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Abstract

Why were people so unprepared for the global financial crisis, the European debt crisis, and

the Fukushima nuclear accident? To address this question, we study a model in which agents

make state-contingent plans - think about actions in different contingencies - subject to the

constraint that agents can process only a limited amount of information. The model predicts

that agents are unprepared in a state when the state has a low probability, the optimal action

in that state is uncorrelated with the optimal action in normal times, and actions are strategic

complements. We then compare the equilibrium allocation of attention to the efficient allocation

of attention. We characterize analytically the conditions under which society would be better

off if agents thought more carefully about optimal actions in rare events.
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1 Introduction

Recently the world was struck by several events with major consequences: the global financial crisis,

the European debt crisis, and the Fukushima nuclear accident. A common feature of these events

is that people were unprepared for them. How come virtually no one had thought through what to

do if an investment bank like Lehman Brothers collapses? How come virtually no one had thought

through what to do if several governments in the euro area find themselves on the brink of default?

How come virtually no one had thought through what to do if an earthquake and tsunami disable

the cooling system of a nuclear reactor on the Japanese coast? The questions we ask in this paper

are: Why were people so unprepared for these events? Under which circumstances will people be

unprepared again in the future? Would a social planner want people to be more prepared for these

events?

We believe that these are important questions. Had people been prepared to take good action

in each of these events, each of these events would have unfolded less dramatically. For example,

according to a report by the U.S. Nuclear Regulatory Commission the situation at the Fukushima

nuclear power plant would have been substantially less severe if the Tokyo Electric Power Company

(Tepco) had taken better actions following the earthquake and tsunami that hit Japan on March

11, 2011.1 However, being well prepared for each contingency is costly. Therefore, it is unclear

whether from an ex-ante perspective a social planner would want people to be more prepared for

these events.

To address these questions formally, we study a model in which agents make state-contingent

plans (i.e., they think about actions in different contingencies) subject to an information-processing

constraint. There are two states. Agents commit today to actions in the different states tomorrow.

This assumption captures the idea that decision-making takes time and once the state realizes

agents have to act quickly. Therefore, agents need to plan ahead. Agents have a prior over what

the optimal action is in each state and they can process additional information. However, agents

can process only a finite amount of additional information. Subject to this constraint, agents decide

how carefully to think about the optimal action in state one and the optimal action in state two.

We embed this decision problem into a setup with a continuum of agents. The payoff of an

agent in a state depends on the agent’s own action in that state, the mean action in the population

1The report was published by the German daily Tagesspiegel on its Web site www.tagesspiegel.de.
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in that state, and a fundamental in that state. The payoff function is quadratic. The uncertainty

about the optimal action in a state is due to uncertainty about the mean action in the population

in that state and the fundamental in that state.

We derive the equilibrium allocation of attention and compare it to the efficient allocation of

attention. Let us first describe the equilibrium allocation of attention and let us turn to efficiency

thereafter.

The model makes the following predictions. If a state is less likely, agents think less carefully

about the optimal action in that state, and thus the mean squared difference between the optimal

action and the actual action in that state is larger. More precisely, agents equate the probability-

weighted expected loss due to suboptimal actions across states. Therefore, the ratio of the expected

loss due to suboptimal action in state one to the expected loss due to suboptimal action in state

two equals one over the relative probability of state one. For example, if the relative probability of

state one is 0.01, then the expected loss due to suboptimal action will be one hundred times larger

in state one than in state two. Agents will take on average worse actions in the low probability

state.

Furthermore, the correlation of optimal actions across states matters for the quality of actions

taken in different states. Suppose one state has a high probability (“normal times”) and the other

state has a low probability (“unusual times”). Agents will think carefully about the optimal action

in normal times and thus will take good actions in normal times. If the optimal action in normal

times and the optimal action in unusual times are independent, thinking about the best action in

normal times fails to improve actions in unusual times. However, if the optimal action in normal

times and the optimal action in unusual times are correlated, thinking about the best action in

normal times also improves actions in unusual times. Thus, agents will take on average good actions

in the low probability state if the optimal action in the low probability state and the optimal action

in the high probability state are highly correlated.

Finally, strategic complementarity in actions makes the allocation of attention more extreme.

Suppose again that one state has a high probability (“normal times”) and the other state has a low

probability (“unusual times”) and thus agents think less about the optimal action in unusual times.

If actions are strategic complements (i.e., the optimal action in a state is increasing in the mean

action in the population in that state), then the fact that other agents are not thinking carefully
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about the optimal action in unusual times reduces the incentive for an individual agent to think

carefully about the optimal action in unusual times. As a result, the larger the degree of strategic

complementarity in actions, the less agents think about the optimal action in unusual times. In

fact, for a sufficiently high degree of strategic complementarity in actions, agents do not think at

all about the optimal action in unusual times. Agents are completely inattentive to the rare event.

Let us look at the recent events from the perspective of the model. Why was Tepco so unpre-

pared for the Fukushima nuclear accident? The model proposes the following answer: Humans have

a limited ability to process information and therefore cannot prepare well for every contingency.

A level nine earthquake is a low probability event; thinking carefully about how to run a nuclear

power plant efficiently in normal times fails to improve actions in times when an earthquake and

tsunami disabled the plant’s cooling system;2 and strategic complementarity in actions amplifies

the effect of a low probability on the allocation of attention. We think the strategic complemen-

tarity in actions in this case arose because companies tend to be punished less if they fail in times

when other companies are failing too.

Why were policy-makers, financial institutions, and academics so unprepared for the collapse

of Lehman Brothers? The model proposes the following answer: Humans have a limited ability to

process information and therefore cannot prepare well for every contingency. Collapse of one of the

most important U.S. financial institutions seemed a priori unlikely; and thinking carefully about

how to regulate financial institutions in normal times or how to fine-tune open market operations

to achieve a desired level of the federal funds rate helps little when confronted with an imminent

collapse of Lehman Brothers. Furthermore, we believe there is strategic complementarity in actions:

Policy-makers within a government have to push a common agenda to get a bill passed in Congress.

The management of a financial institution is punished less if it fails in times when other financial

institutions are failing too.3 Academics like to work on topics that other academics are working

2Financial Times in its May 7-8, 2011, issue quotes Goshi Hosono, a senior aide to Japan’s prime minister, saying

“Tepco’s job is to deliver a constant supply of electricity — extremely routine work. It is a company for stable times.”
3 In 14 out of 15 leading U.S. and European banks, the chief executive officer in 2010 either was already the CEO

before September 2008 (12 out of 15) or was a high ranking insider before September 2008 (2 out of 15). The only

financial institution with a CEO in 2010 who was an outsider before September 2008 is Royal Bank of Scotland,

effectively nationalized after September 2008. See the June 15, 2011, issue of Financial Times. We think this fact

supports the idea that the management of a financial institution is punished little when it does poorly at a time when
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on, because then those other academics are more likely to be interested in the work. Strategic

complementarity in actions makes agents focus even more on one contingency.

Would a planner want people to be more prepared for rare events? To answer this question, we

study the following planner problem. The planner can tell agents how to allocate their attention

(i.e., the planner can tell agents how carefully to think about the optimal action in state one and

the optimal action in state two), but the planner has to respect the agents’ information-processing

constraint (i.e., the constraint that agents can process only a limited amount of information). The

planner maximizes ex-ante utility of the agents. We then ask: Does the equilibrium allocation of

attention equal the efficient allocation of attention (i.e., the solution to the planner problem)? In

other words, would society be better off if agents allocated their attention differently? Consider the

case that the economy is efficient under perfect information, that is, inefficiencies, if any, arise due

to agents’ limited attention. We characterize analytically the relationship between the equilibrium

allocation of attention and the efficient allocation of attention. It turns out that a simple condition

on the payoff function of the agents governs the relationship between the equilibrium allocation of

attention and the efficient allocation of attention. If the cross derivative of the payoff function with

respect to the own action and the average action in the population and the second derivative of the

payoff function with respect to the average action in the population sum to zero, the equilibrium

allocation of attention equals the efficient allocation of attention. In this case, society cannot do

better by creating incentives for agents or forcing agents to allocate their attention differently, for

example, by passing a law that requires companies running nuclear power plants to have a precise

plan for actions in the case of an earthquake or tsunami. The equilibrium allocation of attention

already equals the efficient allocation of attention. Thus, ex-ante utility cannot be increased by

changing the allocation of attention. However, if the sum of these second derivatives is negative,

the planner would prefer agents to pay more attention to the state that they are devoting less

attention to. Finally, if the sum of these second derivatives is positive, the planner would prefer

agents to pay even less attention to the state that they are devoting less attention to.

This paper makes contact with three recent strands of literature. The paper is related to the

literature on rational inattention building on Sims (2003).4 The first main difference to the existing

other financial institutions do poorly too.
4For theoretical papers, see Sims (2003, 2006, 2010), Luo (2008), Máckowiak and Wiederholt (2009, 2010), Van

Nieuwerburgh and Veldkamp (2009, 2010), Woodford (2009), Matejka (2010 a,b), Mondria (2010), Paciello (2010),
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literature on rational inattention is that we compare the equilibrium allocation of attention to the

efficient allocation of attention. That is, we ask whether society would be better off if agents

allocated their attention differently. To the best of our knowledge, no one has done this before.

