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ABSTRACT

Many time series are sampled at different frequencies. When we studyco-movements between such series we usually analyze

the joint process sampled at a common low frequency. This has consequences in terms of potentially mis-specifying the co-

movements and hence the analysis of impulse response functions - a commonly used tool for economic policy analysis.

We introduce a class of mixed frequency VAR models that allows us the measure the impact of high frequency data on low

frequency and vice versa. Our approach does not rely on latent processes/shocks representations. As a consequence, the mixed

frequency VAR is an alternative to commonly used state space models formixed frequency data. State space models involve

latent processes, and therefore rely on filtering to extract hidden statesthat are used in order to predict future outcomes. We

also explicitly characterize the mis-specification of a traditional common low frequency VAR and its implied mis-specified

impulse response functions. The class of mixed frequency VAR modelscan also characterize the timing of information

releases for a mixture of sampling frequencies and the real-time updatingof predictions caused by the flow of high frequency

information. Hence, they are parameter-driven models whereas mixed frequency VAR models are observation-driven models

as they are formulated exclusively in terms of observable data and do not involve latent processes and thus avoid the need to

formulate measurement equations, filtering etc. We also propose various parsimonious parameterizations, in part inspired by

recent work on MIDAS regressions. Various estimation procedures for mixed frequency VAR models are also proposed, both

classical and Bayesian. Numerical and empirical examples quantify theconsequences of ignoring mixed frequency data.
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1 Introduction

It is simply a fact of life that time series observations are sampled at different frequencies. Some data

series - such as financial ones - are easy to collect and readily available, while others are costly to

record and therefore not frequently sampled. When we study co-movements between such series we

usually analyze the joint process sampled at a common low sampling frequency. A typical example,

following the seminal work of Sims (1980), is a vector autoregressive (VAR) model with both real and

financial time series sampled quarterly - even though financial series are observed more frequently. We

introduce a mixed frequency data VAR model and analyze the consequences of ignoring the availability

of high frequency data. Take a simple example: GDP growth observed quarterly and non-farm payroll

published monthly. We could look at the dynamics between the two series at a quarterly frequency

- ignoring the fact that we do have monthly data for the second series. Howdoes the shock to non-

farm payroll and its impact on future GDP growth produced by standard VAR model analysis relate

to the monthly surprises in the series? The quarterly VAR model shocks will besome mixture of the

innovations in the underlying series. What type of mixture would this be? Whatare the costs in terms

of impulse response analysis when we mis-align the data by ignoring the high frequency data? How

does the flow of high frequency data allow us to update predictions of future low and high frequency

data? We provide formal answers to all of these types of questions.

We introduce a relatively simple mixed sampling frequency VAR model. By simple wemean, (1)

parsimonious, (2) one that can track the proper timing of low and high frequency data - that may include

releases of quarterly data in the middle of the next quarter along with the releases of monthly data or

daily data, (3) a specification that allows us to measure the impact of high frequency data onto low

frequency ones and vice versa and perhaps most subtle (4) a specification that does not involve latent

shocks.

We characterize the mapping between the mixed frequency VAR model and a traditional VAR

model where all the data are sampled at a common low frequency. This mappingallows us to study

the mis-specification of impulse response functions of traditional VAR models.The VAR models we

propose can also handle time-varying mixed frequencies. Not all months have the same number of

trading days, not all quarters have the same number of weeks, etc. Assuming a deterministic calendar

effect, which makes all variation in changing mixed frequencies perfectly predictable, we are able to

write a VAR with time-varying high frequency data structures.

The mixed frequency VAR provides an alternative to commonly used state space models involving

mixed frequency data.1 State space models involve latent processes, and therefore rely on filtering to

extract hidden states that are used in order to predict future outcomes. State space models are, using the

terminology of Cox (1981), parameter-driven models. The mixed frequency VAR models are, using

again the same terminology, observation-driven models as they are formulated exclusively in terms of

1See for example, Harvey and Pierse (1984), Harvey (1989), Bernanke, Gertler, and Watson (1997), Zadrozny (1990),
Mariano and Murasawa (2003), Mittnik and Zadrozny (2004), and more recently Aruoba, Diebold, and Scotti (2009), Ghysels
and Wright (2009), Kuzin, Marcellino, and Schumacher (2009), Marcellino and Schumacher (2010), among others.
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observable data. The fact we rely only on observable shocks has implications with respect to impulse

response functions. Namely, we formulate impulse response functions in terms of observable data -

high and low frequency - instead of shocks to some latent processes. Finally, mixed frequency VAR

models, like MIDAS regressions, may be relatively frugal in terms of parameterization.

Technically speaking we adapt techniques typically used to study seasonal time series with hidden

periodic structures, to multiple time series that have different sampling frequencies. The techniques we

adapt relate to work by Gladyshev (1961), Pagano (1978), Tiao and Grupe (1980), Hansen and Sargent

(1990, Chap. 17), Hansen and Sargent (1993), Ghysels (1994),Franses (1996), among others. In

addition, the mixed frequency VAR model is a multivariate extension of MIDAS regressions proposed

in recent work by Ghysels, Santa-Clara, and Valkanov (2006), Ghysels and Wright (2009), Andreou,

Ghysels, and Kourtellos (2010) and Chen and Ghysels (2011), among others.

We study two classes of estimation procedures, classical and Bayesian, for mixed frequency VAR

models. For the former we characterize how the mis-specification of traditional VAR models translates

into pseudo-true VAR parameter and impulse response estimates. Parameter proliferation is an issue

in both mixed frequency and traditional VAR models. We therefore also cover a Bayesian approach

which easily accommodates the potentially large set of parameters to be estimated.

The paper is organized as follows. Section 2 introduces the structure of mixed frequency VAR

models, discusses parsimony and impulse response functions. Section 3 elaborates on structural VAR

models in the context of real-time updating of predictions and policy analysis. Section 4 covers the

(mis-specified) traditional low frequency VAR process dynamics and impulse response functions im-

plied by a mixed frequency VAR and also characterizes the loss of information due to ignoring high

frequency data. Section 5 discusses classical and Bayesian estimation procedures. Section 6 provides

numerical illustrative examples and finally Section 7 reports empirical findingswith conclusions ap-

pearing in Section 8.

2 Mixed Frequency Vector Autoregressive Models

Since the work of Sims (1980), it is now standard to characterize the co-movements of macroeconomic

time series as a VAR model. This typically involves some real activity series (i.e. GDP growth), some

price series (i.e. inflation) and some monetary policy instrument (i.e. short term interest rates). This

means we actually do have a mixture of respectively quarterly, monthly and daily series. Usually the

sampling frequencies are aligned, for example inflation is computed quarterlyand only end-of-the-

quarter interest rates are sampled. Since the purpose of VAR models is to capture time series dynamics,

it is natural to wonder how much harm is done both in terms of specification errors and prediction

inaccuracy. Specification errors affect policy impulse response analysis and also have consequences as

far as the asymptotic properties of estimators goes.

When we think of mixed frequencies, we need to distinguish situations where the high frequency
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data are sampledm(τL) times more often than the low frequency series where eitherm(τL) = m,

a constant orm(τL) has a deterministic time path. For example quarterly/annual, monthly/quarterly,

daily/hourly amount to fixedm,whereas of daily/quarterly or weekly/quarterly involvem(τL) featuring

pre-determined calendar effects. We start with the case of fixedm, namely:

Assumption 2.1. We consider a K-dimensional process with the firstKL < K elements, collected

in the vector processxL(τL), are only observed everym fixed periods. The remainingKH = K -

KL series, represented by double-indexed vector processxH(τL, kH) which is observed at the (high)

frequency periodskH = 1, . . . , m during periodτL.

We will often refer toxL(τL) as the low frequency (multivariate) process, and thexH(τL, kH)

process as the high frequency (multivariate) one. Note that, for the sakeof simplicity we consider

the combination of two sampling frequencies. More than two sampling frequencies would amount to

more complex notation, but would be conceptually similar to the analysis with a combination of two

frequencies (see also section 4 for further discussion).

2.1 Shocks: Latent versus observable

So far attempts to accommodate mixed frequency data involve latent processesand therefore latent

shocks. Zadrozny (1990) starts with a joint high frequency VAR(MA) model as if high frequency

observations forxL(τL) were available. A state space representation is then used to match the latent

process with the mixture of data observed. This approach has recently been generalized by Chiu,

Eraker, Foerster, Kim, and Seoane (2011) who develop a Bayesian approach to such mixed frequency

VAR models where the missing data are drawn via a Gibbs sampler. Note that in such an approach

the fundamental shocks are with respect to the hidden high frequency VAR. Factor models are also

commonly used to handle mixed frequency data. For example, Mariano and Murasawa (2003) extract a

coincident factor using quarterly and monthly time series (see also Nunes (2005)). Along similar lines,

Aruoba, Diebold, and Scotti (2009) describe a dynamic one-factor model evolving on a daily basis to

construct a coincident business index. Here too, the system is driven by latent shocks - not shocks to a

high frequency VAR, but instead shocks that drive the latent factor that is measured with error through

repeated high and low frequency data observations.

Our approach does not involve latent shocks. This means there is no need for filtering and the

impulse response functions are based on observable shocks. To analyze mixed frequency vector pro-

cesses we use insights from periodic models and construct stacked skip-sampled processes. We will

start with an example where all the low frequencyτL series appear at the end of the (low frequency)
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period. Namely, consider the following finite order VAR representation of astacked vector:









xH(τL, 1)
...

xH(τL,m)

xL(τL)









= A0 +
P∑

j=1

Aj









xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL) (2.1)

which isKL + m ∗KH dimensional VAR model withP lags.2 Hence, with quarterly data we stack for

example the months of January, February and March together with the firstquarter low frequency data.

Similarly we stack April, May and June with the second quarter, etc. For the moment, we focus on

predicting next quarter’s high and low frequency datagivenprevious quarter’s high and low frequency

observations. Note however, that one may think of a specification similar to structural VAR models

where we pre-multiply the vector[xH(τL, 1)
′, . . . , xH(τL,m)′, xL(τL)

′]′ with a matrixAc :

Ac
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...
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xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL) (2.2)

where the matrixAc pertains to contemporaneous (in this case within quarter) relationships. Writing

the matrixAc explicitly, we have the left hand side of (2.2) as:









IKH
. . . A1,m
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... . . .
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c . . . IKH
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c
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c . . . Am+1,m

c IKL

















xH(τL, 1)
...

xH(τL,m)

xL(τL)









(2.3)

Hence, elements below the diagonal pertain to downstream impacts, i.e. high frequency data affect

subsequent within-τL period observations. This will be relevant notably for intra-τL period prediction

updating - a topic discussed in section 3.1. In contrast, elements above the diagonal will be relevant

notably when we will discuss policy rules in section 3.2. Obviously, withAc invertible we can always

view equation (2.1) as one obtained after pre-multiplying both sides of (2.2) by A−1
c . Hence, for the

moment we will ignore the presence ofAc.

One might think that the stacked system appearing in (2.1) could be prone to parameter prolifera-

tion. That may not actually be the case as we will show later in the section. While we do not address

parameter proliferation issues for the moment, it is worth pointing out the relationship with MIDAS

regressions, in particular, by looking at a special case withKL = KH =1. The last equation in the

2The assumption of a finite order VAR may appear somewhat restrictive.It is worth noting that much of our analysis could
be extended to VARMA models. Since VAR models are more widely used andconsidering VARMA models significantly
complicates the estimation we forego the generalization of adding MA terms.
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system then reads:

xL(τL) = Am+1,1
0 +

P∑

j=1

Am+1,m+1
j xL(τL − j) +

P∑

j=1

m∑

k=1

Am+1,k
j xH(τL − j, k) + ε(τL)

m+1,1 (2.4)

which is the ADL MIDAS regression model discussed in Andreou, Ghysels, and Kourtellos (2010).

There are various parsimonious parameterizations suggested for such regressions, see e.g. Ghysels,

Sinko, and Valkanov (2006), Andreou, Ghysels, and Kourtellos (2010) and Sinko, Sockin, and Ghysels

(2010), that will be discussed later.

Note that the aforementioned VAR model contains, besides MIDAS regressions, also the impact

of what one might call the low frequency shockε(τL)m+1,1 (the last element of the innovation vector

in this particular example) onto both future highand low frequency series as well as high frequency

shocksε(τL)i,1 (i = 1, . . . , m again in this particular example) onto future high and low frequency

series.

