

r
β1 , β2 =

rβ1 − B

2σ2(n+ 2)
, βi+1 =

r

(i+ 1) σ2 (n+ 2i)
βi , for i ≥ 2 . (15)

for any β0.

The proof follows by replacing the function given in equation (14) into the ODE (10) and

matching the coefficients for the powers of yi. By the Cauchy-Hadamard theorem, the power

series converges absolutely for all y > 0 since limi→∞ βi+1/βi = 0. The next proposition

shows that there exist a unique solution of the ODE (10) satisfying the relevant boundary

conditions.

Proposition 2. Assume r > 0, σ > 0, n ≥ 1. There exists ȳ and a unique solution of the

ODE (10) satisfying the two boundary conditions described in equations (12) for which v(·)

satisfies: i) it is minimized at y = 0, ii) it is strictly increasing in (0, ȳ), and iii) ȳ is a local

maximum, i.e. limy↑ȳ v
′′(y) < 0.

The next proposition uses a slightly modified version of the verification theorem in

Øksendal (2000) to show that value function v and threshold policy ȳ that we found in

Proposition 2 for the one dimension representation indeed characterizes the inaction I = {p :

||p||2 < ȳ} and control sets C as well as the value function V for the original n dimensional

problem.

Proposition 3. Let v be the solution of the restricted problem equation (9) and equa-

tion (8). Let V (p) = v (
∑n

i=1 p
2
i ). This is the solution of the problem described equation (1)

and equation (26).

For completeness we comment on how the n = 1 products and the case of n > 1 perfectly
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correlated target prices look like. In the case of one product, i.e. n = 1, the solution to V is

easily seen to be the sum of a quadratic and an two exponential, as in

V (p) =
B

r
p2 + β (exp (ζp) + exp (−ζp)) +B

(σ

r

)2

where ζ =
√
2r/σ and the constant β is chosen to match enforce smooth pasting and value

matching. Moreover, it is easy to see that in that case the v(y) = V (
√
y) solves the ODE

in (10) and its boundary conditions. We note that the solution for the n = 1 case and the

expression for the approximation for ȳ are the same as the ones derived in Dixit (1991), which

we explore in the price setting context in Alvarez, Lippi, and Paciello (2010). In the case

of n perfectly correlated target prices the problem has, after the first adjustment, a single

state variable. In this case, in terms of the threshold policy and value function, the problem

is identical to the one with only one price. The static return is thus nBp(t)2 where p(t)

is, when uncontrolled, a one dimensional brownian motion. The only difference with the

problem with only one price is that the value of B is multiplied by n, or more importantly,

the ratio B/ψ is proportional to n. This is quite natural, since the adjustment has the same

effectiveness for all products, and hence it is as if it were cheaper. Note that, in the case

of the CRTS assumption, the value of the adjustment threshold, and hence the frequency of

adjustment, is independent of n. Instead, in terms of the implication for price changes, the

problem with perfectly correlated shocks is quite differently, since there are no small price

changes. When adjustment takes place, all products have the same price gap. We return to

this simple case later on to speculate on the case of positive, but less than one correlation

between the innovations.

We finish this section by characterizing the optimal policy ȳ in terms of the structural

parameters of the model ( ψ
B
, σ2, n, r).

Proposition 4. The optimal threshold is given by a function ȳ = σ2

r
Q( ψ r2

B σ2
, n) so that

(i) ȳ is strictly increasing in ψ
B
with ȳ = 0 if ψ

B
= 0 and ȳ → ∞ as ψ

B
→ ∞,
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(ii) ȳ is strictly increasing in n and ȳ → ∞ as n→ ∞,

(iii) ȳ is bounded below by
√

2(n + 2)σ2 ψ
B
and as ψ

B
r2

σ2
→ 0 then ȳ√

2(n+2)σ2 ψ
B

→ 1,

(iv) the elasticities of ȳ satisfy:

r

ȳ

∂ȳ

∂r
= 2

(ψ/B)

ȳ

∂ȳ

∂(ψ/B)
− 1 and

σ2

ȳ

∂ȳ

∂σ2
= 1− (ψ/B)

ȳ

∂ȳ

∂(ψ/B)
.

That ȳ is only a function of the ratio ψ/B is apparent from the definition of the sequence

problem. That, as stated in part (i), ȳ is strictly increasing in the ratio of the fixed cost to

the benefit of adjustment ψ/B is quite intuitive. Item (ii) says that threshold is increasing in

the number of products n. This is because as n increases, equation (8) shows that the drift

of y = ||p||2 increases, thus if ȳ would stay constant there will be more adjustments per unit

of time, and hence higher menu cost will be paid. Additionally, if ȳ remains unchanged, the

average cost per unit of time also increases. One can show that the second effect is smaller,

and hence an increase in n makes optimal to increase ȳ. Part (iii) gives an expression for

a lower bound for ȳ, which becomes arbitrary accurate for either a small value of the cost

ψ/B, so that the range of inaction is small, or a small value of the interest rate r, so that

the problem is equivalent to minimize the steady state average net cost. We note that in the

approximation:

ȳ =

√

ψ σ2 2 (n+ 2)

B
, (16)

the effect of ψσ2/B is exactly the same as in the case of one product. Indeed the quartic root

implied when n = 1 was obtained by Dixit (1991) for the model with n = 1. We found that

the quadratic approximation to v(·), which amounts to a quartic approximation to V (·), gives

very accurate values for ȳ across large range of parameters, as we document in Appendix C.

Note that the approximation in part (iii) implies that the elasticity of ȳ with respect to

ψ/B is 1/2. The, using part (iv), we obtain that ȳ has elasticity 1/2 with respect to σ2 and

also that it is independent of r. That
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4 Implications for timing and size of price changes

In this section we explore the implications for the frequency and distribution of price changes.

We let the expected time for y(t) to hit the barrier ȳ starting at y by the function T (y).

This function satisfies:

0 = 1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) and T (ȳ) = 0 ,

where the first condition gives the law of motion inside the range of inaction and the second

one imposes the terminal condition on the boundary of the range of inaction. The unique

solution of this ODE that satisfies the relevant boundary condition is:

T (y) =
ȳ − y

n σ2
for y ∈ [0, ȳ] . (17)

We use T (0) as the expected time between successive price adjustments, and thus the average

number of adjustment, denoted by Na is given by 1
T (0)

. We collect this result in the following

proposition:

Proposition 5. Let Na be the expected number of price changes for a multi-product

firm with n goods. It is given by

Na =
nσ2

ȳ
=

n

Q
(

ψ
B σ2

, n
)

∼=
√

B σ2

2 ψ

n2

(n + 2)
. (18)

In the first equality of expression of equation (18) we use the function Q(·) derived in

Proposition 2 and in the last one we use the approximation of ȳ for small ψ and r (see

Appendix C for more documentation on the accuracy of the approximation). It is interesting

that this expression extends the well known expression for the case of n = 1, simply by

adjusting the value of the variance from σ2 to nσ2. The number of products n affects Na
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through two opposing forces. One is that with more products, the variance of the deviations

of the price gaps increases, and thus a given value of ȳ is hit sooner in expected value, which

we refer to as the direct effect. On the other hand, with more products, the optimal value

of ȳ is higher. Expression equation (18) shows that, as often happens in these models, the

direct effect dominates, and the frequency of adjustment increases with n.

We use this expression to study how the bundling of menu costs, i.e. the fact that a

single menu cost relates to several products, affects the frequency of adjustment of individual

prices. This is interesting because recent evidence in Bhattarai and Schoenle (2010) shows

that the the frequency of price adjustment appears higher for firms that sell a larger number

of goods.8 They find that the average frequency of price adjustment increases.

