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Abstract

I examine the role of liquidity provision by dealers in the credit default swap (CDS) mar-
ket, using traded volume of a sample of CDS contracts on North American financial firms
during 2007 — mid 2009, a period that notably includes the financial crisis. Consistent with the
standard microstructure literature, I find that order imbalances of end-users cause significant
price impact, which depends on their direction relative to the direction of dealers’ inventory.
In addition, I establish that counterparty risk, measured by the level of exposure in the inter-
dealer market, limits the willingness of dealers to provide liquidity. The more “congested” the
interdealer market becomes from a build-up of bilateral credit exposure, the more averse deal-
ers become towards inventory risk. Dealers’ desire to hedge counterparty risk leads to limited

intermediation in the CDS market.
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1 Introduction

A central question concerning dealer markets is understanding the role which dealers play in
liquidity provision. The existing microstructure literature addresses this question in equity,
bond, option and foreign exchange (FX) markets using information-based (e.g., Glosten and
Milgrom, 1985, Easley and O’Hara, 1987), inventory control (e.g., Garman, 1976, Stoll, 1978,
Amihud and Mendelson, 1980, Ho and Stoll, 1983), and search-and-bargaining (e.g., Dulffie,
Garleanu, and Pedersen, 2005, Lagos and Rocheteau, 2009, Lagos, Rocheteau, and Weill, 2011)
models. In this paper, I attempt to answer this key question using a comprehensive proprietary
dataset of Credit Default Swap (CDS) transactions. My empirical study shows that, to an
extent, standard microstructure models can be used to understand the functioning of the
CDS market in normal times, but that counterparty risk is also empirically relevant in the
determination of the intermediation capacity of dealers and in the resilience of the market

during times of stress.

In order to understand the effect of the counterparty risk friction on intermediation, it is
necessary to understand how CDS contracts trade. Unlike equities or bonds, CDS contracts
do not trade by means of transfer of ownership. Instead, they involve a bilateral agreement
that the protection buyer will pay the protection seller regular premium payments until either
the contract matures or the default of the associated credit instrument (for example, a bond
issued by a firm), whichever occurs first. In return, if the associated credit instrument defaults,
the seller of protection pays the buyer for the loss, and the buyer ceases paying premia to the
seller. As such, either party of a CDS contract is exposed to loss both through the performance
of the underlying asset and through the potential default of the counterparty. The possibility
that the other party of the contract will default before meeting all of his obligations is often

referred to as counterparty risk."

As a liquidity provider, a dealer firm enters into a transaction with a client even if it does
not wish to retain the exposure. To balance its exposures, the dealer firm enters into offsetting
hedge transactions.? Over time, the dealer may engage in a large number of interdealer and
other hedge transactions to adjust its positions and limit exposure to market movements.
Unlike cash markets, where the passing of inventory does not leave any residual obligations to
the original seller or buyer, these hedge transactions in the CDS market might eliminate or at
least reduce credit risk, but they do not cancel any previous contract. As such, as long as the
contract is in place, the counterparty risk remains, and builds up as these transactions involve

many counterparties. If a counterparty defaults, the dealer’s hedged exposure will change

1See Deutsche Bank, 2009, “Credit Default Swaps: Heading Towards a More Stable System” for further details
on how CDS contracts work.

2There are many ways in which a dealer firm might choose to offset its exposure. It might choose the most basic
hedging strategy of entering into offsetting transactions in the same reference entity within a short time period sur-
rounding end-users trades; alternatively, the exposure can be hedged in the bond market. In this paper I concentrate
only on the CDS market.



and the dealer will consequently find itself exposed to unanticipated market movements. To
neutralize the exposures, the dealer will need to adjust the portfolio to bring it back into
balance, by replacing the defaulted transactions, unwinding the offsetting hedge transactions,
or both. However, if the default of the counterparty is a harbinger of additional credit problems,
non-defaulting parties would have incentives either to cut back or terminate transactions with
troubled counterparties, and the dealer will lose its ability to engage in offsetting trades. At

the aggregate level, this in turn will affect the ability of other dealers to supply liquidity.

This ongoing hedging and re-balancing process by dealers, coupled with the empirical fact
that the daily market turnover of interdealer trading accounts for more than 60% of total
contract turnover, and that each non-dealer customer trade is passed between three dealers on
average, imply that the concentration of exposures in the interdealer market is a good proxy
for the potential consequences of the exit of a major market participant if all the transactions
along the chain of offsetting positions are to be untangled. I refer to this accumulation of credit
risk within the dealing community as “congestion”. Therefore, to determine what affects the
dealers’ capacity to supply liquidity, I explore the interaction between the exposure level among
dealers and the ability of dealers to provide liquidity. I expect that when the interdealer market
is congested, dealers find it harder to mitigate their inventory risk and become more averse to

supplying liquidity to their clients.

It is important to note that this issue has been identified by market participants and reg-
ulators as problematic to the functioning of the market. Since 2008, procedures to reduce the
redundant positions have been developed. The procedure that appears to be most efficient for
reducing the value of outstanding positions is referred to as “compression”. Compression nets
the positions across dealers, taking into account the limits established by dealers on counter-
party risk of other dealers and identifying contracts that can be eliminated or replaced with
new, lower notional value contracts, with the aim of keeping the same risk profile. Compres-
sion, therefore, has resulted in a great reduction of the gross notional value of CDS positions,

but has not resolved the issue completely.

The economic importance of the mechanism of congestion in the interdealer market that
lies at the heart of this paper is reflected in the size of the CDS market. At the end of 2010, the
gross notional value of CDS positions registered at the Depository Trust Clearing Corporation
(DTCC) amounted to $26.3 trillion. Of this total, $15 trillion was single name CDSs and $11.3
trillion was index or tranche CDSs. But these gross notional amounts include a large number
of offsetting trades that can be netted down across investors. For single-name CDS, the $15
trillion gross notional amount nets down to a $1.2 trillion net notional amount (8% of the gross
notional value), while for index and tranche CDS the $11.3 trillion gross notional amount nets

down to a $1.1 trillion net notional amount (approximately 10% of the gross notional value).

Despite the size of the CDS market and its importance, as the financial crisis has illustrated,

there are virtually no empirical studies using transaction flows and dealer inventories. Lack of



data on trading volume figures has been the primary impediment to such research. This paper
is, to the best of my knowledge, the first to study the role of dealers in the CDS market. The
empirical study of CDS dealers is particularly interesting since low regulation has allowed the
patterns of liquidity provision to evolve endogenously. I analyze a unique dataset of transactions
between dealers and their customers spanning from February 2007 to June 2009 for CDS
contracts on 35 North American financial firms. This sample is obtained from the DTCC, the
only central trade registry. DTCC claims to cover about 90% of the notional traded in the
CDS market, hence, my sample reflects the vast majority of market activity in the 35 reference

entities.

The data contain an anonymized identification of the parties of each transaction. Each
individual market player has a consistent identifier throughout the dataset and a classification
of its type (dealer vs end-user). Hence, I am able to construct the daily order imbalances
of dealers and end-users and study the impact of order imbalances. I refer to a non-dealer
customer as an end-user. End-users in the sample include hedge-funds, pension funds, asset
managers, banks, and non-financial companies. The dealers in the sample include the G14
dealers, who are the major 14 over-the-counter (OTC) derivatives dealers, as well as some

smaller dealer firms.

Using this sample, I first establish benchmark results that are drawn from the standard
microstructure models. For each reference entity I examine (i) the association between the
change in the CDS price and the imbalance between buyer- and seller-initiated orders arriving
at the market; and, (ii) how dealers’ inventory levels affect this price impact. Since order flow
might be correlated with fundamental information, I control for contemporaneous and lagged
equity returns (following Acharya and Johnson, 2007). Both Collin-Dufresne et al. (2001) and
Schaefer and Strebulaev (2008) show that equity price changes seem to be adequate to capture
all fundamental information related to default risk, so the unexplained component of CDS price

changes beyond that can be attributed to microstructure frictions.

I find that there are different price reactions to buying versus selling by end-users. The mar-
ket imputes an information content to the trade, both for buying and selling by end-users. Yet,
the contemporaneous price impact of buying is much larger than the immediate price impact of
selling. Specifically, I find that a one standard-deviation increase in net notional amount bought
by end-users is associated with a 0.3% contemporaneous increase in CDS spreads, whereas a
one standard-deviation increase in net notional amount sold by end-users predicts a contempo-
raneous decrease of 0.06%, which is statistically insignificant, and about one-fifth the impact
of buying. The result that the market reacts differently to buy and sell orders resembles the
results that emerge from the empirical research on block transactions and institutional trades
in equity markets (for a survey of these results see Saar, 2001). The empirical results also
suggest that the price impact is permanent, as the effect persists for at least five days. The

asymmetric impact of buys and sells suggests that end-users face a more illiquid market when



they are buying default protection compared to when they are selling protection to the dealers.
The results are consistent with dealers being naturally net long credit risk, and, therefore,
being less willing to sell protection, as it will further increase their exposure to the financial

sector.

As for the effect of dealers’ inventory on price impact, I find evidence consistent with the
microstructure models, such as, Madhavan and Smidt (1991), Madhavan and Smidt (1993), and
Hasbrouck and Sofianos (1993) which predict a lesser price response for order flow that moves
dealer inventory to a preferred position, and that order flow which increases dealer inventory
exposure is associated with a larger price impact. The intuition behind this result follows from
the following example. If dealers hold a long position of CDS protection (i.e., they are short
credit risk) at the end of day ¢ — 1, net-selling by end-users during day ¢ should increase dealers’
long position further. Therefore, to deter additional potential sellers, or conversely to attract
potential buyers, dealers will lower their quoted prices, intensifying the price impact of the
selling pressure. If, however, during day ¢, end-users are net-buyers, this should help dealers
revert to their target inventory level (assuming that the quantity demanded by end-users is

smaller than the level of dealers’ inventory).