2.2 The constituents of the stacked vector

We adopt a general approach, and therefore analyze a generic stacked vector systems. Yet, we also need

to keep in mind that the observations we stack into vectors may differ from application to application

and in particular may depend on the focus of the application.

For example, let us consider two different scenarios involving a mixture monthly and quarterly

data. The first scenario, one could refer to as economic time, seeks to study the fundamental dynamics

of the economy. Namely, there is a number of people employed during the month of January, another

number for February, a third for March, and then there is a GDP number for the first quarter. This yields

four numbers, three monthly employment figures and one GDP, which would logically be collected in

a single stacked vector. An alternative scenario is news-release time. Forexample, on January 6 the

Bureau of Labor Statistics (BLS) releases the December employment report, on January 27 the Bureau

of Economic Analysis (BEA) will release the GDP number for the fourth quarter of the previous year,

on February 3 the BLS will release the employment report for January and a revised value for the

employment number for December, on February 29 the BEA will release a revised estimate of previous

fourth quarter of GDP, on March 2 the BLS will release the employment report for February (and

revisions of the December and January counts), and on March 29 the BEA will release yet another

estimate of the previous year GDP. Perhaps we want to collect all eight of these numbers in the vector

for the first quarter. Note also that in the first scenario we would take final data, not the real-time series.

Clearly, both scenarios are of interest and can be covered by our generic mixed frequency VAR

model. While throughout the paper we will try to provide a general discussion, it will be clear that

some parts of our analysis will be more relevant for specific applications. For example, the mapping

from mixed frequency to traditional low frequency VAR models and the analysis of potentially mis-

specified impulse response functions appearing in section 4 is clearly more relevant for aforementioned
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economic time structural dynamic analysis. Likewise, the distinction between mixedand periodic

stacked VAR representations appearing in subsection 2.3 will also mostly pertain to the first scenario

type of research.

On the other hand, if one is interested in a real-time forecasting exercise, then we clearly consider

the second approach. For example, assume all low frequency data are release at the same time and

compare:

x(τL) =












xH(τL, 1)
...
...

xH(τL,m)

xL(τL)












versus












xL(τL)

xH(τL, 1)
...
...

xH(τL,m)












or












xH(τL, 1)
...

xL(τL)
...

xH(τL,m)












(2.5)

where the release of low frequency appears at the end, beginning or some time in the middle ofτL. The

order of appearance in the vector therefore determines the timing of intra-τL period releases and that

will be important later to understand the impact and timing of shocks as well as theupdating of predic-

tions as new intra-τL period shocks occur. The high frequency releases of low frequency data can be

scattered at variouskH throughout periodτL and therefore impact the structure of shocks and responses.

More specifically theKL low frequency seriesKkH
L in xL(τL) are released at timekH in periodτL for

kH = 1, . . . , m, with
∑m

i=1K
i
L = KL.

3 When we need to keep track of the high frequency releases on

low frequency data we usexL(τL, kH), for the sub-vector released atkH . All xL(τL, kH) combined for

kH = 1, . . . , m, yield the time-stamped low frequency process. Hence, when all the low frequency data

are released at the end of periodτL then x(τL) ≡ (xH(τL, 1)
′, . . . , xH(τL,m)′, xL(τL)

′)′, otherwise it

contains(xL(τL, kH)′, xH(τL, kH)′)′ for the sequencekH = 1, . . . , m.4

For many parts of the paper the details about the specific constituents of the stacked vector will be

irrelevant, and we will put all the high frequency data first followed by thelow frequency data. How-

ever, when the focus is real-time analysis, as in subsections 2.5 and 3.1, wewill deal more explicitly

with the specific order of the elements in the stacked vector.

3 Most releases are on a fixed schedule, with notable exceptions such as some FOMC announce-
ments. In addition to the extensive academic literature, mostly studying the phenomenon of financial mar-
ket impact of announcements - one can find many details regarding announcement schedules on finan-
cial news sites such as http://www.nasdaq.com/markets/us-economic-calendar. aspx or
http://biz.yahoo.com/c/e.html , among many others. The framework presented in this paper can, with
some modification handle announcements that may occur at random - thetechnicalities of it are clarified in subsection 3.3.

4If xH(τL, kH) is empty for somekH , we only stack the high frequency data.
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2.3 Mixed and Periodic Stacked VAR Representations

It will be convenient to use a more compact notation for theKL + m ∗KH dimensional vector x(τL),

namely we will write equation (2.1) as:

A(LL)(x(τL)− µx) = ε(τL) (2.6)

whereLL is the low frequency lag operator, i.e.LLx(τL) = x(τL − 1), and:

A(LL) = I −
P∑

j=1

AjL
j
L

µx = (I −
P∑

j=1

Aj)
−1A0 (2.7)

where we assume that the VAR is covariance stationary to be able to write the above equations (see

Assumption 2.2 below) and we letE[ε(τL)ε(τL)
′] = CC

′.

We are also interested in a second representation which will be useful forstudying the relationship

between mixed frequency and traditional VAR models which ignores the availability of xH(τL, kH).

To this end, we will introduce a joint processx(τL) ≡ (xH(τL)
′, xL(τL)

′)′, where the first sub-vector

of low frequency observations is left unspecified for the moment - i.e. we are not going to be explicit

until the next section about how the high frequency data aggregate to low frequency observations. We

are interested in the VAR model:

B(LL)(x(τL)− µx) = ε(τL) (2.8)

whereB(LL) = I -
∑

P

j=1BjL
j
L, andE[ε(τL)ε(τL)

′] = CC
′
. Note that the lag length of the VAR may

not be finite, i.e.P may be infinite.5 Obviously, what also interests us is the relationships between the

(traditional) VAR characterized byB(LL) andC and the original mixed frequency dynamicsLL and

C. It is one of our goals to characterize this relationship.

While the VAR model appearing in equation (2.6) looks standard, its simple appearance is deceiv-

ing. Inherently, its structure shares features with so called periodic time series models originated by

Gladyshev (1961). Yet, it does not quite fully resemble periodic models, and we will need an aug-

mented version of (2.6) to achieve this. We will consider a(K ∗m)× (KL +m ∗KH) matrixH such

that:

ẍ(τL) = Hx(τL) (2.9)

One prominent example is̈x(τL)≡ (xH(τL, 1)
′, xL(τL)

′, . . . , xH(τL,m)′, xL(τL))
′. Note that the low

frequency series is repeated, capturing every high frequency period the relationship between how and

5Incorrectly assuming one has a finite VAR will have consequences on theasymptotic properties of the parameter estima-
tors - a topic that will be discussed later.
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high frequency data. Note that this is simply a reshuffling of the original vector - we are not constructing

a mapping involving a latent vector. Recall that we discussed two differentscenarios in subsection 2.2.

The first scenario seeks to study the fundamental dynamics of the economy, whereas the second is

oriented towards real-time analysis. It is mostly for the first type of analysis that we will need the

ẍ(τL) representation. As discussed later, this will allow us to examine how mixed frequency impulse

responses will get scrambled.6

Formally stated, we assume the following data generating process for the mixture of high and low

frequency data:

Assumption 2.2. The vector̈x(τL) ≡ (xH(τL, 1)
′, xL(τL, 1)

′, . . . , xH(τL,m)′, xL(τL,m))′ is of di-

mensionm ∗K and has a finite order covariance stationary VAR representation:

Ä(LL)(ẍ(τL)− µẍ) = ε̈(τL) (2.10)

whereÄ(LL) = I -
∑P

j=1 ÄjL
j
L, µẍ = (I −

∑P
j=1 Äj)

−1Ä0 andE[ε̈(τL)ε̈(τL)
′] = C̈C̈

′.

In the remainder of this section we will work mostly with the vector x(τL) appearing in (2.6)

rather than̈x(τL). The latter will be useful when we derive the mapping between traditional andmixed

frequency VAR models, a topic which we will cover in section 4.

2.4 Parsimony

The question of parsimony in VAR models has been much discussed as it is an issue that is partic-

ularly acute for large dimensional models and/or models involving many lags. One might think that

the acuteness of parameter proliferation is likely to be even more an issue with amixture of sampling

frequencies. It is the purpose of this section to show that this may not be assevere as one might think.

There are mainly two reasons why there may not be a parameter proliferationproblem despite the po-

tentially large dimensional VAR systems. First, the stacking of high frequencydata typically involves

repeating the same parametric structure across allm replicas (unlike the periodic models which inspired

the structure of mixed frequency VAR models). Second, the key insights ofMIDAS regressions also

play a key role in keeping the parameter space low dimensional. We develop a few examples showing

how one could potentially write sparsely parameterized mixed frequency VARmodels. These are not

per sethespecifications, but they provide a few leads on how one may go about writing conveniently a

parametric structure. The common theme, however, is that we aim for specifications with the appeal-

ing feature that the number of parameters does not depend onm, i.e. the number of high frequency

observations per low frequency time period.

6If we were to consider the second scenario involving real-time applications, the low frequency components of the vector
ẍ(τL) will gradually update the data release throughoutτL, together with the high frequency observationsxH(τL, kH), in
chronological order. Hence, the difference between the vector x(τL) andẍ(τL) is that the former simply stacks all the timed
releases of low and high frequency data, whereas the latter repeats all the elements of the low frequency process with stale
values until intra−τL updates happen. For the sake of brevity we skip the details of such analysis.
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For the purpose of streamlining the exposition we will start again with an examplewhere all the

low frequencyτL series appear at the end of the stacked vector as in equation (2.1). In addition, we set

KL =KH = 1 and assume that all the series are either demeaned or are assumed mean zero.7 Therefore,

we rewrite equation (2.1) as:









xH(τL, 1)
...

xH(τL,m)

xL(τL)









=
P∑

j=1









A1,1
j . . . A1,m

j A1,m+1
j

... . . .
...

...

Am,1
j . . . Am,m

j Am,m+1
j

Am+1,1
j . . . Am+1,m

j Am+1,m+1
j

















xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL)

which ism+1-dimensional VAR model withP lags. When we assume that the high frequency process

is ARX(1) with the impact of the low frequency series constant throughoutthe period, we have:









xH(τL, 1)
...

xH(τL,m)

xL(τL)









=









0 . . . ρ a
... . . .

...
...

0 . . . ρm a(1 +
∑m−1

j=0 ρj)

w(γ)m . . . w(γ)1 α1

















xH(τL − 1, 1)
...

xH(τL − 1,m)

xL(τL − 1)









(2.11)

+
P∑

j=2









0 . . . 0 0
... . . .

...
...

0 . . . 0 0

w(γ)jm . . . w(γ)(j−1)m+1 αj

















xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL)

which involvesP parametersαj , two parametersρ anda and a low dimensional MIDAS polynomial

parameter vectorγ. When allαj = 0 for j > 1, and the dimension ofγ is 2, which is not unreasonable

(see Appendix A for details), we end up with 5 parameters regardless of the value ofm. Admittedly,

this is a tightly constrained model, yet it is not an unreasonable starting point. Continuing with the

system in (2.11), the innovation covariance matrix may also be sparsely specified. Continuing with the

above specification, we can write:

E[ε(τL)ε(τL)
′] =













σHH ρσHH . . . ρm−1σHH σHL

ρσHH (1 + ρ2)σHH
... σHL

...
...

.. . ρσHH
...

ρm−1σHH ρm−2σHH . . . (1 +
∑m−1

i=1 ρ2)σHH
...

σHL σHL . . . . . . σLL













(2.12)

adding another three parameters, and therefore a total of eight again independent ofm. Obviously,

for some of the high frequency applications, one may consider adding ARCH-type dynamics to the

innovations, or add announcement effects to some of the elements of the covariances - which would

entail a richer, yet still moderate and independent ofm, parameter structure.

7In subsection 5.2 we cover the cases withKL low frequency andKH high frequency series.
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The specification of the MIDAS regressions, whenKL > 1, deserves some attention as well.