Table 1: Frequency of Price changes Na

number of products n implied
1 2 4 6 10 50 ψ1

Na for C.R.T.S. model ψ = n ψ1: 2 2.4 2.8 2.9 3.1 3.3 0.02

Na for C.F.C. model: ψ = ψ1: 1.4 2.4 3.9 5.1 6.9 17 0.04

Na for US Data: - 2.4 2.3 2.8 3.5 - -

Value of ψ1

Bσ2 chosen to match the size of price changes at n = 2. US data from Bhattarai
and Schoenle (2010) Figure 1. Implied ψ1 using B = 20 and σ = 0.15.

This pattern is qualitatively consistent with the formula in equation (18), which shows

that Na is increasing in n. Notice however that in this comparison we are keeping ψ constant,

so that as n increases the menu cost per good is decreasing. One may wonder whether the

increased activity by the firms follows from the fact that the menu cost is smaller (per good)

or because of the bundling of the goods prices. To separate the effects of the economies of

scale in the menu cost from the bundling of the goods, consider the case where the cost ψ

8See Figures 1 and 2 in their paper. These authors group firms into 4 bins, according to the number of
items sold (and recorded by the BLS), from 1 to 3 goods in the first bin to more than 7 goods in the fourth
bin. They first measure the frequency of price changes at the good level, then compute the median frequency
across the goods produced in the firm. Finally, they average these medians inside each of the 4 bins.
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grows linearly with the number of goods n, i.e. : ψ = ψ1 n. This gives

Na
∼=
√

B σ2

2 ψ1

n

(n+ 2)
. (19)

which is also increasing in n, although at a lower rate. Thus, even under “CRTS” for the

menu cost, the bundling of the goods pricing induces more frequent adjustments than in the

case where the menu costs are dissociated, i.e. when n = 1. Table 1 uses equation (19) for

the case of constant returns to scale (CRTS) and equation (18) for the case of constant fixed

cost (CFC) to calculate hypothetical values of Na for different values of n. For both cases

we have selected the values of B σ2/ψ1 so that its value is 2.4 adjustments per year, the

value estimated by Bhattarai and Schoenle (2010) for the US for firms with n = 2. Table 1

also includes a row with US data. Comparing the case of CRTS with the one with CFC, the

latter displays a pattern much closer to the one in the US data.

We now study the invariant distribution of the sum of the squares of the price gaps

||p||2 =
∑n

i=1 pi(t)
2 under the optimal policy. We will denote the density of the invariant

distribution by f(y) for y ∈ [0, ȳ]. This is interesting to study the response of a set of firms

that are in steady state (i.e. in the invariant distribution) to an unexpected shock to their

target which will displace the price gaps uniformly. In particular the study of how much

mass is close to the boundary of inaction (so that after the “unexpected shock” they will

decide to adjust) is one that has been identify as one of the key determinants to the impact

effect of monetary policy shocks. We are interested in studying how this mass changes as we

vary the number of goods n. There is an extensive literature on this topic, see for example

Caballero and Engel (2007). The density of the invariant distribution for y is found by solving

the corresponding forward Kolmogorov equation, and the relevant boundary conditions (see

Appendix A).

Proposition 6. The density f(·) of the invariant distribution of the sum of the squares
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of the price gaps y, for a given thresholds ȳ in the case of n ≥ 1 products is for all y ∈ [0, ȳ]

f(y) =
1

ȳ
[log(ȳ)− log(y)] if n = 2, and

f(y) = (ȳ)−
n
2

(

n

n− 2

)

[

(ȳ)
n
2
−1 − (y)

n
2
−1
]

otherwise. (20)

So the density has a peak at y = 0, decreases in y, and reaches zero at ȳ. The shape

depends on n. The density is convex in y for n = 1, 2 and n = 3, linear for n = 4, and

concave for n ≥ 5. This is intuitive, since the drift of the process for y increases linearly with

n, hence the mass accumulates closer to the upper bound ȳ for higher n. Indeed as n → ∞

the distribution converges to a uniform in [0, ȳ]. Proposition 6 makes clear also that the

shape of the invariant density depends exclusively on n, the value of the other parameters,

ψ,B, σ2 only enters as determining ȳ, which only stretches the horizontal axis proportionally.

Figure 1: f(·) density of invariant distribution of y, for various choices of n
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Consider the effect of decreasing the vector of price gaps by a constant δ > 0 in all

dimensions. The interpretation of this experiment, is the effect of an unexpected jump in the

target price for all the goods. We want to find out the fraction of firms under the invariant
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that will adjust their prices. We will assume that from here on the price gap process remains

the same, so the firms solved the problem stated above. For this we need the invariant

distribution of p, not just y. We note that for each y ≤ ȳ, the distribution of p is uniform on

the n-dimensional sphere with radius
√
y. This is due to the symmetry of the distributions of

the price gaps in each dimension, and its independence. Following the notation in Song and

Gupta (1997) we use U(n, 2) for the uniform distribution of p on the n-dimensional sphere,

i.e. all the values of p with ||p|| = 1 have the same density. Now we obtain the fraction of

prices p with ||p||2 = y ≤ ȳ that after the δ “shock” will be outside the set of inaction. They

are given by:

||p||2 − 2δ

(

n
∑

i=1

pi

)

+ nδ2 > ȳ or

∑n
i=1 pi√
y

≤ y − ȳ

2δ
√
y
+ n

δ√
y
. (21)

Abusing notation let u(x;n, 2) be the density of U(n, 2) and define:

D(s) =

∫

{x: ||x||=1}
I

{

n
∑

i=1

pi ≤ s

}

u(x1, ..., xn;n, 2) dx1 dx2 · · · dxn .

Thus the fraction of firms that adjust after the unexpected increase in prices δ, denoted by

is given by A(δ) :

A(δ) =

∫ ȳ

0

f(y) D

(

y − ȳ

2δ
√
y
+ n

δ√
y

)

dy ≈ −f ′(ȳ)D

(

n
δ√
ȳ

)

ȳ2

2
=
n

2
D

(

n
δ√
ȳ

)

, (22)

where the last term is a an approximation of A(δ) using a first order expansion of the product

fD around ȳ, which will be accurate for small values of ȳ.

We now move to the study of the hazard rate of price adjustments.

Proposition 7. Let t denote the time elapsed since the last price change. Let Jν(·) be
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the Bessel function of the first kind. The hazard rate for price changes is given by

h(t) =
∞
∑

k=1

ξn,k
∑∞

s=1 ξn,s exp
(

− q2n,sσ
2

2ȳ
t
)

q2n,kσ
2

2ȳ
exp

(

−
q2n,kσ

2

2ȳ
t

)

, where ν =
n

2
− 1 ,

ξn,k =
1

2ν−1Γ(ν + 1)

qν−1
n,k

Jν+1(qn,k)
, and qnk are the positive zeros of Jν(·),

which asymptotes to lim
t→∞

hn(t)

T (0)
=
q2n,1
2n

>
(n− 1)2

2n
. (23)

In the proof we use results from probability theory on the first passage of time of a n

brownian motion in a sphere center to the origin by Ciesielski and Taylor (1962) as well

as characterization from the zeros of the Bessel function from Qu and Wong (1999) and

Hethcote (1970).

Proposition 7 compares the asymptote of the hazard rate with the expected time until

adjustment, which equals T (0) = ȳ/(nσ2), as derived above. Notice that for a model with

constant hazard rate these two quantities are the reciprocal of each other, i.e. the expected

duration is the reciprocal of the hazard rate. We use this ratio, as a function of n as a

measure of how close the model is to have constant hazard rates. We note that this ratio is

exclusively a function of n. Indeed from the expression Proposition 7, it is immediate that

the shape of the hazard rate function depends only on the number of products n. Changes in

σ2, B, ψ only stretch linearly the horizontal axis. More precisely, once keeping the expected

time until adjustment T (0) fixed, the hazard rate is only a function of n.

Figure 2 plots the hazard rate function h for different choices of n keeping the expected

time between price adjustment fixed at one. As Proposition 7 shows the function h has an

asymptote, which is increasing in the number of products n. Moreover, since the asymptote

diverges to ∞ as n increases with no bound, the hazard rate converges to a an inverted L

shape, as the one for a model where adjustment are done exactly every T (0) = 1 periods.