The benchmark specification, however, is an incomplete description of the CDS trading
architecture as it excludes a key feature — counterparty risk. To this end, I construct a measure
of exposure in the interdealer market based on pairwise exposures between dealers. Using this
measure, I demonstrate that when dealers are more exposed to each other their willingness
to intermediate markets is reduced and they become less predisposed to absorb supply and
demand shocks. Furthermore, the congestion in the interdealer market has a secondary impact
by discouraging dealers from holding buffer inventories. I find that these two effects increase
the price impact of order imbalances, and that dealers’ inventories matter even more when
significant counterparty risk is built up amongst the dealers. Though the key component of
the price impact in “normal” times is a result of the quantity the end-users demand, the
interdealer exposure effect kicks in when the inventory-absorption capacity of the dealers in
the CDS market is strained.

To gauge the economic magnitude of each of the effects, I decompose the total price impact
of trading into the key components found in this paper for: (a) a benchmark case that is
based on mean values of equity and CDS returns, dealers’ inventory level and end-users’ net
buying imbalance, and for (b) an extreme case when the realizations of all variables are at their
mazimum. Using the mean level of the variables, the “basic” price impact accounts for 28%
and 7% of the total price impact for buys and sells, respectively, and an incoming order-flow
that will increase dealers’ inventory results in 16% and 23% of the price impact for buys and
sells, respectively. While the congestion effect plays a minor role in normal times, it accounts
for as much as 23% and 37% of the total price impact, for buys and sells, respectively, if all

independent variables are taken at their maximum values. In either normal times or crisis



times, the combined microstructure effect of end-users’ order imbalance, dealers’ inventory
and interdealer exposure congestion (including the interactions between the three) is about
the same magnitude as the impact of information flow from the stock market and lagged CDS
spreads. These microstructure effects are not “informationless” and they actually generate new
fundamental information over and above the information generated in the equity markets. I also
find that both end-users’ order imbalances in the CDS market and the information innovations

from the CDS market predict stock returns 1-day ahead.

The results for the single-name contracts are contrasted with the trading in the CDX index,
a basket product. Apart from the information advantage one might have when trading a single-
name contract, the trading mechanism of the index is inherently different. Rather than using
offsetting trades to unwind positions, the party that wishes to unwind his position “assigns”
the trade, i.e. transfers his side of the trade, to a new party. Therefore, I repeat the analysis
using the transactions of the CDX index and I find results that are consistent with the use of
the index for hedging purposes by end-users. In the CDX index, dealers do not seem to play a

significant role in liquidity provision.

Finally, to support the main results in the paper, I also provide evidence that dealers’
inventories mean-revert in a non-linear fashion. Underlying the inventory result lies an implicit
assumption that dealers have a desired level of inventory. As they buy and sell, their inventory
deviates from the target and, therefore, they require compensation. Rather than just assume
this, I test a prediction of Ho and Stoll (1983) about competitive dealer markets pertaining to
mean reversion in dealers’ relative inventories, using the methodology in Hansch et al. (1998).
Similar to the results found by Hansch et al. (1998) for the London Stock Exchange dealers,
I also find evidence that dealers with extreme inventory positions trade larger quantities that
move their inventories toward desired levels, and that the intensity of mean reversion increases
with the deviation of the inventory from its desired level. Nevertheless, the time-scale of mean
reversion is not days, but weeks or months. The half-life of a dealer’s inventory that is one
standard-deviation away from the median level of all dealers is about 160 days, compared to 11
days for an inventory level that is five standard-deviations from the median. Dealers’ persistent

positions are also consistent with the result that the price impact it permanent.

The novel contribution of this paper — the “congested interdealer market” hypothesis — can
be extended to other markets trading bilateral agreements, such as, FX derivatives, interest
rate swaps, and OTC equity derivatives, where counterparty risk is present, and to markets
that are linked to them through an arbitrage relationship. For example, in related work, Choi
and Shachar (2011) use this hypothesis to shed light on the persistent “violation” of the close

relation between CDS and corporate bond spreads — the CDS-Bond Basis — during the crisis.?

3Bai and Collin-Dufresne (2010) and Fontana (2011) also study the deviation of the CDS-bond basis from parity
during the financial crisis. These papers document association with the following risk factors: funding cost risk,
counterparty risk, and collateral quality. Choi and Shachar (2011), on the other hand, focus on counterparty risk and
the transmission mechanism between dealers’ liquidity provision and hedge funds’ trading.



My results have a number of important implications. From a modeling perspective, my
findings suggest that counterparty exposure in the interdealer market is a critical determinant
of liquidity provision by dealers. It follows that existing OTC trading models can benefit
from a better understanding of the structure of the interdealer network and how exposures
are spread in this network. The microstructure frictions found in this paper also help to shed
some light on the possible use of CDS prices for regulation purposes, e.g. Hart and Zingales
(2009). The economic magnitude of these frictions should be estimated and accounted for before
extrapolating the credit risk component from CDS prices. Finally, my results give insight
regarding the potential effects of a central clearing counterparty (CCP) in the CDS market
that is currently being discussed by policy makers (Duffie and Zhu, 2009, Acharya, Shachar,
and Subrahmanyam, 2010). Given that heightened levels of credit exposure in the interdealer
market inhibit liquidity provision in times of stress, it seems that CCPs will primarily create
value by reducing counterparty risk during crisis periods, conditional on them not succumbing

to aggregate crisis.

Related Literature

This paper is closely related to the inventory control models in dealer markets. In particular, the
key finding of this paper is anchored in a trading mechanism that was identified in the Foreign
Exchange (FX) market. Lyons (1997) studies the repeated passing of inventory imbalances
between dealers, i.e. “hot-potato trading,” in the FX market. He shows that hot-potato
trading reduces the information content of interdealer trades. Since the FX market is also an
OTC derivative market like the CDS market, it is not surprising that I find evidence that such
hot-potato trading also happens in the CDS market. In the context of the CDS market, I find

that this trading mechanism imposes a negative externality as interdealer exposure builds up.

My paper is related to several themes within the CDS literature. Acharya and Johnson
(2007) study the flow of information from the CDS market to the equity market during 2001-
2004. Berndt and Ostrovnaya (2007) conduct a similar analysis of the flow of information across
the CDS, option and equity markets. My work shows that there is also an additional information
in the microstructure effects that flows from the CDS market to the equity market. Arora et al.
(2010) use a proprietary dataset of CDS transaction prices and quotes to identify how dealers’
credit risk affects the prices of CDS contracts. They find that counterparty risk is barely
priced in the CDS market, which is consistent with a market structure in which participants
require collateralization of swap liabilities by counterparties. Whether counterparty risk is
priced directly in the CDS price or not, I show that it imposes a significant cost on trading
in stress times through the liquidity channel. My analysis suggests that the quantities traded

between dealers demonstrate the importance of counterparty risk.

My paper is also tangential to the literature on OTC markets, and limited risk-bearing ca-

pacity in market-making. The theoretical OTC market literature that was recently reignited by



Duffie, Garleanu, and Pedersen (2005, 2007) identifies counterparty search and bargaining over
the terms of trade as important frictions to trading in this type of market. In these search mod-
els there is no role of liquidity provision by dealers in the face of temporary demand pressures
due to the assumptions that investors hold 0 or 1 unit of the asset and dealers are restricted
from holding asset inventories. Yet, as my empirical results show in the context of the CDS
market, dealers’ inventories appear to be an important determinant of their ability to provide
liquidity and the price of that liquidity to end-users. Lagos, Rocheteau, and Weill (2011) relax
the restriction on dealers’ and investors’ inventory, to allow them to hold any positive amount.
They find that when frictions are severe, even well-capitalized, profit-maximizing dealers may
not find it optimal to “lean against the wind,” that is, to accumulate inventories during the
crisis and to unload these assets when the economy recovers. Though the theoretical predic-
tion of reduced liquidity provision during the crisis seems to be consistent with my empirical
findings in the CDS market, this prediction is driven by a shock to investors’ risk-aversion, not
dealers’. Dealers, however, are able to trade continuously with each other. My main insight
suggests that the lack of liquidity provision by dealers comes from the search of dealers for
other dealers with sufficiently low counterparty risk. A future theoretical model that desires to

explain liquidity provision in the CDS market should incorporate such friction.

In the broader context of intermediated markets, trading capacity constraints result in limits
to arbitrage. Liquidity suppliers profit from providing immediacy to investors. They have,
however, limited risk-bearing, and thus inventory-carrying, capacity. The limits to arbitrage
arguments rely on the idea that these liquidity suppliers will take the role of arbitrageurs and
accommodate buying or selling pressure, only if they are compensated by favorable subsequent
price movements. Different papers identify different sources for what limits arbitrage. Shleifer
and Vishny (1997) show that capital constraints due to agency problems hinder dealer firms
exploiting mispricing. Deviation from fundamental value might be also a result of the time it
takes for capital to come to the market. Grossman and Miller (1988), Mitchell et al. (2007), and
Dulffie (2010), to name a few, document alternative reasons for capital dislocations. Gromb and
Vayanos (2002) and Brunnermeier and Pedersen (2009) study how leverage constraints affect
the ability of dealers to supply liquidity to outside clients. These frictions result in some part
of the risk in derivatives becoming unhedgeable, leading to an upward sloping supply curve
(Bollen and Whaley, 2004, Cetin et al., 2006, and Garleanu et al., 2009).

2 Hypotheses Development

Trading in the CDS market integrates essentially two parallel trading environments: a trading
environment where end-users trade directly with dealers, and an interdealer trading environ-
ment where dealers are able to share their inventory risks across the dealers community rather
than waiting for the arrival of offsetting customer orders. Hence, the effect of each trading

arena on the other should be carefully assessed. Although I draw from the existing microstruc-



ture literature, the inherent differences of the CDS market architecture pose some questions
regrading the validity of the use of the existing theoretical models that are applied to cash
markets. I try to bridge this gap by supplying empirical evidence on what should be added to
any theoretical model that would describe the CDS market.