Namely, consider the following:

[Am+1,1
1 . . . Am+1,m

1 Am+1,1
2 . . . Am+1,m

P ] = B ⊗

[
KH×P
∑

i=1

(w(γ)i)

]

(2.13)

with B aKL ×KH matrix and
∑KH×P

i=1 (w(γ)i) is ascalarMIDAS polynomial. Hence, we impose a

common decay pattern with a single polynomial lag structure withB containing the collection of slope

parameters identified as the sum of the polynomial lag weights add up to one. Asnoted before, there

are various parsimonious parameterizations suggested for the weightsω(γ)i, that are briefly reviewed

Appendix A. The above specification has the virtue of reducing(KL×KH)×P ×m parameters to just

KL ×KH + the dimension ofγ which is2 in many of the examples discussed in the aforementioned

Appendix. Needless to say that this characterization of the polynomials may betoo restrictive - yet

as in the previous case, it may be a reasonable starting point in many practical settings. Along the

same lines, one can consider a less parsimonious specification inspired by the so called multiplicative

MIDAS (see equation (A.8) in Appendix A):

[Am+1,1
i . . . Am+1,m

i ] = Bi ⊗

[
m∑

i=1

(w(γ)i)

]

i = 1, . . . , P (2.14)

meaning that within-τL period high frequency weights remain invariant and yield a low frequency

parameterized processxH(τL − j)(γ) with lag coefficientsBi. The advantage of this specification is

that the impact of high frequency data on low frequency ones nests specifications with ad hoc linear

time aggregation such as time averaging - taking the last within-τL period high frequency observation.

Bai, Ghysels, and Wright (2009) show that the above specification matches a steady state Kalman filter

prediction equation obtained from a single factor state space model and provides a good approximation

for many more complex state space model specifications. Note that, at least for the block of low

frequency series, the above specification is quite similar to a traditional VAR with lag coefficientsBi,

augmented by a small number of parameters used in the filtering scheme. Here again, the number of

parameters does not augment withm.

We adopt in the remainder of the paper a generic setting where all the parameters are collected

into a vectorΨ. The above sparsely parameterized mixed frequency VAR model is a frugalexample,

while more richly specified structures obviously will involve higher dimensional parameter vectors. In

general, we will write the finitely parameterized mixed frequency VAR models appearing in equations

(2.6) and (2.10) respectively as:

AΨ(LL)(x(τL)− µΨ
x ) = ε(τL)

ÄΨ(LL)(ẍ(τL)− µΨ
ẍ ) = ε̈(τL) (2.15)

with E[ε(τL)ε(τL)
′] = C(Ψ)C(Ψ)′, andE[ε̈(τL)ε̈(τL)

′] = C̈(Ψ)C̈(Ψ)′. Note that the parameter vector

10



Ψ governs both the stacked and periodic representations and that we do not count the unconditional

mean as part of the parameter space since we used demeaned series in ouranalysis.

To streamline the notation, we will drop the parameter vectorΨ for the remainder of this section,

although one has to keep in mind that the material we will present is subject to potential specification

errors resulting from parsimonious parameterizations - a subject we will address in the next section.

2.5 Shocks and Choleski factorization

Much has been written about impulse response functions in VAR models, in particular with regards to

the interpretation of shocks. The class of mixed frequency VAR models sheds new light on this topic.

First of all, let us recall that the vectors x(τL) andẍ(τL) have a natural order for the intra−τL period

timing of shocks since their elements represent a sequence of time events. Ifmore than one series is

released at a specific time, then the order of associated shocks is subjectto the same considerations as

in traditional VAR models - or perhaps not. For example if during a day, or a week, or month both

financial and macro series are released, we do not necessarily know how to order them - except that

macro data are released before financial markets open, so there is againa natural order despite the

contemporaneous time stamp in the vector x(τL).

It is important to note that for the purpose of information accounting we will work with x(τL)

appearing in (2.6) rather than̈x(τL), as the latter contains repetitive strings of stale low frequency data.

The stacked mixed frequency VAR model implies an impulse response function:

(x(τL)− µx) = (I −
P∑

j=1

AjL
j
L)

−1ε(τL)

=
∞∑

j=0

Fjε(τL − j) ≡ F (LL)ε(τL) (2.16)

whereI = (A(LL))F (LL), which allows us to study the intra−τL period timing of shocks, both high

frequency as well as low frequency.

This means that shocksε(τL) tell us something about the timed surprise of either type of series, and

therefore the impulse responses tell us what is the impact of say a macroeconomic announcement of a

low frequency series onto future low and high frequency ones, and surprises in high frequency series

on both future low and high frequency series. Compared to the impulse responses from the VAR in

equation (2.8), namely:(x(τL) − µx) = (B(LL))
−1ε(τL) we can see how intra−τL period shocks are

scrambled - something we will be more explicit about in the next section.

Since the order of the series is no long arbitrary, it is also the case that the Choleski factorization of

the innovations is no longer arbitrary. In particular consider:

E[ε(τL)ε(τL)
′] = CC

′ = M[m]ΩM
′

[m] (2.17)
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whereΩ is a diagonal matrix andM[m] is a lower triangular matrix. We add the indexm to the latter

as it will be relevant for the material presented in the next subsection. Since the inverse of a lower

triangular matrix is again a lower triangular one, consider(M[m])
−1 = N[m], and:

A(LL)(x(τL)− µx) = ε(τL)

= M[m]η(τL)

N[m]A(LL)(x(τL)− µx) = η(τL) (2.18)

whereE[η(τL)η(τL)
′] = Ω, a diagonal matrix.

When we turn our attention again to the parsimonious examples in the previous subsection, and in

particular equation (2.12) we realize that the parameters governing the covariance matrixE[ε(τL)ε(τL)
′]

and thus its Choleski factorization, are tied to the parameters governing the VAR dynamics, in particular

the parameterρ in equation (2.11). This leaves us with the choice of either (1) estimate the factorization

unconstrained, or (2) explore the common parameter restrictions and aim for a more efficient estima-

tion of the impulse response functions. This issue is reminiscent of structural VAR models as alluded

to in equation (2.2). We will revisit the connection with traditional structural VAR models in the next

subsections. To summarize: while Choleski factorizations are typically ambiguous in terms impulse

response analysis in traditional VAR models, they are a more natural tool for impulse response analysis

for time-stamped mixed frequency VAR systems. In addition, there are potential gains to be made from

considering common parameter restrictions between the mixed frequency VARdynamics and the lower

triangular factorization.

3 Structural Mixed Frequency VAR Models

We turn our attention now to structural VAR models and consider various specifications for theAc

matrix appearing in equation (2.2). We will focus on two particular applications, namely real-time

prediction updating and policy analysis. A subsection is devoted to each topic. A final subsection

will deal with a generalization of mixed frequency VAR models relevant for both real-time and policy

analysis.

3.1 Real-time predictions

The potential mis-specification of shocks due to aggregation of mixed frequency data also leads us to

the question how much is lost by ignoring the real-time stream of high frequency data as one foregoes

the possibility to engage in within-τL updates of forecasts. It turns out this will be an example of using

certain types of structural VAR matrices to update within-τL information.

Continuing with the example in equations (2.6) and (2.18) consider the followingtransformations
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for i = 1, . . . , m− 1 : N[i]A(LL)(x(τL)− µx) = N[i]ε(τL) or:

N[i]x(τL) = N[i]A0 +
P∑

j=1

N[i]Ajx(τL − j) +N[i]ε(τL) (3.19)

involving the matrices,N[i], i = 1, . . . , m− 1, which can be written as:

N[i] =
















I 0 · · · · · · 0 0

N 2,1
[i] I 0 · · · 0 0
...

...
...

N i+1,1
[i] · · · N i+1,i

[i] I
... 0

...
... 0

. ..
...

Nm+1,1
[i] · · · Nm+1,i

[i] 0 · · · I
















(3.20)

where the matricesN a,b
[i] are of dimensionKH × KH except fora = m + 1. MatricesNm+1,b

[i] are

of dimensionKH × KH . These matrices are related to the inverse of the Choleski lower triangular

decomposition, namely recall from equation (2.18) that(M[m])
−1 = N[m], and define the matrices,

N[i] as the partial triangular decompositions orthogonalizing only the firsti shocks.

To clarify the role played by the transformation appearing in (3.20), let us for instance take a look

at N[1], which applies to a first high frequency data point becoming available, and the special case

considered before ofKL = KH = 1, i.e.:

N[1] =










I 0 · · · 0

N 2,1
[1] I · · · 0
... 0

.. .
...

Nm+1,1
[1] 0 · · · I










Then the last equation in the system reads:

xL(τL) = Am+1,1
0 −Nm+1,1

[1] xH((τ)L, 1)
︸ ︷︷ ︸

+
P∑

j=1

Am+1,m+1
j xL(τL − j)

New Info

+

P∑

j=1

m∑

k=1

Am+1,k
j xH(τL − j, k) + ε(τL)

m+1,1 (3.21)

which is the ADL MIDAS regression model with (one) lead(s) discussed in Andreou, Ghysels, and

Kourtellos (2010). Alternatively, we can also write the last equation, based on the inversion of theN[1]
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matrix as:

xL(τL) = (Am+1,1
0 −Nm+1,1

[1] A1,1
0 )−Nm+1,1

[1] ε(τL)
1,1

+
P∑

j=1

(Am+1,m+1
j −Nm+1,1

[1] A1,1
j )xL(τL − j)

+
P∑

j=1

m∑

k=1

(Am+1,k
j −Nm+1,1

[1] A1,k
j )xH(τL − j, k) + ε(τL)

m+1,1 (3.22)

The latter representation is closer to a Kalman filter approach as it adds the information innovation

ε(τL)
1,1, which equalsxH((τ)L, 1) - EτL [xH((τ)L, 1)], to the equation and re-weights all the old

information accordingly.

Note, the simplicity of the updating scheme: (1) we estimate a mixed frequency VARmodel, (2)

compute the Choleski factorization of the errors and then take them−1 lower triangular truncations of

the original factorization. It is also worth recalling that we may or may not impose common parameter

restrictions between the parameters of the mixed frequency VAR and the covariance matrix of the full

system as noted at the end of the previous section.

3.2 Policy response functions

The analysis in the previous subsection is one example of mixed frequency VAR models with a particu-

lar choice ofAc matrix appearing in equation (2.2). In the present subsection we study structural VAR

models with mixed frequency data for the purpose of studying policy analysis. To do so, we consider

a high frequency vector that contains some monetary policy instrument, suchas the Federal funds rate

(henceforth FFR). In fact, to simplify the presentation, let us only focus on FFR in combination with

some low frequency series. In particular:

Ac















FFR(τL, 1)
...

FFR(τL, k)
...

FFR(τL,m)

xL(τL)















= A0 +
P∑

j=1

Aj















FFR(τL − j, 1)
...

FFR(τL − j, k)
...

FFR(τL − j,m)

xL(τL − j)















+ ε(τL) (3.23)
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with

Ac =


















IKH
. . . . . . . . . . . . A1,m

c A1,m+1
c

...
.. .

...
...

...
. . .

...
...

Ak,1
c . . . Ak,k−1

c IKH
Ak,m

c Ak,m+1
c

...
...

.. .
...

...

Am,1
c . . . . . . IKH

Am,m+1
c

Am+1,1
c . . . . . . Am+1,m

c IKL


















(3.24)

Let us focus on the equation forFFR(τL, k). For simplicity, we setAk,j
c = 0 for j < k − 1 andk <

j ≤ m. Moreover, we leave unspecified the regressors appearing on the right hand side of the above

equation, and therefore we have:

FFR(τL, k) = Ak,1
0 −Ak,k−1

c FFR(τL, k − 1)−Ak,m+1
c xL(τL)

+ regressors prior toτL + ε(τL)
k,1 (3.25)

Note that the above equation forFFR(τL, k) features the low frequencyxL(τL) (as well as lagged low

and high frequency data). This means that policy may respond to currentconditions - althoughxL(τL)

may not yet be observed at periodk of τL. This raised some interesting issues. To address these, let

us define the information setI(τL, k) as all the information available at periodk of τL. Therefore, one

may interpret equation (3.25) as:

FFR(τL, k) = Ak,1
0 −Ak,k−1

c FFR(τL, k − 1)−Ak,m+1
c E[xL(τL)|I(τL, k)] + . . . (3.26)

involving real-time estimates ofxL(τL). Therefore, we may think of cross-equation restrictions since

E[xL(τL)|I(τL, k)] involves the rows ofN[k]x(τL) pertaining to the concurrent estimates ofxL(τL).

