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Abstract

Technological innovations in inventory, logistics, and sales give grocery chain stores a

profitability advantage over old-fashioned local stores. With chain stores advancing, lo-

cal store incumbents gradually exit. Two questions concerning this creative destruction

process are central to competition policy. How do chain stores make entry decisions?

How does a chain store’s entry impact incumbent stores’ profitability and survival?

In this paper, I develop a tractable dynamic oligopoly model to examine these two

questions. The model’s all Markov-perfect equilibria that survive natural refinements

can be quickly computed by finding the fixed points of a sequence of low-dimensional

contraction mappings. I estimate this model using observations of grocery stores’ entry

and exit in small Dutch municipalities. The average sunk cost of entry can be multiple

times a store’s expected discounted profit, possibly because Dutch zoning regulation

greatly limits potential entrants’ locations. The high average sunk cost considerably

delays chain stores’ expansion. An entering chain store reduces local incumbents’ net

present values by 29% to 66%. A policy experiment with the estimated model shows

that cutting average sunk costs by 40% doubles chain store entry.

∗Tilburg University, Department of Econometrics and OR. E-mail: N.Yang@tilburguniversity.edu

JEL Code: L13, L83

Keywords: Creative Destruction, Entry and exit, Dynamic oligopoly model, Markov-perfect equilibrium,

Nested-Fixed-Point Algorithm, Retail grocery.

I wish to thank my advisors Jaap Abbring and Jeffrey Campbell for their constant encouragement and

inspiring guidance. This paper benefits tremendously from the comments and discussions generously shared

by Eric Bartelsman, Bart Bronnenberg, Lapo Filistrucchi, Pieter Gautier, Tobias Klein, Carlos Santos,

Catherine Schaumans, and Benjamin Tanz. I am grateful to the 2009 Institute for Computational Economics

at the University of Chicago and the Ziena Company for providing the KNITRO licence. Finally, I bid my

compliments to Rob Grim and Jan Tilly for their help on the data. All remaining errors are my own.

A replication package is available at the author’s website http://www.myyang.name/research.html.

mailto:N.Yang@tilburguniversity.edu
http://www.myyang.name/research.html


1 Introduction

In this paper, I develop and estimate a tractable dynamic oligopoly model for the retail

grocery industry. The analysis quantifies the determinants of chain stores’ entry and exit

decisions and evaluates how these decisions influence incumbent stores’ profitability and their

survival. In the recent decades, technologies like barcode scanner, computerized inventory

management, and modern logistic systems have continued chain grocery stores’ century-

long expansion, at the expense of old-fashioned independent local grocery stores exited.

Understanding the determinants and consequences of chain stores’ entry and exit in this

creative destruction process is central to competition policy. For instance, policy makers

might want to create favorable market conditions to encourage chain stores’ entry. A policy

experiment with the estimated model shows that reducing the entry cost by 40% effectively

doubles chain store entry in the Dutch cities sampled in this paper. Regulators might also

want to support local stores’ participation in this industry. In the Netherlands, many local

governments offer subsidy programs to small supermarkets.1 The estimated model suggests

that a subsidy package valued 150 million Euro is required in the next 10 years to maintain

on average one operating local store per postcode area in the sampled cities in 2020.

In empirical industrial organization, there is a large literature studying firms’ entry into

oligopoly market. Despite the problem’s inherently dynamic nature, a majority of the em-

pirical studies assume that firms’ one-shot choices settle the industry into its long-run steady

state (e.g., Bresnahan and Reiss 1990, Berry 1992, Mazzeo 2002, and Seim 2006). Good

departure points as they are, these models cannot incorporate firms’ dynamic considerations

into their entry and exit decisions. For instance, entering firms in these static analyses do

not have the option to cease operation and avoid negative profit in future. When studying a

dynamic industry with uncertainty, ignoring such valuable option often leads to biased esti-

mates of important market determinants, as demonstrated by Abbring and Campbell (2010).

By adding ongoing demand uncertainty and sunk costs in its dynamic analysis, this paper

mitigates the aforementioned bias of firm values, and the bias of entry’s impact on profits.

The simplicity and tractability of the paper’s model differentiate it from a small but grow-

1For an overview of these programs, see the document “Subsidiemogelijkheden kleine tot middelgrote

buurtsupermarkten” (In English, Subsidy opportunities for small and medium local supermarkets) published

by the Dutch administrative authority National Board for the Retail Trade (Hoofdbedrijfschap Detailhan-

del, HBD) at http://www.hbd.nl/websites/hbd2009/files/Supermarkten/Subsidiemogelijkheden%

20kleine%20tot%20middelgrote%20buurtsupermarkten.pdf.
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ing literature that employs dynamic oligopoly models in the spirit of Ericson and Pakes (1995)

to characterize market structure changes (e.g., Xu 2008, Collard-Wexler 2010, Gowrisankaran,

Lucarelli, Schmidt-Dengler, and Town 2010, and Ryan forthcoming). Specifically, I keep the

estimable game-theoretical model simple and deliver clear-cut results on computation and

multiplicity of its Markov-perfect equilibria (MPE): (1) An MPE satisfying some natural

refinements always exists, and all such equilibria can be quickly computed by finding the

fixed points of a sequence of low-dimensional contraction mappings; (2) The driving force

for any equilibrium multiplicity is identified. I then derive a fairly intuitive and computable

condition for the estimated MPE to be unique. Since Ericson and Pakes’s seminal work, it

is well known that the lack of results on MPE computation and multiplicity poses serious

challenges on this class of dynamic oligopoly models’ estimation. Enormous efforts have

been devoted to tackling these issues, with considerable success. Aguirregabiria and Mira

(2007), Pakes, Ostrovsky, and Berry (2007), Bajari, Benkard, and Levin (2007), Pesendorfer

and Schmidt-Dengler (2008) and Weintraub, Benkard, and Roy (2008) all provide various

feasible computation or estimation methods. However, these papers and their applications

are largely silent on the issue of multiple equilibria. Besanko, Doraszelski, Kryukov, and

Satterthwaite (2010) convincingly demonstrate the severity of the multiplicity problem in

the class of models considered by those authors. In general, even after reasonable refinement,

the number of equilibria remains unclear, rendering the computation of all MPE nearly im-

possible. This poses a serious threat to the reliability of counterfactual policy experiments,

because results from such experiments are generated only by the computed equilibrium. By

contrast, the simplicity of my model allows me to verify the uniqueness of the estimated

equilibrium. Additionally, the contraction-based algorithm allows me to quickly examine

the effects of a large variety of policy changes by computing the equilibria for many sets of

parameter values.

My modeling and estimation strategy builds on several previous papers. Firstly, the

proposed model is rooted in Abbring, Campbell, and Yang (2010). However, I extend their

framework in two important dimensions. First, their framework is statistically degenerate: for

any set of parameter values, their model’s predicted market outcome is unique. Therefore, it

can not be directly applied to analyzing real market data. Following Rust (1987), I introduce

various sources of unobservable transitory shocks into retailers’ decision problems to rational-

ize the real data. The contraction-mapping property of the equilibrium computation scheme

and the transitory shock structure motivate a direct application of the Nested-Fixed-Point

2



Algorithm developed by Rust to estimate the model. Second, I adapt Abbring, Campbell,

and Yang’s entry phase by allowing potential entry of low-cost retailers. This generalization

is a crucial step towards accommodating creative destruction in the model.