To see this note that, defining ỹ ≡ y/ȳ and fixing the ratio σ2/ȳ = T (0)/n so that for any n
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Figure 2: Hazard rate of Price Adjustments for various choices of n
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For each n the value of σ2/ȳ is chosen so that the expected time elapsed between adjustments is one.

the expected time elapsed between price changes is T (0), we have:

dỹ = T (0)dt + 2

√

ỹ
T (0)

n
dW for ỹ ∈ [0, 1]. (24)

As n → ∞ the process for the normalized size of the price gap ỹ described in equation (24)

converges to the deterministic one, in which case the hazard rate is zero between times 0 and

below T (0) and ∞ precisely at T (0). For completeness, Table 2 computes the first zero for

the relevant Bessel functions and the asymptotic hazard rate for several value of n.

The shape of estimated hazard rates varies across studies, but many have found flat or

decreasing ones, and some have found hump-shape ones. As can be seen from Figure 2 the

hazard rate for the case of n = 1 is increasing but rapidly reaches its asymptote. As n is

increased, the shape of the hazard rate becomes closer to the inverted L shape of its limit as

n → ∞. For instance, when n = 10 the level of the hazard rate evaluated at the expected

duration is about twice as large as the one for n = 2. This is a prediction that can be tested
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Table 2: Limit hazard rates for various values of n

number of products n

1 2 3 4 6 8 10 20 50 100

zeroes of Jn
2
−1(·) : qn1 1.6. 2.4 3.1 3.8 5.1 6.4 7.6 13 30 56

Limit Hazard rate
Expected duration

: limt→∞
hn(t,ȳ)
T (0)

1.2 1.4 1.6 1.8 2.2 2.5 2.9 4.5 8.8 16

Note: for n = 1 and n = 3 the zeros are multiples of π, i.e. q1,k = (2(k − 1) + 1)π/2 and q3,k = k π.

using the data set in Bhattarai and Schoenle (2010).

Finally we discuss the distribution of price changes. This distribution is characterized by

two parameters: the number of goods n, and the optimal boundary of the inaction set ȳ.

The value of ȳ, as discussed above, depends on all the parameters. Since after an adjustment

price gaps are reset to zero, price changes coincide with the value of p(τ) ∈ ∂I ⊂ R
n, the

surface of an n-dimensional sphere of radius
√
ȳ. Let τ , be a time where y hits the boundary

of the range of inaction: then given that each of the (uncontrolled) pi(t) is independently

and identically normally distributed, price changes ∆p(τ) = −p(τ) are uniformly distributed

in the n-dimensional surface of the sphere of radius
√
ȳ.9 The next proposition characterizes

the marginal distribution of price changes.

Proposition 8. Let ∆p ∈ ∂I ⊂ R
n denote a price change for the n goods. The

distribution of the price change of an individual good, i.e. the marginal distribution of

∆pi ∈ [0,
√
ȳ ], has density:

w(∆pi) =
1

Beta
(

n−1
2
, 1
2

) √
ȳ

(

1−
(

∆pi√
ȳ

)2
)(n−3)/2

(25)

where Beta(·, ·) denotes the Beta function. The standard deviation and kurtosis of the price

9The distribution of ∆p(τ) is uniform in the surface of the sphere. To see this notice that the p.d.f. of a
jointly normally distributed vector of n identical and independent normals is given by a constant times the
exponential of the square radius of the sphere, divided by half of the common variance.
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changes, and expected value of the absolute value of price changes and its coefficient of

variations are given by:

Std ( ∆pi ) =
√

ȳ
/

n , Kurt ( ∆pi ) =
3 n

n+ 2
,

E [ |∆pi| ] =

√
ȳ

n−1
2
Beta

(

n−1
2
, 1
2

) ,
Std ( |∆pi| )
E ( |∆pi| )

=

√

[

n− 1

2
Beta

(

n− 1

2
,
1

2

)]2
1

n
− 1 .

Moreover, as n → ∞, the distribution of ∆pi/Std(∆pi) converges point-wise to a standard

normal.

The proof uses results from the characterization of spherical distributions by Song and

Gupta (1997). Using the previous proposition and the approximation for ȳ we obtain the

following expression for the standard deviation of price changes:

Std ( ∆pi ) =

(

σ2ψ

B

2(n+ 2)

n2

)1/4

and in the CRTS case Std ( ∆pi ) =

(

σ2ψ1

B

2(n+ 2)

n

)1/4

,

where both expressions are decreasing in n. The expression for the kurtosis of the price

changes shows that this statistic is an increasing function of n.

We can approximate some of the expressions in Proposition 8 for statistics for |∆pi|

involving the Beta function to obtain the following simpler expressions:10

E [ |∆pi| ] ≈
√

ȳ
/

n

√

2

π

√

1 +
1.1

2 n
= Std ( ∆pi )

√

2

π

√

1 +
1.1

2 n
and

Std ( |∆pi| )
E ( |∆pi| )

≈
√

π

2

(

2n

1.1 + 2n

)

− 1 .

The expression for the approximate value of E [|∆pi|] is given by Std (∆pi) times a decreasing

function of n. The expression for the approximate value of Std (|∆pi|) /E (|∆pi|) show that

this statistic is an increasing function of n.

We note that the shape of the distribution h for price changes differs substantially for

10 We note that error on the approximation error for E [ |∆pi| ] and Std ( |∆pi| ) /E ( |∆pi| ) are smaller
than 0.26% and 0.91%.
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small values of n. For n = 2 is U-shaped, for n = 3 is uniform, for n = 4 it has the shape of

a half circle, and for n ≥ 6 it has bell shape.11 Proposition 8 establishes that when n → ∞

the distribution converges to a normal: this can be seen in Figure 3 by the comparison of

the distribution for n = 50 and the p.d.d. of a normal distribution with standard deviation

equal to Std(∆pi) for n = 50.

Figure 3: Density w(·) of the price changes for various choices of n
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Parameter values: B = 20 , σ = 0.15 , ψ1 = 0.02. Menu cost proportional to n. Solid lines are the p.d.f for w
for different n. Circles denote the p.d.f. of a normal with standard deviation equal to that of ∆pi for n = 50.

Table 3 computes the size of the price adjustments, measured as E[|∆p|], as a function

of n. We do so for the two extreme technologies, the constant returns to scale (CRTS) and

the constant fixed cost (CFC) case. In each case we fix the value of the parameter Bσ2/ψ1

so that this statistic is 0.085, the value estimated by Bhattarai and Schoenle (2010) in US

data. We also report the values estimated for the US for other values of n. Comparing both

assumptions, it seems that the US data is somewhere in the middle, but closer to the case of

CRTS.

11For n equal to 2, 3 and 4 one can grasp the shape of the distribution h from geometrical considerations,
together with the fact the maximum of a density of a univariate normal is at one.
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Table 3: Size of Price changes E[|∆p|]

number of products n implied
1 2 4 6 10 50 ψ1

E[|∆p|] for C.R.T.S. model ψ = n ψ1: 10% 8.5% 7.5% 7.1% 6.8% 6.4% 0.03

E[|∆p|] for C.F.C. model: ψ = ψ1: 12% 8.5% 6.3% 5.4% 4.6% 2.9% 0.02

E[|∆p|] for US Data: - 8.5% 7.75% 6.75% 6.5% - -

Value of ψ1

Bσ2 chosen to match the size of price changes at n = 2. US data from Bhattarai and Schoenle
(2010), Figure 4. Implied ψ1 using B = 20 and σ = 0.15.

Furthermore, from the expressions in Proposition 8 the distribution of price changes ∆p,

and of their absolute value |∆p| depend only on n and ȳ. Thus, any normalized statistics

such as ratio of moments (kurtosis, skewness, etc) or a ratio of points in the c.d.f. depends

exclusively on n. Indeed the kurtosis is given in Proposition 8, asKurtosis(∆pi) = 3n/(2+n),

which is an increasing concave function, starting at 1 and converging to 3. Table 4 uses the

expressions of the model to compute several moments of interest. These moments have been

estimated using two scanner data sets by Midrigan (2009) and also using BLS producer data

by Bhattarai and Schoenle (2010). A summary of the selected statistics from these papers is

reproduced in Table 5.