Theoretical motivation for the empirical investigation of the order imbalances I undertake
comes from the standard market microstructure models which suggest that trades are associated
with price movements resulting from the presence of trading frictions — such as inventory
costs, information asymmetry, funding constraints, and search costs. In the inventory control
paradigm (e.g., Garman, 1976, Stoll, 1978, Amihud and Mendelson, 1980, Ho and Stoll, 1983,
among others) dealers accommodate buying and selling by outside investors and adjust their
quoted prices to restore their inventories to some desired level. The implication of these models
is that price may depart from expectations of value if the dealer is long or short relative to
its desired inventory, giving rise to transitory price movements during the day and possibly
over longer periods. In the asymmetric information models (e.g., Glosten and Milgrom, 1985,
Easley and O’Hara, 1987, among many others), a subset of the market participants have private
information about the asset’s (expected) value, so order imbalances sometimes signal private
information, which should reduce liquidity at least temporarily, and could also move the market

price permanently, as also suggested by the Kyle (1985) model of price formation.
Hypothesis 1. End-users’ net buying (selling) positively (negatively) affects price changes.

The microstructure literature has extensively explored the relation between trading activity
and returns. Both theory and empirical papers conclude that order imbalances should have an
important effect on asset returns and liquidity. Order imbalance can sometimes signal private
information, which should reduce liquidity at least temporarily and could also move the market
price permanently, as also suggested by the well-known Kyle (1985) model of price formation.
His model predicts that the coefficient on order flow will be positive. Order imbalance can also
be caused by a random large order. Then, it might exacerbate the dealer’s inventory problem

only temporarily until it is reversed by other traders.

Hypothesis 2. The impact of end-users’ demand depends on whether their demand will im-

prove the aggregated level of inventory held by dealers or mowve it away from an optimal level.

Stoll (1978) and O’Hara and Oldfield (1986) use inventory-control models to show how
risk-averse dealers charge premia to accommodate order imbalances. Since dealers use quotes
to elicit trades to balance their inventory positions, dealers’ inventory is expected to affect the
price response to order flow (Madhavan and Smidt, 1991, and Madhavan and Smidt, 1993).
These models predict that market depth is greater (lower price response) for order flow which
moves dealers’ inventory to a preferred position, and that order flow which increases dealers’

inventory exposure, in either direction, is associated with larger price impacts.



Hypothesis 3. Dealers’ inventories matter more when significant counterparty risk has built

up within the interdealer market.

Since there are no natural sellers of protection, dealers stand ready to absorb temporary
imbalances between demand and supply. The interdealer market then serves as a vital venue for
dealers to offload their inventory risk and share it with other dealers. In the process, new trades
are created until the credit risk finds a willing home. The data shows that an end-user trade is
passed between three dealers, on average. Each link in the chain involves a different exposure
to counterparty risk. As long as the contract is in effect, the counterparty risk remains. The
interdealer activity is concentrated among five major dealers, so such circular trading might

increase the overall counterparty exposure among them.

If the level of counterparty risk exposure amongst dealers increases, they become less able
or predisposed to absorb supply and demand shocks, and to hold buffer inventories of assets.
Under extreme conditions, dealers might even exit the market, which in turn might leave fewer
dealers to make most of the market. The inventory levels of these active dealers is expected to
build up. Then, the price impact of a trade must be greater for them to absorb the demand of

end-users.

Hypothesis 4. The inventory level of an individual dealer relative to its peers determines the
direction and size of their trades. The force of mean reversion in a dealer’s relative inventory

position should be increasing in the relative inventory level.

In the theoretical inventory models of dealer markets, the likelihood of execution depends
on the degree of competitiveness of the dealer’s quotes, which in turn depends on his relative
inventory position. When a dealer has an extreme inventory position, he is able to post com-
petitive quotes on one side and stands a better chance of executing the end-users’ order flow
in the desired direction. This results in a relatively quick reduction of his inventory imbalance.
On the other hand, when a dealer’s inventory is close to the median, he is not able to post
competitive prices and therefore stands a poor chance of executing the end-users order flow.
As a result, his inventory takes a longer time to revert to the desired level. This implies that
in competitive dealer markets, the relative inventories of the dealers should be mean reverting

and the strength of mean reversion should be increasing in the relative inventory level.

3 Data Description & Sample Construction

I was fortunate to be given access to an extensive CDS transactions data by DTCC, who
provides clearing, settlement and information services for OTC derivatives. In November 2006,
DTCC established its automated Trade Information Warehouse as the electronic central registry

for CDS contracts. Since that time, the vast majority of CDS contracts traded have been



registered in the Warehouse. In addition, all of the major global CDS dealers have registered

in the Warehouse many of the contracts that were executed among each other before that date.

The data covers all transacted CDS contracts of 35 financial firms between February 2007
and June 2009. Each transaction contains the following information: the name of the refer-
ence entity, the trade date and the effective date, the (expected) maturity of the contract,
anonymized identities of the participating counterparties including the type (dealer or end-
user), and the executed notional amount. The dealers, who generally provide liquidity and
trade on both sides, include the “G14 dealers”: Bank of America-Merrill Lynch, Barclays
Capital, BNP Paribas, Citibank, Credit Suisse, Deutsche Bank, Goldman Sachs, HSBC, J.P.
Morgan, Morgan Stanley, The Royal Bank of Scotland, Société Générale, UBS, and Wachovia
Bank, as well as smaller dealers. The data also contain a finer classification of the end-users
to: asset managers, banks, financial services, hedge-funds, insurance firms, and “other” (the
last group accounts for less than 3% of the notional amount traded by end-users). Information
about the identities of parties trading through DTCC is privileged, and their agreements with
the participating institutions do not allow them to reveal it. Yet, each counterparty is identified
by a unique number over time, and over underlyings, which allows me to follow counterparties’

positions over-time and across names.

Most transactions datasets, even of equity markets, do not identify buyers and sellers,
forcing researchers to classify buyer-initiated or seller-initiated categories using some algorithm.
The Lee and Ready (1991) algorithm is often used and it classifies a trade as buyer-initiated
if it is closer to the ask of the prevailing quote and as seller-initiated if it is closer to the
bid. Since transaction prices are unavailable for the entire time-series, using this algorithm is
infeasible. Nevertheless, the DTCC dataset does include a classification of the buyer and the
seller. Hence, for the purpose of analyzing the price formation process, I assume that end-users
are the ones who initiate trades in this market, rather than dealers. Given that assumption,
I am able to infer the trade direction and to classify transactions as buyer-initiated or seller-
initiated. The signing of transactions allows me to borrow from the common techniques used
in the microstructure literature of the equity market. I believe that this assumption is not so
far from what happens in practice, as incoming trades are generally initiated by customers for
which the dealer will always be the supplier of liquidity. Note that transactions are submitted
post-execution and are not time-stamped for the actual “execution” time, so the price-impact

analysis can be performed only at the daily level.

Another important feature of the dataset is the specification of the type of the transaction,
which determines the traded notional amounts and the exposures. Specifically, a transaction
can be a new trade, an assignment of an already existing trade, or a termination of an existing
trade. When an investor wants to enter into a CDS contract he can either enter into a new
contract or find a counterparty that wishes to assign his position to him. When an investor

wants to unwind an existing contract, he faces three alternatives: enter into a new offsetting
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transaction, assign the contract to a new counterparty, or terminate the transaction with
the original CDS counterparty. Each alternative carries different implications for the level of
counterparty risk exposure in the market. For further details on each of these three mechanisms
see Appendix A.

The transaction-level dataset is augmented with quotes of CDS prices from Markit Group,
a financial data provider, specialized in security and derivatives pricing. One of its services is
to gather, validate and distribute end-of-day composite CDS spreads provided by major deal-
ers. These reported prices are averaged for each CDS contract after eliminating outliers. The
maturities of Markit CDS contracts range between 6 months and 30 years. In the benchmark
analysis, I use the prices of the most popular and liquid 5-year CDS contracts on senior un-
secured obligations of North American reference entities with modified restructuring clauses.
I choose to use the modified restructuring since the default trading style in North America
moved from trading with restructuring to trading without restructuring only towards the end
of the sample in April 2009 along with the introduction of the Big Bang Protocol and “Stan-
dard” trading. CDS spreads of other contract maturities ranging between 1- and 10-year are
relatively liquid and are used for robustness checks. I observe that the vast majority of quotes
lie between 0 and 300 basis points. However, quotes occasionally exceed 3,000 bps and even
4,000 bps.*

After the initial filtration of the DTCC data and the merge with Markit and CRSP datasets,
some reference entities are rarely traded and would not provide reliable observations. Therefore,
to be included in the sample, I require that a CDS contract on a specific reference entity is
traded at least 10% of the trading days in its sample. I also exclude CDS contracts that
their underlyings are Real Estate Investment Trusts (REITSs) as their trading characteristics
might differ from ordinary single-name contracts. The final sample consists of 35 individual,
financial-related reference entities financial firms. Table 1 lists the different firms. Of the
reference entities, 5 are classified as security and commodity brokers, dealers, and services, 7
are depository institutions, 5 are non-depository credit institutions, 23 are insurance related,

1 is real-estate related, and 1 is an asset management firm.

To investigate the role of supply and demand in the CDS market I assess the relation
between net buying pressure of end-users and dealers and the change in CDS spreads. I define
the change in inventory in a specific reference entity of each agent as the difference between
the notional amount bought and sold by him during the trading day, regardless of the contract

maturity,” where the direction of the transaction is determined based on the assumption that

4Such high spreads were observed in the sample especially during September 2008 and May 2009 in the follow-
ing reference entities: Ambac Financial Group, American International Group Inc, Avis Budget Group, Genworth
Financial Inc, MBTA, Radian Group Inc. These levels are associated with a very high probability of default in the
short-term horizon. For example, if it were known with certainty that an entity would default in one year and that
there would be no recovery, then the loss would be 100% on year from now and to cover this cost it would be necessary

to charge a CDS spread of about 10,000 bps per year.