In my model, retailers of two formats, chain stores and local stores, enter, compete, and

exit in infinite-horizon oligopoly markets with stochastic demand. Entry requires paying

a format-specific stochastic sunk costs of establishment. After entry, a chain store either

becomes a high profitability retailer, or settles for the same low profitability as its local

rivals. Each active retailer receives a profit every period, determined by market competition,

its profitability type, realized demand, and a shock on profit. This shock can make continuing

operation unprofitable. In the model’s MPE, a retailer enters a market if the expected

discounted profit from operation covers the sunk cost of entry, and exits if continuation gives

negative expected discounted profit. By exploring the difference in retailers’ equilibrium

entry and exit choices under varying market conditions, I identify (the ratio of) sunk costs

and store profit. This identification strategy is in the spirit of Bresnahan and Reiss (1990,

1993) and Berry (1992).

The model’s simplicity allows me to make a first attempt at extending the estimation of

dynamic oligopoly models in one dimension: recovering persistent unobservable heterogeneity.

In the retail grocery industry, it is common to observe that a chain store exits while a nearby

local store remains active. In light of this, I assume that whether a chain retailer has a

superior profitability type than its local rivals is stochastically determined upon entry. This

profitability type stays unchanged over time, but remains unobserved to the econometrician.

The stores’ optimal entry and exit choices are informative on the joint type distribution of

all the incumbent chain stores, so I infer this joint distribution with Bayes’ rule following

every observed entry and exit choice. This approach turns out to be very tractable.

I apply the model to a panel dataset of grocery stores’ entry and exit in small Dutch

municipalities from 2002 to 2010. There are three reasons to champion the Dutch data. First,

a clear pattern of creative destruction is visible. During the 9-year period, the number of chain

stores increased almost 25% in the sampled cities, while around half of the local stores that

were active in 2002 exited before 2010. Second, stores often cluster in residential areas because

Dutch consumers highly value proximity when planning grocery shopping trips.2 This feature

suggests that I can use residential postcode to partition the country into isolated markets

and obtain a large cross section of markets for estimation. Finally, after 2002, most Dutch

2See Van Lin and Gijsbrechts (2011).
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supermarket chains had established their logistic network, and were active in franchising

during the sample period. This allows me to treat continuation and entry decisions for

individual chain stores independently from other outlets in the same chain.3

The refined MPE is verified to be unique given the estimated structural parameters. In

this equilibrium, the chain stores, upon successfully establishing their advantageous prof-

itability position, earn a flow profit 5.5 times that of their local rivals. When a chain store

enters, it deteriorates a local store incumbent’s expected discounted profit by 29%-66%.

However, chain stores’ expansion is considerably delayed by a very high average sunk cost of

entry. A policy experiment shows that cutting the average sunk cost of entry by 40% will

double the number of chain store entrants in the next 10 years. If the average sunk cost can

be reduced by 90%, the number of incumbent chain stores in 2020 will double, and very few

local stores will remain. To provide budgetary advice for the Dutch subsidy programs, I also

compute the required costs for various policy targets. For instance, ensuring that on average

one active local store per postcode area in 2020 requires in total 150 million Euro subsidy

from 2010 to 2020. Almost 500 million Euro is needed to contain the percentage of postcode

areas that only have chain stores to below 30%.

The remainder of this paper proceeds as follows. The next section provides background

information on the Dutch retail grocery industry to guide the modeling choices. It also

describes the sources and construction of my dataset. Section 3 presents the model’s primi-

tives. Section 4 establishes the results on equilibrium refinements, existence and uniqueness.

The constructive proof of equilibrium existence also provides a procedure to compute the

equilibrium values and market transition probabilities. Section 5 describes the likelihood

construction and estimation procedure. The estimation results and the policy analysis are

reported in Section 6. Further discussion and a conclusion appear in Section 7. Computa-

tional details and proofs are collected in the appendices.

3Jia (2008) and Holmes (2011) study the network effect in chain stores’ expansions in the US. In their

models, chain store headquarter incorporates the economies of scale from network expansion in their outlet

entry decisions. Therefore, the decisions of entering different markets are associated. Using US data, both

authors confirm network effect as a driving force behind the market leaders’ vast expansion. Incorporating

such network effects in the model will result in complications that are beyond the scope of this paper.

Fortunately, the near-completed logistic network and the franchising activities of the Dutch chain stores

reduced the concern of not modeling the network effect. This simplification gives me leverage to set up a

model featuring both dynamics and oligopoly competition, from which Jia and Holmes respectively abstracted

away.
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2 Grocery Stores in Small Dutch Municipalities

2.1 The Dutch Grocery Stores: A Snapshot

The Netherlands is not famous for its dining culture. Nevertheless, according to Statistics

Netherlands (Centraal Bureau voor de Statistiek, CBS), Dutch people spent almost 40 billion

euro on food, beverages and tobacco in 2010. This is around 15% of the total domestic

consumption. Grocery supermarkets enjoyed 86% of the market share from food and 62%

from beverage and tobacco, boasting a turnover of 25 billion Euro in 2010. Even after

adjusting for inflation, the supermarkets’ total turnover increased over the past decade.

2007 2008 2009 2010

Albert Heijn 29.5% 31.2% 32.8% 33.6%

C1000 14.3% 13.1% 11.7% 11.5%

Super de Boer 7.3% 6.7% 6.5% 5.5%

Jumbo 4.4% 4.7% 4.9% 5.5%

Superunie (total) 30.0% 30.7% 29.6% 29.6%

Aldi 8.9% 8.4% 8.3% 7.9%

Lidl 4.0% 4.7% 5.4% 5.6%

Other Chains 1.6% 0.5% 0.8% 0.8%

Total 100% 100% 100% 100%

Table 1: Market Shares (sales) of the Dutch Supermarket Chains.

Source: Original from AC Nielsen report, cited by “Dossier Supermarkten (feiten en cijfers)” (In English, Supermarket Profiles (facts and figures))

composed by HBD.

The major Dutch supermarket chains include four national ones (Albert Heijn (AH),

C1000, Super de Boer, and Jumbo), two international hard discounters4 (Aldi and Lidl, both

German supermarket chains), and a dozen of smaller regional chains. Table 1 presents their

market shares in recent years. The largest chain AH has a market share of one third, which

is still growing. The other three national chains and the two hard discounters roughly take

another one third. The regional chain stores contracted with the purchasing organization

Superunie altogether take the rest.5

4The hard discounters are small to medium supermarkets that use aggressive pricing strategy, have limited

assortment, and predominately focus on private labels.
5Superunie negotiates and buys products in the wholesale market on behalf of the regional chain stores. It
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All the supermarket chains in Table 1 have been active since 2002, the beginning of

the data period. No other large chain entered the Dutch market since then. During this

period, Dutch chain stores’ expansion had been much more modest than that of their US

counterparts studied by Jia and Holmes. For instance, from 1962 to 2005 in the US, the

number of Wal-Mart’s general merchandise outlets increases from none to 3,176, and the

number of the general distribution centers from none to 43 (Table 2 in Holmes 2011). During

2002-2010, the most aggressive expander Albert Heijn opened 154 outlets, which accounts

for less than 20% of the currently active stores. Furthermore, no new distribution center was

built by Albert Heijn during this period, suggesting that the logistic network had been close

to completion. The second largest chain (C1000) even experienced contraction during this

period.