The second main difference to the existing literature on rational inattention is the application. We

study how agents make state-contingent plans, subject to an information-processing constraint.

The paper is also related to Angeletos and Pavan (2007). Angeletos and Pavan (2007) study an

economy with a continuum of agents in which each agent observes a noisy private and public signal.

The precision of the two signals is exogenous. Actions are a linear function of the two signals and

Angeletos and Pavan (2007) refer to the coefficients on the two signals as the “use of information.”

They then compare the equilibrium use of information to the efficient use of information, where the

latter is defined as the one that maximizes ex-ante utility. We find that the condition that governs

the relationship between the equilibrium and efficient use of information in Angeletos and Pavan

(2007) also governs the relationship between the equilibrium and efficient allocation of attention in

our model with an endogenous signal precision.

This paper also makes contact with the literature on rare large disasters. See for example Barro

(2006), Barro, Nakamura, Steinsson, and Ursua (2010), Gabaix (2010), and Gourio (2010). This

literature investigates the implications of rare large disasters for asset prices and business cycles.

In this literature, agents act perfectly in a rare event. We model agents as acting imperfectly in

a rare event. We then investigate how much incentive agents have to prepare for a rare event. If

people had been prepared to take good action in historical rare adverse events, these events would

have unfolded less dramatically and perhaps would not be called “disasters” today.

The paper is organized as follows. Section 2 presents the model. Section 3 presents the analytical

solution of the model when optimal actions are independent across states. Section 4 studies the

case of correlated optimal actions. Section 5 compares the equilibrium allocation of attention to

the efficient allocation of attention. Section 6 considers an extension: Bayesian learning about the

probability of the rare event. Section 7 concludes.

Paciello and Wiederholt (2011), Tutino (2011), and Yang (2011). For empirical papers, see Máckowiak, Moench,

and Wiederholt (2009), Kacperczyk, Van Nieuwerburgh, and Veldkamp (2011), Melosi (2011), and Coibion and

Gorodnichenko (2011).
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2 Model

We study an economy with a continuum of agents indexed by i ∈ [0, 1]. Time is discrete and

indexed by t = 0, 1, 2, . . ..

Each period the economy is in one of two regimes. The regime follows a two-state Markov chain.

For simplicity, the regime is i.i.d. over time. In the following, we refer to regime one as state one

and regime two as state two. Let pn denote the probability of being in state n. Both states have

positive probability, that is, p1 > 0 and p2 > 0.

Every period each agent i commits to a state-contingent plan for the next period. This as-

sumption captures the idea that decision-making takes time and once the state realizes agents have

to act quickly. Therefore, agents need to plan ahead. Let ai,t = (ai,t,1, ai,t,2) ∈ R2 denote the

state-contingent plan that agent i commits to in period t− 1 for period t; where ai,t,n denotes the

action that agent i will take at time t in state n.

Let Ψn,t denote the cumulative distribution function for action ai,t,n in the cross-section of the

population. The payoff of agent i at time t in state n is given by Un (ai,t,n, at,n, zt,n) where ai,t,n is

the action of agent i at time t in state n, at,n ≡
Z
ai,t,ndΨ

n,t (ai,t,n) is the mean of individual actions

in the population, and zt,n is an exogenous payoff-relevant variable. The superscript n indicates

that the payoff function may differ across states. For tractability, we assume that Un is quadratic

Un (ai,t,n, at,n, zt,n) = Un (0, 0, 0) + Un
aiai,t,n + Un

a at,n + Un
z zt,n

+
Un
aiai

2
a2i,t,n +

Un
aa

2
a2t,n +

Un
zz

2
z2t,n

+Un
aiaai,t,nat,n + Un

aizai,t,nzt,n + Un
azat,nzt,n. (1)

This assumption can also be viewed as a second-order approximation of any twice differentiable

function with these three arguments. We also assume that Un is concave in its first argument

(Un
aiai < 0), the exogenous variable zt,n affects the payoff-maximizing action (Un

aiz 6= 0), and the

degree of strategic complementarity or substitutability does not exceed one (−1 < Un
aia/U

n
aiai < 1).

In the following, we often exploit the fact that the payoff function Un can be expressed as5

Un (ai,t,n, at,n, zt,n) = Un
¡
a∗i,t,n, at,n, zt,n

¢
+

Un
aiai

2

¡
ai,t,n − a∗i,t,n

¢2
,

5To obtain this result, compute a Taylor expansion of Un around a∗i,t,n and notice that the first derivative of U
n

with respect to ai,t,n evaluated at a∗i,t,n equals zero and the second derivative of U
n with respect to ai,t,n equals

Un
aiai .
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where

a∗i,t,n ≡ −
Un
ai

Un
aiai

−
Un
aia

Un
aiai

at,n −
Un
aiz

Un
aiai

zt,n.

Finally, we assume that the coefficients on at,n and zt,n in the last equation sum to one. This

assumption is without loss in generality. If this assumption is not satisfied, one can always redefine

the fundamental zt,n by multiplying it with a constant to ensure that this assumption is satisfied.

Defining δn ≡ −Un
aiai/2, ϕn ≡ −Un

ai/U
n
aiai and γn ≡ −Un

aia/U
n
aiai , the last two equations then

become

Un (ai,t,n, at,n, zt,n) = Un
¡
a∗i,t,n, at,n, zt,n

¢
− δn

¡
ai,t,n − a∗i,t,n

¢2
, (2)

with

a∗i,t,n = ϕn + γnat,n + (1− γn) zt,n. (3)

For simplicity, the vector of fundamentals zt = (zt,1, zt,2) is i.i.d. over time. Agents have the

common prior belief that the vector of fundamentals is i.i.d. over time and that the fundamental in

state one and the fundamental in state two are normally distributed with mean zero and covariance

matrix Σ, that is, zt = (zt,1, zt,2) ∼ i.i.d.N (0,Σ). There is prior uncertainty about the fundamental

in both states and the fundamentals in the two states are not perfectly correlated, that is, Σ is

non-singular. One can think of the prior uncertainty about the vector of fundamentals as reflecting

uncertainty about how the economy functions at time t in the two states.

Agents can process additional information before committing to a plan. However, agents can

process only a limited amount of additional information. Processing information about the optimal

action in state one and the optimal action in state two in the next period is modeled as receiving

a noisy signal concerning the fundamentals in the two states in the next period

si,t−1 =

⎛⎝ zt,1

zt,2

⎞⎠+
⎛⎝ εi,t−1,1

εi,t−1,2

⎞⎠ ,

where the noise (εi,t−1,1, εi,t−1,2) is independent of the fundamentals, normally distributed with

mean zero and covariance matrix Λ, and independent across individuals and over time. Let Ω =

Σ − Σ (Σ+ Λ)−1Σ denote the posterior covariance matrix of zt after receiving si,t−1. Following

Sims (2003), we model the fact that humans have a limited ability to process information as a

constraint on uncertainty reduction, where uncertainty is measured by entropy. That is, each agent
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faces the following constraint on uncertainty reduction:

1

2
log2

µ
|Σ|
|Ω|

¶
≤ κ,

where |Σ| denotes the determinant of the prior covariance matrix of zt and |Ω| denotes the determi-

nant of the posterior covariance matrix of zt after receiving si,t−1. The parameter κ > 0 indexes the

ability of an agent to process information. A larger κ means an agent can process more information

and can therefore reduce uncertainty by more.

Subject to the information-processing constraint, each agent decides how carefully to think

about the optimal action in state one and the optimal action in state two. Agents aim to maximize

the expected payoff in the next period. Formally, agent i solves in period t− 1

max
Λ

(
2X

n=1

pnE [U
n (ai,t,n, at,n, zt,n)]

)
, (4)

subject to

ai,t,n = E [ϕn + γnat,n + (1− γn) zt,n|si,t−1] , (5)

si,t−1 =

⎛⎝ zt,1

zt,2

⎞⎠+
⎛⎝ εi,t−1,1

εi,t−1,2

⎞⎠ , (6)

and
1

2
log2

µ
|Σ|
|Ω|

¶
≤ κ, (7)

and the restriction that Λ is a positive semidefinite matrix. Objective (4) is the expected payoff in

the next period. Equation (5) states that the agent will commit to the best plan given his or her

posterior. Equation (6) is the signal and constraint (7) is the information-processing constraint.

Note that the covariance matrix of noise Λ and the posterior covariance matrix of the funda-

mentals Ω have no subscripts i and t. The reason is that the solution to problem (4)-(7) is the

same for each agent i and every period t. This also means that the equilibrium is symmetric and

that agents only have to solve this problem once.6

6Note also that we have assumed that signals are normally distributed. One can show that Gaussian signals are

optimal given the quadratic objective, the Gaussian prior, and the constraint on entropy reduction. See Sims (2006).
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3 Analytical solution when optimal actions are independent

When the optimal action in state one and the optimal action in state two are independent, the

model can be solved analytically. We use this analytical solution to illustrate how the probability

of state one and the degree of strategic complementarity in actions affect the extent to which agents

think about the optimal action in state one.