5This definition treats all maturities as essentially the same security, as price movements on different maturities

11



the end-user initiates the trade. Specifically, I construct the time series ), 4+, the net notional
amount bought by (Qy a4+ > 0), or sold to (Qy a4+ < 0), dealer d in reference entity u on day
t,and Iy, q¢ = Iy 40 + Zzzl Qu,d,s, the inventory of dealer d in the CDS contract on reference
entity u accumulated by day ¢, where I,, 4 is the inventory at the start of the sample period.
In my sample, u =1,2,...,35and d = 1,2,...,D,, where D, is the number of dealers in CDS
u, which varies between 4 and 17 dealers depending on the reference entity. I further construct
Qu,d2d,t = Zfl):“l Qu.d,t, the daily aggregated net notional amount bought by, or sold to, dealers,
and I,,; = 25’;1 (Iu,d,O + Zizl Qu7d7s), the daily aggregated inventory of the dealers as a whole.

Different contracts have different spreads, trading intensities, volume levels and volatility,
and, therefore, cannot be compared directly. To facilitate comparison across securities and
across dealers, I standardize the inventories series using Hansch et al. (1998) methodology for
equities. I scale the inventory changes both at the reference entity level, and at the dealer level.
More precisely, for each of the inventory series, I,,, I compute the sample time-series mean (I,)
and the sample standard-deviation (o), and define fu,t, the standardized aggregated inventory
of dealers in CDS w at day t, as:

ju,t — Iu,t - I_u _ Iu,O + Ztrzl Qu,‘r - % Zle (Iu,O + Z::l Qu,r) (1>

Ou Ou

t T
ZT:I Q%T — % ZT:1 27:1 Qu,r

Ou

This equation implies that, although the initial inventory level is unobserved in the data, the
changes in inventories and the standardized inventories that I use in the empirical tests are

independent of that initial level, I, o, although notice that IA%O is usually non-zero.
Similarly, I standardized the inventory series of individual dealers as follows:

T t 1 T
Ty = Tuat — Tua  Tudo+2D20 1 Quar — 72 reg Tudo + 2 7—1 Qudr)
3 ’t T -
v Ou,d Ou,d

T
23:1 Qu,dﬁ - % 27:1 21:1 Qu,d,r

Ou,d

(2)

where fu’d is the sample time-series mean of the inventory that dealer d holds in CDS v and o, 4
is the sample standard-deviation of that inventory time-series. This standardization captures
the notion that different dealers perceive the inventory risk in a similar way when their inventory
is measured in terms of the distance (in standard-deviations) of their standardized inventory

from the respective sample mean.

In order to be consistent with the standardization process, I also measure the daily net
positions in units of the sample standard-deviation of dealers’ inventory in that reference entity

(o). I define Qu,emt as the net change in the inventory of end-users as a result of engaging in

are strongly correlated.
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Ny,eu,t trades on day t:

Nu,eu,t

N 1
Quenti= 5 3 duensl) 3)
n=

where gy eu,t(n) is the signed quantity of the nth trade, where gy cu¢(n) < 0 if an end-user sold

to a dealer and gy cu(n) > 0 if an end-user bought from a dealer.

Table 2 details the summary statistics for the key variables that are used in the empirical
analysis. Tables 3-5 provide summary statistics of different aspects of the trading activity of
the reference entities. They present the trading activity in each of the reference entities in the
sample in terms of days when there was a transaction and in terms of traded contracts, re-
spectively. These summary statistics compare the activity of end-user/dealer and dealer/dealer

activity.

Table 3 details the number of transactions each group executed over the sample period.
The table also breaks down the type of transaction. The table suggests that asset managers,
banks and hedge funds are the most active traders among end-users. Dealers engage in more
assignments than end-users. While end-users do use assignments to unwind positions, they
are particularly active as transferors. That is, they seldom take a new position through an
assignment. Investors, and especially hedge funds, tend to prefer to unwind a position through
an assignment rather than through an offset because they are reluctant to incur additional
counterparty exposure and potentially additional margin requirements on the offsetting swap.
They generally prefer assignment to termination because termination forces them to accept the
price proposed by the original counterparty, and can provide insights into trading strategies
to the counterparty. The table indicates that the share of assignments is roughly 25%, which
is consistent with the results of the March 2007 Report of the Committee on Payment and

Settlement Systems, a survey of dealers in the OTC derivatives market.

The last row in Table 3 breaks down the market share of each of the aforementioned class.
It might seem from this table that end-users trade on both sides of the market, but this is not
the case. The reported traded notional takes into account the round-trip of the investors, that
is, it counts the initial buy and then the sell. When the traded notional amounts are calculated
only for new trades, most end-user groups are more active as buyers of protection rather than

as sellers.

Table 4 suggests that there is some relation between the activity in the interdealer market
and the activity in the client-dealer market. On most trading days there is activity in the client-
dealer front as well as in the interdealer market. There is no trading activity only in a small
fraction of the business days, and the least traded contract trades on more than 70% of the
business days. Table 5 further supports the links between interdealer trading and client-dealer

trading. It breaks down the activity in terms of number of traded contracts.
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Additional support for the importance of the interdealer market can be found in the con-
centration of the trading activity among the G14 dealers. Using the Herfindahl-Hirschman
Index, I find that the activity is moderately concentrated among these dealers. The five most
active participants made up almost 50% of the buys and about 50% of the sells for all trades

in terms of notional amount traded.

In contrast to the single-name contracts, the summary statistics for the CDX index indicate
that the trading mechanism for the CDX index, a basket product, is quite different. Equivalent
to Table 3, Table 6 details the summary statistics for the CDX index. It is interesting to note
that the majority of the trading in the CDX index is done through assignments rather than
through trades. Among the end-users, the most active participants in assignments are hedge
funds and asset managers. This observation is key in interpreting some of the empirical results.
Mainly, the common use of unwinding a position in the CDX index by assigning it to another
party relaxes some of the counterparty risks that raise from creating another offsetting new

trade, as common in the trading of the single name contracts.

4 The Ability of Dealers to Absorb End-Users’ De-
mand

As a first step to assess the role of liquidity provision by dealers in the CDS market, I explore
how price changes relate to net (pooled) order flow in the CDS market. Methodologically, my
analysis of CDS transactions data draws from the microstructure literature on equity and fixed-
income markets that considers the price impact in the presence of trading frictions — such as,
information asymmetry, funding constraints, search and inventory costs — and their interplay
leads to “price impact”, in which purchases (sales) of assets typically increase (depress) the
price. Given the price impact of end-users’ order imbalances, I then examine the ability of

dealers to absorb that demand, conditioning on their inventory level.

To estimate end-users’ impact on market depth (Hypothesis 1), I regress CDS returns
on the contemporaneous imbalance of end-users’ order-flow and lags of order imbalance. I
also account for the flow of information originating from the equity market by considering
the contemporaneous effect of stock returns on CDS returns (following Acharya and Johnson,
2007), and lagged log-returns of the CDS contracts. I use these controls because order flow
might be correlated with fundamental information. Collin-Dufresne et al. (2001) and Schaefer
and Strebulaev (2008) show that the simple Merton (1974) model seems to be adequate to
capture all fundamental information, as far as default risk goes. Therefore, after controlling

for equity returns, the unexplained component of the CDS returns might be specific to the
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microstructure of the CDS market. Specifically, I use the following specification:
K K
A log Su,t = a+ Z Vi ‘Qu,eu,t—k‘ 1>0 + Z (5k ‘Qu,eu,t—k‘ 1<0
k=0 k=0

5 5
+ Z CnA log Puﬂg_n + Z nnA log Su,t—n + Eut (4)

n=0 n=1

To account for the asymmetries of buying and selling pressure, I use ‘Q%eu,t_k‘ 1y9 =

maX{queuvt_k,O} and ‘Qu,eu,t—k‘ 1o = max{—Qu’eu’t_k,O}. Sy, denotes the 5-year CDS
quoted spread for reference entity u at the end of day ¢; and, P, ; denotes the equity price of
the same firm at the end of day ¢. If no price changes are recorded during the trading day, price
change is designated as zero. Also, since outliers might coincide with high illiquidity, I run the
regression for log-difference: Alog S, :=log Sy —log Sy -1, Alog P, :=log P, —log P11,
ASyt = Sut — Sui—1, and AP, ; := Py — P,;—1, as it is better in terms of not having
undue influence of outliers. This is the baseline structure of the regression specifications. Since
I perform a pooled regressions (all reference entities and all trading days), I must account
for correlation across underlyings and across time. To address this, I compare the White
standard errors and clustered standard errors (when I cluster by time, by firm, and by both
firm and time), and I find weak firm- and time-effects in the panel data. Hence, I conduct
the empirical analysis by adjusting for heteroscedasticity and controlling for the time effect by
adding daily time dummies. Because of the presence of time dummies, I do not include any

other macroeconomic variables in the regression analysis.

Table 7 reports the results of the pooled price-impact regressions that are based on the
standardized traded notionals. I find that when end-users buy more contracts, CDS returns
tend to increase, and when they sell more contracts the returns diminish. The price reaction to
buying versus selling by end-users seems to be asymmetric. The contemporaneous effect of net
buying by end-users is significant, while the net selling effect is insignificant in the majority of
the specifications. This is not surprising, considering the composition of end-users in the CDS
market, who mostly buy CDS contracts to hedge their core businesses. To address the issue
that a termination of a CDS contract might not be as informative as a new CDS contract in
which an end-user is the seller, I re-run this regression with a restricted sample with only new

trades. I get the same qualitative asymmetry between buys and sells.