Recall that in equation (2.12) we noted that the parameters governing the covariance matrixE[ε(τL)ε(τL)
′]

and thus its Choleski factorization, are tied to the parameters governing the VAR dynamics. Imposing

such restrictions - while feasible - may be convoluted. Fortunately, there is an easy shortcut. It is worth

recalling that the instruments used in the estimation of (3.25), and allFFR equations across allk, are

orthogonal to the errorxL(τL) - E[xL(τL)|I(τL, k)]. Therefore, using an argument often invoked in

the estimation of rational expectations models (see e.g. McCallum (1976)), wecan obtain consistent

estimates ofAk,m+1
c in equation (3.25) using ex post realizations of low frequency series to analyze the

real-time policy decision rules.

3.3 Time-varying mixed frequencies and randomly timed events

We started the section with Assumption 2.1 where assumed a fixedm for the balance between low and

high frequency data. In many applications this is not the case. For example,the number of trading

days varies from month to month, and therefore also from quarter to quarter. Most often, however,
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this variation is deterministic and driven by pure calendar effects that are perfectly predictable. In this

subsection we relax Assumption 2.1 and replace it by:

Assumption 3.1. We consider a K-dimensional process with the firstKL < K elements, collected in

the vector processxL(τL), only observed everymτ periods. The remainingKH = K - KL series,

represented by double-indexed vector processxH(τL, kH) which is observed at the (high) frequency

periodskH = 1, . . . , mτ during periodτL. The sequence{mτL}, τ = 1, . . . , is deterministic and takes

values in a finite setM(m).

The above assumption deals with perfectly predictable calendar effects which makes{mτ} typ-

ically vary over a small set of values. For example, the number of trading days in a month can be

between 20 and 23, depending on the month and holidays. Since the mixed frequencies scheme is time

varying we also have time variation in the system dynamics. Namely, we consider:

A
τL
Ψ (LL)(x(τL)− µΨ,τL

x ) = ε(τL) (3.27)

with E[ε(τL)ε(τL)
′] =C

τL(Ψ)CτL(Ψ)′, which is of dimensioñm2
τ , with m̃τ ≡KL +mτ ∗KH , and the

matrix polynomialAτ
Ψ(LL) is of dimensionm̃τL × m̃(τ−1)L , and the vectorµΨ,τL

x is of dimensionm̃τ .

Note that these matrices are no longer the typical squared ones encountered in traditional VAR models

or the mixed frequency VAR models with fixedm we have seen so far. Note that we use the same

parameter vectorΨ as before. Indeed, one might think that we need to enlarge again the parameter

space as we deal with time varying mixed frequencies. Say we thatM(m) is of dimension four, to take

again the daily trading day example. Now we have potentially sixteen system matrices, four covariance

matrices - and thus associated Choleski factorizations for real-time updates- as well as four vectors for

the mean. Yet, it is easy to see that equations such as (2.11) and (2.12) remain tightly parameterized if

we do two things: (1) replacem by mτL , and (2) accommodate time varying mixed frequencies with

the same MIDAS polynomials. On the latter subject we refer to the Matlab MIDAS Toolbox (Sinko,

Sockin, and Ghysels (2010, Sec. 2.8)) where various schemes are discussed for MIDAS polynomials

that handle time varying mixed frequencies within the same framework as fixedm specifications that

are characterized by unequal number of MIDAS lags over time that coverthe same time span - say a

month. Hence, we typically still have the same small number of parameters, despite the time variation

in mixed frequencies. As long as the mixture is perfectly predictable, we can use the right dimensions

of system matrices as well as the suitable Choleski factorizations to do estimationand updating.

Next, we consider randomly timed events. In footnote 3 we touched on the fact that data release

schemes or events like FOMC meetings may change acrossτL. In particular, let us consider a sequence

E ≡ [(τ eL, k
e
H), e = 1, . . . , T e]. Hence, the sequence is a set of time stamps for events. This may be

in the context of fixedm, as in Assumption Assumption 2.1, or time varying mixed frequencies as in

Assumption 3.1. To keep notation simple, it will be easier to look at the fixedm case. Associated with

the sequenceE is a sequenceE− which gives all the time stamps prior to the events inE. Typically,

(τ e
−

L , ke
−

H ) will be (τ eL, k
e
H − 1), but it may be(τ eL − 1,m) if keH = 1. We will take advantage of
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the real-time updating to handle randomly timed events. In particular, for the sequenceE we pre-

multiply x(τ e−L ) by N[ke−
H

] - to have the pre-event predictions - and pre-multiply x(τ eL) by N[ke
H
] using

the suitable matrices appearing in equation (3.20). These computations will measure the impact of

the event sequenceE on predictions of both low and high frequency data. As noted before, thisis

reminiscent of a Kalman filter update without going through a latent process specification, measurement

equations, etc. An example is the timing of FOMC meetings. Francis, Ghysels, and Owyang (2011)

use arguments that are conceptually similar in the context of a single MIDAS regression - hence not

a complete mixed frequency VAR - to study the low frequency impact of monetary policy shocks

identified via the occurrence of FOMC meetings.

4 Implied Low Frequency VAR Models

In this section we characterize the relationship between the mixed frequencydata VAR appearing in

(2.6) and the aggregated series VAR in (2.8). Recall that in the previous section we mostly worked with

vector x(τL) appearing in (2.6) rather than̈x(τL), while in this section we will work with the latter.

We need to be more specific about how the low frequency VAR model is obtained in terms of

aggregation. Throughout the section we will work with fixed mixed sampling frequencies, as stated in

Assumption 2.1. Moreover, we will start with a simple skip-sampling scheme where the low frequency

VAR model is obtained from picking every last high frequency observation of the low frequency time

period. The latter will be relaxed in subsequent analysis. We noted before that we assume that all

the processes are covariance stationary and therefore have a spectral representation. Indeed, it will

be convenient to characterize the mapping between the mixed frequency VAR model in (2.6) and the

aggregated series VAR in (2.8) via their spectral domain representation. Then the following result

holds:

Theorem 4.1. Let the process̈x(τL) satisfy Assumptions 2.1 and 2.2. Moreover, letẍ(τL) andx(τL)

have spectral densities equal to respectivelyS̈(z) andS(z), for z = exp (−iω) with ω ∈ [0, π], which

can be written as:

S̈(z) = Ä(z)−1
C̈C̈

′(Ä(z−1)−1)′

S(z) = B(z)−1
CC

′
(B(z−1)−1)′ (4.1)

then the low frequency VAR model is determined by the following relationship:

S(z) =
1

m

m−1∑

j=0

1

m
Q(

z + 2πj

m
)S̈((

z + 2πj

m
)m)Q((

z + 2πj

m
)−1) (4.2)

whereQ(z) =
[
I zI . . . zm−1I

]

Proof: See Appendix B
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The result in equation (4.2) is a combination of two operations: (1) the averaging of high frequency

covariances as in a typical Tiao and Grupe (1980) formula and (2) the skip-sampling of the aforemen-

tioned process. Intuitively, what drives the result is the following: the process̈x(τL) contains all the

covariance relationships among the high frequency series and between high and low frequency series.

The formula in (4.2) averages these covariances withinτL to produce a low frequency covariance struc-

ture of the repeated stacked vector process. The latter provides the keyingredients of the traditional

VAR impulse response functions.

To handle more general aggregation schemes, we introduce aK-dimensional latent high frequency

processzH(τL, kH), used to construcẗx(τL). We will focus on linear aggregation schemes - that in-

cludes the two most common cases, stock and flow aggregation. In general,we will consider the

m∗K-dimensional stacked vector[zH(τL, 1)
′ . . . zH(τL,m)′]′, and generically denote the aggregation

filter as:

ẍ(τL) = D(LH)







zH(τL, 1)
...

zH(τL,m)







D(LH) ≡ diag(D1(LH), . . . ,Dm(LH)) (4.3)

where the aggregation scheme may involve long spans, i.e.Pa may be larger thanm. For example,

theKi
L elements of the low frequency vector released at different times may all pertain to (τ − 1)L

realizations ofzH . Stock and flow sampling schemes are special cases.8 In section 6 we will provide

some specific examples of filters. For general aggregation schemes we can characterize the result in

equation (4.2) in terms of̈SzH which is the spectral density of[zH(τL, 1)
′ . . . zH(τL,m)′]′, namely:

S(z) =
1

m

m−1∑

j=0

1

m
QD(

z + 2πj

m
)S̈zH ((

z + 2πj

m
)m)QD((

z + 2πj

m
)−1) (4.4)

whereQD(z) = Q(z)D(z). Hence, one can think of the low frequency VAR model in terms of skip-

sampled filteredzH , which may represent a combination of flow and stock variables - through filtering

with D(LH), which also may capture a mixture of releases involving publication delays (as noted in the

discussion below equation (4.3)). Naturally, the aggregation scheme will affect how the low frequency

VAR model will look like. Publication delays, i.e. one of the low frequency series pertains toτL−j, will

shape differently the low frequency VAR dynamics. In section 6 we will provide numerical illustrative

examples of such delay effects.

8For more discussion of general linear aggregation schemes, see e.g. Lütkepohl (1987).
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5 Specification and Estimation

Empirical work involves critical choices of model specification and parametrization. In the context of

VAR models this amounts to selecting: (1) the variables that are included in the VAR, (2) the sampling

frequency of the model, (3) the number of lags to be included and (4) restrictions on the parameter

space. Choices of the second type - namely sampling frequency - are notmuch discussed in the litera-

ture and are the focus of this section. Obviously, the choice of sampling frequency is not detached from

all the other aforementioned model selection choices. For instance, lag selection is very much related

to sampling frequency and so are the parameterizations of the VAR.

To formulate a maximum likelihood based estimator of mixed frequency VAR models,consider the

conditional density of theτ thL observation:

f(x(τL)|x(τL − 1), . . . , x(τL − P ); Ψ) = (2π)m̃τL |(CτL(Ψ)CτL(Ψ)′)−1|1/2 ×

exp (ε(τL)
′(CτL(Ψ)CτL(Ψ)′)−1ε(τL))

which yields the sample log likelihood function for a sample of sizeTL :

L(x(τL)
TL

1 |Ψ) = (−1/2)

TL∑

τL=1

m̃τL log (2π) + (1/2)

TL∑

τL=1

log |(CτL(Ψ)CτL(Ψ)′)−1| (5.1)

−(1/2)

TL∑

τL=1

[ε(τL)
′(CτL(Ψ)CτL(Ψ)′)−1ε(τL)]

which form fixed, i.e. under Assumption 2.1, specializes to the usual sample log likelihood function:

L(x(τL)
TL

1 |Ψ) = (−TL(KL +m ∗KH)/2) log (2π) + (TL/2) log |(C(Ψ)C(Ψ)′)−1| (5.2)

−(1/2)

TL∑

τL=1

[ε(τL)
′(C(Ψ)C(Ψ)′)−1ε(τL)]

The asymptotic analysis of VAR models is well known, see e.g. Hamilton (1994),and applies in the

current setting without any modifications. This also covers the case of time varying mixed sampling

frequencies under Assumption 3.1.

In a first subsection we cover the asymptotic properties of mis-specified VAR models with an

emphasis on mixed versus low frequency specifications. A final subsection covers Bayesian mixed

frequency VAR estimation.
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5.1 Asymptotic Properties of Mis-specified Low Frequency DataVAR Model Estima-
tors

Having specified some potentially parsimonious mixed frequency specifications, we now turn our atten-

tion to the comparison of a low frequency VAR model with a finite number of lags and with parameter

vectorΦ compared with a mixed frequency VAR model with finite number of lags and parameter vector

Ψ. More specifically, we assume the DGP is them∗K dimensional vector̈x(τL) described by equation

(2.10):

Ä(LL)(ẍ(τL)− µẍ) = ε̈(τL)

with E[ε̈(τL)ε̈(τL)
′] = C̈C̈

′. Against the backdrop of this DGP we have on the one hand the mixed

frequency VAR specification appearing in (2.15) parameterized byΨ :

ÄΨ(LL)(ẍ(τL)− µΨ
ẍ ) = ε̈(τL)

with E[ε(τL)ε(τL)
′] = C(Ψ)C(Ψ)′, and on the other hand theK dimensional traditional low frequency

VAR parameterized byΦ :

BΦ(LL)(x(τL)− µΦ
x ) = ε(τL) (5.3)

whereB(LL) = I -
∑

P

j=1Bj(Φ)L
j
L, andE[ε(τL)ε(τL)

′] = C(Φ)C(Φ)′. Hence, we look at a researcher

who ignores the high frequency data, picks a finite set of lags and possibly imposes parameter restric-

tions on the VAR, versus a researcher who looks at the high frequencydata, picks a finite set of lags -

not necessarily the right number - and possibly imposes restrictions to tackleparameter proliferation.