Proposition 1 Assume that the optimal action in state one and the optimal action in state two are

independent (i.e., Σ is diagonal). Consider equilibria of the form at,n = ψn + φnzt,n where ψn and

φn are coefficients. Then, each agent decides to receive independent signals about the fundamental

in state one and the fundamental in state two (i.e., the covariance matrix of noise Λ solving problem

(4)-(7) is diagonal). Furthermore, the information-processing constraint reduces to

1

2
log2

µ
Σ11
Ω11

¶
| {z }

κ1

+
1

2
log2

µ
Σ22
Ω22

¶
| {z }

κ2

≤ κ,

where Σnn and Ωnn denote the prior and the posterior variance of the fundamental in state n and

κn denotes the uncertainty reduction about the fundamental in state n. Assume that γ1 = γ2 ≡ γ.

If the parameters κ and γ satisfy 2κ > γ
1−γ and (1− γ) 2κ + γ2−κ > 1, the equilibrium is unique

and the attention allocated to thinking about the optimal action in state one equals

κ1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ if

q
p1δ1Σ11
p2δ2Σ22

≥ (1− γ) 2κ + γ2−κ

1
2κ+

1
2 log2 (x) if

q
p1δ1Σ11
p2δ2Σ22

∈
h

1
(1−γ)2κ+γ2−κ , (1− γ) 2κ + γ2−κ

i
0 if

q
p1δ1Σ11
p2δ2Σ22

≤ 1
(1−γ)2κ+γ2−κ

, (8)

where

x ≡

q
p1δ1Σ11
p2δ2Σ22

− γ
1−γ2

−κ

1−
q

p1δ1Σ11
p2δ2Σ22

γ
1−γ 2

−κ
. (9)

Furthermore, for any parameters κ and γ, the set of equilibria is given by the following results:

(1) κ1 = κ is an equilibrium if
q

p1δ1Σ11
p2δ2Σ22

≥ (1− γ) 2κ + γ2−κ; (2) κ1 = 0 is an equilibrium ifq
p1δ1Σ11
p2δ2Σ22

≤ 1
(1−γ)2κ+γ2−κ ; (3) κ1 =

1
2κ +

1
2 log2 (x) is an equilibrium if (1− γ) 2κ + γ2−κ ≥ 1,q

p1δ1Σ11
p2δ2Σ22

∈
h

1
(1−γ)2κ+γ2−κ , (1− γ) 2κ + γ2−κ

i
and

q
p1δ1Σ11
p2δ2Σ22

γ
1−γ < 2κ; or (1− γ) 2κ + γ2−κ ≤ 1,q

p1δ1Σ11
p2δ2Σ22

∈
h
(1− γ) 2κ + γ2−κ, 1

(1−γ)2κ+γ2−κ
i
and

q
p1δ1Σ11
p2δ2Σ22

γ
1−γ > 2κ; and (4) any κ1 ∈ [0, κ] is an

equilibrium if
q

p1δ1Σ11
p2δ2Σ22

= γ
1−γ 2

−κ = 1.
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Proof. See Appendix A.

To understand Proposition 1, consider first the simplest case. If γ = 0, the payoff-maximizing

action of an agent depends only on the fundamental not on the average action in the population,

that is, actions are neither strategic complements nor strategic substitutes. See equation (3). When

Σ and Λ are diagonal, the decision problem (4)-(7) then reduces to

max
(κ1,κ2)∈R2+

"
−

2X
n=1

pnδnΩnn

#
, (10)

subject to

Ωnn = Σnn2
−2κn , (11)

and

κ1 + κ2 = κ. (12)

The unique solution to this problem is

κ1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ if

q
p1δ1Σ11
p2δ2Σ22

≥ 2κ

1
2κ+

1
2 log2

³q
p1δ1Σ11
p2δ2Σ22

´
if
q

p1δ1Σ11
p2δ2Σ22

∈ [2−κ, 2κ]

0 if
q

p1δ1Σ11
p2δ2Σ22

≤ 2−κ
. (13)

The attention allocated to thinking about the optimal action in state one is increasing in the agent’s

information-processing ability, κ, the relative probability of state one, p1/p2, the relative cost of a

mistake in state one, δ1/δ2, and the relative prior variance of the fundamental in state one, Σ11/Σ22.

If the probability of state one is sufficiently low, agents do not think at all about the optimal action

in state one; if the probability of state one is in an intermediate range, agents think to some extent

about the optimal action in both states; and if the probability of state one is sufficiently high,

agents think only about the optimal action in state one. Finally, if p1δ1Σ11
p2δ2Σ22

= 1 agents think to the

same extent about the optimal action in state one and the optimal action in state two.

The equilibrium allocation of attention affects the quality of actions taken in the two states. If in

equilibrium agents think to some extent about the optimal action in both states (i.e., 0 < κ1 < κ),

the mean squared difference between the optimal action and the actual action in state one equals

Ω11 = Σ11

Ã
2κ

s
p1δ1Σ11
p2δ2Σ22

!−1
.
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The mean squared difference between the optimal action and the actual action in state two equals

Ω22 = Σ22

Ã
2κ

s
p2δ2Σ22
p1δ1Σ11

!−1
.

This follows from equations (11)-(13). Combining these two equations yields

p1δ1Ω11 = p2δ2Ω22.

In words, agents equate the probability-weighted expected loss due to suboptimal action across

states. This implies that
δ1Ω11
δ2Ω22

=
1
p1
p2

. (14)

The ratio of the expected loss due to suboptimal action in state one to the expected loss due to

suboptimal action in state two equals one over the relative probability of state one. Suppose that

state one has a low probability (“unusual times”) and state two has a high probability (“normal

times”). The model predicts that agents decide to take on average worse actions in state one

than in state two. Observing that agents take good actions in normal times does not imply that

agents will take good actions in unusual times! Agents may simply be focusing on normal times.

Quantitatively, the model predicts that if the probability of state one is 0.01, then the expected

loss due to suboptimal action will be ninety nine times larger in state one than in state two.

Next, consider the case of strategic complementarity in actions. Here strategic complementarity

in actions means that the payoff-maximizing action of an agent depends positively on the average

action in the population, that is, γ > 0. See equation (3). Strategic complementarity in actions

makes the equilibrium allocation of attention more extreme. Whatever agents were paying more

attention to in the absence of strategic complementarity, agents are paying even more attention

to in the presence of strategic complementarity (if possible, that is, if the allocation of attention

in the absence of strategic complementarity was not already a corner solution). This result can

be seen from equations (8)-(9). We also illustrate this result with a figure. Figure 1 depicts

the equilibrium allocation of attention as a function of
q

p1δ1Σ11
p2δ2Σ22

; for parameters κ and γ satisfying

2κ > γ/ (1− γ) and (1− γ) 2κ+γ2−κ > 1. These parameter restrictions ensure that the equilibrium

allocation of attention is unique (see Proposition 1). In Figure 1 γ = 0 denotes the case of no

strategic complementarity in actions, γ >> 0 denotes a value of γ close to the value at which

(1− γ) 2κ + γ2−κ = 1, and γ > 0 denotes a value of γ between these two extremes. Pick any

11



value of
q

p1δ1Σ11
p2δ2Σ22

with the property
q

p1δ1Σ11
p2δ2Σ22

6= 1, for example, a value with
q

p1δ1Σ11
p2δ2Σ22

< 1. In

the absence of strategic complementarity in actions (γ = 0), agents think less about the optimal

action in state one than about the optimal action in state two (κ1 < 1
2κ). As the degree of strategic

complementarity in actions increases (from γ = 0 to γ > 0 or γ >> 0), agents think even less

about the optimal action in state one (κ1 falls). The reason is the following. When actions are

strategic complements, the fact that other agents are not thinking carefully about the optimal

action in a state reduces the incentive for an individual agent to think about the optimal action

in that state. This effect of strategic complementarity in actions on the equilibrium allocation of

attention is well understood in the literature on information choice. See, for example, Máckowiak

and Wiederholt (2009) and Hellwig and Veldkamp (2009). In addition, as the degree of strategic

complementarity increases, corner solutions occur more easily. This implies that when the degree

of strategic complementarity is high, small changes in the probability of the two states can have

large effects on the equilibrium allocation of attention. In fact, as γ approaches the value of γ at

which (1− γ) 2κ+ γ2−κ = 1, the parameter region in which the equilibrium allocation of attention

is an interior solution collapses to a single point. Finally, for a sufficiently high degree of strategic

complementarity, there exist multiple equilibria. Namely, whenever (1− γ) 2κ + γ2−κ ≤ 1, there

exists more than one equilibrium allocation of attention. See Proposition 1.

Strategic substitutability in actions has the opposite effect. Strategic substitutability in actions

(i.e., γ < 0) makes the equilibrium allocation of attention less extreme. This result can again be

seen from equations (8)-(9).