The regression results also suggest that the trend in the price impact is not temporary, not
reversing even five trading days later. This might lend support to an information-based story,
where end-users as a whole are more informed than dealers, while the last take the other side

of the trade as part of their role to provide liquidity in the market.

I have checked for robustness using a number of different variations of Equation (4). The

results are not significantly affected by: (i) the inclusion or exclusion of lagged CDS returns; (ii)
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the use of unscaled imbalance measures; (iii) the use of the number of transactions rather than
the dollar volume; and, (iv) use of new trades only. The asymmetry response to net-buying
and net selling could have been a by-product of the type of the transaction. In other words, it
is possible that taking the selling side in termination carries different implication in terms of
information than taking the selling side in a new trade. Therefore, I re-estimated the results
for new trades alone and the results are substantively similar to the results presented in Table

7. These robustness checks are discussed in detail in Section 7.

Hypothesis 2 suggests that the effect of end-users’ order-imbalances depends on the dealers’

inventory level. To test this hypothesis, I estimate the following regression:

A log Su,t =a -+ ‘Qu,eu,t

]-<0 (/82 + 621|fu’t—1+Qu,eu,t’/‘>

5 5
+ 71|fu,t71+Qu,eu,t ’/( + Z C'IZA 10g Pu’t_n + Z nnA log Su’t_n + Eu’t (5)
n=0

n=1

1>0 <B1 + 611|fu,t—1+Qu,eu,t|/‘> + ‘Qu,euﬂf

where the dummy variable captures whether the demand of end-users during day t increases

dealers’ t — 1 absolute aggregate inventory of underlying u. Specifically,

A

1 Iu,tfl‘ > Iu,t

1|fu,t71+Qu,eu,t’/\‘ = (6)

0 otherwise

All microstructure models predict that the coefficient on order flow will be positive. The
inventory management models suggest that the coefficient on the dummied order flow will also
be positive. Intuition for the prediction can be developed by considering the case of a dealer
with long inventory. End-user sales (negative order flow) to the dealer lead to inference that
“true” price is lower, as in Kyle (1985), and this is captured in the term BQMGM. However,
selling to a dealer who is long also increases the dealer’s inventory exposure, which according

to the theory, further lowers the price at which the market is willing to make a purchase.

The results of this regression are presented in Table 8. I find that aggregated inventory
level of dealers indeed amplifies the price impact of end-users if the incoming order flow further
increases the absolute value of the inventory. The inventory effect seems to be symmetric for
net-buying and net-selling, although the definition of the dummy variable might conceal any
asymmetry. Furthermore, a more dynamic definition of the indicator variable for the increase
of dealers’ aggregated inventory takes into account the speed of the mean reversion of dealers’
inventories (as I later show in Section 6). Using the mean reversion coefficients, one can
calculate the expected inventory level, and then determine whether there was a greater than

expected increase in the aggregated level of dealers’ inventory.

Column (4) of Table 8 details the regression results for the CDX index. I present these
results to contrast the importance of end-users’ information and dealers’ inventory in single-

name contracts versus a basket product such as the CDS index. The results suggest that
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end-users’ net-selling is associated with an increase in the CDX index price, whereas end-users’
net-buying is associated with a decrease in price. The lags of the order-imbalance is statistically
insignificant, so the two results combined imply that the microstructure of the trading in the
CDX index is very different from the single-name contracts. Information does not seem to play
a role, and the results are consistent with the intuition that end-users use the CDX index for

hedging purposes.

Columns (5) and (6) show the results of the regression if we condition on the period before
and after the crisis (taking the break point as Lehman’s failure in September 15, 2008). It
emerges from the table that the inventory effect is statistically significant when end-users were

net-buyers before the crisis and when end-users were net-sellers during the crisis.

The results in this section are consistent with the standard inventory models of dealer
markets. Continuing to build upon this line of research, one would expect interdealer trading
to occur when the inventories of the dealers diverge a lot and when the dealers choose between
the uncertain probability of an arrival of an end-user trade and the certainty of interdealer
trading (Ho and Stoll, 1983). Thus dealers have a greater willingness to trade in the interdealer
market when they have divergent inventories. In other words, the interdealer market facilitates
the management of inventory risks and allows dealers to take large inventory position that they
would be unwilling to take in market-types where they can only unwind their inventory positions
against the end-users order flow. Yet, due to counterparty risk, “redundant” interdealer trading,
in terms of transferring credit risk, might restrict the level of liquidity provision by dealers.
This implication of counterparty risk on trading in the CDS market is explored in the next

section.

5 The Effect of Interdealer Exposure on Dealers’
Liquidity Provision

The objective of a CDS dealer, along with making a two-way market, is to earn profits by
managing the risk of its inventory. When a dealer takes on risk from a client, the dealer
typically hedges the risk but might choose to leave some of the risk uncovered. The willingness
of dealers to leave some risks uncovered — that is, to speculate — adds liquidity to the market
but requires close management. Typically, however, dealers remain “flat” by hedging their
risks in some manner. Most simply, a dealer might offset the risk of a new deal against that of
other clients. Further, the dealer might hedge the risk of a deal in the underlying market, that
is, the cash bond market. Finally, a dealer might choose to offset risks by means of offsetting

transactions with other dealers; this is a primary function of the interdealer market.

In this section I focus on the interdealer market and explore whether it facilitates or impedes
liquidity provision. Reiss and Werner (1998) and Bjgnnes and Rime (2005) show that in the

equity and FX market, respectively, interdealer markets are mainly used by dealers to share
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inventory risks. Yet, in the CDS market along with the market risks of their positions and the
accompanying basis risks, dealers also have to manage the counterparty risk associated with
their positions. With each trade in the interdealer market, a new exposure between a pair of
dealers is being created in addition to the credit exposure to the underlying. Since I observe
that an end-user’s trade may pass between three dealers on average, an interesting mechanism
arises. As dealers pass the end-user’s trade, the credit exposure to the underlying is unchanged,
but the counterparty exposure between dealers is tripled. Although there are various ways to
manage counterparty risk, such as collateralization of net exposures, the passing-on of inventory
among dealers creates a cascade of new positions that entail new risks. That is, dealers’ desire

to hedge counterparty risk effectively creates increased exposure among dealers.

The figure overleaf demonstrates the potential implications of repeated passes among deal-
ers. First, consider Case 1 where a company B buys credit protection from dealer C, which
hedges its exposures with dealer D, while D passes on the risk to monoline insurer E. In this
case three individual contracts have been written, yet, in economic terms, only one party at the
very end of the risk transfer chain bears the risk that the reference entity defaults. At the same
time, aggregate gross notional value has been inflated to three times the aggregate net expo-
sure. By contrast, consider Case 2, where there are two contracts, but neither of the protection
selling parties passes on its risk to another company. Under these circumstances, net notional
amount equals gross notional amount. Both dealer C and end-user E bear the economic risk
that the reference entity defaults. Case 1 illustrates the importance of the exposure measure.
Even though dealers might not bear any credit risk associated with the “open” positions, they
still have to hedge the counterparty risk that is associated with the existing contractual ties,

until the unwinding of the trades.

If the exposure level to counterparty risk amongst dealers increases, they become less able
or predisposed to absorb supply and demand shocks, and to hold buffer inventories of assets.
Under extreme conditions, dealers might even exit the market, which in turn might leave fewer
dealers to make most of the market. The inventory levels of these active dealers is expected to
build up. Then, the price impact of a trade must be greater for them to absorb the demand of

end-users.

To test this hypothesis, I construct a measure of exposure in the interdealer market. First,
I calculate the daily bilateral exposure of each pair of dealers at the reference entity level,
and I denote it by E; ;.. Then, these exposure quantities can be netted within and across
underlyings, and can also be netted across dealers. In reality, however, other than compres-
sions that net across dealers, day-to-day operations include only netting of bilateral positions
(multilateral positions cannot be observed in the OTC market). To keep the interpretation
of the results simple, I chose to net the exposures of dealers only at the pair level, without
netting across other reference entities in the sample. Note that for each dealer that buys a CDS

contract there is a dealer that sells a CDS contract. Hence, to calculate the overall exposure
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in the interdealer market, I sum the (long) exposures over all dealers.

As reported in Section 3, the trading activity is moderately concentrated among the G14
dealers. The measure of exposure, however, captures another angle of concentration, namely,
the concentration of counterparty risk that remains in the system. Figure 3(a) depicts the
network of exposures among the top five dealers over the entire sample period, whereas Figure
3(b) represents the changes that occurred after Lehman Brothers’ collapse. The two figures
suggest that the total average exposure among the top five dealers increased in the period after

Lehman, although the trading activity remained at the same level.

Using this measure for the exposure levels in the interdealer market, I test Hypothesis 3.

Specifically, I run the following regression:

A IOg Su7t = a + Qu’eu’t (51 + ﬂ21|fu,t—1+Qu,eu,t’/‘ + /BSE'LL,de,t + /641’1Au,t—1+©u,eu,t‘/‘ X Eu’de’t>

+B51’fu,t—1+c?u,eu,t‘/‘ + /BGEu’de’t + B71‘iu,t—l+Qu,eu,t|/‘ X Eu’d2d7t + €u7t (7)

where E, 24, is the dealers’ long exposure to other dealers.

The regression results are detailed in Table 9. The results in Panel A of Table 9 show
that dealer-to-dealer exposure intensifies the effect that dealers’ inventory has on the price
impact of end-users. Panel B of Table 9 refines the picture by separating the price impacts
of net-buying and net-selling of end-users. It is evident that the “triple” interaction term
Q%eu’t X 1| Fur 14 Quene| x Dealer-to-Dealer Exposure is positive for net buying demand and

negative for net selling pressure, while the magnitude for net selling is almost twice the impact
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when clients want to buy. Also, the results suggest that the exposure effect is prominent in

extreme market scenarios.