We briefly comment on the reasons why the statistics chosen in Table 4 with Table 5 are

of interest. Note that the case of n = 1, price changes are binomial, either −√
ȳ or +

√
ȳ with

the same probability, so its absolute value has a degenerate distribution. As the the number

of goods increases the dispersion of the absolute value increases. The distribution includes

larger price changes, so that its kurtosis also increases with n. As there are more goods, some

goods will be adjusted even if their price is almost optimal, and hence the fraction of small

price changes increases with n. We draw two conclusions from the comparison of Table 4

with Table 5. First, for the four moments computed our model falls short from the data. In

particular, as shown in Proposition 8 the distribution in the model converged to a normal as
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Table 4: Statistics for price changes as function of number of products, Model economy

statistics \ number of products n 1 2 3 4 5 6 10 20 50

Std(|∆pi|) / E(|∆pi|) 0 0.48 0.58 0.62 0.65 0.67 0.70 0.74 0.75

Kurtosis(∆pi) 1.0 1.7 2.0 1.9 2.1 2.3 2.5 2.8 2.9

Fraction: |∆pi| < 1
2
E(|∆pi|) 0 0.21 0.25 0.27 0.28 0.28 0.30 0.31 0.31

Fraction: |∆pi| < 1
4
E(|∆pi|) 0 0.10 0.12 0.13 0.14 0.14 0.15 0.16 0.16

∆pi denotes the log of the price change, and |∆pi| the absolute value of the log of price changes. They are
computed using the results in Proposition 8. All statistics in the table depend exclusively on n. Kurtosis
defined as the fourth moment relative to the square of the second.

n goes to ∞. Yet the data displays values for the four moments even larger than the ones

corresponding to a standard normal. Second, our model reproduces the pattern of the four

moments in terms of their variation with respect to the number of products n.

Table 5: Statistics for price changes as function of the number of products, US data

Bhattarai and Schoenle Midrigan

Statistics Number of products n AC Nielsen Dominick’s
2 4 6 10 All No Sales All No Sales

Std(|∆pi|) / E(|∆pi|) 1.02 1.15 1.30 1.55 0.68 0.72 0.84 0.81

Kurtosis(∆pi) 5.5 7.0 11 17 3.0 3.6 4.1 4.5

Fraction: |∆pi| < 1
2
E(|∆pi|) 0.39 0.45 0.47 0.50 0.24 0.25 0.34 0.31

Fraction: |∆pi| < 1
4
E(|∆pi|) 0.27 0.32 0.35 0.38 0.10 0.10 0.17 0.14

Sources: For the Bhattarai and Schoenle (2010) data: the number of product n is the mean of the
categories considered based on the information in Table 1, the ratio Std(|∆pi|) / E(|∆pi|) is from Table
2 (Firm-Based), the fraction of |∆pi| which are small is from Table 14, the Kurtosis is from Figure 7.
The data from Midrigan (2007) are taken from distribution of standardized prices in Table 2a.
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5 Sensitivity to inflation

In this section we analyze the effect of inflation on the frequency of price adjustments and

the size distribution of price changes under the assumption that the inflation rate, which we

denote by µ, is small.

We model inflation as introducing a constant common drift on each of the n target prices

{p∗i (t)}. Equivalently, this means that each of the price gaps {pi(t)} has a negative drift µ,

so equation (26) becomes

pi(t) = −µt+ σWi(t) +
∑

j:τj<t

∆pi(τj) for all t ≥ 0 and i = 1, 2, ..., n. (26)

We were not able to characterize the solution of the problem for arbitrary values of µ.

Recall that in the case of µ = 0 the time t conditional distribution of ||p(t + ∆t)||2 at time

t + ∆t depends only on ||p(t)||2. Thus, since in the objective function is proportional to

y(t) ≡ ||p(t)||2, the state of the problem can be taken to be the scalar y(t), and hence the

shape of the control and inaction regions are all functions of y(t). In the case of µ 6= 0 the

time t conditional distribution of ||p(t+∆t)||2 at time t+∆t depends on ||p(t)||2 as well as

on µ [
∑n

i=1 pi(t)]. Thus the state of the problem will not be solely y, and hence the control

and inaction sets will not be functions exclusively of y = ||p||2. Also in the case of µ 6= 0 it

will not be the case that at a time τ where the firm adjust prices: ∆pi(τ) = −pi(τ). In other

words, conditional on an adjustments, firms will not set the price gap equal to the static

optimal value, since the state has a drift. Yet, even though we have not solved the model for

positive inflation, the next proposition shows that for many statistics inflation has a second

order effect.

For the next proposition we explicitly write µ as an argument of the value function V (p, µ),

and of the statistics such as frequency of price changes Na(µ), hazard of price changes h(t, µ),

the marginal distribution of price changes w(∆pi, µ), moments of the price changes E[∆pi, µ],

etc. We also define E[V ](µ) to be the expected value of the value function under the invariant
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distribution of the price gaps g(p) as E[V ](µ) ≡
∫

Rn
V (p, µ)g(p, µ)dp. We have:

Proposition 9. Assume that all the functions below are differentiable:

(a)
∂

∂µ
Na (µ)|µ=0 = 0, and

∂

∂µ
h (t, µ)|µ=0 = 0 for all t ≥ 0 ,

(b)
∂

∂µ
E [∆pi, µ]|µ=0 =

1

Na(0)
> 0 and

∂2

∂µ2
E [∆pi, µ]|µ=0 = 0 ,

(c)
∂

∂µ
E

[

(∆pi − E[∆pi])
2k , µ

]
∣

∣

∣

µ=0
= 0, for k = 1, 2, ...,

(d)
∂

∂µ
w (|∆pi|, µ)|µ=0 = 0 for all |∆pi| > 0 and

(e)
∂

∂µ
E[V ](µ)|µ=0 = 0 .

Part (a) shows that the average number of adjustments per unit of time, Na(µ), is in-

sensitive to inflation at µ = 0. Indeed, the whole hazard rate function of price adjustment,

h(t, µ), are also insensitive to inflation at µ = 0. Part (b) states that the expected value of

price changes increases linearly with µ with slope 1/Na(0), at least for small values of µ = 0.

This follows from (a) and from the identity: µ = na(µ) E [∆pi, µ], i.e. that the product of

the average price change times the number of adjustments equals the inflation rate.

The result that the “intensive” margin of price adjustment is insensitive to inflation at

µ = 0 applies to the special case of models with only one product, i.e. n = 1, as it is illustrated

in the numerical results reported in Figure 3 of Golosov and Lucas (2007), when σ > 0. The

proof of each of these results, as well as of the other parts of this proposition, is based on the

symmetry of the problem. For instance it is easy to see that V (p, µ) = V (−p,−µ) given the

symmetry of the loss function and of the distribution of shocks. Likewise, is it easy to see

that Na(µ) = Na(−µ). Thus, if Na is differentiable at zero, then it must be flat. We skip a

proof of the symmetry and of the proposition, since it follows the same lines than the proof

for the analogous results in the model with n = 1 but observation and menu cost in Alvarez,

Lippi, and Paciello (2010).12

12 The case of σ = 0, which corresponds to the model in Sheshinski and Weiss (1977), the “insensitivity
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The theoretical result about the insensitivity of Na -and the associated linearity of E[∆p]-

is supported by the evidence in Gagnon (2009) who, among others, find that when inflation is

low (say below 10-15%), the frequency of price changes is almost unrelated to inflation, and

that the average magnitude of price changes has a tight linear relationship with inflation.