In Proposition 1 it is assumed that the degree of strategic complementarity in actions is the

same across states, that is, γ1 = γ2 ≡ γ. In Appendix A we also characterize in closed form the

set of equilibria when the degree of strategic complementarity differs across states. Suppose that

actions are strategic complements in both states but the degree of strategic complementarity may

differ across states. The equations given in Appendix A then imply the following results. There

exists a unique equilibrium for all
q

p1δ1Σ11
p2δ2Σ22

∈ R++ if and only if

1

(1− γ1)
h
2κ + γ2

1−γ2
2−κ

i < (1− γ2)

∙
2κ +

γ1
1− γ1

2−κ
¸
<

1
γ2
1−γ2

2−κ
. (15)
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The attention allocated to state one then equals

κ1 =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
κ if

q
p1δ1Σ11
p2δ2Σ22

≥ (1− γ2)
h
2κ + γ1

1−γ1
2−κ

i
1
2κ+

1
2 log2 (x) otherwise

0 if
q

p1δ1Σ11
p2δ2Σ22

≤ 1

(1−γ1) 2κ+
γ2

1−γ2
2−κ

,

where

x ≡

q
p1δ1Σ11
p2δ2Σ22

− γ1
1−γ1

2−κ

1−
q

p1δ1Σ11
p2δ2Σ22

γ2
1−γ2

2−κ
.

These equations and condition (15) imply that, if the equilibrium allocation of attention is an

interior solution, increasing the probability of a state raises the attention allocated to that state.

Furthermore, increasing the degree of strategic complementarity in a single state (an experiment

we could not do before because we assumed that the degree of strategic complementarity was

the same across states) reduces the attention allocated to that state. Finally, when the degree

of strategic complementarity differs across states, there are many different ways of increasing the

degree of strategic complementarity simultaneously in both states (e.g., one can increase the degree

of strategic complementarity by the same absolute amount in both states or by the same percentage

amount in both states). Multiplying γ1/ (1− γ1) and γ2/ (1− γ2) by the same constant c > 1,

reduces the attention allocated to state one if and only if

p1δ1Σ11
p2δ2Σ22

<

γ1
1−γ1
γ2
1−γ2

.

When the degree of strategic complementarity is the same across states (i.e., γ1 = γ2 ≡ γ), this

statement reduces to the statement made earlier that if agents allocate less attention to state one,

then raising the degree of strategic complementarity in both states reduces the attention allocated

to state one.

4 Correlated optimal actions

In this section we relax the assumption that optimal actions are independent across states. We

study how the correlation of optimal actions across states affects the quality of actions taken in the

different states. We consider the special case of no strategic complementarity in actions, that is,

13



γ1 = γ2 = 0. In this case the solution to the decision problem of a single agent is also the solution

of the model, because there is no interaction between agents.

The decision problem of a single agent is given by equation (4)-(7). The statement “the optimal

action in state one is correlated with the optimal action in state two” means that the matrix Σ

appearing in constraint (7) is non-diagonal. We solve the problem (4)-(7) numerically for different

values of the covariance between the optimal actions in the two states, Σ12.

It is simplest to understand the solution when one supposes that: (i) state one has a low

probability (“unusual times”) and state two has a high probability (“normal times”), and (ii) the

cost of a mistake in each state is the same, δ1 = δ2. The solution has the following feature:

The larger in absolute value the prior correlation of the optimal actions across the two states,

the smaller the expected loss in unusual times. To see why this result arises, start in the case

when there is independence between the optimal action in normal times and the optimal action in

unusual times. Agents then think mostly about the optimal action in normal times, and thinking

about the optimal action in normal times gives no information about the optimal action in unusual

times. Consequently, the expected loss in unusual times is large. Next, suppose the optimal action

in normal times and the optimal action in unusual times are correlated a priori. Now thinking

about the best action in normal times gives some information about the best action in unusual

times. Consequently, the expected loss in unusual times falls. The stronger the prior correlation,

the stronger this effect and thus the smaller the mean squared difference between the actual action

and the optimal action in unusual times.

Another feature of the solution is that the posterior correlation of the optimal actions across

states is a convex function of their prior correlation. When the prior correlation rises in absolute

value, the posterior correlation stays close to zero at first and then swiftly moves to one in absolute

value. So long as the prior correlation is not too large in absolute value, it is optimal to behave

practically as if the prior correlation were zero.

Consider a numerical example. Suppose that Σ11 = Σ22 = 1, i.e. the prior variance of the

optimal action in each state equals one. Furthermore, let p1 = 0.01 meaning that the probability

of unusual times is 0.01. To begin with, suppose that Σ12 = 0, i.e. the optimal actions are

independent across the states. In this case, Λ and Ω are diagonal. We choose a value of κ such
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that the posterior variance of the optimal action in normal times, Ω22, equals 0.01.7 Then it turns

out that the posterior variance of the optimal action in unusual times, Ω11, equals 0.99. Suppose

that Σ12 rises, i.e. the optimal actions become more and more positively correlated a priori, and all

other parameters remain unchanged.8 Figure 2 shows Ω11, Ω22, and the posterior correlation of the

optimal actions, Ω12/
√
Ω11Ω22, as functions of Σ12. Ω11 falls and is concave. More prior correlation

in the optimal actions implies that agents do better on average in unusual times, but concavity

means that this effect sets in slowly.9 Furthermore, Ω12/
√
Ω11Ω22 rises and is convex. For values

of Σ12 as large as 0.8, Ω12 is as small as 0.1 meaning that it is optimal to behave practically as if

Σ12 were zero.

5 Efficient allocation of attention

Would society be better off from an ex-ante perspective if agents allocated their attention differ-

ently? To answer this question, we study the following planner problem. The planner can tell

agents how to allocate their attention (i.e., how carefully to think about the optimal actions in

the different states). The planner has to respect the agents’ information-processing constraint (i.e.,

the planner has to respect that agents can process only a limited amount of information). Finally,

the planner maximizes ex-ante utility of the agents. The propositions in this section characterize

analytically the relationship between the equilibrium allocation of attention and the efficient al-

location of attention (i.e., the solution to the planner problem). When the two coincide, ex-ante

utility cannot be raised by creating incentives for agents to allocate their attention differently, for

example, by passing a law that requires companies running nuclear power plants to have a precise

plan for actions in the case of an earthquake or tsunami. The equilibrium allocation of attention

already equals the efficient allocation of attention. When the two differ, ex-ante utility can be

raised by changing the allocation of attention.

Before stating the planner problem, we derive a simple expression for expected utility in state n,

that is, E [Un (ai,t,n, at,n, zt,n)]. The derivation follows closely the derivation of a similar expression

7This value of Ω22 means that thinking about the optimal action in normal times reduces the variance of that

action by a factor of 100.
8Since Σ11 = Σ22 = 1, Σ12 is both the prior covariance of the optimal actions and their prior correlation.
9Ω22 also falls.
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in Angeletos and Pavan (2007). Let Ũn (at,n, zt,n) ≡ Un (at,n, at,n, zt,n) denote the payoff in state n

when all agents take the same action ai,t,n = at,n. It follows from equation (1) that

Ũn (at,n, zt,n) = Un (0, 0, 0) +
¡
Un
ai + Un

a

¢
at,n + Un

z zt,n

+
Un
aiai + 2U

n
aia + Un

aa

2
a2t,n +

Un
zz

2
z2t,n +

¡
Un
aiz + Un

az

¢
at,nzt,n. (16)

In the following, we assume that Ũn (at,n, zt,n) is concave in its first argument, that is,

Un
aiai + 2U

n
aia + Un

aa < 0. (17)

Let a∗t,n denote the common action at,n ∈ R that maximizes Ũn (at,n, zt,n). It follows from equations

(16) and (17) that

a∗t,n = −
Un
ai + Un

a

Un
aiai + 2U

n
aia + Un

aa

−
Un
aiz + Un

az

Un
aiai + 2U

n
aia + Un

aa

zt,n. (18)

One can show that expected utility in state n equals

E [Un (ai,t,n, at,n, zt,n)] = E
h
Ũn
¡
a∗t,n, zt,n

¢i
−
¯̄
Un
aiai + 2U

n
aia + Un

aa

¯̄
2

E
h¡
at,n − a∗t,n

¢2i
−
¯̄
Un
aiai

¯̄
2

E
h
(ai,t,n − at,n)

2
i
. (19)

The proof is in Appendix B. The last equation implies that expected utility is maximized when all

agents take the action a∗t,n for all zt,n, that is, ai,t,n = a∗t,n for all zt,n. There is a loss in expected

utility when the mean action in the population does not move one for one with a∗t,n (the second

term on the right-hand side of the last equation) and when there is dispersion in actions (the third

term on the right-hand side of the last equation).