Several mergers and acquisitions of supermarket chains occured during the observation

period. In 2006, the holding company of supermarket chains Konmar and Edah, Laurus,

sold all its stores to third parties, including AH and C1000. In 2009, the parent company of

supermarket Jumbo bought another chain, Super de Boer, from its French holding company

Groupe Casino. During these merger and acquisitions, many stores were taken over, but

very few were forced to leave the market. In the second case, Super de Boer and Jumbo still

operated as two distinct chains after the acquisition.6

Despite the presence of the hard discounters, vertical differentiation among the super-

market chains remains limited. Most of the Dutch supermarket chains have only one store

format7 and adopt a nation-wide uniform pricing policy. All of the national chains and most

of the regional chains provide a full spectrum of products to capture the maximum scope of

potential consumers. Even the quality-oriented AH provides, and aggressively advertises, its

also handles the lion’s share of logistics for the members, delivering products from its own warehouses using

its own container-bearing trucks. Its presence integrates the contracted regional chains in purchasing and

logistics to a very large extent, creating economies of scale and enabling them to compete with the national

and international chains. For this reason, I do not categorize the small regional chains affiliated to Superunie

as local stores in my estimation.
6In 2011, Super de Boer stores started converting into Jumbo stores. The data used in this paper ends in

2010.
7AH is one exception. Besides the ordinary outlets, it has around 30 hypermarkets, “AH XL”, and around

50 convenience stores, “AH To Go”. The AH XL stores are larger in size than ordinary AH. They also have

more departments in multimedia products, kitchen products, etc.. Nevertheless, its primary business activity

remains retail grocery. AH To Go stores are mostly located in the train stations and airports, serving

primarily commuters and tourists. In the empirical analysis, I treat AH XL as ordinary AH stores, and

exclude AH To Go from the sample.
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heavily discounted private label EuroShopper. As pointed out by Van Lin and Gijsbrechts

(2011), distance to store is the first concern for Dutch grocery shoppers. This is arguably the

most prominent characteristic that horizontally differentiates the supermarkets. To stay close

to their potential customers, grocery stores usually locate in residential areas. The Dutch

zoning regulation (bestemmingsplan) imposes strict restriction on using designated dwelling

properties for business purposes, which limits the locations suitable for entry. Municipalities

draft these plans in consultation with local residents, and they revise them only infrequently.8

As discussed earlier, many Dutch supermarket chains actively franchise their brands. For

instance, Albert Heijn has around 200 franchisees among its 800 stores.9 Almost 90% of the

400 outlets in the second largest chain C1000 are independent franchisees.10

2.2 The Data

The longitudinal dataset used in the model’s estimation is uniquely constructed from two

major sources. The annual establishment-level data of store entries and exits is extracted

from the online version of the REview and Analysis of Companies in Holland (REACH)

database. Small municipalities’ isolated postcode areas are selected to form the cross-sections

of independent markets for retail grocery. To measure the demand on these markets, annual

populations on the postcode level are retrieved from the CBS database StatLine.

2.2.1 The REACH Data

The online version of the REACH database contains the establishment-level data for all Dutch

business that have ever been active after January 1, 2002. It is created and maintained by

the Dutch consultancy Bureau van Dijk (BvD), under the delegation and authorization of the

Dutch Chamber of Commerce (Kamer van Koophandel, KvK). The business profiles come

from the Dutch Trade Register (Het Handelsregister, DTR) archive provided by KvK. In the

Netherlands, registration in DTR is compulsory for “every company and almost every legal

8Establishing or changing a zoning plan often requires approval from residents, municipal coun-

cil, and existing entrepreneurs. This can be a long and painful process which takes months.

A description on the procedure of revising a zoning plan is published (in Dutch) by the

Dutch Chamber of Commerce at http://www.kvk.nl/ondernemen/huisvesting/bestemmingsplannen/

wijziging-bestemmingsplan-door-de-gemeente/
9In Dutch at http://www.ah.nl/artikel?trg=albertheijn/article.feiten.

10In Dutch at http://www.denationalefranchisegids.nl/firstfranchise/KG_c1000.htm.
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entity” (KvK website).11 The registration also requires truthful provision of, among other

things, the business’ name, main activities, location, date of incorporation, ownership data,

and form of legal organization. These pieces of information are all recorded by REACH.

Additionally, businesses ceasing operation must deregister from the DTR. REACH includes

the deregistration date.12

I focus on the period between January 1, 2002 and December 31, 2010 to construct an 9-

year annual panel. If an establishment (1) has been active in this period, (2) has a four-digit

SBI13 code 4711 (supermarket and such with a general assortment of food and drink) listed

among its main activities,14 and (3) does not have a name either strongly suggesting that

other business activity dominates grocery retail, or indicating that the store is specialized

in a narrow category of groceries,15 I classify it as a grocery store and include it in the

sample. For each store, I treat its recorded “year of incorporation” as the entry time, and

the year of deregistration as the exit time.16 The store’s format is primarily recovered from

the ownership data; if it is labeled as a “branch” in REACH, then it is categorized as a chain

store outlet. This criterion may overlook the franchisees, which are very often recorded as

single location firms. Therefore, I supplement this criterion by (1) matching the store names

11For the details on the scope of the registration, see http://www.kvk.nl/english/traderegister/020_

About_the_trade_register/registrationinthetraderegister/Whomustregister.asp. It is safe to as-

sume that all the relevant stores are included in this database.
12REACH does provide concise financial data for medium companies with annual turnover between 1.5

and 50 million euro in several recent years. For the majority of the stores studied in this paper, the financial

data are either not available for the full sample period, or of poor quality.
13SBI (De Standaard Bedrijfsindeling) is the Dutch standard industry classification code. For its de-

tails, please refer to the link (in Dutch) http://www.cbs.nl/nl-NL/menu/methoden/classificaties/

overzicht/sbi/default.htm. Although REACH also provides BIC and SIC codes in the business pro-

files, the original registration at KvK only contains the SBI code.
14Most of the Dutch supermarkets specialize in food-items and household non-durable supplies, flirting little

with other retail sectors. According to HBD, supermarket chains only have a 29% share in the drugstore

products market, 8% in non prescription medicine, and 1% in clothing. Therefore, the presence of other

retailers is not likely to influence grocery stores’ entry and exit decisions. For this reason, I do not consider

the competition between grocery stores and other retailers.
15To this end, I eliminate the stores whose names contain, “wijnen” (wine), “kaas” (cheese), “noten”

(nuts), “eetcafe” (small restaurant), etc., and a range of terms suggesting that a store is specialized in exotic

foreign products (immigrant stores). A complete list of the terms used for the elimination can be found in

the documentation for the data processing, which is published on the author’s website.
16In case of store ownership change due to the aforementioned mergers, I treat the records of outlet

takeovers the same as store continuation if the store name remains after the takeover, and as a sequence of

exit followed by entry if the store name changes.
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with a list of major brands of supermarket chains, and the names of known franchisees; (2)

matching the website of the store with a list of chain stores’ websites; (3) categorizing stores

with 40 or more employees as chain stores. If an establishment is not labeled as a chain store

after applying all the above criterions, it is deemed a local store.

2.2.2 Markets Definition and the StatLine Data

To create a sample of markets with well-defined demand, shoppers in one sampled market

should not buy groceries from stores in another sampled market. To ensure this, I adopt a

similar strategy as in Bresnahan and Reiss (1991), and define markets as the major residential

postcode areas in the small Dutch municipalities.

The demographic data are obtained from the publicly available dataset of StatLine. First,

from the 2009 list of Dutch municipalities, I eliminate 22 metropolitan areas. These areas

often have multiple densely populated postcode areas adjacent to each other. Shoppers are

likely to traverse through the areas to buy groceries. In addition, many of these areas are

either business districts, or packed with tourists throughout the year. For them, the number

of residents is not a proper measure of local demand. This elimination leaves me with 375

small municipalities. I further drop the tourist town Noordwijkerhout and the beach resort

Burgh-Haamstede from the sample. The remaining municipalities are often composed of

isolated villages, each having a distinct postcode. Next, I choose the postcode areas with a

number of inhabitants between 4,000 and 12,000 in 2009 in these municipalities as isolated

markets for retail grocery. Eventually, I obtain 877 such markets. The numbers of inhabitants

in these markets from 2002 to 2010 are extracted as the indicator for market demand. Stores

in REACH are subsequently matched to these markets based on their location information.