The use of the DGP in equation (2.10) as the benchmark against which to assess approximation

errors may require some explanation. We think of the DGP as a description ofthe data series sampled

at their primitive sampling frequencies. It is against this backdrop that we compare parsimoniously

parameterized mixed frequency VAR models and traditional low frequency ones. Since the discussion

here essentially revolves around the estimation of mis-specified linear Gaussian processes, we will

be using a notion ofrelative (rather than absolute) entropy - that is the Kullback and Leibler (1951)

measure to assess approximation errors. For the latter, the penalty for highdimensional systems will

not appear as we have chosen it to be the benchmark against which all other models are compared.

Analogous to the equation (5.2) we also have the sample log likelihood function:

L(x(τL)
TL

1 |Φ) = (−TL(KL +KH)/2) log (2π) + (TL/2) log |(C(Φ)C(Φ)
′)−1| (5.4)

−(1/2)

TL∑

τL=1

[ε(τL)
′(C(Φ)C(Φ)′)−1ε(τL)]

Using results from Hansen and Sargent (1993) we obtain the following:

Proposition 5.1. Let Assumptions 2.1 and C.1 through C.4 hold and the DGP is described by (2.10).

Moreover, assume the low frequency process is constructed as a skip sampled sequence analogous - as
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in Theorem 4.1. Then the maximum likelihood estimator appearing in (5.1), denotedΨ̂, minimizes

Ψ̂ = Argmin
Ψ

[

E1(S̈(Ψ), S̈) + E2(S̈(Ψ), S̈) + E3(S̈(Ψ), S̈)
]

E1(S̈(Ψ), S̈) =
1

2π

∫ π

−π
log(det S̈(ω,Ψ))dω

E2(S̈(Ψ), S̈) =
1

2π

∫ π

−π
trace(S̈(ω,Ψ)−1S̈(ω))dω

E3(S̈(Ψ), S̈) = (µẍ − µΨ
ẍ )

′S̈(0,Ψ)(1)−1(µẍ − µΨ
ẍ ) (5.5)

whereas the maximum likelihood estimator appearing (5.4), denotedΦ̂, minimizes

Ψ̂ = Argmin
Φ

[

E1(S(Φ), S̈) + E2(S(Φ), S̈) + E3(S(Φ), S̈)
]

E1(S(Φ), S̈) =
m

2π

∫ π

−π
log(detS(ω,Φ))dω

E2(S(Φ), S̈) =
1

2π

∫ π

−π
trace(S(ω,Φ)−1Q(exp (iω))′S̈(ω)Q(exp (−iω)))dω

E3(S(Φ), S̈) = (µẍ − 1m ⊗ µΦ
x )

′S(0,Φ)(1)−1(µẍ −⊗µΦ
x ) (5.6)

Proof see Appendix C

Note that if the mixed frequency VAR model is correctly specified, then the termsE2 andE3 in

equation (5.5) disappear and one has a standard MLE. Likewise, again assuming the mixed frequency

VAR model is correctly specified, one can replace all the terms involving the DGP in equation (2.10)

appearing inE2 andE3 of equation (5.6) with the parameterized mixed frequency VAR one. Note also

that the termE3 in both cases refers to the mis-specification of the mean. The term is important when it

comes to approximation errors in the context of periodic models, as emphasized by Hansen and Sargent

(1993). In our analysis, this play less of a role and we will typically handle cases without specification

errors of the overall mean of the process - whether it is sampled at low or high frequency.

Finally, we far we assumed a skip sampling scheme in the Proposition 5.1. It would be easy to

adopt the general aggregation schemes we discussed in the previous section. It suffices to replaceQ(.)

with QD(z), and make the appropriate changes to the spectral representations. We refrain here from

providing the details, as they are relatively straightforward.

5.2 Bayesian Mixed Frequency VAR

Recent work on MIDAS regressions includes Bayesian estimation approaches, see notably Rodriguez

and Puggioni (2010) and Ghysels and Owyang (2011). It is the purpose of this section to expand these

recent developments to a mixed frequency VAR framework. We do so with theobjective of staying as

close as possible to the standard Bayesian VAR approach.
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It will be convenient to start again with a simplified example. Namely, consider the case where all

the low frequencyτL series are release at the end of the period as in equation (2.1) with zero mean

series, withKL andKH of any dimension (hence not necessarily one). To highlight the role of the

MIDAS regression parameters we write the last set of equations as a function of γ :









xH(τL, 1)
...

xH(τL,m)

xL(τL)









=
P∑

j=1









A1,1
j . . . A1,m

j A1,m+1
j

... . . .
...

...

Am,1
j . . . Am,m

j Am,m+1
j

Am+1,1
j . . . Am+1,m

j Am+1,m+1
j

















xH(τL − j, 1)
...

xH(τL − j,m)

xL(τL − j)









+ ε(τL)

wheredim(Am+1,m+1
j ) =K2

L, dim(Ai,m+1
j ) =KH×KL for i = 1, . . . , m and finallydim(Aa,b

j , a, b =

1, . . . ,m) = K2
H .

Since the MIDAS part of the VAR is novel in terms of Bayesian estimation, we focus first on its

formulation. We therefore start with the matricesAm+1,.
j (γ) and make them explicitly functions of the

MIDAS polynomial parameters. We will suggest two approaches - one forgeneral MIDAS polynomial

specifications and a second using the MIDAS with step functions of Ghysels, Sinko, and Valkanov

(2006) and U-MIDAS (unrestricted MIDAS polynomial) approach suggested by Foroni, Marcellino,

and Schumacher (2011) (see also Appendix A). We cover the generalcase first.

Recall from subsection 2.4 that we considered two schemes, appearing inequations (2.13) and

(2.14):

[Am+1,1
1 (γ) . . . Am+1,m

1 (γ)Am+1,1
2 (γ) . . . Am+1,m

P (γ)] =

{ B ⊗
[
∑KH×P

i=1 (w(γ)i)
]

[Bi ⊗ [
∑m

i=1 (w(γ)i)] , i = 1, . . . , P ]

(5.7)

Recall also thatB aKL×KH matrix and in subsection 2.4 we assumed
∑KH×P

i=1 (w(γ)i) is ascalar

MIDAS polynomial such that the weighting schemes are the same across the different low frequency

equations. We can easily relax this, by assuming a scheme where all the MIDAS polynomials are driven

by a common prior, namely[Am+1,1
1 (γ) . . . Am+1,m

1 (γ)Am+1,1
2 (γ) . . . Am+1,m

P (γ)] can be expressed

as:
{

(

Ba,b
[
∑KH×P

i=1

(
w(γa,b)i

)]

, a = 1, . . . ,KL; b = 1, . . . ,KL

)

[

Ba,b
i

[∑m
i=1

(
w(γa,b)i

)]
, i = 1, . . . , P, a = 1, . . . ,KL; b = 1, . . . ,KL

]
(5.8)

We will consider the case of MIDAS Beta polynomials (see Appendix A), the other cases are similar and

therefore not covered. The prior both in the case of a single MIDAS polynomial (5.7) or the common

prior in the case of many single MIDAS polynomials as in (5.8), is a Gamma distribution. Since

the MIDAS Beta polynomial involves two parameters, we draw each parameterfrom an independent

Gamma. In the case of (5.8) theKL ×KH MIDAS polynomials each involve two parameters and they
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also have two independent Gamma distributions. We use a Gamma distribution as thevalues of the

Beta polynomial take on positive values. For simplicity we cover the single MIDAS polynomial, then

the prior forγ ≡ (γ1, γ2) is:

γi ∼ Γ (f0,F0) i = 1, 2 (5.9)

wheref0 = F0 = 1. This prior amounts to a flat weighting scheme that put equal weight on all high

frequency data. Yet, there are several variations that put further restrictions. They are: (a) downward

sloping weights:γ ≡ (1, γ2) with γ2 ∼ Γ (f0,F0) and f0 = F0 = 1, (b) hump-shaped weightsγ ≡

(1 + γ1, 1 + γ1 + γ2), among others. The downward sloping scheme is particularly appealing as it

amount to a single parameter weighting scheme.

Following Ghysels and Owyang (2011), we utilize a Metropolis-in-Gibbs step(as in Chib and

Greenberg (1995)) to sample the MIDAS hyperparameters. The Metropolis step is an accept-reject

step which requires a candidate draw,γ∗, from a proposal density,q
(
γ∗|γ[i]

)
, whereγ[i] is the last

accepted draw. The draw is then accepted with a probability that depends on both the likelihood and

parameters’ prior distribution. In this case, the functional form of the weighting polynomial motivates

our choice of the proposal density. Because we have chosen the beta weighting polynomial, a Gamma

proposal distribution provides a suitable candidate.

To formalize, for the(i+ 1) iteration, we can draw a candidateγ∗ = (γ∗1 , γ
∗
2)

′ from

γ∗j ∼ Γ

(

c
(

γ
[i]
j

)2
, cγ

[i]
j

)

,

wherec is a tuning parameter chosen to achieve a reasonable acceptance rate. The candidate draw is

then accepted with probabilitya = min {α, 1}, where

α =
L(x(τL)

TL

1 |Ψ−γ , γ
∗)

L(x(τL)
TL

1 |Ψ−γ , γ[i])

dΓ (γ∗|f0,F0)

dΓ
(
γ[i]|f0,F0

)
dΓ(γ[i]|c (γ∗)2 , cγ∗)

dΓ(γ∗|c
(
γ[i]

)2
, cγ[i])

,

whereL(x(τL)
TL

1 |Ψ−γ , γ
∗) is the conditional likelihood given the parametersΨ−γ - which are all the

parameters inΨ excludingγ anddΓ (.|., .) is the Gamma density function. Obviously, whenever there

are multiple MIDAS polynomials the aforementioned Metropolis step is repeated for each weighting

scheme separately. Hence, in such case we essentially draw various weighting profiles. For convenience

we will keep using the notationγ for a single as well as multiple MIDAS polynomial weighting schemes

to avoid further complicating the notation.

The Bayesian analysis of mixed frequency VAR and traditional VAR models becomes quite similar

once the parameter draws for the MIDAS polynomial are given. First we write the VAR as a first order
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system (again assuming unconditional mean zero processes):

x(τL) = [x(τL − 1) . . . x(τL − P )]×









A1(Ψ−γ , γ)

A2(Ψ−γ , γ)
...

AP (Ψ−γ , γ)









+ ε(τL) (5.10)

where we acknowledge that the lag matricesAj(Ψ−γ , γ) depend on the parameter vector driving the

MIDAS polynomial weights as well as the remaining parameters inΨ−γ .

Equation (5.10) looks like a ’regular’ regression framework associatedwith VAR models. Hence,

from here on we can follow Doan, Litterman, and Sims (1984), Litterman (1986), Kadiyala and Karls-

son (1997), Sims and Zha (1998), among others, for the formulation of priors regardingΨ−γ , which is

partitioned into three blocks (dropping the dependence onγ etc. for convenience):

• Ψ−γ,H = ((Aa,b
j , a = 1, . . . ,m, b = 1, . . . ,m+1), j = 1, . . . , P )′, the set parameters pertaining

to the high frequency components of the vector.

• Ψ−γ,L = ((B or Bi, i = 1, . . . , P )′, the slope parameters pertaining to the MIDAS regres-

sions.

• Ψ−γ,V = ((CC′)a,b; a = 1, . . . ,m + 1, b = 1, . . . ,m + 1)′, the parameters pertaining to the

covariance matrix of the errors.