Figures 4-7 summarize the economic magnitude of each of the effects. I decompose the total
price impact of trading into the key components found in this paper for: (a) a benchmark case
that is based on mean values of equity and CDS returns, dealers’ inventory level and end-users’
net buying imbalance, and for (b) an extreme case when the realization of all variables is at
their mazimum. Using the mean level of the variables, the “basic” price impact accounts for
28% and 7% of the total price impact for buys and sells, respectively, and an incoming order-
flow that will increase dealers’ inventory results in 16% and 23% of the price impact for buys
and sells, respectively. While the congestion effect plays a minor role in normal times, it does
account for as much as 23% and 37% of the total price impact, for buys and sells, respectively,
if all independent variables are taken at their maximum values. In either normal times or crisis
times, the combined microstructure effect of end-users’ order imbalance, dealers’ inventory
and interdealer exposure congestion (including the interactions between the three) is about
the same magnitude as the impact of information flow from the stock market and lagged CDS
spreads. These microstructure effects are not “informationless” and they actually generate new
fundamental information over and above the information generated in the equity markets. I also
find that both end-users’ order imbalances in the CDS market and the information innovations

from the CDS market predict stock returns 1-day ahead.

6 How Do Dealers Manage Their Inventory?

The analysis in previous sections assumes the existence of a preferred inventory position for
dealers. In this section, I test Ho and Stoll (1983) model pertaining to mean reversion in
dealers’ relative inventories, using the methodology in Hansch et al. (1998). Similar to the
results found by Hansch et al. (1998) for the London Stock Exchange dealers, I also find
evidence that dealers with extreme inventory positions trade larger quantities that move their
inventories toward desired levels, and that the intensity of mean reversion increases with the

deviation of the inventory from its desired level.

To test the relation between a dealer’s relative inventory position and the force of mean

reversion I define 7¢dian

to be the median inventory level of reference entity u at the end of
day t across dealers, and RI, 4; = fwd’t — I{ffdian to be dealer d’s inventory position in reference
entity u relative to the median inventory at time ¢. Then, I estimate the following piecewise

linear regression:

5
ARIqp =0+ Y BuDpRIqi-1+ €uay (8)

n=1
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where

1 if (n—1) < |RIyas1| <nand n e {1,2,3,4}
Dp=<1 if(n—1)<|RI[,44-1| andn =5

0 otherwise

The D,, are indicator variables that allow for differences in the degree of mean reversion as a
function of different bands of relative inventory levels. For example, 51 captures the intensity of
mean reversion when the relative inventory level lies between zero and one standard-deviation,
B2 captures the intensity of mean reversion when the relative inventory level is greater than or
equal to one but less than two standard-deviations, and so on. I compute the inventory level
dependent mean reversion coefficients (3,,’s) from this piecewise linear regression for all dealers

in all underlyings.

The findings in Table 10 show that the variation in the degree of mean reversion is strongly
related to the level of inventory. In particular, the speed of mean reversion increases as the
inventory divergence increases, evidence consistent with the predictions of the inventory models
of dealer markets. If I constrain all 5’s to be equal to each other, I find a mean reversion
coefficient of —0.0064, which implies an inventory half-life of 108.66 days.® This result is
obviously considerably different from the inventory-level dependent half-lives that range from
11.15 days starting from 50 to 159.85 days starting from 1o (see Table 10). I see that the speed
of mean reversion reduces as the inventory divergence increases. I repeat the same analysis
using standardized inventories and find that they also exhibit considerable level-dependent

variation.

A more refined picture of the mechanism of dealers for controlling their inventory is obtained
from the analysis of whether dealers actively manage their inventories by increasing trading
among themselves as their inventories diverge, or do they passively wait for a random incoming
end-users’ flow. For this purpose I decompose the change in the inventory of a dealer into two
components, one arising out of his trading with other dealers and the other arising out of his
trading with end-users. Similarly to the definition of Q D and Q in Section 3, I define Ag?di
and Qu dt 3s the net change in the inventory of dealer d as a result of engaging in Ni%,t and

Nquit interdealer and end-users trades on day ¢, respectively:

udt udt
A _ 2 : AEU § :
u d,t - qu d, t and Qu,d,t - qu ,d, t (9)
Ou,d Ou,d
n=1 n=1

where ¢, q+(n) is the size of the nth trade and o, 4 is the standard-deviation of dealer d’s

inventory in that CDS contract.

5The implied half-life of inventories is calculated as 711’1(1117—‘2,@)7 which follows from the solution of I; = I;_1 + Al =
(14+8) -1 =1+ B) x L.

21



I express the change in the inventory of dealer d in day ¢, Q%d,t, as the sum of the change
due to his trading with end-users and the change due to his trading with other dealers; that
is, Qu7d7t = Alul?di + ngt In order to investigate whether the relative proportion of end-user

and interdealer trading depends on the level of inventory, I run the following two regressions:

5
e = P+ APDL L1+l (10)
n=1
5
voe = o> AUD T g ey, (11)
n=1
where
1 if(n—1) < fu,d,t—l‘ <nandne {1,234}

Dp=<1 if(n—1)<

Imd’t,l‘ andn=2>5

0 otherwise

and where d denotes the dealer, and fu,d,t represents the standardized inventory of dealer d at
the end of day t.

Equations (10) and (11) divide 3,’s, the mean reversion coefficients for inventories obtained
in Table 10, into two parts: y.P captures the mean reversion in inventories due to interdealer
trading, and 72V captures the mean reversion in inventories due to trading with end-users.
Thus, P + +EU equals 3,. This decomposition enables me to evaluate the extent to which

interdealer trading contributes to mean reversion in inventories across different inventory levels.

Table 11 summarizes the findings. I observe that a large proportion in the mean reversion
in inventories occurs due to interdealer trading. The more the inventory level diverges from

the mean, the greater the importance of the interdealer trading.

7 Robustness of Results

The reporting problems of the DTCC dataset coupled with the trading features of the CDS
market pose several problems to the empirical methodology used. For example, trade frequency
in the CDS market is relatively low, so there are many days with zero order-flow for some
reference entities. In the price impact tests I use quoted prices from Markit rather than
transaction prices. This combination results in a change of price that is not associated with
end-users’ order flow. Such a scenario can indeed happen due to information percolation from
other asset markets, such as, the equity, bond and/or option markets. Therefore, I not only
control for information flow from the equity market, which is considered the most liquid, but

I also check the relation between the quoted and transaction prices. In a robustness check, I
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look at new trades first for which I can estimate the transaction price.” I find that end-of-day
quoted prices are closely related to the intra-day average of transaction prices, and I choose to
use the quotes as they cover a longer time-series. Also, I repeat the regressions where I consider
days with zero order-flow as missing observations. The empirical results are also qualitatively
robust to the use of arithmetic differences rather than log-differences and to the differentiation
of contracts by maturity rather than pooling them together and considering them as a 5-year

maturity contract.

The rest of this section details the different specifications and their results.

7.1 Different Sources for CDS Prices

In my main empirical analysis I use the composite prices provided by Markit Group. Markit
collects CDS prices from about 23 dealers to produce its end-of-day prices. The quotes are
subject to filtering that removes outliers and stale observations. Markit then computes a daily
composite spread only if it has two or more contributors. I opt to use Markit as the data source
for the main analysis since it has a longer time series and is one of the most widely employed
in the literature related to CDS.

Other possible sources for CDS prices include the Credit Market Analytics DataVision
(CMA) and Fitch. CMA gets prices by parsing e-mails from dealers to 36 investment firms,
aggregating data where possible to produce continuous prices. It relies on its relationships with
buyside investors, including major global investment banks, hedge funds, and asset managers,
and any prices it gets from dealers come only from second-tier market makers for comparison

purposes. Fitch uses prices from 20 dealers, who are tier-one sellside market makers.

Additional robustness check that I undertake uses the transaction prices from the DTCC
database (see Figure 9). I am able to use only the prices that are associated with new trades
without upfront payment. Due to reporting standards I am unable to interpret the prices
that are associated with assignments, while new trades with an upfront payment require some
conversion to basis points that its accuracy depends on the assumptions made. As part of
the Big Bang Protocol, commenced on April 8, 2009, North American corporate names are
traded with a fixed coupon. The coupon is either 100 bps or 500 bps and upfront payments
are exchanged. Therefore, to be able to compare all transaction prices to the quoted prices, 1
need to calculate the equivalent (full) spread to the sum of the fixed coupon and the upfront

payment for these observations.

To convert the fixed coupon and the upfront payment to a CDS price, I replicate the ISDA

CDS pricing model that is being used as the standard conversion model. For the conversion, 1

"Many of the trades were traded for a fixed spread and an upfront payment even before the Big Bang Protocol in
April 2009. To be able to compare prices across different transactions, I need to convert the upfront payment, which
is usually in USD terms, to basis-points. The conversion involves some assumptions about the recovery rate and the
risky term-structure that could have been different from trade to trade. Thus, using the same set of assumptions for

all trades will not necessarily deliver the true transaction price. Section 7.1 fleshes out the conversion details.
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use the following formula:

(1= R) % 5120, 1) + Z(0,10)] x [Q(0,t41) ~ Q(0, 1)

M=

i

1
K

1
= Upfront Payment + S 3 Z A(tg—1,t,)Z(0,t) [Q(0,tr—1) + Q(0,t1)] (12)
k=1

-~
Risky PV01

where Sy is a fixed payment (%, annualized) that the buyer of the protection pays for the
duration of the protection period, or up to a default event; Q(¢,7) is the time ¢ survival
probability of the reference entity to time T'; Z(¢,T') is the Libor discount curve which is
anchored to the CDS effective date; R is the expected recovery rate as a percentage of par;
and, A(tg_1,tx) is the day count fraction between dates t;_; and t; in the appropriate day

count conversion, typically Actual 360.