To understand (c) and (d) it is useful to realize that for µ = 0 the distribution of price

changes is symmetric around zero, a consequence of the symmetry of the loss function and

of the distribution of the shocks. Part (c) shows that all the even centered moments are

approximately the same for zero and low inflation. Importantly, this includes kurtosis which

is one of the moments that researchers have focused in the analysis of the effect of multi-

products firms. Yet we are pretty sure that inflation will have a first order effect on other

aspects of the distribution of price changes such as skewness. Part (d) shows that the whole

distribution of the absolute value of price changes is approximately the same for low and zero

inflation. Finally part (e) shows that inflation has only a second order effect on the expected

value function. Equivalently, inflation causes a second order increase in the unconditional

expectation of losses for the firm.

These results show that the expected losses of the firm as well as the frequency and several

moments of the size distribution of price changes are insensitive to inflation at µ = 0. Thus,

the analysis of the problem in a low inflation environment is well approximated by studying

the case of zero inflation.

6 Random free adjustment opportunities

We introduce into the model of Section 2 free price adjustment opportunities, which are

independent of the driving processes {Wi(t)} for price gaps and which arrive according to a

Poisson process with constant intensity λ. We assume that at the time of the arrival of these

opportunities that firm can adjust all prices without paying the cost ψ.

result” does not hold, since while the function na is symmetric, it has a kink at µ = 0. We conjecture, but
have not proven, that as long as σ > 0, all these functions are differentiable at µ = 0. The economics are
clear: the effect of small inflation is swamped by idiosyncratic shocks when σ > 0.

31



For simplicity we describe the problem for the firm using y = ||p||2 as a state, and write

down the parts which change from the baseline case where λ = 0. Upon the arrival of a free

adjustment opportunity, the firm will set the price gap to zero, hence the Bellman equation

for the range of inaction reads:

r v(y) = By + λ [v(0)− v(y)] + nσ2 v′(y) + 2σ2y v′′(y), for y ∈ (0, ȳ) , (27)

The value matching conditions described by equation (11), the smooth pasting conditions

described by equation (12), the optimal return point described by equation (13), as well as

the other variational inequalities remain unchanged by the introduction of λ.

Proposition 10. Let ȳ(r, λ) and v(y; r, λ) be the optimal threshold and value function

for a problem with discount rate r and arrival rate λ. Then ȳ(r, λ) = ȳ(r + λ, 0) and

v(y; r, λ) = v(y; r + λ, 0)− λψ/r.

The proof of this proposition follows immediately from a guess and verify strategy. Given

this result we can use the characterization of ȳ with respect to r in Proposition 4 to study

the effect of r + λ into ȳ. From Parts (iv) and (iii) ofProposition 4 it follows that ȳ is

approximately constant with respect to λ.

We now turn to the discussion of the implications of introducing free price adjustment

opportunities at rate λ for the hazard rate and frequency of price changes. We denote h(t; r, λ)

the hazard rate for the model with discount rate r and arrival of free adjustments λ. For the

hazard rates we have the following immediate result:

h(t; r, λ) = h(t, r + λ) + λ, (28)

this is immediate since an adjustment occurs the first time that the free adjustments happens

(which is exponentially distributed with parameter λ) or when y hits ȳ. We also let Na(ȳ;λ)

be the expected number of adjustments per unit of time of a model with λ and a given
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ȳ. To characterize Na we write the Kolmogorov equation for the expected time between

adjustments T (y) which solves:

λT (y) = 1 + n σ2 T ′(y) + 2 y σ2 T ′′(y) for y ∈ (0, ȳ) and T (ȳ) = 0 , (29)

Then expected number of adjustments is given by Na = 1/T (0). We have

Proposition 11. The solution for T (0) and its second order approximation are given by:

T (0) =
1

λ

1
n

(

ȳλ
σ2

)

[

1 +
∑∞

i=1

(

∏i
k=1

1
(k+1) (n+2k)

)

(

ȳλ
σ2

)i
]

1 + 1
n

(

ȳλ
σ2

)

[

1 +
∑∞

i=1

(

∏i
k=1

1
(k+1) (n+2k)

)

(

ȳλ
σ2

)i
] =

ȳ

nσ2

[

1− λ
ȳ

nσ2

(n + 4)

(2n+ 2)

]

+o(ȳ2) .

(30)

Thus λ has negligible effect if ȳ is very small, i.e. the first order term is the same as the one

for the model with λ = 0. An alternative representation of T (0) using Iν for the modified

Bessel function of the 1st kind and the Γ function is:

T (0) =
1

λ






1−

(

λ
2σ2

)
n
4
− 1

2

Γ
(

n
2

)

ȳ(
1

2
−n

4 )Iν

(

2
√

λ
2σ2
ȳ
)






where ν = |1− n

2
| , (31)

Next we discuss the invariant distribution for y for the case where λ > 0. The density of

the invariant distribution solves the following Kolmogorov forward equation:

λ

2σ2
f(y) = f ′′(y)y −

(n

2
− 2
)

f ′(y) (32)

With two boundary conditions f(ȳ) = 0 and
∫ ȳ

0
f(y)dy = 1. The solution of this ode is given

by

f(y) = y(
n
4
− 1

2)

[

C1Iν

(

2

√

λ

2σ2
y

)

+ C2Kν

(

2

√

λ

2σ2
y

)]

where C1, C2 are constant chosen to satisfies the boundary conditions, ν = |n
2
− 1| and where

Iν and Kν are the modified Bessel functions of the first and second kind, see Zaitsev and
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Polyanin (2003). We note that both modified Bessel functions are positive and satisfy that

Iν(0) = 0 and it is exponentially increasing for the first kind, and that Kν(0) = +∞ and it

is exponentially decreasing for the second kind.

We denote the marginal distribution of price changes by w(∆pi). Recall that firms change

prices either when y first reaches ȳ or when they get a free adjustment opportunity, even

though y < ȳ. Thus to construct the distribution of price changes we need two objects:

the distribution of the values of y at which the firms change all prices, and the marginal

distribution of price changes conditional on a value of y. The distribution of the values

of y at which firms adjust prices is constructed easily, given the invariant distribution of f

described above: a fraction (Na−λ)/Na of the adjustments happens when y = ȳ. Conditional

on the adjustment occurring when y < ȳ, they happen according to a density given by the

invariant f(y). The second element is the marginal distribution of price changes conditional

on a value of y, which we denote by w(∆pi; y). The marginal distribution of price changes,

that happen when y = ||p||2 at the time of the adjustment, is described in Proposition 8.

Thus the marginal distribution of price changes is given by

w(∆pi) = w(∆pi; ȳ)
Na − λ

Na
+

[
∫ ȳ

0

w(∆pi; y)f(y)dy

]

λ

Na

Notice that this distribution is a mixture of the w(∆pi, y) densities. These densities are

scaled versions of each other with different standard deviations. This increases the kurtosis

of the distribution of price changes compared to the case where λ = 0.
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A Proofs

Proposition 12. The origin is the optimal return point.

Proof. By contradiction, suppose it is not the case, and assume w.l.o.g. that t = 0 is a
period where an adjustment takes place and that p̂i > 0. Then, consider an alternative plan
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where p̂′i = 0 and where I ′ = I + {(0, 0, ...,−p̂i, ..., 0)} so that the next adjustment happens
exactly with the same probabilities. Letting τ be the next stopping time, then for 0 ≤ t ≤ τ
we have E0[||p(t)||2] = E0[||p(t)′||2] + p̂2i , and thus setting p̂i > 0 is not optimal.