In particular, the means and variances for the priors inΨ−γ,H are (dropping again the dependence on

γ etc.):

E[Aa,b
j ] = 0K2

H

, V[Aa,b
j ] = λ2

[(j−1)m+(m−b+a)]2
1K2

H

a = 1, . . . ,m, b = 1, . . . ,m− 1

E[Aa,m
1 ] = diag(ρa)K2

H

V[Aa,m
1 ] = λ2

[(a)]2
1K2

H

a = 1, . . . ,m

E[Aa,m
j ] = 0K2

H

, V[Aa,m
j ] = λ2

[(j−1)a+a]2
1K2

H

j > 1, a = 1, . . . ,m

E[Aa,m+1
j ] = 0KH×KL

, V[Aa,m+1
j ] = ϑHL

λ2

[(j−1)m]2
SHL a = 1, . . . ,m

(5.11)

where the notationV[ ] stands for a matrix of variances,0 and1 are matrices respectively of zeros

and ones, with the dimension as subscript,diag(x) is a diagonal matrix with elementsx and again

the dimension as subscript, and finallySHL ≡ [σ2
i,H/σ2

j,L; i = 1, . . . ,KH , j = 1, . . . ,KL]. The latter

captures the difference in scaling between high and low frequency data,as is typically done in Bayesian

VAR models (see above references). The hyperparameterλ governs the overall tightness of the prior

distributions around the AR(1) (including white noise) specification for the high frequency process.

The hyperparameterϑHL ∈ (0, 1) governs the extent to which the low frequency data affect high
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frequency data. Note that we leave within low frequency series prior distribution uniform. Namely,

since we writeV[Aa,b
j ] is only scaled byj, a andb we essentially treat the dependence within the vector

of high frequency data as uniform. We can change this by replacing1K2

H

with a matrix that would

involve another set of hyperparameters that would govern the extent to which low frequency series are

mutually affected. This is an easy generalization which we do not consider for the sake of simplicity.

The prior in (5.11) is much inspired by the parsimonious representation appearing (2.11). Namely,

it essentially says that all the high frequency processes are AR(1) with autoregressive parameterρ that

is common among all the series. We typically setρ = 0, i.e. all high frequency processes are white

noise, or putρ equal to some value between zero and one, and possibly equal to one. The variances of

the prior tell us that the precision on the parameters is tighter as lags increase. This is typically done

in traditional Bayesian VAR models, and is shrinking at a rate that is the square of the lag length as in

Litterman (1986). Note, however, that the decay is not only governed byj, but also by(a, b) as they

represent the intra-τL period lag structure. Regarding the MIDAS regressions inΨ−γ,L, we have the

following priors for the slope coefficients:

E[B] = 0KL×KH
, V[B] = ϑLHλ2

1KL×KH
SLH

E[Bj ] = 0KL×KH
, V[Bj ] = ϑLH

λ2

j2
1KL×KH

SLH

(5.12)

with ϑLH andSLH having interpretations similar to the ones considered for the high frequencydata

regressions in the VAR. Not that the prior in (5.12) implies that we typically start from a VAR that has

flat weights for the MIDAS polynomial and the high frequency data do not have an impact on the low

frequency data. Note also that the reverse is also true since we put the prior thatE[Aa,m+1
j ] = 0KH×KL

.

Last but not least, we also need to formulate priors forΨ−γ,V . Here we refer to Kadiyala and

Karlsson (1997) who consider so called Minnesota priors with fixed residual covariance matrices, or

the Normal-Wishart and Diffuse priors, the Normal-Diffuse and ExtendedNatural Conjugate priors. In

all cases they derive the posterior distributions which are summarized in Kadiyala and Karlsson (1997,

Table 1). The MCMC procedure therefore can rely on the explicitly derived posterior distributions -

conditional of draws ofγ for the MIDAS weights.

It is important to note that one can also implement the estimation of mixed frequencyVAR mod-

els using exclusively standard Bayesian VAR methods, that is avoid the useof the Metropolis step

described earlier in the subsection. This involves the step functions approach to MIDAS of Ghy-

sels, Sinko, and Valkanov (2006) and the completely unrestricted specification where each weight is

estimated separately, i.e. the U-MIDAS approach suggested by Foroni, Marcellino, and Schumacher

(2011) shown to work for small values ofm. Using the step function example, we can think of replacing

equation (5.7) with:

[Am+1,1
1 . . . Am+1,m

1 Am+1,1
2 . . . Am+1,m

P ] =

[

B1 . . . B1
︸ ︷︷ ︸

B2 . . . B2
︸ ︷︷ ︸

. . . Bs . . . Bs
︸ ︷︷ ︸

]

(5.13)
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with s step matrices that imply fixed lag effects across subsets that spanP ×m lags.9 The U MIDAS

case is one wheres =P×m, and therefore each matrix is unrestricted. Now, we are left with specifying

priors for the step functions. The easy case is where the steps are multiplesof m, as is usually the case.

Then we can use a prior similar to that appearing in (5.12) forE[Bj ] andV[Bj ]. In particular in the U

MIDAS case one may also think of using the shrinkage methods for large dimensional VAR models.

However, large VAR models in the traditional sense means a lot of individual series (sampled at the

same frequency), whereas here large dimensions result from the stacking of the same series. There is

already a great amount of shrinkage explicitly taking into account via the priors appearing in equations

(5.11) and (5.12).

6 Numerical Examples

In this section we provide some numerical illustrative examples to compare the behavior of impulse re-

sponse functions in mixed frequency and traditional VAR models. We look atbivariate systems, i.e. we

study cases with a single series of each type - low and high frequency. Wedo this to simplify the study

of impulse response functions. We use the setup in equation (2.11). We considerm =3, correspond-

ing to a monthly/quarterly data mixture andm = 12, representing a weekly/quarterly mixture. For the

former - which we refer to as Case 1a, we have:a = 0, ρ = .5,α1 = .5, with [w(γ)3, w(γ)2, w(γ)1]

= [.2, .5, .9] and set the innovation covariance matrix to an identity matrix. Therefore, Case 1a corre-

sponds to mildly persistent high and low frequency series (sinceρ =α1 = .5), without any impact of low

frequency onto high frequency series. Moreover, the MIDAS weightsfeature a typical downward decay

pattern. Given the mixed frequency VAR data generating process we characterize the corresponding

traditional VAR(1) model - with point-sampling of the high frequency data - which is obtained from

minimizing the criterion appearing in Proposition 5.1. Hence, we view the traditional VAR as a mis-

specified model estimated via standard MLE.10

Sincea is zero, there is no causality between the low frequency series. Hence, we expect that a

shock toxL(τL) will not affect futurexH(τL + k, i) for i = 1, . . . , 3, for k > 0. Recall that we are

thinking of a quarterly model, hence the impulse responses are in terms of quarterly time ticks. The

results appearing in Figure??. The left panel shows three impulse response functions: (1) the impact

of a shock toxH(τL, 1) on future quarterlyxL(τL + k), for k = 1, . . . , 24 (quarters) as determined by

the mixed frequency VAR, (2) the impact of a shock toxH(τL, 3) on future quarterlyxL(τL + k), and

(3) the impact of a shock to aggregatehigh frequency series in the VAR(1) forx(τL) on future quarterly

low frequency data. It is interesting to note that while high frequency shocks affect the low frequency

series up to 10 quarters in the future, the standard frequency VAR hardly shows any impact of shocks

to the aggregated (skip sampled) high frequency series on the low frequency process.

9We assume here for simplicity that all the high frequency series involve thesame step sizes.
10In the Internet Appendix we provide the Matlab code used to compute the numerical results. Some parts of the code were

inspired by code reported in Hansen and Sargent (1990).
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It is instructive to look at the numerical coefficients of the mis-specified VAR(1) model which ap-

pear in Table 1. Clearly, the implied dynamics have little resemblance with the original mixed frequency

dynamics. The high frequency process features no persistence but isdriven by the low frequency pro-

cess. In contrast, the low frequency process picks up more persistence (with0.889) than the DGP. The

right panel also shows three impulse responses, namely: (1) the impact ofa shock toxL(τL) on future

quarterlyxH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR, (2) the impact

of a shock toxL(τL) on future quarterlyxH(τL + k, 3), and (3) the impact of a shock to aggregate

low frequency series in the VAR(1) forx(τL) on future quarterly high frequency data. Sincea is zero,

the first two impulse response functions are flat and equal to zero. In great contrast, and as implied

by the dynamics in (??), we find that the low frequency process greatly impacts the high frequency

process. Obviously, this numerical example touches on the topic of Granger causality being altered due

to aggregation.11

It is also worth noting that the impact of a shock toxH(τL, 1) and that of a shock toxH(τL, 3) on fu-

ture quarterlyxL(τL+k), look quite different. This is in fact the result of a combination of two effects:

the MIDAS weighting scheme and the persistence of the high frequency series. This prompts us to

look at what we will refer to as Case 1b, where the weighting scheme is flat, i.e. [w(γ)3, w(γ)2, w(γ)1]

= [.1, .1, .1], and we lower the persistence of the high frequency series, i.e.ρ = .1, while the other pa-

rameters remain the same. The impulse responses appear in Figure 2. We no longer observe the sharp

differences in the first and third monthly impulse response functions, as expected.

For the second case we reverse the causal relationship between high and low frequency data.

In addition we also change the persistence of the series. Namely, we seta = 0.4, ρ = α1 = .1 and

[w(γ)3, w(γ)2, w(γ)1] = [0., 0., 0.], implying that the high frequency data do not affect the low fre-

quency (which is an exogenous process). The results appear respectively in Figure 3 and Table 1. We

observe a similar spurious phenomenon: the impact of high frequency series - which is zero - becomes

significant after we estimate a standard VAR as we can see from the left hand side of Figure 3. The

right hand side plot in the figure also tells us that the actual impact of low frequency data onto high

frequency series is severely mis-specified in the standard VAR as well. Asone can read from Table

we see that the VAR dynamics become non-trivial with a feedback effect from low frequency to high

frequency equal to0.3805 together with the spurious impact ofxH(τL) ontoxL(τL) equal to 0.1095.

The third example involves a mixture of weekly and quarterly series. We consider somewhat dif-

ferent parameter values, namelya = .01, ρ = .1, α1 = .5, [w(γ)3, w(γ)2, w(γ)1] = [.5, .4, .3] and all

other remaining 9 MIDAS polynomial weights equal to zero. Hence, this example causality runs in

both directions, albeit of small magnitude. The impulse response functions appear in Figure 4, which

has again two panels with the same type of three impulse response functions asin Figure 1. We clearly

misread the dynamics of the impulse responses again both in terms of magnitude and timing. We

11Much has been written about the spurious effects temporal aggregationmay have on testing for Granger causality, see
e.g. Granger (1980), Granger (1988), Lütkepohl (1993), Granger (1995), Renault, Sekkat, and Szafarz (1998), Breitung and
Swanson (2002), McCrorie and Chambers (2006), among others. In concurrent research we study the topic of testing for
Granger causality in a mixed frequency setting - see Ghysels, Motegi, andValkanov (2011).
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provided only two numerical examples. One obviously can think of many alternative scenarios. The

Matlab code provided enables the reader to experiment with alternative specifications.

7 Empirical Examples

The empirical application is tailored after Chiu, Eraker, Foerster, Kim, and Seoane (2011) who develop

a Bayesian approach to such mixed frequency VAR models where the missingdata are drawn via

a Gibbs sampler. Their primary objective is to formulate a model that allows analysis of GDP at a

frequency higher than the quarterly data readily available. Their analysisalso has the virtue of keeping

the empirical exercise simple and transparent. We want to do the same and therefore replicate their

setting for the purpose of comparison. In particular they consider a latentVAR(1) model involving

industrial production, inflation, and unemployment rate, and GDP for the US. All but the last series

are observed monthly. The data are the twelve-month change in industrial production (denoted IP) and

inflation (denoted INFL), the four-quarter change in real GDP (denoted GDP), and the unemployment

rate (denoted UNEMP), all expressed as percentage points. Chiu, Eraker, Foerster, Kim, and Seoane

(2011) assume - like we do - that every month, the monthly data are observed, and the quarterly data

are observed only during the last month of each quarter. We compare the mixed frequency VAR with a

traditional quarterly VAR model. Therefore, we study the co-movements of:









IP (τL)

INFL(τL)

UNEMP (τL)

GDP (τL)









vs









xH(τL, 1)

xH(τL, 2)

xH(τL, 3)

GDP (τL)









with xH(τL, j) =






IP (τL, j)

INFL(τL, j)

UNEMP (τL, j)




 (7.1)

The data set used in the empirical application runs from January 1948 to December 2011, for a total of

256 quarters and therefore 768 months.12 Summary statistics for the variables are presented in Table 2

(which is comparable to Chiu, Eraker, Foerster, Kim, and Seoane (2011,Table 2)).