I assume a constant recovery as a fraction of par (40%), a piecewise constant risk neutral
hazard rates, and independent default events of changes in the default free yield curve. The raw
transaction prices and the converted prices are presented in Figures 9-10, where the conversion

was applied for AIG contracts as an example.

7.2 The Distribution of CDS Contracts’ Maturity

In the construction of the time-series for volume, inventory and exposure variables, I aggregate
the position regardless of the maturity of the contract. This leads to a maturity mismatch
problem. This aggregation at the maturity level might therefore mask the true ramifications

on dealers’ portfolios. The alternatives I face include:

1. Constrain the sample to a specific maturity, say CDS contracts with 5 year maturity, as

it is the most liquid
2. Run separate regressions for different maturities
3. Pool together different contracts with different maturities

On the one hand, there is a difference in counterparty risk if one holds a 5-year contract vs 1-
year contract. On the other hand, a dealer might buy a 5-year contract with the expectation to
hold it only for one year because the 5-year contract is more liquid. Using only contracts with
5-year maturity (most liquid) leaves some extra information in other maturities unexploited.
Since the majority of the traded transactions are for 5-year maturity (see Figure 8), I choose
to use contracts with all maturities in my benchmark analysis and to run robustness check in
the form of different regressions for different maturities, using the CDS return for this specific

maturity.
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7.3 Using Arithmetic Differences

In all the results presented thus far, I measure CDS returns by logarithmic differences in

CDS spreads (log C%[S)tsjl ), i.e., the percentage changes in CDS spreads. An alternative way of

measuring CDS return is to calculate the arithmetic difference in CDS spreads (CDS;—CDS;_1).

While both these methods are legitimate, the arithmetic difference in CDS spreads has a certain
intuitive appeal for measuring CDS return because it approximately equals the return generated
from buying an underlying bond of the CDS entity at ¢ — 1 and selling it at ¢. Table 12 reports
the re-estimation of Equation (4) using CDS return from arithmetic differences. The empirical
results remain unchanged. The re-estimation of the other regressions using arithmetic difference

delivers qualitatively similar results, not reported here.

8 Concluding Remarks

In this paper I examine the intermediation capacity of dealers in the CDS market by exploiting
a proprietary dataset of transactions in 35 single-name reference entities. I find three important
results. First, the traditional inventory-based market microstructure models can be used in the
setting of the seemingly more complex and opaque market, such as the CDS market. Order
imbalances of end-users appear to impact CDS price changes, and dealers’ aggregated inventory
position amplifies this effect. Second, the force of mean reversion of dealers’ inventories to the
target level is stronger as the deviation from the target increases, and in turn, the price impact of
end-users’ order flow is greater at such points in time. Finally, counterparty risk among dealers
affects liquidity in the CDS market, especially in stress conditions. It would be interesting in
future research to examine how this effect is being translated in other derivative markets, such
as FX derivatives, interest rate swaps, and OTC equity derivatives, where counterparty risk is

also present.

Further, my empirical analysis provides a factual basis on the trading activity and the
provision of liquidity in the CDS market about which little was known until this point. These
results might lend some guidance to the effect of the anticipated migration of trading from an
OTC setting to one intermediated by central clearing counterparty (CCP). The CCP would
stand between the two original counterparties, acting as the seller to the original buyer, and as
the buyer to the original seller. This will allow a CCP to net the positions across investors, and
should mitigate the key impediment of counterparty risk to liquidity provision by dealers raised
in this paper. It seems that the establishment of a CCP can lead to a reduction in risk and a
substantial improvement in allocational efficiency, as long as it will be able to avoid becoming
systemically risky itself (see Acharya, Shachar, and Subrahmanyam, 2010 and Duffie and Zhu,
2009 for further details).

Especially in the midst of the transition of the CDS market from an OTC structure to

central clearing, CDS transactions data, and order imbalance data in particular, open avenues
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of research beyond those that are explored in this paper. Ever since Lehman’s collapse, the
DTCC has published weekly data on individual reference entities, gross and net volumes of
CDSs outstanding. This data is cruder, but it allows forming a broader picture of the CDS
market activity and to address issues at the cross-section. Nevertheless, the dataset that I
exploit in this paper is much more detailed and includes a unique identifier for the identity of
investors, which is consistent across firms and over time. This information will allow me to
examine the role of bargaining power and repeated interactions in the terms of trade in future

papers.
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Table 1

The Reference Entities in The Sample

This table details the 35 reference entities that compose the sample. All 35 reference entities are North American and
are associated with the financial industry. The specific sub-industry of each firm is also detailed in the table below.

Reference Entity

Industrical Classfication

AMBAC Financial Group
American Express Company
American International Group
Aon Corp

Avis Budget Group

Bank Of America Corp
Berkshire Hathaway

Capital One Financial Corp
CIT Group

Citigroup

CNA Financial Corp

Credit Suisse

Fairfax Financial Holdings Limited
Genworth Financial

Goldman Sachs Group
Hartford Financial Services Group
HSBC Finance Corp
JPMorgan Chase & Co
Lehman Brothers Holdings
Lincoln National Corp

Loews Corp

Marsh & Meclennan Companies
MBIA

Merrill Lynch & Co

Metlife

Morgan Stanley

PMI Group

Prudential Financial

Radian Group

SLM Corp

The Chubb Corp

The Travelers Companies
UNUM Group

Wells Fargo & Company
Western Union Company

Financial Service

Personal Credit Institutions

Fire, Marine & Casualty Insurance

Accident & Health Insurance

Real Estate Agents & Managers (For Others)
National Commercial Banks

Fire, Marine & Casualty Insurance

Personal Credit Institutions

Miscellaneous Business Credit Institution
National Commercial Banks

Fire, Marine & Casualty Insurance

State Commercial Banks

Fire, Marine & Casualty Insurance

Life Insurance

Security Brokers, Dealers & Flotation Companies
Insurance Agents, Brokers & Service
Commercial Banks, NEC

National Commercial Banks

Investment Advice

Life Insurance

Fire, Marine & Casualty Insurance

Surety Insurance

Surety Insurance

Security Brokers, Dealers & Flotation Companies
Insurance Agents, Brokers & Service

Security Brokers, Dealers & Flotation Companies
Surety Insurance

Life Insurance

Surety Insurance

Federal & Federally Sponsored Credit Agencies
Fire, Marine & Casualty Insurance

Fire, Marine & Casualty Insurance

Accident & Health Insurance

National Commercial Banks

Functions Related To Depository Banking, NEC
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Table 9
The Relation between Inventory and Interdealer Exposures

Panel A of this table details the results of the following regression:

AlogSu: = a+ Quent (51 02110, 4 Guen] 2 T B3 Budzan +Baljr, oy, 0% Eu,de,t)

+551‘f14,,t—1+Q11,,el|,t‘/‘ + ﬁ6Eu’d2d’t + ﬁ71|ju,t,—1+QAu,,eu,t|/( X Eu’d2d’t + Eu’t

IU,t—l” and 0
otherwise. Panel B of this regression refines the regression above and separate the price impacts of net-buying and
the net-selling by end-users.

where Fy g24,+ is the dealers’ long exposure to other dealers, and 1|I"u 14 Qo] equals 1 if ‘ju,t‘ >

Panel A
Dependent Variable: 10,000A log Sy ¢
Qu,eu,t 15727**
(69.16)
Qu.ent X U1, 1 4Qucuel 508.18***
(99.94)
Qmeu’t x Dealer-to-Dealer Exposure 27.19
(83.96)
Qu,ent X U1, ;1 4Qu.cus| » X Dealer-to-Dealer Exposure 353.61**
(165.70)
ULt 14Qu |~ X Dealer-to-Dealer Exposure 5.47
(17.73)
]“Iu,tfl“!‘Qu,eu.tI/( 7]‘075
(10.03)
Dealer-to-Dealer Exposure 26.22%*
(10.45)
Panel B
Dependent Variable: 10,000A log S; +
Quient X 150 402.227"
(113.62)
Quent X 150 X L1, 14 Quene] A 459.74***
(159.69)
Qu,cu,t X 150 X Dealer-to-Dealer Exposure 233.09*
(119.93)
Qu,ent X 150 X 11, , 1 1Qu eus| ~ X Dealer-to-Dealer Exposure 212.52
(215.37)
Qu.ent X Lo 80.86
(96.00)
Qu7cu7t X 1<0 X 1|Iu,t71+Qu,eu,t‘/‘ 7539'57***
(146.64)
Qu,cut X 1< x Dealer-to-Dealer Exposure 228.34*
(138.66)
Qweu’t X 1co X 1|1, , 1 4Qu.cue| » X Dealer-to-Dealer Exposure —497.24*
(262.85)
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Table 10
Test of Mean Reversion in Dealers’ Inventories

The table shows the average mean reversion coefficients of the following piecewise linear regression:

5
(Rluat— Rluar1) =a+ Y BuDnRIyar 1+ cudr

n=1

where d denotes the dealer, and RI, 4. is the inventory of dealer d relative to the median dealer inventory at the end
of day t. The D,, are indicators variables that allow for differences in the degree of mean reversion as a function of
different bands of relative inventory levels, and are defined as follows:

1 if (n—1) <|RIq4:-1] <nandne{l1,2,3,4}
D,=41 if (n—1)<|RIyg44—1] andn=>5

0 otherwise

I run this regression for each dealer in each reference entity. I also calculate implied half-lives of inventories. The
regression is repeated for the standardized inventories.