When Σ is diagonal and the planner considers equilibria of the form at,n = ψn + φnzt,n, the

problem of the planner who chooses the allocation of attention of the agents so as to maximize

expected utility of the agents reads:

max
(κ1,κ2)∈R2+

2X
n=1

pn

½
Un
aiai + 2U

n
aia + Un

aa

2
E
h¡
at,n − a∗t,n

¢2i
+

Un
aiai

2
E
h
(ai,t,n − at,n)

2
i¾

, (20)

subject to equation (18),

at,n = ψn + φnzt,n, (21)

ai,t,n = (ϕn + γnψn) + (γnφn + 1− γn)
Σnn
Λnn

Σnn
Λnn

+ 1
(zt,n + εi,t−1,n) , (22)
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ψn =
ϕn

1− γn
, φn =

(1− γn)
Σnn
Λnn

Σnn
Λnn

+1

1− γn
Σnn
Λnn

Σnn
Λnn

+1

, (23)

Σnn
Λnn

= 22κn − 1, (24)

and

κ1 + κ2 ≤ κ. (25)

Objective (20) is expected utility of the agents minus
X2

n=1
pnE

h
Ũn
¡
a∗t,n, zt,n

¢i
, which is a term

that the planner cannot affect. Equation (22) follows from equations (5)-(6) and equation (21).

Equation (23) follows from equations (21)-(22), the definition of at,n, and the assumption that

noise washes out in the aggregate. Equation (24) follows from the definition κn ≡ 1
2 log2

³
Σnn
Ωnn

´
and Ωnn = Σnn − Σnn (Σnn + Λnn)−1Σnn. Finally, constraint (25) is the information-processing

constraint of the agents in the case of diagonal Σ and Λ.

In the following, we focus on the case that the economy is efficient under perfect information,

that is, the equilibrium actions under perfect information equal the welfare-maximizing actions.

It follows from equation (5) and the definition of at,n that the equilibrium actions under perfect

information are given by

ai,t,n =
ϕn

1− γn
+ zt,n.

The welfare-maximizing actions are given by ai,t,n = a∗t,n where a∗t,n is given by equation (18).

The condition that the equilibrium actions under perfect information equal the welfare-maximizing

actions thus reads

−
Un
ai + Un

a

Un
aiai + 2U

n
aia + Un

aa

=
ϕn

1− γn
, (26)

and

−
Un
aiz + Un

az

Un
aiai + 2U

n
aia + Un

aa

= 1. (27)

Substituting equation (18), equations (21)-(24), and equations (26)-(27) into the planner’s objective

(20) gives

max
(κ1,κ2)∈R2+

−
2X

n=1

pnδnΣnn

"µ
1− 2γn +

Un
aa

Un
aiai

¶
1

(γn + (1− γn) 2
2κn)2

+
(1− γn)

2 ¡22κn − 1¢
(γn + (1− γn) 2

2κn)2

#
,

(28)

17



subject to

κ1 + κ2 ≤ κ. (29)

Increasing the attention allocated to state n reduces the mean squared difference between the mean

action at,n and the welfare-maximizing action a∗t,n (see the first term in square brackets in the

objective), but may increase or decrease the dispersion in actions in state n (see the second term

in square brackets in the objective). The reason for the second effect is that at κn = 0 dispersion

in actions in state n equals zero and as κn →∞ dispersion in actions in state n goes to zero, while

for intermediate values of κn dispersion in actions is positive.

Finally, in the following, we focus on the case where the degree of strategic complementarity is

the same across states and the ratio Un
aa/U

n
aiai is the same across states. The planner problem then

reduces to:

max
(κ1,κ2)∈R2+

−
2X

n=1

pnδnΣnn

"µ
1− 2γ + Uaa

Uaiai

¶
1

(γ + (1− γ) 22κn)2
+
(1− γ)2

¡
22κn − 1

¢
(γ + (1− γ) 22κn)2

#
, (30)

subject to

κ1 + κ2 ≤ κ. (31)

The next two propositions state results concerning the relationship between the equilibrium allo-

cation of attention and the efficient allocation of attention.

Proposition 2 Assume that Σ is diagonal, γ1 = γ2 ≡ γ, and 2κ > γ
1−γ and (1− γ) 2κ+γ2−κ > 1.

The equilibrium allocation of attention, denoted κequ1 , is then given by equation (8). Furthermore,

assume that condition (17), conditions (26)-(27) and
¡
U1aa/U

1
aiai

¢
=
¡
U2aa/U

2
aiai

¢
≡ (Uaa/Uaiai)

hold. The efficient allocation of attention, denoted κeff1 , is then given by the solution to problem

(30)-(31). Finally, suppose that the constraint (31) is binding and the problem (30)-(31) is convex.

Then the following result holds. If γ = (Uaa/Uaiai) or κequ1 = 1
2κ, the equilibrium allocation of

attention equals the efficient allocation of attention: κequ1 = κeff1 .

Proof. See Appendix C.

Proposition 2 can be interpreted as a welfare theorem for the allocation of attention. The

proposition states conditions under which the equilibrium allocation of attention equals the efficient

allocation of attention. The setup is the following: The conditions of Proposition 1 hold; agents take

the welfare-maximizing actions under perfect information; there is a certain degree of symmetry
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across states; and the planner problem is convex. In this case, the equilibrium allocation of attention

equals the efficient allocation of attention if either the payoff function has the property that the

ratio − (Uaia/Uaiai) equals the ratio (Uaa/Uaiai), or in equilibrium agents allocate their attention

equally across states (i.e., p1δ1Σ11p2δ2Σ22
= 1), or both.

A few comments on the setup are in order. The conditions of Proposition 1 imply that there

exists a unique equilibrium and a closed form solution for the equilibrium allocation of attention.

This simplifies the proof of Proposition 2. The condition that the economy is efficient under

perfect information is a natural benchmark. It means that inefficiencies, if any, arise due to limited

attention by agents. The requirement that there is a certain degree of symmetry across states will

be relaxed later.

The following proposition characterizes the direction of the inefficiency when the payoff function

does not have the property − (Uaia/Uaiai) = (Uaa/Uaiai) and in equilibrium agents do no allocate

their attention equally across states.

Proposition 3 Assume that the conditions of Proposition 2 are satisfied. Then the following result

holds. If γ 6= (Uaa/Uaiai), κ
equ
1 6= 1

2κ, and κequ1 ∈ (0, κ), the equilibrium allocation of attention

differs from the efficient allocation of attention. More precisely, when γ < (Uaa/Uaiai) the planner

would prefer agents to pay more attention to the state that they are allocating less attention to (i.e.,

when γ < (Uaa/Uaiai) then 0 < κequn < 1
2κ implies κ

eff
n > κequn ). In contrast, when γ > (Uaa/Uaiai)

the planner would prefer agents to pay even less attention to the state that they are allocating less

attention to (i.e., when γ > (Uaa/Uaiai) then 0 < κequn < 1
2κ implies κ

eff
n < κequn ).

Proof. See Appendix D.

When agents allocate their attention to some extent to both states, agents do not allocate their

attention equally across states, and the payoff function does not have the property − (Uaia/Uaiai) =

(Uaa/Uaiai), the equilibrium allocation of attention differs from the efficient allocation of attention.

In addition, the direction of the inefficiency can be seen directly from the payoff function. If

− (Uaia/Uaiai) < (Uaa/Uaiai) the planner would prefer agents to pay more attention to the state

that they are devoting less attention to. If − (Uaia/Uaiai) > (Uaa/Uaiai) the planner would prefer

agents to pay even less attention to the state that they are devoting less attention to.

For example, assume that state one has a low probability (“unusual times”) and state two

19



has a high probability (“normal times”). Furthermore, suppose that 1
(1−γ)2κ+γ2−κ <

q
p1δ1Σ11
p2δ2Σ22

< 1,

implying that in equilibrium agents think to some extent about the optimal action in unusual times,

but less than about the optimal action in normal times. Then, if − (Uaia/Uaiai) < (Uaa/Uaiai) the

planner would prefer agents to think more carefully about the optimal action in unusual times and

focus less on the optimal action in normal times than is the case in equilibrium.

Proposition 2 states two conditions under which the equilibrium allocation of attention equals

the efficient allocation of attention. One of the two conditions reads

− Uaia

Uaiai

=
Uaa

Uaiai

. (32)

This condition is equivalent to a condition that has already appeared in the literature in a different

context. More precisely, this condition is equivalent to the following condition which appears in

Angeletos and Pavan (2007):

− Uaia

Uaiai

= 1−
µ
Uaiai

Uaiai

+ 2
Uaia

Uaiai

+
Uaa

Uaiai

¶
. (33)

Angeletos and Pavan (2007) study an economy with a continuum of agents in which each agent

observes a noisy private and public signal. The precision of the two signals is exogenous. Due to the

quadratic Gaussian structure of the economy, actions are a linear function of the two signals and

Angeletos and Pavan (2007) refer to the coefficients on the two signals as the “use of information.”

They then compare the equilibrium use of information to the efficient use of information, where the

latter is defined as the one that maximizes ex-ante utility. For economies that are efficient under

perfect information, it turns out that the equilibrium use of information equals the efficient use of

information if and only if condition (33) is satisfied. We thus arrive at the following conclusion.

The same condition that governs the relationship between the equilibrium use of information and

the efficient use of information in Angeletos and Pavan (2007) also governs the relationship between

the equilibrium allocation of attention and the efficient allocation of attention in our model with an

endogenous signal precision. Our intuition for this finding is the following. If the use of information

is efficient, then under certain conditions the acquisition of information should also be efficient.