Proof. (of Proposition 2 ) Notice that v′(0) = β1 and that v(0) = β0, so that we require
β1 > 0, which implies β0 > 0. Moreover, if β1 > B/r then v is strictly increasing and strictly
convex. If β1 = B/r then v is linear in y. If 0 < β1 < B/r, then v is strictly increasing at
the origin, strictly concave, and it reaches its unique maximum at a finite value of y. Thus,
a solution that satisfies smooth pasting requires that 0 < β1 < B/r, and the maximizer is
ȳ. In this case, y = 0 achieves the minimum in the range [0, ȳ]. Thus we have verified i),
ii) and iii). Finally, we require value matching at ȳ, i.e. v(ȳ) = v(0) + ψ. Let βi(β1) be the
solution of equation (15), as a function of β1. Note that for 0 < β1 < B/r, all the βi(β1) < 0
for i ≥ 2 and are increasing in β1, converging to zero as β1 goes to B/r. Smooth pasting can
be written as

0 = v′(ȳ; β1) ≡
∞
∑

i=1

i βi(β1) ȳ
i−1 ,

where we emphasize that all the βi can be written as a function of β1. From the properties of
the βi(·) discussed above, it follows that we can write the unique solution of 0 = v′(ρ̄(β1); β1)
as an strictly increasing function of β1, i.e. ρ̄

′(β1) > 0. Now we write value matching at ȳ
which gives:

ψ = v(ȳ, β1)− v(0, β1) = v(ȳ, β1)− β0(β1) =
∞
∑

i=1

βi(β1) ȳ
i .

We note that, given the properties of βi(·) discussed above, for any given y > 0 we have:
v(y, β1)− β0(β1) is strictly increasing in β1, as long as 0 < β1 < B/r. Thus, define

Ψ(β1) = v(ρ̄(β1), β1)− v(0, β1) =

∞
∑

i=1

βi(β1) ρ̄(β1)
i .

From the properties discussed above we have that Ψ(β1) is strictly increasing in β1 and that
it ranges from 0 to ∞ as β1 ranges from 0 to B/r. Thus Ψ is invertible. The solution of the
problem is given by setting:

β1(ψ) = Ψ−1(ψ) and ȳ(ψ) = ρ̄(β1(ψ)) .

Theorem 1. Øksendal (2000) Theorem 10.4.1 adds the following to equations (3)-(6) to
show that a function verifying these conditions is the solution of the problem.

1. 0 ≤ V (p) ≤ A(p) for all p ∈ R
n where A(p) = B||p||2 n (σ/r)2 is the expected

discounted value of never-adjusting,
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2. rV (p) ≤ B ||p||2 + σ2

2

∑n
i=1 Vii(p) for all p ∈ R

n\Ī,

3. V (p) ≤ minp̂ V (p̂) + ψ for all p ∈ R
n,

4. ∂I is a Lipschitz surface: i.e. it is locally the graph of an Lipschitz function,

5. the process {p(t)} spends no time in the boundary of the inaction region:

E

[
∫ ∞

0

χ{∂I}(p(t)) dt |p(0) = p

]

= 0, for all p ∈ R
n .

6. The second derivatives of V are bounded in a neighborhood of ∂I,

7. the stopping times τ ∗i that achieve the solution are finite,

8. Let τ ∗ be the optimal stopping time starting from p(0), the family {e−rτV (p(τ)); τ ≤ τ ∗}
is uniformly integrable for all p(0).

For completeness we state the definition of a Lipschitz surface.

Definition 1. The boundary of a bounded set I ⊂ R
n denoted by ∂I has Lipschitz domain

(or it is a Lipschitz surface) if there is constant K > 0 such that for all p ∈ ∂I there is
a neighborhood Bǫ(p) ∩ I and a system of coordinates x = (p1, p2, ..., pn−1), y = pn and a
function hp such that for all:

1. |h(x1)− h(x2)| < K|x1 − x2| for all x1, x2,

2. Bǫ(p) ∩ I = Bǫ(p) ∩ {(x, y) : y > hp(x)}, and

3. Bǫ(p) ∩ ∂I = Bǫ(p) ∩ {(x, y) : y = hp(x)}.

Proof. (of Proposition 3) We show that V so constructed has the following properties:

1. it only depends on the absolute value of the prices, since for all p ∈ R
n:

v

(

n
∑

i=1

p2i

)

= v

(

n
∑

i=1

|pi|2
)

.

for all p ∈ R
n,

2. The range of inaction is given by I = {p ∈ R
n
∣

∣

∑n
i=1 p

2
i ≤ ȳ}.

3. It solves the ODE given by equation (3). This can be seen by computing:

Vi(p) = v′

(

n
∑

i=1

p2i

)

2pi and Vii(p) = v′′

(

n
∑

i=1

p2i

)

(2pi)
2 + v′

(

n
∑

i=1

p2i

)

2 ,

replacing this into the ODE equation (3) we obtain the ODE equation (10), which v
solves by hypothesis.
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4. It satisfies value matching equation (4), which is immediate since it satisfied the value
matching condition for v given in equation (11).

5. it satisfies smooth pasting equation (6). Using the form of the solution for v, namely:

Vi(p) = v′

(

n
∑

i=1

p2i

)

2 pi =
n
∑

j=1

βj j

(

n
∑

k=1

p2k

)j−1

2 pi

Using that v satisfies smooth pasting we have:

0 =

n
∑

j=1

βj j

(

n
∑

k=1

p2k

)j−1

for any p with
∑n

k=1 p
2
k = ȳ, which establishes that Vi(p) = 0 for all i = 1, .., n and for

any p ∈ ∂I.

6. It satisfies optimality of the origin as return point, as given by equation (5). Direct
computation gives:

Vi(p) = v′

(

n
∑

i=1

p2i

)

2 pi =
n
∑

j=1

βj j

(

n
∑

k=1

p2k

)j−1

2 pi

which equals zero when evaluated at p = 0. Notice also that

Vii(0) = 2 β1 > 0 for all i = 1, ..., n and Vij(0) = 0 ,

thus, p = 0 is a local minimum.

Finally we show that a function V with these properties is a strong solution to the variational
inequality of the problem, and hence it is the value function by checking the extra conditions
of Theorem 1.
Item (1) holds by construction of v as in Proposition 2, were we have for all y > 0 or p 6= 0:

V (p) = v(y) > v(0) = β0 =
nσ2

r
β1 <

Bnσ2

r2
= A(p) .

Item (2) holds with equality in I by construction. It holds as inequality in Int(C). To see
why

Vi(p) = v′(||p||2)2pi and Vii(p) = v′′(||p||2)4(pi)2 + v′(||p||2)2 ,
but using Proposition 2 at p ∈ ∂I we have v′(||p||2) = 0 and v′′(||p||2) < 0. Additionally,
||p||2 > ȳ ∈ Int(C), thus

rV (ȳ) = Bȳ +
σ2

2
v′′(ȳ)n4ȳ < rV (p) = B||p||2 for all p ∈ Int(C) .
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Item (3) holds since by Proposition 2 we have v(y) is strictly increasing in (0, ȳ) and v(ȳ)−
v(0) = ψ, thus V (p) > V (0) + ψ for all p 6= 0.

Item (4) holds by taking h(p1, p2, ..., pn−1) =
√

ȳ −∑n−1
i=1 p

2
i for p2n > 0, otherwise take a

different coordinate system, i.e. solve for the ith coordinate for which p2i > 0. Clearly h is
Lipschitz.
Item (5) holds by considering the uncontrolled process dy = nσ2dt + 2σ

√
y dW and thus

E0 [y(t)] = nσ2t + y(0).
Item (6) holds since, as shown above, Vii(p) = v′′(ȳ) 4 p2i and

v′′(ȳ) =

∞
∑

i=2

βi i (i− 1) (ȳ)i−2

and since, as shown in Proposition 1, limi→∞ βi+1/βi = 0 and thus the function v is analytical
for all y > 0.
Item (7) holds, since y(t) has a strictly positive drift nσ2.
Item (8) holds since e−rτV (p(τ)) ≤ e−rτ

∗

(ψ + V (0)) .