Dependent Variable: 10,000 x Alog Sy +
(1) (2)
Dummy: 1|fd,t_1+ch,t\/‘ lexceedsE(increase)
Qu.cut| X 150 459.6%** 572.9%%*
(81.9) (93.6)
C?u,eu,t X 1<0 8.6 177.3
(90.6) (1979.3)
Dummy —-4.9 —20.5%**
(10.9) (7.7)
Qu.ent| X 150 X Dummy 376.5* 3310.5**
(203.2) (1332.9)
Qu.ent| X 1<o X Dummy —357.1%* —254.5
(156.1) (1980.8)
Coefficient estimates OLS OLS
Standard errors White White
Fixed-Effects Time (d) Time (d)
R-squared 0.32 0.32
Number of Observation 25,406 25,367
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Table 11
Decomposition of the Mean Reversion Coefficients

The table shows the average coefficient of the following piecewise linear regressions:

5

AID ID ID T ID
udt — & + E Tn DnIU,defl + Eu,d,t
n=1
5
AEU EU EU T EU
wdt — & + § Tn Dnlu7d,t—l + Eu,d,t
n=1

where d denotes the dealer, Qu,d,t is the net amount traded and the superscript ID refers to the interdealer trading,
and the superscript EU refers to dealers’ trading directly with end-users, and fu,d,t is the standardized inventory of
dealer d at the end of day ¢. The D,, are indicator variables that allow for differences in the degree of mean reversion
as a function of different bands of inventory levels, and are defined as follows:

1 if(n—1)<|Iygi—1|<nandne€l,23,4
D,=41 if (n—1)< fu,d,t_l andn =5

0 otherwise

I run this regression for each dealer in each reference entity. The sum of the end-users and interdealer coefficients as
shown in the Total column is exactly equal to the corresponding mean reversion coefficients of standardized inventories
in Table 10.

Interdealer Trading Trading with End-Users  Total Interdealer Trading Fraction

%! —0.004 —0.001 —0.005 87%
V2 —0.007 —0.001 —0.008 86%
3 -0.013 —0.003 —0.015 83%
V4 —0.027 —0.003 —0.030 90%
Y5 —0.038 —0.004 —0.042 90%
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Bought by
End-Users Bought by
18% End-Users
21%

(¢) In Terms of Notional Amount (d) In Terms of Number of Trades

Figure 1: Market share
This figure depicts the market share of interdealer trading and of end-users. Figure 1(c) shows the market share of
the traders in the CDS market as a fraction of the total notional amount traded, and Figure 1(d) details the market
shares in terms of the total number of transactions.
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(b) After Lehman’s Failure on September 15, 2008

Figure 3: Top Five Dealers’ Exposures Network
Figure 3(a) depicts the network of bilateral exposures among the top five dealers over the entire sample period. The
reported numbers on the edges are the daily averages over the entire sample period of the net amount traded across
all reference entities in million of USD. Figure 3(b) represents the changes that occurred after Lehman Brothers’
collapse on September 15, 2008. The two figures suggest that the total average exposure among the top five dealers
increased in the period after Lehman.
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50

Lagged CDS Returns, 8.13
(15%)
40
30
Net Pos Demand of EU x
20 Inventory, 8.83
(16%)
O Lagged CDS Returns
D Lagged Equity Returns
10 +——
O Contemporaneous Equity Return
D Exposure
@Inventory
B Net Pos Demand of EU x Exposure x Inventory
0 +— @Net Pos Demand of EU x Exposure
ONet Pos Demand of EU x Inventory
B Net Pos Demand of EU
-10

Figure 4: The Mean Impact of Net Buying by End-Users
This figure breaks-down the price impact in response to net buying of end-users. I use the mean values of equity and
CDS returns, end-users’ net buying quantities, and dealers’ inventory level, and calculate the contribution of each of
the variables using its estimated regression coefficient.
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Lagged CDS Returns, 1,176
5%
10,000
O Lagged CDS Returns
DO Lagged Equity Returns
5,000
O Contemporaneous Equity Return
B Exposure
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01 ONet Pos Demand of EU x Inventory
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-5,000
Lagged Equity Returns, -1,325
(6%)
-10,000

Figure 5: The Maximum Impact of Net Buying by End-Users
This figure breaks-down the price impact in response to net buying of end-users. I use the maximum values of equity
and CDS returns, end-users’ net buying quantities, and dealers’ inventory level, and calculate the contribution of
each of the variables using its estimated regression coefficient.
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Figure 6: The Mean Impact of Net Selling by End-Users
This figure breaks-down the price impact in response to net selling of end-users. I use the mean values of equity and
CDS returns, end-users’ net buying quantities, and dealers’ inventory level, and calculate the contribution of each of
the variables using its estimated regression coefficient.
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Figure 7: The Maximum Impact of Net Selling by End-Users
This figure breaks-down the price impact in response to net selling of end-users. I use the maximum values of equity
and CDS returns, end-users’ net buying quantities, and dealers’ inventory level, and calculate the contribution of
each of the variables using its estimated regression coefficient.
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Figure 8: Distribution of the Contract Maturities
This figure plots the number of contracts that were traded in each maturity. The transactions include new trades
and assignments. There were a few transactions with maturity greater than 10 years that were not included in this
figure.
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Appendices

A  Unwinding Mechanisms

When an investor wants to unwind an existing contract, he faces three alternatives, each of
which carries different implications for the level of counterparty risk exposure in the market.

The investor may:

1. Enter into a new offsetting transaction: The investor takes the opposite protection po-
sition. This offsetting transaction should have virtually the same contract terms as the
original CDS regarding the reference entity, the maturity date, etc., except for (i) the
premium, which is dictated by the prevailing market level; and (ii) the tenor, which is the

remaining time to maturity of the original CDS.

Strictly speaking, this is hedging rather than unwinding, as it leaves the original position
open and creates a new one. It also involves more documentation and additional legal
and counterparty risk. An investor must ensure that any legal or other basis risk between

the two transactions is minimized.

2. Assign the contract to a new counterparty: The investor can transfer the contract to a
new counterparty, and settle the mark-to-market gain or loss with this new counterparty.
This assignment, or “novation” as it is called in the ISDA Definitions, involves the original
counterparties, the “Transferor” and the “Remaining Party”, and the new party, the
“Transferee”, all agreeing to the transfer of all the Transferor’s rights and obligations to
the Transferee. Part of this is obviously that the Remaining Party must agree to take
on the counterparty risk of the Transferee (the ISDA 2005 Novation Protocol entails the
technical details). The Transferor thereby ends his involvement in the transaction. Notice
that assignments do not change the aggregate exposure levels in the market, but they do

increase the notional amount traded.

At the inception of the market, assignments were relatively infrequent; the usual method
of exiting a transaction was an offsetting transaction. But as hedge funds have become
more active in trading CDS, assignments have become increasingly common. Figure
11 depicts the use of assignments (in terms of notional amount traded and number of

assignments) over-time for the 35 reference entities in the sample.

3. Terminate the transaction with the original CDS counterparty: The investor can settle the
mark-to-market gain or loss with the original counterparty and terminate the contract,
conditioned on the latter’s consent. There will be no residual cash flows or exposure to

the counterparty’s credit risk.
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Figure 11: Assignments Over Time
This figure plots the daily notional amount traded through assignments as well as the daily number of assignments
over all 35 reference entities.

B The List of Variables

Qu,eu,t is the net change in the inventory of end-users as a result of all trades on day t.
All transactions are bilateral, between an end-user and a dealer. Qy ey < 0 if end-users

are net sellers for the day, and @y cu,s > 0 if end-users are net buyers for the day.

Qu7eu7t is the net change in the inventory of end-users divided by the standard-deviation

of dealers’ inventories.

Qu.,d24,t is the gross notional traded among dealers on day t, excluding double-counting
of both sides of the contract.

Qu,dgdﬂg is the gross notional traded among dealers divided by the standard-deviation of

dealers’ inventories.

I,,; the cumulative position of all dealers in reference entity v on day t.
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C Robustness Tables

Table 12
Robustness: The Effect of End-Users’ Daily Trading Activity on CDS Spreads Using
Arithmetic Differences

In this table I study the asymmetric impact of end-users’ order imbalances on first-difference of CDS prices. The
table details the coefficient of the following pooled-regression:

K K 5 5
ASu,t = a+ Z% ‘Qu,eu,t—k‘ 1>O + Z 6/@ ‘Qu,eu,t—k‘ 1<0 + Z CnAPu,t—n + Z nnASu,t—n + Eu,t
k=0 k=0 n=0

n=1

where ’Qu7eu7t_k X 15 is the standardized net daily notional amount bought by end-users. Similarly, ‘Qu7eu7t_k‘ x1<g

is the standardized net daily notional amount sold to end-users. Business days without any trading activity are
included in the sample with Q%eu’t as zero, before the standardization. Standard errors that appear in parentheses
are heteroscedastic-robust standard errors. x##, %, and * denotes significance at 1%, 5%, and 10% level, respectively.
All regressions also include an intercept.

Dependent Variable: AS, ¢
K=0 K=1 K=3 K=5
Yo 18.8*** 16.0*** 16.4*** 15.7**
(6.2) (6.1) (6.2) (6.3)
SR 17,17+ 22.8%** 29.9%**
(6.1) (7.4) (9.5)
do —10.0 —11.8 —10.5 —11.2
(7.5) (7.8) (7.8) (7.8)
S O 5.0 ~16.4 —11.2
(11.4) (15.0) (16.0)
Cn X 10% 17.3%** 17.2%** 17.3*** 17.3%%*
(6.0) (6.0) (5.9) (5.9)
S G x 101 19.7 19.9 19.3 19.4
(17.9) (17.9) (17.9) (17.9)
S e x 10 L7 L7 L7 L7
(0.8) (0.8) (0.8) (0.8)
Coefficient estimates OLS OLS OLS OLS
Standard errors White White White White
Fixed-Effects Time (Day) Time (Day) Time (Day) Time (Day)
R-squared 0.15 0.15 0.15 0.15
Number of Observation 18,813 18,778 18,709 18,639
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