In total, 2,588 stores have been active during 2002 to 2010 in these markets. Among them,

1,559 are chain store outlets and 1,029 are local stores.

2.2.3 Summary Statistics

Table 2 presents some summary statistics for the selected markets. From 2002 to 2010,

the number of residents grew in roughly half of the markets, and declined in the other half.

Overall, the magnitude of population growth outmatched the magnitude of decline, and hence

the markets’ population distribution shifted to the right. The percentage of annual absolute

population change has a median of 0.7%. The population change more often accumulated

than canceled out over the 9-year period. As a result, the percentage of absolute population

9



Mean 10% 25% Median 75% 90%

Population in 2002 7103 4463 5251 6760 8719 10214

Population in 2010 7213 4585 5386 6885 8849 10310

% of Pop. change 2010 v.s. 2002 2.7 -5.8 -3.4 0.0 3.7 9.6

Absolute % of pop. change 2010 v.s. 2002 6.5 0.6 1.5 3.5 6.1 10.4

% of Annual pop. change 2002-2010 0.3 -1.2 -0.7 -0.1 0.7 1.7

Absolute % of annual pop. change 2002-2010 1.1 0.1 0.3 0.7 1.2 2.1

Disposable income per capita 2008 (k Euro) 14.73 13.30 13.88 14.50 15.30 16.40

% of Population w/ income 2008 71 69 70 72 73 74

Disp. inco. for pop. w/ inco. 2008 (k Euro) 20.33 18.28 19.10 19.90 21.10 22.62

No. of chain entrants, 2002-2010 0.57 0 0 0 1 2

No. of chain exited, 2002-2010 0.23 0 0 0 0 1

No. of local entrants, 2002-2010 0.55 0 0 0 1 2

No. of local exited, 2002-2010 0.59 0 0 0 1 2

Table 2: Summary Statistics.

The mean values are arithmatic average over all the markets.

The income data is from StatLine, and is at the municipality level. Income includes labor and capital income, as well as social benefits.

change from 2002 to 2009 has a median of 3.5%.

The income statistics are only available at the municipality level. Fortunately for the

analysis, the Netherlands has a very equal income distribution, even among the small munic-

ipalities. For this reason, I am content with the postcode-level population data as a proxy

for local demand.

During the sample period, chain store entry happened in less than half of the markets, and

the same can be said for chain store exit, local store entry, and exit. On average, store entry

or exit happened less than once per market during the 9-year period. This is perhaps not

surprising given that these markets were mostly developed residential districts in a developed

country. Nevertheless, the chain stores’ advance and the local stores’ consequent exits still

changed the market composition of chain and local stores considerably, as summarized in

Table 3. The number of markets populated only by chain stores rose from 340 in 2002 to

406 in 2010. In 2002, there were 234 markets without a single chain store, 62 of them with

monopoly local store, and 26 of them with duopoly local stores. In 2010, the numbers had
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dropped to 154, 50, and 11 respectively. The numbers of markets with 2, 3, and 4 or more

chain stores all increased over this period.

Market Composition in 2002

No. chains\locals 0 1 2 3 4+ Subtotal

0 139 62 26 5 2 234

1 176 108 37 13 6 340

2 99 51 19 5 6 180

3 46 21 9 6 1 83

4+ 19 16 3 0 2 40

Subtotal 479 258 94 29 17 877

Market Composition in 2010

No. chains\locals 0 1 2 3 4+ Subtotal

0 86 50 11 5 2 154

1 197 94 27 10 2 330

2 121 59 22 8 4 214

3 65 44 9 2 5 125

4+ 23 20 4 5 2 54

Subtotal 492 267 73 30 15 877

Table 3: Market Compositions

The total number of the active chain stores in the sample rose from 1105 in 2002 to 1354

in 2010, while the total number of the active local stores declined from 556 to 551. Behind

the negligible contraction of the local stores is a high annual turnover: As shown in Figure

1, around 50-70 local stores exited each year, which was roughly 10% of all the active local

stores. This high turnover rate suggests that the local stores are vulnerable to changes in

market conditions.

3 The Model

With the nine-year panel data in hand, I introduce an oligopoly model of stores’ entry and

exit to rationalize observed market dynamics in terms of structural primitives, particularly,

sunk costs of entry, the profitability advantage of chain stores, and uncertainty.
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Figure 1: Numbers of Incumbents, Entrants, and Exited Stores in Each Year: 2002-2010
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In the remainder of the paper, I denote a n−vector by x = (x1, x2, . . . , xn). A capital letter

denotes a random variable (vector), the corresponding lower case is reserved for its realization.

The random variable corresponding to Y in the next period is Y ′. The expectation taken over

the random variable X (or X ′, depending on the occasion) is denoted by EX . The conditional

density function is written as f(·|X = x) when random variable X equals x, while f(·; θ)
means that θ is function f ’s parameter.

3.1 Primitives

The same set of primitive assumptions applies to all the markets. Time is discrete and the

horizon is infinite, t ∈ Z? ≡ {0, 1, . . .}. Retailers are observed to differ in their formats: local

store (L) or chain store (C). A countable number of chain store retailers and a countable

number of local retailers potentially serve each market. At a given time t, some of the

retailers are active, and the rest are inactive. Active retailers either have low (L) or high

12



Figure 2: The Sequence of Events and Actions within a Period
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(H) profitability types (or types in short). These types are not observed by econometrician,

though they are common knowledge to the retailers once realized. A 2 × 1 vector Nt, the

variable for market structure, records the numbers of active type-L and type-H stores. The

number of active local stores and the number of active chain stores are recorded in another

2× 1 vector Ñt, the variable for market composition. Strategic entry and exit determine the

market structure and market composition’s evolutions.

Here and throughout the paper, I use ιk to denote a 2 × 1 vector with a one in position

k and zeros elsewhere, so ιH = ιC ≡ (0, 1) and ιL = ιL ≡ (1, 0). An empty market can be

denoted with ι0 ≡ (0, 0).

Figure 2 illustrates the sequencing of these variables’ realizations and retailers’ actions

within period t. The stochastic number of consumers in period t is denoted by Ct ∈ [ĉ, č],

with č < ∞. The market-level cost shock on profit in period t is denoted by WM,t. Given

the inherited values of Nt, Ct and WM,t, all active retailers begin the period by serving the

market. The profits from this stage are πH(Nt, Ct; θH) − β−1ϕM exp(WM,t) for a type-H
retailer and πL(Nt, Ct; θL) − β−1ϕM exp(WM,t) for a type-L retailer. The discount factor

β < 1 is common to all retailers. The parameters θH and θL measure how the state variables

affect the profits. A retailer’s profit decreases with the number and profitability types of its

competitors, and it improves with market demand. Also, the technological advantage of a

type-H retailer over a type-L gives it greater profit. Formally, we have
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Assumption 1 (Monotone Producer Profit). For any profitability type k ∈ {L,H}, number

of consumers c ∈ [ĉ, č], and market structure n ∈ Z2
? such that n at least includes one type-k

store

1. πk(n, c; θk) ≤ π̌ <∞;

2. πk(n + ιH, c; θk) < πk (n + ιL, c; θk);

3. there exists an n ∈ N such that πk(n, c; θk) < 0 if the number of stores in n is larger

than n; and

4. πL(n, c; θL) ≤ πH(n, c; θH) for any n that includes at least one type-L and one type-H
retailer.