Proposition 2 assumes that there is a certain degree of symmetry across states. The degree of

strategic complementarity γn ≡ −
¡
Un
aia/U

n
aiai

¢
is assumed to be the same across states and the

ratio
¡
Un
aa/U

n
aiai

¢
is assumed to be the same across states. When this symmetry requirement is not
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satisfied, a sufficient condition for the equilibrium allocation of attention to equal the efficient allo-

cation of attention is that condition (32) holds for each state, that is, −
¡
Un
aia/U

n
aiai

¢
=
¡
Un
aa/U

n
aiai

¢
for n = 1, 2. The proof is the same as before. The agents’ first-order condition then equals the

planners’ first-order condition, and the conditions for corner solutions are the same for the agents

and the planner.

Finally, Proposition 3 which characterizes the direction of the inefficiency when γ 6= (Uaa/Uaiai),

κequ1 6= 1
2κ, and κequ1 ∈ (0, κ), does not cover the case of corner solutions. We now cover this case.

When γ > (Uaa/Uaiai) and κequ1 = 0 or κequ1 = κ, the equilibrium allocation of attention equals

the efficient allocation of attention. The reason is simple. The planner would prefer agents to pay

even less attention to the state that they are devoting less attention to. However, this is impossible

because the equilibrium allocation of attention is already a corner solution. Hence, the equilibrium

allocation of attention equals the efficient allocation of attention. They are both corner solutions.

When γ < (Uaa/Uaiai) and κequ1 = 0 or κequ1 = κ, the equilibrium allocation of attention may equal

or differ from the efficient allocation of attention. If the efficient allocation of attention is a corner

solution, the two coincide. If the efficient allocation of attention is not a corner solution, the two

differ.

6 Extension: Learning the probability of rare events

We have assumed that the probability of the economy being in any given state at any point in time

is known. In this section we study a version of the model in which the probability of the economy

being in any given state is a random variable.

Consider a random variable X that has a Bernoulli distribution with an unknown parameter p,

i.e. X can take only the values 0 and 1, the probabilities are

Pr (X = 1) = p and Pr (X = 0) = 1− p,

and p itself is a random variable. We think of X = 1 as “unusual times” and we think of X = 0

as “normal times”. Suppose that: (i) agents observe sequentially random variables X1, ...,Xs, ...

that are i.i.d. over time and each has this Bernoulli distribution; (ii) in period 0, the agents’ prior

distribution of p is a beta distribution with parameters α > 0 and β > 0; and (iii) in every period

t = 1, 2, ..., agents observe whether X = 1 or X = 0 and agents update their prior distribution of p.
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Then the agents’ posterior distribution of p given that Xt = xt, t = 1, ..., s, is a beta distribution

with parameters α + y and β + s − y, where y =
Ps

t=1 xt. Furthermore, agents still solve the

problem (4)-(7) where the probability of the economy being in any given state has been replaced

by the agents’ posterior expectation of that probability.10

This version of the model matches what we believe are the following features of reality. When a

rare event fails to occur for some time, agents tend to underestimate the probability of the rare event.

Consequently, agents think even less about the optimal action in the rare event. Furthermore, when

the rare event does occur agents tend to increase significantly their estimate of the probability of

another rare event. Consequently, an occurrence of the rare event causes a significant reallocation

of attention toward thinking about what to do in the rare event.

Consider a numerical example. Suppose that the true value of p is 0.01. In period 0, the

agents’ prior distribution of p is a beta distribution with parameters α = 1 and β = 99. Note

that the agents’ prior expectation of p equals the truth, because the prior expectation of p equals

α/ (α+ β) = 0.01. Let Xt = 0 for t = 1, ..., s−1, Xt = 1 for t = s, and s = 101. In words, the state

turns out to be “normal times” one hundred periods in a row and in period 101 the state turns

out to be “unusual times”.11 The agents’ posterior expectation of p evolves over time as shown in

Figure 3. Note that between period 1 and period 100, the agents’ posterior expectation of p falls

slowly. Just before the state “unusual times” occurs, the agents’ posterior expectation of p equals

0.005. Agents underestimate the probability of “unusual times” by fifty percent. Furthermore, note

that just after “unusual times” the agents’ posterior expectation of p changes by a large amount.

The agents’ posterior expectation of p doubles to 0.01. Consequently, the occurrence of the rare

event causes a significant reallocation of attention toward thinking about what to do in the rare

event.
10This statement is true because the agents’ prior distribution of p and the stochastic process {Xt} are independent

of the stochastic process {zt, εi,t}.
11The probability that “unusual times” fail to occur in one hundred Bernoulli trials with p = 0.01 equals about

0.36.
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7 Conclusion

This paper proposes an explanation for why people were so unprepared for the global financial crisis,

the European debt crisis, and the Fukushima nuclear accident. The explanation has four features:

(1) Humans have a limited ability to process information and therefore cannot prepare well for

every contingency. (2) These events seemed a priori unlikely. (3) Thinking carefully about the

optimal action in normal times does not improve much actions in those unusual times. (4) Actions

are strategic complements. Formally, we study a rational inattention model in which agents decide

how carefully to think about optimal actions in different contingencies, subject to an information-

processing constraint. We find that agents are unprepared in a state when the state has a low

probability, the optimal action in that state is uncorrelated with the optimal action in normal

times, and actions are strategic complements. We then use the model to ask the following question:

Would society be better off if agents allocated their attention differently? To answer this question,

we compare the equilibrium allocation of attention to the efficient allocation of attention. We find

that the same condition that governs the relationship between the equilibrium use of information

and the efficient use of information in Angeletos and Pavan (2007) governs the relationship between

the equilibrium allocation of attention and the efficient allocation of attention in our model with

an endogenous information structure.

In the real world, there exists regulation that affects the allocation of attention. For example,

Federal Aviation Regulations force passengers on airplanes every time they take a flight to think

about the optimal action in the rare event of a water landing. Does this increase ex-ante utility?

At the same time, there does not seem to be regulation in Japan that requires companies running

nuclear power plants to have a precise plan of what to do when an earthquake and tsunami has

disabled a plant’s cooling system. Should this be changed? The efficiency results in this paper help

understand when regulation that affects the allocation of attention can improve welfare and when

it cannot improve welfare.

The efficiency question asked in this paper - whether the equilibrium allocation of attention

equals the efficient allocation of attention - is new to the best of our knowledge; has a clear answer;

and could be asked in a wide range of other contexts. For example, one could ask whether the extent

to which investors think about payoffs of their assets in different states of the world is efficient.
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A Proof of Proposition 1

Step 1: We consider equilibria where the average action in a state is an affine function of the

fundamental in that state. Formally, for n = 1 and n = 2,

at,n = ψn + φnzt,n, (34)

where ψ1, φ1, ψ2, and φ2 are undetermined coefficients that we need to solve for.

Step 2: The information choice problem (4)-(7) can now be stated as follows. Substituting

equations (2), (3) and (5) into objective (4), deducting a constant that the agent cannot affect from

the objective, and using equation (34) to substitute for at,n in the objective yields

max
Λ

(
−

2X
n=1

pnδn (γnφn + 1− γn)
2Ωnn

)
, (35)

subject to

Ω = Σ−Σ (Σ+ Λ)−1Σ, (36)

1

2
log2

µ
|Σ|
|Ω|

¶
≤ κ, (37)

and the restriction that Λ is a positive semidefinite matrix. Here Ωnn denotes the posterior variance

of the fundamental in state n. Furthermore, using the formula for the determinant of a two-by-two

matrix, the information flow constraint (37) can be expressed as

1

2
log2

µ
Σ11Σ22 −Σ212
Ω11Ω22 −Ω212

¶
≤ κ, (38)

where Ω12 denotes the posterior covariance of the fundamental in the two states.

Step 3: When the optimal action in state one and the optimal action in state two are inde-

pendent (i.e., Σ12 = 0), it is optimal to receive independent signals concerning the optimal action

in state one and the optimal action in state two (i.e., Λ12 = 0). The proof is as follows. First, the

information flow constraint (38) is always binding. Second, increasing Ω212 for a given Ω11 and Ω22

raises the information flow on the left-hand side of constraint (38) without improving objective (35).