We report the posterior means and standard deviations for the standard low frequency VAR model

in Table 3. While our sample is not the same as in Chiu, Eraker, Foerster, Kim, and Seoane (2011),

we do find similar parameter estimates. As a result, we also find similar impulse response functions -

which will be discussed later. The mixed frequency counterpart appears in Table 4. Here the parameter

estimates display far more heterogeneous patterns, as expected.

Figures 5 through 7 display the response functions of GDP to shocks in thethree high frequency

series, respectively IP, INFL and UNEMP. Since these are of key interest we focus exclusively on these

three. Each figure displays the traditional VAR impulse response functionstogether with the mixed

frequency ones. Similar to the numerical examples reported in the previous section, we focus on the

first and last month of the quarter to show the contrast with the usual impulse response functions. We

12Our sample is slightly different from Chiu, Eraker, Foerster, Kim, and Seoane (2011) who use data from January 1948 to
June 2011, for a total of 762 months or 254 quarters.
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also constructed confidence bands around the low frequency VAR impulse response functions to give

us an idea about the discrepancy between the two types of impulse response functions. It is important

to note the difference between our analysis and the latent high frequencyVAR model of Chiu, Eraker,

Foerster, Kim, and Seoane (2011). The latter have only one response function per high frequency

series, since the basic model is driven by a monthly VAR(1). In their case the the monthly estimates

and the quarterly estimates converted to their monthly counterpart result in impulse response functions

that, for the most part, are quite similar if not identical. Hence, their findings suggest that both the

low frequency VAR and the latent high frequency one yield similar responses of the economy to the

exogenous shocks. Most of the action in their comparison is with respect tothe precision of the impulse

response estimates improving with the monthly specification - exploiting the high frequency data. With

the coarsely sampled estimation method, since the data are observed quarterly, co-movements of the

variables, and hence the effects of shocks, are relatively difficult to distinguish.

INCOMPLETE

8 Conclusions

In this paper we introduced a class of mixed frequency VAR models that arein may important ways

very close to traditional VAR models. Unlike the bulk of the literature on mixed frequency models,

we do not resort to latent variable/shock representations - but instead follow the standard observable

shock paradigm. The use of many standard tools in VAR analysis easily applyto our setting, and in fact

some tools - most prominently Choleski factorizations - become even more suitable for policy analysis.

The estimation of the new class of models also relies on well established procedures. In addition, the

absence of hidden shocks avoids complications in terms of estimation and filtering.

Another merit of the paper is that it establishes a relationship between hithertocompletely discon-

nected literatures: (1) the vast literature on VAR models and (2) the arguably more obscure literature

on periodic models (for seasonality). One might indeed be tempted to characterize the connection as

Hansen and Sargent meeting Sims, since the former introduced periodic modelsinto the macro liter-

ature. It may also be appropriate to characterize the contributions in this paper as establishing a link

between on the one hand MIDAS and on the other hand part of the literatureon seasonal time series

models.
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Table 1: Approximate Vector Autoregressive Models

The table reports the mis-specified VAR(1) using the setup in equation (2.11). Given the mixed frequency VAR data generating process we characterize the corresponding traditional
VAR(1) model - with point-sampling of the high frequency data - which is obtained from minimizing the criterion appearing in Proposition 5.1.In the Internet Appendix we provide
the Matlab code used to compute the numerical results. Case 1a hasm = 3, witha = 0,ρ = α1 = .5, with [w(γ)3, w(γ)2, w(γ)1] = [.2, .5, .9] and set the innovation covariance matrix
to an identity matrix. Case 1b has flat weights and lower persistence of high frequency data - not shown in the table, but impulse responses appear inFigure 2. Case 2 hasm 3, a
= 0.4,ρ = α1 = .1, and[w(γ)3, w(γ)2, w(γ)1] = [.0, .0, .0]. Case 3 hasm = 12,a = .05, ρ = .1, α1 = .5, [w(γ)3, w(γ)2, w(γ)1] = [.5, .4, .3] with all other remaining 9 MIDAS
polynomial weights equal to zero and set the innovation covariance matrixto an identity matrix.

Case 1a

[

xH(τL)
xL(τL)

]

=

[

−0.0064 0.1807
0.0500 0.8890

] [

xH(τL − 1)
xL(τL − 1)

]

+ ε(τL) E[ε(τL)ε(τL)
′] =

[

0.3405 0.0005
0.0005 0.3377

]

Case 2

[

xH(τL)
xL(τL)

]

=

[

0.0582 0.3805
0.1095 0.6203

] [

xH(τL − 1)
xL(τL − 1)

]

+ ε(τL) E[ε(τL)ε(τL)
′] =

[

0.3437 0.0003
0.0003 0.3368

]

Case 3

[

xH(τL)
xL(τL)

]

=

[

0.7020 0.0193
−0.0330 0.8972

] [

xH(τL − 1)
xL(τL − 1)

]

+ ε(τL) E[ε(τL)ε(τL)
′] =

[

0.8350 0.0174
0.0174 1.0096

]
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Table 2: Summary Statistics Data

The table reports summary statistics for our sample data of industrial production, inflation, and unemployment rate, and GDP
for the US. All but the last series are observed monthly. The data sources are as follows:

• Industrial Production Index (SA),http://research.stlouisfed.org/fred2/series/INDPRO/

• Inflation: CPI All Urban,http://www.bls.gov/cpi/tables.htm

• Unemployment rate - 16yrs and older (SA),http://www.bls.gov/webapps/legacy/cpsatab1.htm

• Real GDP (SA and chained 2005 dollars),http://www.bea.gov/national/

The series are transformed as follows: the twelve-month change in industrial production (denoted IP) and inflation (denoted
INFL), the four-quarter change in real GDP (denoted GDP), and the unemployment rate (denoted UNEMP), all expressed as
percentage points. The sample covers January 1948 until December 2011.

Mean Standard Dev. Autocorrelation
IP 2.976 5.8253 0.9660

INFL 3.549 2.8095 0.9879

UNEMP 5.801 1.6504 0.9892

GDP 3.130 2.6830 0.8507

Table 3: Posterior Mean and Standard Error Estimates VAR Model

The table reports the posterior mean and variances of VAR(1) model involving industrial production, inflation, and unem-
ployment rate, and GDP for the US. All but the last series are observedmonthly. The data are the twelve-month change in
industrial production (denoted IP) and inflation (denoted INFL), the four-quarter change in real GDP (denoted GDP), and the
unemployment rate (denoted UNEMP), all expressed as percentage points. The sample covers

IP (τL − 1) INFL(τL − 1) UNEMP (τL − 1) GDP (τL) A0

IP (τL) 0.85 -0.35 0.34 -0.03 -0.07
(0.06) (0.07) (0.06) (0.12) (0.19)

INFL(τL) 0.09 0.96 0.02 -0.07 0.01
(0.02) (0.02) (0.03) (0.04) (0.16)

UNEMP (τL) -0.02 0.03 0.94 -0.03 0.41
(0.01) (0.01) (0.01) (0.02) (0.07)

GDP (τL) 0.13 -0.12 0.18 0.64 0.11
(0.03) (0.03) (0.03) (0.05) (0.16)

35

http://research.stlouisfed.org/fred2/series/INDPRO/
http://www.bls.gov/cpi/tables.htm
http://www.bls.gov/webapps/legacy/cpsatab1.htm
http://www.bea.gov/national/


Table 4: Posterior Mean and Standard Error Estimates Mixed Frequency VAR Model

The table reports the posterior mean and variances of VAR(1) model involving industrial production, inflation, and unemployment rate, and GDP for the US. All but the last series are observed monthly. The data are the twelve-month change in industrial production (denoted

IP) and inflation (denoted INFL), the four-quarter change inreal GDP (denoted GDP), and the unemployment rate (denoted UNEMP), all expressed as percentage points. The sample covers

τL − 1 IP (., 1) INFL(., 1) UNEMP (., 1) IP (., 2) INFL(., 2) UNEMP (., 2) IP (., 3) INFL(., 3) UNEMP (., 3) GDP A0

IP (τL, 1) -0.26 -0.17 -0.29 0.07 0.24 0.23 1.13 -0.12 0.11 0.07 -0.18
(0.06) (0.15) (0.24) (0.09) (0.20) (0.25) (0.06) (0.13) (0.17) (0.07) (0.31)

INFL(τL, 1) -0.01 -0.05 0.07 0.01 0.00 -0.11 0.03 1.04 0.06 -0.02 -0.09
(0.02) (0.07) (0.13) (0.04) (0.10) (0.15) (0.02) (0.07) (0.12) (0.03) (0.13)

UNEMP (τL, 1) 0.01 0.02 0.05 0.03 -0.09 0.21 -0.05 0.06 0.71 -0.03 0.27
(0.01) (0.03) (0.06) (0.02) (0.05) (0.08) (0.01) (0.03) (0.07) (0.01) (0.06)

IP (τL, 2) -0.46 -0.01 -0.11 -0.02 -0.28 0.23 1.22 0.15 -0.01 0.29 -0.26
(0.09) (0.20) (0.32) (0.14) (0.27) (0.34) (0.09) (0.18) (0.27) (0.10) (0.39)

INFL(τL, 2) 0.03 0.05 0.19 -0.13 -0.22 -0.55 0.16 1.13 0.38 -0.05 -0.03
(0.03) (0.10) (0.18) (0.06) (0.15) (0.21) (0.04) (0.10) (0.17) (0.04) (0.19)

UNEMP (τL, 2) 0.03 0.03 0.10 0.06 -0.02 -0.02 -0.09 0.00 0.89 -0.05 0.33
(0.01) (0.04) (0.07) (0.02) (0.06) (0.10) (0.01) (0.04) (0.09) (0.01) (0.07)

IP (τL, 3) -0.54 -0.17 0.59 -0.12 -0.49 0.04 1.23 0.42 -0.41 0.43 -0.38
(0.12) (0.27) (0.44) (0.19) (0.37) (0.47) (0.12) (0.26) (0.39) (0.13) (0.51)

INFL(τL, 3) 0.04 0.01 0.16 -0.12 -0.06 -0.33 0.18 1.01 0.18 -0.10 0.09
(0.04) (0.13) (0.24) (0.07) (0.20) (0.29) (0.05) (0.13) (0.24) (0.05) (0.26)

UNEMP (τL, 3) 0.04 0.03 0.14 0.07 -0.04 -0.06 -0.10 0.03 0.87 -0.09 0.50
(0.02) (0.04) (0.09) (0.03) (0.07) (0.12) (0.02) (0.05) (0.10) (0.02) (0.09)

GDP (τL) -0.30 0.01 0.03 -0.04 0.00 0.01 0.35 -0.06 0.02 0.82 0.33
(0.04) (0.06) (0.03) (0.08) (0.06) (0.04) (0.05) (0.06) (0.04) (0.06) (0.23)
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Figure 1: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) witha = 0, ρ = α1 = .5, with

[w(γ)3, w(γ)2, w(γ)1] = [.2, .5, .9] and set the innovation covariance matrix to an identity matrix. We considerm =3, corresponding to a monthly/quarterly data mixture with

point-sampling of the high frequency data - which is obtained from minimizingthe criterion appearing in Proposition 5.1. The left panel shows three impulse response functions: (1)

the impact of a shock toxH(τL, 1) on future quarterlyxL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the mixed frequency VAR, (2) the impact of a shock toxH(τL, 3)

on future quarterlyxL(τL + k), and (3) the impact of a shock to aggregatehigh frequency series in the VAR(1) forx(τL) on future quarterly low frequency data. The right panel

also shows three impulse responses, namely: (1) the impact of a shockto xL(τL) on future quarterlyxH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR,

(2) the impact of a shock toxL(τL) on future quarterlyxH(τL + k, 3), and (3) the impact of a shock to aggregatelow frequency series in the VAR(1) forx(τL) on future quarterly

high frequency data.
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Figure 2: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) witha = 0, ρ = .1, α1 = .5, with