After production, a shock on the chain store’s sunk cost of entry WC,t is realized. One

chain store retailer that has never attempted to enter the market makes an entry decision

after observing this shock. After this decision, a shock to the local store’s sunk cost of entry

WL,t is realized. One local store that has never attempted to serve the market observes this

shock, and subsequently decides on entry. Upon entry, the chain store retailer pays a sunk

cost of ϕC exp(WC,t) ≥ 0. The local store pays ϕL exp(WL,t) ≥ 0 for entry. The restriction

on the number of potential entrants each period fits the data: In the Dutch local markets

considered in the estimation, entry by more than one chain stores or local stores in the same

year is very rarely observed (less than 20 cases in the 877 markets over 9 years17). Gen-

eralizing the restricted entry phase to several more sophisticated specifications18 will affect

neither the model’s equilibrium existence and uniqueness result, nor the computation and

estimation strategy. Computational complication is the only substantial cost of considering

those specifications.

All local stores have profitability type L after entry. chain stores do not learn their types

until entering the market. After entry, a chain store has probability ω to become a type-H
retailer, and with the complimentary probability it becomes a type-L retailer. Each store’s

profitability type is not only learned by its manager, but also observed by all retailers. I

assume that the type realization of a chain store occurs right after its entry. Hence, the local

17In the estimation, I only consider the likelihood contribution from the first entry
18For instance, (1) simultaneous entry by a fixed or random number of chain stores, followed by a

fixed/random number of local stores, with format-specific shocks on sunk costs; (2) sequential entry by

an infinite number of chain stores, followed by an infinite number of local stores, with format-specific shocks

on sunk costs.
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store entrant following this chain store observes this type. This timing assumption is not

essential to any of the main results.

A retailer with an entry opportunity cannot delay its choice19, so the payoff to staying

out of the industry is normalized to be zero. After the entry phase, the profitability shock in

period t + 1, WM,t+1, is revealed to all active retailers. Then, all of them— including those

that just entered the market— decide simultaneously between survival and exit. Exit is

irreversible20 but otherwise costless. It allows firms to avoid future periods’ negative profits.

All retailers’ entry and exit decisions maximize their expected discounted profit.

In the period’s final stage, the number of consumers Ct evolves exogenously following

a first-order Markov process. This concludes the updating of all the exogenous random

components in this market. With the updated values of Nt+1, Ct+1 and WM,t+1, the market

moves on to next period.

I follow Rust and assume that the unobservable shocks WC,t,WL,t, and WM,t are condi-

tionally independent in the following way.

Assumption 2 (Markov and Conditional Independence). For any t ∈ {1, . . .}, the transition

density of the process {Ct,WM,t,WC,t,WL,t} factors as

f(Ct+1,WM,t+1,WC,t+1,WL,t+1|Ct,WC,t,WL,t,WM,t; θ) =

fC(Ct+1|Ct; θ1)fWM
(WM,t|Ct; θ2)fWC

(WC,t+1|Ct+1; θ3)fWL
(WL,t+1|Ct+1; θ4),

in which fC is the conditional density for the Markov variable Ct, fWM
is the conditional

density for the profitability shock WM,t, fWC
and fWL

are the densities of the shocks on sunk

costs. θ1, θ2, θ3 and θ4 are parameters of the density functions.

3.2 Markov-Perfect Equilibrium

I focus on Markov-perfect equilibrium (MPE) of the model. This is a subgame-perfect equi-

librium in strategies that are only contingent on payoff-relevant variables. Assumption 2

ensures that conditional on Ct, the realized shocks do not help in predicting their future real-

izations. Therefore, conditional on Ct, WC,t is payoff-relevant only to the chain store entrant,

19Given the franchise feature and the large number of chain brands, lots of people can be potential owners

of chain stores. In this industry, opportunities to open a store come and go quickly. Hence, for a potential

store owner, delaying entry to a later year often is not practical.
20Although a chain store outlet’s closure does not mean the exit of the chain from the retail grocery market,

it is rarely observed that a chain store opens another outlet in the same market that it has once withdrawn

from.
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WL,t only to the local store entrant, and WM,t+1 only to incumbents. More specifically, for a

chain store retailer contemplating entry in period t, the payoff-relevant variables are Ct,WC,t,

and the market structure MC,t just before this store’s possible entry. For a local entrant,

the payoff-relevant variables include Ct,WL,t and ML,t. Next, denote the market structure

after the period’s final entry with ME,t. For an active retailer contemplating survival, the

payoff-relevant variables are this market structure, the current number of consumers Ct, the

profitability shock WM,t+1, and this retailer’s profitability type. Throughout the paper, I

focus on symmetric equilibria. Hence, retailers’ brands are not payoff-relevant once condi-

tioning on the variables mentioned here.

Suppose that WC,t,WL,t and WM,t all have infinite support. A Markov strategy is a couple

(aE, aS) of functions

aE : Z2
? × [ĉ, č]× R× {L,C} −→ [0, 1]

aS : Z2
? × [ĉ, č]× R× {L,H} −→ [0, 1].

This allows for mixed strategies. For each potential entrant with format k ∈ {L,C}, this

strategy’s entry rule aE assigns a probability of becoming active to any (Mk,t, Ct,Wk,t, k).

Similarly, its survival rule aS assigns a probability of remaining active in the next period

to each possible value of the payoff-relevant state (ME,t, Ct,WM,t, k) for all active retailers,

where k ∈ {L,H}. Since calendar time is not payoff-relevant in MPE, I hereafter drop the t

subscript from all variables.

To characterize equilibria, it is useful to define two value functions, each corresponding

to a particular node of the game tree within each period. The post-entry value vE(mE, c, k)

equals the expected discounted profits of a retailer that has profitability type k, faces market

structure mE and number of consumers c just after all entry decisions have been realized,

and just before the profitability shock WM is revealed. For a potential entrant, this value

function gives the expected discounted profits from entry, and hence it determines optimal

entry choices. The realized shocks on sunk costs wC, wL do not enter this value, because they

are “sunk” upon entry, and do not help predicting future shocks (Assumption 2). The post-

survival value vS(mS, c, k) equals the expected discounted profits of a type-k retailer,gross

of next period’s fixed costs, facing market structure mS and number of consumers c, just

after all survival decisions have been realized. This value net of the (discounted) profitability

shock, vS(mS, c, k) − ϕM exp(wM), equals the payoff to a surviving retailer following the

simultaneous continuation decisions, so it is central to the analysis of exit.
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The value functions vE and vS satisfy

vE(mE, c, k) = EMS ,WM

[
aS(mE, c,W

′
M , k)(vS(MS, c, k)− ϕM exp(W ′

M)) ME = mE, C = c
]
,

(1)

and

vS(mS, c, k) = βEME ,C

[
πk(mS, C

′) + vE(M′
E, C

′, k) MS = mS, C = c
]
. (2)

For (aE, aS) to form a symmetric Markov-perfect equilibrium, it is necessary and sufficient

that no firm can gain from a one-shot deviation from (aE, aS) (e.g. Fudenberg and Tirole,

1991, Theorem 4.2):

aE(mC, c, wC,C) ∈ arg max
a∈[0,1]

a(ωEME
[vE (ME, c,H) |ML = mC + ιH]

+(1− ω)EME
[vE (ME, c,L) |ML = mC + ιL]− ϕC exp(wC)), (3)

aE(mL, c, wL,L) ∈ arg max
a∈[0,1]

a
(
vE (mL + ιL, c,L)− ϕL exp(wL)

)
, (4)

aS(mE, c, wM , k) ∈ arg max
a∈[0,1]

a
(
EMS

[
vS(MS, c, k) ME = mE

]
− ϕM exp(wM)

)
. (5)

The conditional expectations in (1), (2), (3), and (5) are computed given that other retailers

follow (aE, aS), and the retailer of interest enters or remains active. Note that a chain store

entrant’s payoff depend on the post-entry values for both types. Together, conditions (1)–

(5) are necessary and sufficient for a strategy (aE, aS) to form a symmetric Markov-perfect

equilibrium with payoffs vE and vS.