Third, when Σ12 = 0, then Ω12 = 0 if and only if Λ12 = 0. Hence, when Σ12 = 0, the solution to the

information choice problem (35)-(37) has the property Λ12 = 0. Next, using Σ12 = Λ12 = Ω12 = 0

the information choice problem (35)-(37) simplifies to

max
(Λ−111 ,Λ

−1
22 )∈R2+

(
−

2X
n=1

pnδn (γnφn + 1− γn)
2Ωnn

)
, (39)
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subject to

Ωnn =
1

Σnn
Λnn

+ 1
Σnn, (40)

and
1

2
log2

µ
Σ11
Ω11

¶
+
1

2
log2

µ
Σ22
Ω22

¶
≤ κ. (41)

Let κn ≡ 1
2 log2

³
Σnn
Ωnn

´
denote the uncertainty reduction about the fundamental in state n. The

information choice problem (39)-(41) can be written as

max
(κ1,κ2)∈R2+

(
−

2X
n=1

pnδn (γnφn + 1− γn)
2Ωnn

)
, (42)

subject to

Ωnn = 2
−2κnΣnn, (43)

and

κ1 + κ2 ≤ κ. (44)

The unique solution to this problem is given by

κ1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ if x ≥ 2κ

1
2κ+

1
2 log2 (x) if x ∈ [2−κ, 2κ]

0 if x ≤ 2−κ
, (45)

where

x ≡

s
p1δ1 (γ1φ1 + 1− γ1)

2Σ11

p2δ2 (γ2φ2 + 1− γ2)
2Σ22

; (46)

and

κ2 = κ− κ1. (47)

The optimal uncertainty reduction about the fundamental in state one is an increasing function

of κ and x. Finally, it follows from equation (40) and κn ≡ 1
2 log2

³
Σnn
Ωnn

´
that the optimal signal

precisions are then given by

Λ−111 =
22κ1 − 1
Σ11

, (48)

Λ−122 =
22κ2 − 1
Σ22

. (49)
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Step 4: Equations (45)-(47) give the optimal allocation of attention as a function of the

parameters of the model and the undetermined coefficients φ1 and φ2. The next step is to solve

for the undetermined coefficients φ1 and φ2 as a function of the optimal allocation of attention.

Combining results one then obtains the equilibrium of the model. The actions by agent i are given

by equation (5). Substituting the guess (34) into equation (5) yields

ai,t,n = (ϕn + γnψn) + (γnφn + 1− γn)E [zt,n|si,t−1] .

Calculating the conditional expectation in the last equation using equation (6), Σ12 = Λ12 = 0,

and equations (48)-(49) yields

ai,t,n = (ϕn + γnψn) + (γnφn + 1− γn)
¡
1− 2−2κn

¢
(zt,n + εi,t−1,n) .

Calculating the mean action in the population gives

at,n = (ϕn + γnψn) + (γnφn + 1− γn)
¡
1− 2−2κn

¢
zt,n.

It follows that, for a given allocation of attention (i.e., for a pair κ1 and κ2), the guess (34) is

correct if and only if

ψn =
ϕn

1− γn
, (50)

φn =
(1− γn)

¡
1− 2−2κn

¢
1− γn (1− 2−2κn)

. (51)

The last two equations give the undetermined coefficients ψ1, ψ2, φ1, and φ2 as a function of the

allocation of attention κ1 and κ2 and the parameters ϕ1, ϕ2, γ1, and γ2.

Step 5: An equilibrium allocation of attention is a pair (κ1, κ2) satisfying equations (45)-(47),

where φ1 and φ2 are given by equation (51). Using equation (51) to substitute for φ1 and φ2 in

equation (46) yields

x =

s
p1δ1Σ11
p2δ2Σ22

1−γ1
1−γ1(1−2−2κ1)

1−γ2
1−γ2(1−2−2κ2)

. (52)

Thus, an equilibrium allocation of attention is a pair (κ1, κ2) satisfying equations (45), (47) and

(52). It is useful to distinguish three types of equilibria: (i) the equilibrium allocation of attention

has the property κ1 = 0, (ii) the equilibrium allocation of attention has the property κ1 = κ, and

(iii) the equilibrium allocation of attention has the property κ1 = 1
2κ+

1
2 log2 (x).
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First, turn to an equilibrium with the property κ1 = 0. Substituting κ1 = 0 and κ2 = κ into

equation (52) yields

x =

s
p1δ1Σ11
p2δ2Σ22

1− γ1
1− γ2

£
1− γ2

¡
1− 2−2κ

¢¤
.

It follows from the last equation and equation (45) that κ1 = 0 is an equilibrium if and only ifs
p1δ1Σ11
p2δ2Σ22

1− γ1
1− γ2

£
1− γ2

¡
1− 2−2κ

¢¤
≤ 2−κ.

This condition can be stated ass
p1δ1Σ11
p2δ2Σ22

≤ 1

(1− γ1)
h
2κ + γ2

1−γ2
2−κ

i . (53)

Second, consider an equilibrium with the property κ1 = κ. Substituting κ1 = κ and κ2 = 0 into

equation (52) yields

x =

s
p1δ1Σ11
p2δ2Σ22

1− γ1
1− γ2

1

1− γ1 (1− 2−2κ)
.

It follows from the last equation and equation (45) that κ1 = κ is an equilibrium if and only ifs
p1δ1Σ11
p2δ2Σ22

1− γ1
1− γ2

1

1− γ1 (1− 2−2κ)
≥ 2κ.

This condition can be stated ass
p1δ1Σ11
p2δ2Σ22

≥ (1− γ2)

∙
2κ +

γ1
1− γ1

2−κ
¸
. (54)

Third, turn to an equilibrium with the property κ1 =
1
2κ +

1
2 log2 (x). Substituting κ1 =

1
2κ+

1
2 log2 (x) and κ2 = κ− κ1 into equation (52) yields

x =

s
p1δ1Σ11
p2δ2Σ22

1−γ1
1−γ1(1−2−κ 1x)

1−γ2
1−γ2(1−2−κx)

.

Rearranging the last equation yields"
1−

s
p1δ1Σ11
p2δ2Σ22

γ2
1− γ2

2−κ
#
x =

s
p1δ1Σ11
p2δ2Σ22

− γ1
1− γ1

2−κ. (55)

If
h
1−

q
p1δ1Σ11
p2δ2Σ22

γ2
1−γ2

2−κ
i
6= 0, the unique solution to the last equation is

x =

q
p1δ1Σ11
p2δ2Σ22

− γ1
1−γ1

2−κ

1−
q

p1δ1Σ11
p2δ2Σ22

γ2
1−γ2

2−κ
. (56)
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Thus, when
h
1−

q
p1δ1Σ11
p2δ2Σ22

γ2
1−γ2

2−κ
i
6= 0, it follows from the last equation and equation (45) that

κ1 =
1
2κ+

1
2 log2 (x) is an equilibrium if and only ifq

p1δ1Σ11
p2δ2Σ22

− γ1
1−γ1

2−κ

1−
q

p1δ1Σ11
p2δ2Σ22

γ2
1−γ2 2

−κ
∈
£
2−κ, 2κ

¤
. (57)

Furthermore, when "
1−

s
p1δ1Σ11
p2δ2Σ22

γ2
1− γ2

2−κ
#
> 0, (58)

condition (57) is equivalent tos
p1δ1Σ11
p2δ2Σ22

∈
"

1
1−γ1

2κ + γ2
1−γ2

2−κ
,
2κ + γ1

1−γ1
2−κ

1
1−γ2

#
. (59)

When "
1−

s
p1δ1Σ11
p2δ2Σ22

γ2
1− γ2

2−κ
#
< 0, (60)

condition (57) is equivalent tos
p1δ1Σ11
p2δ2Σ22

∈
"
2κ + γ1

1−γ1
2−κ

1
1−γ2

,

1
1−γ1

2κ + γ2
1−γ2 2

−κ

#
. (61)

Finally, if "
1−

s
p1δ1Σ11
p2δ2Σ22

γ2
1− γ2

2−κ
#
= 0, (62)

equation (55) reduces to s
p1δ1Σ11
p2δ2Σ22

=
γ1

1− γ1
2−κ. (63)

In summary, if conditions (58)-(59) or conditions (60)-(61) hold, a unique equilibrium with the

property κ1 = 1
2κ+

1
2 log2 (x) exists and in this equilibrium x is given by equation (56). If conditions

(62)-(63) hold, a continuum of equilibria with the property κ1 = 1
2κ+

1
2 log2 (x) exist; namely any

κ1 ∈ [0, κ] is such an equilibrium.

This completes the characterization of equilibria of the form (34). If γ1 = γ2 ≡ γ, conditions

(53), (54), (58)-(59), (60)-(61) and (62)-(63) and equation (56) reduce to the conditions and equation

given in Proposition 1.
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B Proof of Equation (19)

Step 1: A Taylor expansion of Un around ai,t,n = at,n gives

Un (ai,t,n, at,n, zt,n) = Un (at,n, at,n, zt,n) +
£
Un
ai +

¡
Un
aiai + Un

aia

¢
at,n + Un

aizzt,n
¤
(ai,t,n − at,n)

+
Un
aiai

2
(ai,t,n − at,n)

2 . (64)

Let Wn
¡
at,n, σai,t,n , zt,n

¢
denote welfare in state n under a utilitarian aggregator

Wn
¡
at,n, σai,t,n , zt,n

¢
≡
Z
Un (ai,t,n, at,n, zt,n) dΨ

n,t (ai,t,n) . (65)

Combining the last two equations gives

Wn
¡
at,n, σai,t,n , zt,n

¢
= Un (at,n, at,n, zt,n) +

Un
aiai

2
σ2ai,t,n , (66)

where σ2ai,t,n ≡
Z
(ai,t,n − at,n)

2 dΨn,t (ai,t,n) denotes the dispersion of individual actions in the

population. Next, a Taylor expansion of Wn
¡
at,n, σai,t,n , zt,n

¢
around at,n = a∗t,n and σai,t,n = 0,

where a∗t,n is given by equation (18), yields

Wn
¡
at,n, σai,t,n , zt,n

¢
=Wn

¡
a∗t,n, 0, zt,n

¢
+

Un
aiai + 2U

n
aia + Un

aa

2

¡
at,n − a∗t,n

¢2
+

Un
aiai

2
σ2ai,t,n . (67)

Here we used equation (66) to compute the first and second derivatives of Wn and exploited the

fact that the first derivative of Wn with respect to at,n evaluated at a∗t,n equals zero.