Proof. (of Proposition 4 ) Using the expression for {βi} obtained in Proposition 1 value
matching and smooth pasting can be written as two equations in β2 and ȳ:

ψ =
B

r
ȳ + β2

[

2σ2(n+ 2)

r
ȳ + ȳ2 + ȳ2

∞
∑

i=1

κi r
i ȳi

]

0 =
B

r
ȳ + β2

[

2σ2(n+ 2)

r
ȳ + 2ȳ2 + ȳ2

∞
∑

i=1

κi (i+ 2) ri ȳi

]

where κi = r−i β2+i
β2

=
∏i

s=1
1

σ2(s+2)(n+2s+2)
. This gives an implicit equation for ȳ:

ψ =
B

r
ȳ

[

1−
2σ2(n+2)

r
ȳ + ȳ2 + ȳ2

∑∞
i=1 κi r

i ȳi

2σ2(n+2)
r

ȳ + 2ȳ2 + ȳ2
∑∞

i=1 κi (i+ 2) ri ȳi

]

(33)

Since the right hand side of equation (33) is strictly increasing in ȳ, and goes from zero
to infinity, then we obtain Part (i). Since the right hand side of equation (33) is strictly
decreasing in n, and goes to zero as n→ ∞, then we obtain Part (ii).

Rearranging this equation and defining z = ȳ r/σ2

ψ 2(n+ 2)

Bσ2
r2 = z2 + z3

[

2(n+ 2)
∑∞

i=1 ωi (i+ 1) zi−1 − 2−∑∞
i=1 ωi (i+ 2) zi

2(n+ 2) + 2z + z
∑∞

i=1 ωi (i+ 2) zi

]

(34)

where ωi =
∏i

s=1
1

(s+2)(n+2s+2)
. Substituting the expression for ωi one and collecting terms

on zi one can show that bracket of equation (34) that multiplies z3 is negative, and hence
ȳ >

√

ψ 2(n+ 2)σ2/B. Letting b = ψr22(n+ 2)/(Bσ2) we can write equation (34) as:

1 =
z2

b

(

1 + z

[

2(n+ 2)
∑∞

i=1 ωi (i+ 1) zi−1 − 2−∑∞
i=1 ωi (i+ 2) zi

2(n+ 2) + 2z + z
∑∞

i=1 ωi (i+ 2) zi

])
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Sice z ↓ 0 as b ↓ 0, then z2/b ↓ 1 as b ↓ 0, establishing Part (iii). From equation (34) it is
clear that the optimal threshold satisfies ȳ = σ2

r
Q
(

ψ
Bσ2

r2, n
)

. Differentiating this expression
we obtain Part (iv).

Proof. (of Proposition 6 ) The forward Kolmogorov equation is:

0 =
1

2

∂2

∂y2

(

[2σ
√
y]2 f(y)

)

− ∂

∂y

(

nσ2f(y)
)

for y ∈ (0, ȳ) , (35)

with boundary conditions:

1 =

∫ ȳ

0

f(y) dy and f(ȳ) = 0 . (36)

The first boundary conditions ensures that f is a density. The second is implied by the fact
that when the process reaches ȳ it is return to the origin, so the mass escape from these
points. Equation (36) implies the second order ODE: f ′(y)(n

2
− 2) = yf ′′(y). The solution of

this ODE for n 6= 2 is f(y) = A1y
n/2−1 + A0 for two constants A0, A1 to be determine using

the boundary conditions equation (36):

0 = A1(ȳ)
n/2−1 + A0 ,

1 =
A1

n/2
(ȳ)n/2 + A0ȳ .

For n = 2 the solution is f(y) = −A1 log(y)+A0 subject to the analogous conditions. Solving
for the coefficients A0, A1 gives the desired expressions.

Proof. (of Proposition 7 ) Let τ be the stopping time defined by the first time where the
sum of the square of the price gaps vector ||p(τ)||2 reaches the critical value ȳ, starting at the
origin at time zero, i.e. starting at ||p(0)|| = 0. Let Sn(t, ȳ) be the probability distribution for
stopping times τ ≥ t, alternatively let Sn(·, ȳ) be the survival function. Theorem 2 Ciesielski
and Taylor (1962) shows that for n ≥ 1:

Sn(t, ȳ) =
∞
∑

k=1

ξn,k exp

(

−
q2n,k
2ȳ

σ2 t

)

, where ξn,k =
1

2ν−1Γ(ν + 1)

qν−1
n,k

Jν+1(qn,k)
. (37)

where Jν(z) is the Bessel function of the first kind, where ν = (n − 2)/2, where qn,k are
the positive zeros of the Bessel function Jν(z), index in ascending order according to k, and
where Γ is the gamma function. The hazard rate is then given by:

hn(t, ȳ) = − 1

Sn(t, ȳ)

∂Sn(t, ȳ)

∂t
, with asymptote lim

t→∞
hn(t, ȳ) =

q2n,1 σ
2

2 ȳ
. (38)

As shown by Qu and Wong (1999), the zeroes of the Bessel function qn,k satisfy for n > 2
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the following inequalities:

(n

2
− 1
)

− ak
21/3

(n

2
− 1
)1/3

< qn,k <
(n

2
− 1
)

− ak
21/3

(n

2
− 1
)1/3

+
3

10
a2k

21/3
(

n
2
− 1
)1/3

(39)

where ak are the first negative zero of the Airy function. For instance a1 ≈ −2.33811, giving
a tight bound for the first zero qn,1, which determines the asymptote of the hazard rate. A
related simpler lower bound given by Hethcote (1970) for n ≥ 2 is

q2n,k >

(

k − 1

4

)2

π2 +
(n

2
− 1
)2

. (40)

Proof. (of Proposition 8 ) We first establish the following Lemma. Lemma. Let z be
distributed uniformly on the surface in the surface of the n-dimensional sphere of radius one.
We use x for the projection of z in any of the dimension, so zi = x ∈ [−1, 1]. The marginal
distribution of x = zi has density:

fn(x) =

∫ ∞

0

s(n−3)/2e−s/2

2(n−1)/2 Γ[(n− 1)/2]

e−sx
2/[2(1−x2)]
√
2π

s1/2

(1− x2)3/2
ds

=
Γ(n/2)

Γ(1/2) Γ[(n− 1)/2]
(1− x2)(n−3)/2 (41)

where the Γ function makes the density integrate to one. This lemma is an application of
Theorem 2.1, part 1 in Song and Gupta (1997), setting p = 2, so it is euclidian norm, and
k = 1 so it is the marginal of one dimension. We give a simpler proof below.

Now we consider the case where the sphere has radius different from one. Let p ∈ ∂I,
then

p =
p

∑n
i=1 p

2
i

ȳ =
p

√

∑n
i=1 p

2
i

√
ȳ = z

√
ȳ

where z is uniformly distributed in the n dimensional sphere of radius one. Thus each pi
has the same distribution than x

√
ȳ. Using the change of variable formula we obtained the

required result.
Part 2 of Theorem 2.1 in in Song and Gupta (1997) shows that if x the marginal of a

uniform distributed vector in the surface of the n-dimensional sphere, then x2 is distributed
as a Beta(1

2
, n− 12). If y is distributed as a Beta(α, β) then it has E(y) = α/(α + β) and

E(y2) = (α+1)/(α+β+1)E(y). Using these expressions for α = 1/2 and β = n/2 we obtain
the results for the standard deviation of ∆pi and its kurtosis. For the expected value of the
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absolute value of price changes we note that

E[|∆pi|] = 2

∫

√
ȳ

0

∆pi w(∆pi) d∆pi

=
2

Beta
(

n−1
2
, 1
2

)

∫

√
ȳ

0

∆pi

(

1−
(

∆pi√
ȳ

)2
)(n−3)/2

d∆pi

=

√
ȳ

n−1
2
Beta

(

n−1
2
, 1
2

)

where the second line uses the form of h and the last line uses that the following result:

∫ b

a

x
(

1− x2
)(n−3)/2

dx =
(1− x2)

(n−1)/2

1− n

∣

∣

∣

∣

∣

b

a

.