4 Equilibrium Analysis

In Section 4.1, I begin the equilibrium analysis with markets that can accommodate at most

two retailers simultaneously, regardless of their types. The restriction on the number of re-

tailers can be rationalized by a formidable entry cost for a third entrant. Note that under this

restriction, the number of simultaneously active retailers never exceeds two in equilibrium,

if the market is initially empty. This is the simplest example where strategic interactions

between retailers are retained. Using this example, I introduce several equilibrium refine-

ments and illustrate how to compute the equilibrium value functions, the choice probability

of retailers, and the market structure transition probabilities under the refined equilibria. I

formally define the equilibrium refinements in Section 4.2. Finally, I generalize the technique

and procedure used in the duopoly example, and establish the general results on equilibrium

existence, uniqueness, and computation in Section 4.3.
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Figure 3: Reduced-form Representation of the Duopoly Continuation Game

Survive Exit

Survive
vS(2ιH, c,H)− ϕM exp(wM)

vS(2ιH, c,H)− ϕM exp(wM)

vS(ιH, c,H)− ϕM exp(wM)

0

Exit
0

vS(ιH, c,H)− ϕM exp(wM)

0

0

Note: In each cell, the upper-left expression gives the row player’s payoff. Please see the text for further

details.

4.1 A Duopoly Example

If at most two retailers can serve a market at the same time, the equilibrium computation

consists of five steps. Under proper equilibrium refinements, in each of the steps, the post-

entry value function restricted to part of the state space is determined by the unique fixed

point of a contraction mapping. Then, the post-survival values, the strategy, the choice

probabilities, and the transition probabilities are constructed. The results from the completed

steps are used as inputs in the following steps. I sketch the procedure here, and collect the

omitted details in Appendix A.

Step 1: Duopoly Market with Two Type-H Retailers The equilibrium computation

begins with market structure of two active type-H retailers. In a Markov-perfect equilib-

rium, the survival rule aS(2ιH, c, wM ,H) satisfies (5): It is a Nash equilibrium of the static

simultaneous-move game with payoffs given by the expected value of continuation given c and

wM . Figure 3 gives the reduced-form representation of this static game with the two possible

pure strategies “Survive” and “Exit”. The upper-left expression in each cell is the row player’s

payoff. Both retailers receive the duopoly post-survival payoff vS(2ιH, c,H) − ϕM exp(wM)

from joint continuation. Since no retailer will further enter this saturated market in the next

period, the duopoly post-survival payoff satisfies a special case of Equation (2):

vS(2ιH, c,H) = βEC
[
πH(2ιH, C

′) + vE(2ιH, C
′,H) C = c

]
.

If a retailer survives alone, it earns the monopoly post-survival value vS(ιH, c,H)−ϕM exp(wM).

Now, suppose that vS(2ιH, c,H) > ϕM exp(wM). If the monopoly post-survival value

vS(ιH, c,H) > ϕM exp(wM), “Survive” is a dominant strategy in this static game. If vS(ιH, c,H) ≤
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ϕM exp(wM), any symmetric equilibrium strategy other than “Survive” is not renegotiation-

proof: Such strategy either involves mixing, or is pure “Exit”. In either case, retailers’

expected payoff from such a strategy always equals zero. So, if retailers can renegotiate, they

will both rationally choose joint continuation to get positive payoff. Therefore, if we require

the MPE to be renegotiation-proof, both retailers will choose “Survive” with probability one

if vS(2ιH, c,H) > ϕM exp(wM). If instead vS(2ιH, c,H) ≤ ϕM exp(wM), then any symmet-

ric equilibrium strategy, mixing or pure “Exit”, gives retailers zero expected payoff. Since

vE(2ιH, c,H) is computed based on the symmetric equilibrium payoff to this static game,

these facts together yield the following special case of Equation (1):

vE(2ιH, c,H) = EWM

[
max{0, vS(2ιH, c,H)− exp(W ′

M)} C = c
]

= EWM

[
max{0, βEC

[
πH(2ιH, C

′) + vE(2ιH, C
′,H) C = c

]
− ϕM exp(W ′

M)} C = c
]
.

(6)

The expectation in Equation (6) is taken over the exogenous variables C ′ and W ′
M only, and

does not depend on any survival rule. This ensures that the equation’s right-hand side defines

a contraction mapping, with its unique fixed point pinning down vE(2ιH, ·,H). Then, it is

straightforward to compute vS(2ιH, ·,H). The reasoning leading to Equation (6) highlights

the key technical insight that makes the equilibrium computation simple. The equilibrium

duopoly payoffs can be computed without knowledge of the retailers’ payoffs in other market

structures, because retailers receive positive expected payoff in a symmetric equilibrium only

when joint continuation is individually profitable.

For some distributions of WM , the expectation over WM in Equation (6) has a closed-form

expression. In Appendix A, I work out an example under normally distributed WM . By using

closed-form expression to compute vE(2ιH, ·,H), one can avoid the numerical integration over

WM . This is one of the major consequence and benefit from Assumption 2.

Step 2: Type-L Duopolist Facing a Type-H Rival. Next, consider a type-L retailer

who faces a type-H competitor. Because a type-H retailer earns higher flow profit than a

type-L retailer does in each period, I require the equilibrium to be natural in its survival

rules: a type-H retailer never exits when a type-L competitor survives. In a natural MPE,

the type-L retailer’s survival implies the survival of the type-H rival. Moreover, no retailer

will further enter this market following its survival, given the formidable sunk cost of entry for

a third store. Therefore, this retailer’s post-survival value does not depend on any unknown

strategy of rival stores. Consequently, Equation (1) defines a contraction mapping with its
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unique fixed point determining vE(ιL+ιH, ·,L). Then, the post-survival value vS(ιL+ιH, ·,L)

naturally follows.

The equilibrium refinements discussed above narrow the equilibrium set to the renegotiation-

proof natural Markov-perfect equilibria (RNMPE). With the computed RNMPE value func-

tions, I can further compute the equilibrium entry rules to a market occupied by a type-H
monopolist for a chain store and a local store, and the survival rule for a type-L retailer

facing a type-H rival.

By imposing distributional assumptions on WC,WL, I can compute the choice probabilities

for a chain store and a local store to enter when the market is monopolized by a type-H
retailer, PE(ιC|ιH, ·) and PE(ιL|ιH, ·), by integrating out the sunk cost shocks. With these

probabilities in hand, I further compute PE(mE|ιH, ·), the transition probability of entry for

the post-entry market structure to become mE, when the pre-entry market structure is ιH.

Similarly, the transition probability of survival, PS(ιL + ιH|ιL + ιH, ·), follows from the

post-survival value vS(ιL + ιH, ·,L) and some distributional assumption on WM .

Step 3: Type-H Monopolist & Type-H Duopolist Facing One Type-L Rival.

A type-H monopolist’s post-survival value function, vS(ιH, ·,H), depends on whether en-

try would occur next period. The relevant entry rules have been calculated in Step 2.