Step 2: Given any strategy ai,t,n : R2 → R, expected utility in state n is given by

E [Un (ai,t,n, at,n, zt,n)] =

Z
zt

Z
si,t−1

Un (ai,t,n (si,t−1) , at,n (zt) , zt,n) dP (si,t−1|zt) dP (zt) , (68)

where at,n (zt) =

Z
si,t−1

ai,t,n (si,t−1) dP (si,t−1|zt). Substituting equation (64) into equation (68)

and using equation (66) gives

E [Un (ai,t,n, at,n, zt,n)] =

Z
zt

Wn
¡
at,n (zt) , σai,t,n , zt,n

¢
dP (zt) . (69)

Substituting equation (67) into the last equation yields

E [Un (ai,t,n, at,n, zt,n)] = E
£
Wn

¡
a∗t,n, 0, zt,n

¢¤
+

Un
aiai + 2U

n
aia + Un

aa

2
E
h¡
at,n − a∗t,n

¢2i
+
Un
aiai

2
E
h
(ai,t,n − at,n)

2
i
. (70)

Noting that Wn
¡
a∗t,n, 0, zt,n

¢
= Ũn

¡
a∗t,n, zt,n

¢
gives the desired result.
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C Proof of Proposition 2

Step 1: The first two sentences of Proposition 2 follow from Proposition 1. The next two sentences

of Proposition 2 follow from the text above Proposition 2.

Step 2: Substituting κ2 = κ − κ1 into objective (30) and setting the first derivative of the

objective with respect to κ1 equal to zero yields the first-order condition

p1δ1Σ11

∙
(1−γ)222κ1

[γ+(1−γ)22κ1 ]2
+ 2 (1−γ)22κ1

[γ+(1−γ)22κ1 ]3
³

Uaa
Uaiai

− γ
´¸
2 ln (2)

−p2δ2Σ22
∙

(1−γ)222(κ−κ1)

[γ+(1−γ)22(κ−κ1)]2
+ 2 (1−γ)22(κ−κ1)

[γ+(1−γ)22(κ−κ1)]3
³

Uaa
Uaiai

− γ
´¸
2 ln (2) = 0.

(71)

Let Fκ1=0 and Fκ1=κ denote the value of the left-hand side of equation (71) at κ1 = 0 and κ1 = κ,

respectively. When the constraint (31) is binding and the planner problem (30)-(31) is convex, the

solution to the planner problem is given by

κeff1 =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
κ if Fκ1=κ ≥ 0

κFOC1 if Fκ1=0 > 0 > Fκ1=κ

0 if Fκ1=0 ≤ 0

, (72)

where κFOC1 denotes the unique solution to equation (71) in the case of Fκ1=0 > 0 > Fκ1=κ.

Step 3: If γ = (Uaa/Uaiai), the first-order condition (71) reduces to

p1δ1Σ11
(1− γ)2 22κ1

[γ + (1− γ) 22κ1 ]2
2 ln (2)− p2δ2Σ22

(1− γ)2 22(κ−κ1)£
γ + (1− γ) 22(κ−κ1)

¤2 2 ln (2) = 0. (73)

Now the condition Fκ1=0 ≤ 0 readss
p1δ1Σ11
p2δ2Σ22

≤ 1

γ2−κ + (1− γ) 2κ
,

and the condition Fκ1=κ ≥ 0 readss
p1δ1Σ11
p2δ2Σ22

≥ γ2−κ + (1− γ) 2κ.

Furthermore, solving equation (73) for κ1 in the case of Fκ1=0 > 0 > Fκ1=κ yields

κ1 =
1

2
κ+

1

2
log2

⎛⎝
q

p1δ1Σ11
p2δ2Σ22

− γ
1−γ 2

−κ

1−
q

p1δ1Σ11
p2δ2Σ22

γ
1−γ2

−κ

⎞⎠ .
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Hence, if γ = (Uaa/Uaiai), the efficient allocation of attention is given by

κeff1 =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
κ if

q
p1δ1Σ11
p2δ2Σ22

≥ γ2−κ + (1− γ) 2κ

1
2κ+

1
2 log2

Ã
p1δ1Σ11
p2δ2Σ22

− γ
1−γ 2

−κ

1− p1δ1Σ11
p2δ2Σ22

γ
1−γ 2

−κ

!
otherwise

0 if
q

p1δ1Σ11
p2δ2Σ22

≤ 1
γ2−κ+(1−γ)2κ

. (74)

Comparing equation (74) to equation (8) shows that if γ = (Uaa/Uaiai) then κequ1 = κeff1 .

Step 4: If κequ1 = 1
2κ, then

p1δ1Σ11
p2δ2Σ22

= 1. See equation (8). Furthermore, when p1δ1Σ11
p2δ2Σ22

= 1, the

first-order condition (71) reduces to∙
(1−γ)222κ1

[γ+(1−γ)22κ1 ]2
+ 2 (1−γ)22κ1

[γ+(1−γ)22κ1 ]3
³

Uaa
Uaiai

− γ
´¸

−
∙

(1−γ)222(κ−κ1)

[γ+(1−γ)22(κ−κ1)]2
+ 2 (1−γ)22(κ−κ1)

[γ+(1−γ)22(κ−κ1)]3
³

Uaa
Uaiai

− γ
´¸
= 0.

A solution to the last equation is κFOC1 = 1
2κ. When the planner problem is convex, this implies

that κeff1 = 1
2κ. It follows that if κ

equ
1 = 1

2κ then κequ1 = κeff1 .

D Proof of Proposition 3

If κequ1 ∈ (0, κ), then

κequ1 =
1

2
κ+

1

2
log2 (x) , (75)

where

x ≡

q
p1δ1Σ11
p2δ2Σ22

− γ
1−γ2

−κ

1−
q

p1δ1Σ11
p2δ2Σ22

γ
1−γ 2

−κ
, (76)

and

x ∈
¡
2−κ, 2κ

¢
. (77)

See equations (8)-(9). Let Fκ1=κequ1 ∈(0,κ) denote the value of the left-hand side of the planner’s

first-order condition (71) at κ1 = κequ1 ∈ (0, κ). Substituting equation (75) into the left-hand side

of equation (71) gives

Fκ1=κequ1 ∈(0,κ) = p1δ1Σ11

"
(1− γ)2 2κx

[γ + (1− γ) 2κx]2
+ 2

(1− γ) 2κx

[γ + (1− γ) 2κx]3

µ
Uaa

Uaiai

− γ

¶#
2 ln (2)

−p2δ2Σ22

"
(1− γ)2 2

κ

x£
γ + (1− γ) 2

κ

x

¤2 + 2 (1− γ) 2
κ

x£
γ + (1− γ) 2

κ

x

¤3 µ Uaa

Uaiai

− γ

¶#
2 ln (2) .
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Furthermore, equation (76) implies

p1δ1Σ11
(1− γ)2 2κx

[γ + (1− γ) 2κx]2
= p2δ2Σ22

(1− γ)2 2
κ

x£
γ + (1− γ) 2

κ

x

¤2 .
Substituting the last equation into the previous equation gives

Fκ1=κequ1 ∈(0,κ) = p1δ1Σ11
(1− γ) 2κx

[γ + (1− γ) 2κx]2"
2

γ + (1− γ) 2κx
− 2

γ + (1− γ) 2
κ

x

#µ
Uaa

Uaiai

− γ

¶
2 ln (2) . (78)

Since p1δ1Σ11 > 0, γ ∈ (−1, 1), and x ∈ (2−κ, 2κ), the last expression equals zero if and only if
Uaa
Uaiai

= γ or x = 1. Furthermore, when Uaa
Uaiai

> γ, then x < 1 implies Fκ1=κequ1 ∈(0,κ) > 0 while x > 1

implies Fκ1=κequ1 ∈(0,κ) < 0. By contrast, when
Uaa
Uaiai

< γ, then x < 1 implies Fκ1=κequ1 ∈(0,κ) < 0 while

x > 1 implies Fκ1=κequ1 ∈(0,κ) > 0. In addition, x < 1 means κ1 < 1
2κ, and x > 1 means κ1 > 1

2κ.

See equation (75). Finally, by assumption κequ1 ∈ (0, κ) and the planner problem is convex. Hence,

when Uaa
Uaiai

> γ, then κn < 1
2κ implies κ

eff
n > κequn . By contrast, when Uaa

Uaiai
< γ, then κn < 1

2κ

implies κeffn < κequn .
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Figure 1: Attention to state one as function of relative likelihood
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Figure 2: Posterior covariance matrix of optimal actions as function of prior correlation of optimal actions
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Figure 3: Posterior expectation of the probability of unusual times
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