Then we have, using the fundamental property of the Gamma function

1
n−1
2

Beta
(

n−1
2
, 1
2

) =
Γ
(

n
2

)

n−1
2

Γ
(

n−1
2

)

Γ(1/2)
=

Γ
(

n
2

)

Γ
(

n+1
2

)

Γ(1/2)

Thus

E[|∆pi|] =
√
ȳ

n−1
2

Beta
(

n−1
2
, 1
2

) =
√
ȳ

Γ
(

n
2

)

Γ
(

n+1
2

)

Γ(1/2)

We can approximate these ratio of Gamma functions as

Γ
(

n
2

)

Γ
(

n+1
2

)

Γ(1/2)
≈
√

2

π

√

n+ 1/2

n

from where we obtain our expression.
For Std ( |∆pi| ) / E ( |∆pi| ) we use that, given the symmetry around zero we have:

Std ( |∆pi| ) / E ( |∆pi| ) =

√

E[∆p2i ]

E[|∆pi|]2
− 1 =

√

(

Std(∆pi)

E[|∆pi|]

)2

− 1

=

√

√

√

√

(

n−1
2

Beta
(

n−1
2
, 1
2

)

√
n

)2

− 1 ≈
√

π

2

(

2n

1 + 2n

)

− 1

For the convergence of ∆pi/Std(∆pi) to a normal, we show that y = x2 n converges to a
chi-square distribution with 1 d.o.f., where x is the marginal of a uniform distribution in the
surface of the n-dimensional sphere. The p.d.f of y ∈ [0, n], the square of the standardized
x, is

Γ
(

n
2

)

n Γ
(

n−1
2

)

Γ
(

1
2

)

(

1−
(y

n

))(n−3)/2 (y

n

)−1/2

,
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and the p.d.f. of a chi-square with 1 d.o.f. is

exp(−y/2) y−1/2

√
2 Γ

(

1
2

) .

Then, fixing y, taking logs in the ratio of the two p.d.f.’s, and taking the limit as n → ∞,
using that

Γ
(

n
2

) √
2

Γ
(

n−1
2

) √
n
→ 1 as n→ ∞ .

we obtain that the ratio of the two p.d.f.’s converges to one.

B Derivation of the approximation for ȳ

The smooth pasting and value matching conditions gives a system of two equations in two
unknowns,

0 = v′(ȳ) = β1 + 2β2ȳ

ψ = v(ȳ)− v(0) = β1ȳ + β2ȳ
2 ,

where β2 = (rβ1 − B)/(2σ2(n + 2)). We replace ȳ and β2 to obtain the following quadratic
solution for β1:

−β2
1 − ρβ1

(

2 ψ

σ2 (n+ 2)

)

+
B ψ 2

σ2 (n + 2)
= 0

taking the positive root and replacing it back to solve for ȳ yields:

ȳ =
2ψ

− rψ
σ2(n+2)

+

√

(

rψ
σ2(n+2)

)2

+ 2Bψ
σ2(n+2)

Taking r to zero in this expression we obtain equation (16).

C Numerical accuracy of the approximation

In this section we present some evidence on the numerical accuracy of the approximation.
We compare the value of ȳ obtained from the quadratic approximation to v described above,
with what we call the “exact” solution, which is the numerical solution using up to 30 terms
for βi in its the expansion.

The approximation are closer for smaller values of σ and ψ, which we regard as more
realistic.

The next figure shows the value of Na(n) for various n when the menu cost are constant
returns to scale, so ψ = ψ1n using the approximation and using the “exact” expression.
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Figure 4: Ratio of ȳ′s and of v(0)′s for the approximation relative to the “exact” solution
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Note: parameter values are B = 20 , σ = 0.25 , ψ1 = 0.03 and r = 0.03.

Figure 5: Frequency of adjustment Na for the CRTS ψ1n and constant ψ.
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D Approximating the Profit Function

Consider the expression for the rate of profits of a multiproduct firm. The marginal cost
for each of the products is Ci. The demand system is given by the sum of n independent
demands, with own price elasticity given by η. The parameter Ai is the intercept, in logs,
of the demand for the i− th product. Given the constant elasticity of demand and constant
marginal cost, the frictionless optimal price for the monopolist is a multiple of the marginal
cost, and independent of Ai. To keep the n goods symmetric we will assume that Ci and Ai
are perfectly correlated, so that when cost are high, and hence frictionless prices are high,
demand is also high. In this way we can keep the share of profits coming to each of the n
goods comparable, even if cost differ significantly.

We write the total profits per product

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An) ≡
n
∑

i=1

Π(Pi, Ci, Ai) =
n
∑

i=1

Ai P
−η
i (Pi − Ci)

Let P ∗
i = argmaxP Π(P,Ci, Ai). Assuming that

Ai = A (Ci)
η−1 ,

we obtain that profits, relative to the maximized profits, can be written as

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An)− Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

= B
n
∑

i=1

(

Pi − P ∗
i

P ∗
i

)2

+ o

(

n
∑

i=1

(

Pi − P ∗
i

P ∗
i

)2
)

where B = (η−1)η
2 n

.
To obtain the quadratic expression above we write a second order expansion of the profits,

divide both sides by the maximized total profits, and complete elasticities:

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

= 1 +
n
∑

i=1

1

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

∂

∂Pi
Π (Pi, Ci, Ai)|P ∗

i
P ∗
i

(

Pi − P ∗
i

P ∗
i

)

+
1

2

n
∑

i=1

1

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

∂2

∂P 2
i

Π (Pi, Ci)|P ∗

i
(P ∗

i )
2

(

Pi − P ∗
i

P ∗
i

)2

Computing the derivatives for our functional forms:
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∂

∂Pi
Π (Pi, Ci, Ai) = AiP

−η
(

−η
(

Pi − Ci
Pi

)

+ 1

)

∂2

∂P 2
i

Π (Pi, Ci) = −AiP−ηη
1

Pi

(

−η
(

Pi − Ci
Pi

)

+ 1

)

− AiP
−ηη

(

Ci
P 2
i

)

We have the standard result of a constant mark-up:

P ∗ =
η

η − 1
Ci =⇒

(

−η
(

Pi − Ci
Pi

)

+ 1

)

=

(

−η
(

ηCi − Ci(η − 1)

ηCi

)

+ 1

)

= 0 ,

and the maximized value of profits given by

Π(P ∗
i , Ci, Ai) = AiC

−η
i

(

η

η − 1

)−η
Ci

(

1

η − 1

)

= Ai C
1−η
i

(

η

η − 1

)−η (
1

η − 1

)

.

Hence the first and second derivatives, evaluated a the optimal prices are:

∂

∂Pi
Π (Pi, Ci, Ai) |P ∗ = 0

∂2

∂P 2
i

Π (Pi, Ci, Ai) |P ∗ = −AiP ∗−ηη
Ci

P ∗
i
2 = −Ai

(

Ci
η

η − 1

)−η
ηCi

P ∗
i
2

and

1

Π (P ∗
i , Ci, Ai)

∂2

∂P 2
i

Π (Pi, Ci, Ai) |P ∗(P ∗
i )

2 = −
Ai

(

Ci
η
η−1

)−η
ηCi

Ai C
1−η
i

(

η
η−1

)−η (
1
η−1

)
= − (η − 1) η

Thus the expansion can be written as:

Π(P1, .., Pn, C1, ..., Cn, A1, ..., An)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

= 1 +
1

2

n
∑

i=1

1

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

∂2

∂P 2
i

Π (Pi, Ci)|P ∗

i
(P ∗

i )
2

(

Pi − P ∗
i

P ∗
i

)2

= 1− 1

2

n
∑

i=1

Π(P ∗
i , Ci, Ai)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

(η − 1) η

(

Pi − P ∗
i

P ∗
i

)2

Using the assumption that Ai = A (Ci)
η−1 we have that

Π(P ∗
i , Ci, Ai)

Π(P ∗
1 , .., P

∗
n , C1, ..., Cn, A1, ..., An)

=
AiC

1−η
i

∑n
j=1AjC

1−η
j

=
1

n
,
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and hence the expression for B is:

B =
(η − 1)η

2 n
.
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