The post-survival payoff for a type-H duopolist who face a type-L rival, vS (ιL + ιH, ·,H),

depends on whether the type-L store exits. The relevant survival rule has been calcu-

lated in Step 2 as well. Thus, Equation (1) again defines a contraction mapping with its

unique fixed point simultaneously determining the post-entry value functions vE(ιH, ·,H) and

vE (ιL + ιH, ·,H). The associated post-survival payoffs, the transition probabilities PS(ιH|ιL+

ιH, ·) and PS(ι0|ιL + ιH, ·) follow.

Step 4: Duopoly Market with Two Type-L Retailers. The survival problem on a

duopoly market with two type-L retailers is a carbon copy of the static game presented in

Figure 3. If simultaneous survival is individually profitable, then the renegotiation-proofness

requires both retailers to choose survival in a symmetric equilibrium. Otherwise, the strategy

in the static game assigns non-negative probability to “Exit”, and results in zero expected

payoff. Therefore, similarly to Equation (6), the necessary condition for vE(2ιL, ·,L) de-

fines a contraction mapping, with its fixed point determining vE(2ιL, ·,L). Consequently,

vS(2ιL, ·,L) follows. Then, the associated choice probabilities PE(ιC|ιL, ·) and PE(ιL|ιL, ·),
and the transition probabilities of entry for market structures succeeding this monopoly
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market PE(ιL + ιH|ιL, ·), PE(2ιL|ιL, ·), and PE(ιL|ιL, ·) are computed analogously to their

counterparts in Step 2.

Step 5: The Rest. First, I compute a type-L monopolist’s value functions. The survival

decision of this retailer depends on whether entry happens next period. The likelihood

of entry is given by PE(ιC|ιL, ·) and PE(ιL|ιL, ·), the choice probabilities that have been

calculated in Step 4. Therefore, a special case of Equation (1) defines a contraction mapping,

with its unique fixed point determining the post-entry value vE(ιL, ·,L).

Next, I compute the entry rule to an empty market by a chain store. This entry rule

depends on whether the local store following this chain store in the entry sequence enters.

Such entry choice is characterized by the entry rules for a local store to a monopoly market,

which have been determined in Steps 2 and 4. With this entry rule in hand, I obtain the

associated choice probabilities of entry by integrating out WC.

Furthermore, I determine the entry rules to an empty market by a local store and the

survival rule of a monopolist type-L retailer as the optimal choice rules in single-agent decision

problems. The associated choice and transition probabilities have closed-form expressions

under the normality assumption.

Finally, all that remain undetermined is the survival rule for duopoly retailers of identical

type and the associated choice and transition probabilities. Reconsider the static game

presented in Figure 3: in a RNMPE, if the post-survival value for a duopolist exceeds

ϕM exp(wM), then both retailers continue for sure. Otherwise, checking the post-survival

value for a monopolist is essential.

If the monopoly post-survival value also exceeds ϕM exp(wM), the reduced-form contin-

uation game has no pure strategy equilibrium. Instead, it admits a unique mixed-strategy

equilibrium, in which each retailer chooses a survival probability to leave its rival indifferent

between exiting and surviving. The equilibrium thus has the following survival rules for

k ∈ {H,L}.

aS(2ιk, c, wM , k) =


1 if vS(2ιk, c, k) > ϕM exp(wM),
vS(ιk,c,k)−ϕM exp(wM )
vS(ιk,c,k)−vS(2ιk,c,k)

if vS(2ιk, c, k) ≤ ϕM exp(wM), vS(ιk, c, k) > ϕM exp(wM)

0 otherwise.

If the monopoly post-survival value is low than ϕM exp(wM), pure exit is the only equi-

librium strategy of the static game–no unilateral deviation not improve the payoff, and no
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mixing is possible. In this case, the survival rule in the RNMPE is

aS(2ιk, c, wM , k) =

{
1 if vS(2ιk, c, k) > ϕM exp(wM),

0 otherwise.

In this duopoly example, the RNMPE is always unique. For the unique equilibrium,

I can compute the transition probabilities for a duopoly market with two type-k retailers

by integrating out WM . With this part of the survival rule and transition probabilities

determined, the equilibrium construction is concluded.

4.2 Equilibrium Refinements

The RNMPE are a subset of MPE which possesses theoretically and empirically plausible

implications. First, in a natural MPE, a type-H retailer never exits when a type-L competitor

survives. It is a natural selection of equilibria, because a type-H retailer earns higher flow

profit in each period. The exit pattern in the data also supports such an equilibrium: The

majority of the exited stores are local stores, which are type-L retailers by assumption.

Formally, we have

Definition 1. A natural Markov-perfect equilibrium is a symmetric Markov-perfect equilib-

rium in a strategy (aE, aS) such that for all c, wM and all m that includes at least one type-H
and one type-L retailer, aS(m, c, wM ,L) > 0 implies that aS(m, c, wM ,H) = 1.

Cabral (1993) restricts attention to similar natural equilibria in a model with deterministic

productivity progression.

Second, renegotiation-proofness requires all active retailers of the same type to continue

for sure, if the joint continuation is profitable for every one of them. This requirement only

has a bite when joint incumbency yields positive expected payoff, while any other market

structure, including those with less retailers of this type, yields negative expected payoff.21

In this case, I only consider the natural MPE in which all retailers of this type choose to

continue, hence these retailers cannot further gain by a joint change of actions. Since these

retailers repeatedly interact, it seems reasonable to assume that they are able to “renegotiate”

onto this more profitable option. Formally, we have

21This seemingly odd situation only arises when k = L. If (1) two type-L retailers can deter future entry

of any chain store by joint continuation, while one type-L retailer’s continuation cannot, and (2) the gain

from not having a chain store in future may dominate the harm from a decrease in present flow profit, solo

continuation is less profitable than joint continuation.For an example, please refer to Abbring, Campbell,

and Yang (2010).

22



Definition 2. A natural Markov-perfect equilibrium is renegotiation-proof if, for any (m, c, wM),

no one-shot agreement satisfying the following properties can be negotiated:

• all retailers in the agreement change their survival actions once;

• the agreement is self-enforcing, so no retailer in the agreement has incentive to unilat-

erally change the agreed action;

• if one type-k firm is in the agreement, all type-k firms are, k ∈ {L,H}; and

• the payoffs to all retailers in the agreement are strictly improved.

Finally, I need to make a technical remark on a retailer’s equilibrium actions on “indiffer-

ence” points. When no other active stores have the same state variables as this retailer, and

different actions give this retailer the same payoff, one can generate multiple equilibria by

varying this retailer’s action. For instance, when the payoff to entry net of sunk cost exactly

equals zero, both entry and staying out give an entrant the same payoff, and both are consis-

tent with payoff maximization. Similarly, when the payoff to survival as the only retailer of

a certain type subtracting profitability shock exactly equals zero, both exit and continuation

give this retailer the same payoff, and both are consistent with payoff-maximization. I require

that retailers choose inactivity in these situations to eliminate this unimportant equilibrium

multiplicity. In my empirical implementation, the shocks on costs and profit are continuous

random variables. Therefore, such equilibrium multiplicity occurs with measure zero and

reduces to a technicality. Formally, we have

Definition 3. A Markov strategy (aE, aS) with corresponding value functions vE, vS defaults

to inactivity if

• for all m, aE(m, c, wC,C) = 0 whenever EME
[ωvE (ME, c,H)+(1−ω)vE (ME, c,L) MC =

m] = ϕC exp(wC);

• for all m, aE(m, c, wL,L) = 0 whenever EME

[
vE (ME, c,L) ML = m

]
= ϕL exp(wL);

• aS(m, c, wM , k) = 0 whenever vS(m, c, k) = ϕM exp(wM) and mk = 1.

for all k ∈ {L,H} and all c, wC, wL, wM .