[w(γ)3, w(γ)2, w(γ)1] = [.1, .1, .1] and set the innovation covariance matrix to an identity matrix. We considerm =3, corresponding to a monthly/quarterly data mixture with

point-sampling of the high frequency data - which is obtained from minimizingthe criterion appearing in Proposition 5.1. The left panel shows three impulse response functions: (1)

the impact of a shock toxH(τL, 1) on future quarterlyxL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the mixed frequency VAR, (2) the impact of a shock toxH(τL, 3)

on future quarterlyxL(τL + k), and (3) the impact of a shock to aggregatehigh frequency series in the VAR(1) forx(τL) on future quarterly low frequency data. The right panel

also shows three impulse responses, namely: (1) the impact of a shockto xL(τL) on future quarterlyxH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR,

(2) the impact of a shock toxL(τL) on future quarterlyxH(τL + k, 3), and (3) the impact of a shock to aggregatelow frequency series in the VAR(1) forx(τL) on future quarterly

high frequency data.
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Figure 3: Impulse Response Functions Monthly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) witha = .4, ρ = α1 = .1,

[w(γ)3, w(γ)2, w(γ)1] = [0., 0., 0.] and set the innovation covariance matrix to an identity matrix. We considerm =3, corresponding to a monthly/quarterly data mixture with

point-sampling of the high frequency data - which is obtained from minimizingthe criterion appearing in Proposition 5.1. The left panel shows three impulse response functions: (1)

the impact of a shock toxH(τL, 1) on future quarterlyxL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the mixed frequency VAR, (2) the impact of a shock toxH(τL, 3)

on future quarterlyxL(τL + k), and (3) the impact of a shock to aggregatehigh frequency series in the VAR(1) forx(τL) on future quarterly low frequency data. The right panel

also shows three impulse responses, namely: (1) the impact of a shockto xL(τL) on future quarterlyxH(τL + k, 1), for k = 1, . . . , 24 as determined by the mixed frequency VAR,

(2) the impact of a shock toxL(τL) on future quarterlyxH(τL + k, 3), and (3) the impact of a shock to aggregatelow frequency series in the VAR(1) forx(τL) on future quarterly

high frequency data.
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Figure 4: Impulse Response Functions Weekly/Quarterly

The left panel shows the impulse response function of a mixed frequency VAR and a mis-specified VAR(1) using the setup in equation (2.11) witha = .05, ρ = .1, α1 = .5,

[w(γ)3, w(γ)2, w(γ)1] = [.5, .4, .3] with all other remaining 9 MIDAS polynomial weights equal to zero and set the innovation covariance matrix to an identity matrix. We consider

m =3, corresponding to a monthly/quarterly data mixture with point-sampling ofthe high frequency data - which is obtained from minimizing the criterion appearing in Proposition

5.1. The left panel shows three impulse response functions: (1) the impact of a shock toxH(τL, 1) on future quarterlyxL(τL + k), for k = 1, . . . , 24 (quarters) as determined by the

mixed frequency VAR, (2) the impact of a shock toxH(τL, 3) on future quarterlyxL(τL + k), and (3) the impact of a shock to aggregatehigh frequency series in the VAR(1) for

x(τL) on future quarterly low frequency data. The right panel also shows three impulse responses, namely: (1) the impact of a shock toxL(τL) on future quarterlyxH(τL + k, 1),

for k = 1, . . . , 24 as determined by the mixed frequency VAR, (2) the impact of a shock toxL(τL) on future quarterlyxH(τL + k, 3), and (3) the impact of a shock to aggregatelow

frequency series in the VAR(1) forx(τL) on future quarterly high frequency data.
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Figure 5: Response Function of GDP to IP shocks - BVAR and Mixed Frequency BVAR comparison

The plot displays a comparison of impulse response functions obtained from the BVAR model estimates reported in Table 3 with the corresponding three monthly impulse response

functions obtained from the mixed frequency BVAR estimates reported in Table 4.
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Figure 6: Response Function of GDP to INFL shocks - BVAR and Mixed Frequency BVAR comparison

The plot displays a comparison of impulse response functions obtained from the BVAR model estimates reported in Table 3 with the corresponding three monthly impulse response

functions obtained from the mixed frequency BVAR estimates reported in Table 4.
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Figure 7: Response Function of GDP to UNEMP shocks - BVAR and Mixed Frequency BVAR comparison

The plot displays a comparison of impulse response functions obtained from the BVAR model estimates reported in Table 3 with the corresponding three monthly impulse response

functions obtained from the mixed frequency BVAR estimates reported in Table 4.
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Technical Appendix

A Parsimony - Details

We proceed with a brief discussion of univariate MIDAS regression polynomial specifications. A detailed de-

scription appears in Sinko, Sockin, and Ghysels (2010). Themost commonly used parameterizations (some

involving restrictions denoted by superscriptr) are:

1. Normalized beta probability density function,

wi(γ) =wi(γ1, γ2) =
xγ1−1
i (1− xi)

γ2−1

∑N

i=1 x
γ1−1
i (1− xi)γ2−1

(A.1)

wr
i (γ) = wi(1, γ2) (A.2)

wherexi = (i− 1)/(N − 1) and one often sets the first parameter equal to one as in (A.2).

2. Normalized exponential Almon lag polynomial

wi(γ) =wi(γ1, γ2) =
eγ1i+γ2i

2

∑N

i=1 e
γ1i+γ2i2

(A.3)

wr
i = wi(γ1, 0) (A.4)

3. Almon lag polynomial specification of orderP (not normalized, i.e. sum of individual weights is not equal

to 1).

βwi(γ0, . . . , γP ) =

P∑

p=0

γpi
p (A.5)

Note that this can also be written in matrix form:














w0

w1

w2

w3

...

wN














=














1 0 0 · · · 0

1 1 1 · · · 1

1 2 22 · · · 2P

1 3 32 · · · 3P

...
...

...
...

...

1 N N2 · · · NP






















γ0

γ1
...

γP









(A.6)

Therefore the use of Almon lags in MIDAS models can be achieved via OLS estimation with properly

transformed high frequency data regressors using the matrix representation appearing in the above equa-

tion. Once the weights are estimated via OLS, one can always rescale them to obtain a slope coefficient

(assuming the weights do not sum up to zero).
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4. Polynomial specification with step functions (not normalized)

βwi(γ1, . . . , γP ) = γ1Ii∈[a0,a1] +
P∑

p=2

γpIi∈(ap−1,ap]

a0 = 1 < a1 < . . . < aP = N

Ii∈[ap−1,ap] =

{

1, ap−1 ≤ i ≤ ap

0, otherwise

(A.7)

wherea0 = 1 < a1 < . . . < aP = N . The step functions approach to MIDAS appeared in Ghysels,

Sinko, and Valkanov (2006). A special case is a completely unrestricted specification where each weight

is estimated separately. This so called U-MIDAS (unrestricted MIDAS polynomial) approach suggested

by Foroni, Marcellino, and Schumacher (2011) is shown to work for small values ofm.

A so calledmultiplicativeADL MIDAS regression specifications is also suggested in Andreou, Ghysels, and

Kourtellos (2010). Taking the last equation in (2.11) we have:

xL(τL) =

P∑

j=1

αj +

P∑

j=1

bjxH(τL − j)(γ) + ε(τL,m+ 1)

xH(τL − j)(γ) ≡
m∑

k=1

w(γ)kxH(τL − j, k) (A.8)

hence, the within-τL period high frequency weights remain invariant and yield a low frequency parameterized

processxH(τL − j)(γ).

B Proof of Theorem 4.1

We start be defining the covariance generating functions, based on equations (??):

S̈(z) = c̈(0) +

∞∑

k=1

[
c̈(−k)z−k + c̈(−k)′zk

]

S(z) = c(0) +

∞∑

k=1

[
c(−k)z−k + c(−k)′zk

]
(B.1)

Since the former is derived from a periodic linear model, we can apply what is known as the Tiao and Grupe

(1980) formula which yields ahigh frequency non-periodic processx(τL, kH), with spectral density equal to:

Sx(z) =
1

m
Q(z)S̈(zm)Q(z−1) (B.2)

whereQ(z) =
[
IzI . . . zm−1I

]
.

The resulting process is the high frequency aperiodic representation which inherits the high frequency sam-

pling of the periodic models. To obtain the implied low frequency process, we need to address the aliasing

problem (see e.g. Hansen and Sargent (1983) and Phillips (1973)) associated with sampling this process only at
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low frequency. More specifically,S(z) is a skipped sampled version ofSx, and therefore:

S(z) =
1

m

m−1∑

j=0

Sx(
z + 2πj

m
) (B.3)

which can be written as:

S(z) =
1

m

m−1∑

j=0

1

m
Q(

z + 2πj

m
)S̈((

z + 2πj

m
)m)Q((

z + 2πj

m
)−1) (B.4)

Using the spectral density representations appearing in equations (4.1) yields:

S(z) =
1

m

m−1∑

j=0

1

m
Q(

z + 2πj

m
)S̈((

z + 2πj

m
)m)Q((

z + 2πj

m
)−1) (B.5)

�

C Proof of Proposition 5.1

We start with listing the regularity conditions. We assume the DGP is theKL + m ∗ KH dimensional vector

x(τL) described by equation (2.6):

A(LL)(x(τL)− µx) = ε(τL)

with E[ε(τL)ε(τL)
′] = CC

′. Similar to Theorem 4.1 we assume all the processes are covariance stationary and

therefore have a spectral representation. In particular:

Assumption C.1. The process̈x(τL) satisfy Assumptions 2.1 and 2.2 and has spectral densityS̈(z) for z =

exp (−iω) with ω ∈ [0, π], which can be written as:

S̈(z) = Ä(z)−1
C̈C̈

′(Ä(z−1)−1)′

The same process is parameterized as:

ÄΨ(LL)(ẍ(τL)− µΨ
ẍ ) = ε̈(τL)

with spectral density:

S̈(z,Ψ) = ÄΨ(z)
−1

C̈ΨC̈
′

Ψ(ÄΨ(z
−1)−1)′

Furthermore, a simple skip-sampled or the general aggregation scheme as in (4.3) yields a low frequency VAR

model with spectral density as in (4.1) parameterized byΦ :

S(z,Φ) = BΦ(z)
−1

CΦC
′

Φ(BΦ(z
−1)−1)′

Moreover, the parameter vector spaces are respectivelyΦ ∈ ∆Φ, Ψ ∈ ∆Ψ and

Assumption C.2. The parameter spaces∆Φ and∆Ψ are compact subsets of a Eucledian space
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Assumption C.3. The spectral densities̈S(z,Ψ) andS(z,Φ) for z = exp (−iω) are continuous mappings map-

ping respectively[−π, π]×∆Ψ and[−π, π]×∆Φ into the space of positive definite Hermitian matrices such that

for some0 < εl < εu : εlI ≤ S̈(exp (−iω),Ψ) ≤ εuI andεlI ≤ S(exp (−iω),Φ) ≤ εuI for respectively each

(ω,Ψ) ∈ [−π, π]×∆Ψ and(ω,Φ) ∈ [−π, π]×∆Φ, S̈(exp (iω),Ψ) is the complex conjugate of̈S(exp (−iω),Ψ)

andS(exp (iω),Φ) is the complex conjugate ofS(exp (−iω),Φ).

Assumption C.4. µx is a continuous function on the domain of∆Φ. µẍ is a continuous function on the domain

of ∆Ψ.

Under the above assumptions, Hansen and Sargent (1993) showfor a generic potentially mis-specified model

characterized by spectral densityG(δ) involving parameter vectorδ against DGP with spectral densitÿS, that

the maximum likelihood estimator minimizes the Kullback and Leibler (1951) information criterion which can

be written as:

E(G(δ), S̈) = E1(G(δ), S̈) + E2(G(δ), S̈) + E3(G(δ), S̈)

E1(G(δ), S̈) =
1

2π

∫ π

−π

log(detG(exp (−iω)))dω

E2(G(δ), S̈) =
1

2π

∫ π

−π

trace(detG(δ, exp (−iω))−1S̈(exp (−iω)))dω

E3(G(δ), S̈) = (µẍ − ν(δ))′G(1)−1(µẍ − ν(δ)) (C.6)

using results from Akaike (1973), Ljung (1978), White (1982)and P̈otscher (1987). The results in equations

(5.5) follows by substitutingG(δ) with S̈(Ψ) and the corresponding mean inE3. For the result in equation (5.6)

we need to add one operation, namely we need to handle fact that the low frequency process needs to be stacked

and skip sampled. This results in the appearance of (1) the multiplicative termm in the first termE1, (2) the use

of Q(.) in E2 and (3) the use of1m, am-dimensional vector of ones in the termE3.
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