Throughout the paper, I restrict attention to equilibria with strategies that default to

inactivity.
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4.3 Equilibrium Existence, Uniqueness and Computation

The five-step approach discussed in Section 4.1 can be naturally extended to a general pro-

cedure that solves for a RNMPE by computed the fixed points of a sequence of contraction

mappings. This procedure partitions the state space and traverses through the parts in steps.

In each step, the post-entry value function restricted to the part of the state space is deter-

mined by the fixed point of a contraction mapping. I emphasize that the procedure calculates

candidate value functions, choice probabilities and transition probabilities by denoting these

with νE, νS, PE, PE, and PS instead of vE, vS, PE, PE and PS.

Item 3 in Assumption 1 and non-negative sunk costs of entry imply that there exists a

upper bound for the number of simultaneously active retailers in an initially empty market.

Denote this bound by ň. Consequently, no retailer will rationally enter the market ňιH, and

at most (ň+2)(ň+1)
2

− 1 different non-empty markets structures can arise when market evolves.

The state space is then partitioned into (ň+2)(ň+1)
2

− 1 parts, with each step of the procedure

computing the payoff function restricted to one of these parts. The computation procedure

starts by considering the saturated market ňιH. Procedure 1 presents this as a flow chart.

In this procedure, h indexes the number of type-H retailers, and l indexes the number

of type-L retailers. In the course of the computation, h decreases from ň to 0. For each

level of h, l decreases from ň− h to 0. For any pair of (h, l) such that l > 0, the post-entry

value of type-L retailers facing h type-H rivals, νE(lιL + hιH, ·,L), is computed as the fixed

point of a functional operator TL. This operator is defined by the appropriate generalization

of Equation (9). The type-L retailer rationally expects all of its rivals to remain whenever

it receives positive payoff, so this retailer’s value only depend on future states in which all

currently active retailers survive. Since any subsequent entry leads to a market structure

with higher h or higher l, and the algorithm proceeds in descending order of (h, l), the

payoff-relevant entry transition probabilities and the post-entry value functions have been

computed before this step.

When l reaches 1, the choice probabilities of survival for 1, 2, . . . , ň − h type-L retailers

facing h type-L retailers are computed. With these probabilities in place, the next step is

to simultaneously compute the payoff for a type-H retailer in a market with h − 1 type-H
and 0, 1, . . . , ň − h type-L rivals. This payoff is computed as the fixed point of a functional

operator TH. Evaluating this operator requires choice probabilities of survival from the type-

L competitors, the relevant entry transition probabilities, and the corresponding post-entry

value functions. Again, the descending order of (h, l) guarantees that these values have been
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START

h ← ň, l ← 0, νE(·) ← 0, νS(·) ← 0,

PS(m|m, ·) ← 1,PE(m|m, ·) ← 1, Other PS,PE ← 0

mh,l ←
lιL + hιH

l = 0?

kh,l ← L

Hh,l
S ←

{
(mh,l, c,L)|c ∈ [ĉ, č]

}

For all Hh,l
S ∈ Hh,l

S ,

Compute νE(Hh,l
S ) as the fixed point of (TLf)(Hh,l

S );

Construct νS(Hh,l
S ) using obtained νE(Hh,l

S )

Compute PE(ιC|mh,l, c),PE(ιL|mh,l, c)

and PE(·|mh,l, c) for all c ∈ [ĉ, č]

l = 1? l ← l − 1

For all HS = (m, c, k) ∈
Hh,1
S

⋃
. . .
⋃
Hh,ň−h
S ,

compute PS(·|m, c).

h = 0?STOP

kh,l ← H

Mmh,l ←
{
mh,l + qιL|0 ≤ q ≤ ň− h

}
Hh,l
S ← {(m, c,H)|m ∈Mmh,l , c ∈ [ĉ, č]}

For all Hh,l
S ∈ Hh,l

S ,

Compute νE(Hh,l
S ) as the fixed point of (THf)(Hh,l

S );

Construct νS(Hh,l
S ) using obtained νE(Hh,l

S )

h = 1?
h ← h − 1

l ← ň − h

For all HS = (m, c, k) ∈
H1,0
S

⋃
. . .
⋃

Hň,0
S ,

compute PS(·|m, c).

Computation Details for

PE,PE,PS, νS and νE

Are Provided in Appendix C.

NoYes

No

Yes

Yes

No

NoYes

Procedure 1: Calculation of a Candidate Equilibrium
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computed before this step. Therefore, TH and TL are always contraction mappings with

unique fixed points νE. Upon verifying that νE is indeed the post-entry value function for a

RNMPE, this procedure serves as a constructive proof for the equilibrium existence.

Proposition 1 (Equilibrium Existence). Procedure 1 always computes a renegotiation-proof

natural Markov-perfect equilibrium. The equilibrium value functions vS = νS, vE = νE, the

choice probabilities PE = PE and the transition probabilities PE = PE and PS = PS.

Proof. See Appendix B.

In Procedure 1, when equilibrium survival rule on (m, c, wM , k) involves mixed actions,

the mixing probability p is determined by the following polynomial equation.22

mk−1∑
i=0

(1− p)mk−1−ipi
(
mk − 1

i

)
(νS(m− (mk − 1− i)ιk, c, k)− ϕM exp(wM) = 0. (7)

where m = m if k = L, and m = mkιk if k = H. The degree of the polynomial equals the

number of mixing stores minus one. When the number of mixing stores exceeds two, multiple

roots of the polynomial may exist between [0, 1), resulting multiple choice probabilities. Given

each distinct set of choice probabilities, the contraction mappings TH and TL produce a unique

equilibrium post-entry value function. Thus, the uniqueness of the equilibrium entirely rests

on the uniqueness of the mixing probability.

If both C and WM are discrete variables (or discretized for computational purposes), the

state space for any retailer facing continuation decision has a finite number of points. This

implies that one can only create a finite number of distinct sets of choice probabilities, and

hence a finite number of RNMPE by combining different mixing probabilities. By recording

all the admissible mixing probabilities and repeating the algorithm for every possible set of

these probabilities, I can compute the payoffs and choice probabilities for all such RNMPE.

Nevertheless, equilibrium uniqueness is still an empirically desirable feature. It is also

central to ensure the reliability of policy experiments. The following proposition and its

corollary further address the uniqueness issue.

Proposition 2 (Equilibrium Uniqueness). The renegotiation-proof natural Markov-perfect

equilibrium of the model is unique if for any (m, c, wM , k) such that vS(m, c, k) ≤ 0, the

polynomial equation (7) admits no more than one root in [0, 1).

22In practice, I do not need to solve this polynomial equation to compute the model. Computational details

are included in Procedure 3 in Appendix C
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Proof. See Appendix B.

A sufficient condition for the polynomial (7) to have a unique root is that vS(m, c, k) is

non-increasing in the number of type-k stores in m.

Corollary 1. If the value functions of a natural Markov-perfect equilibrium satisfy vS(m, c, k) ≥
vS(m+ιk, c, k) and vE(m, c, k) ≥ vE(m+ιk, c, k) for all (m, c, k), it is the unique renegotiation-

proof natural Markov-perfect equilibrium.

The natural MPE whose value functions satisfies the monotone conditions in Corollary 1

is named payoff-monotone natural MPE. Three important remarks supplement this corollary.

First, a payoff-monotone natural MPE is always renegotiation-proof. If the equilibrium post-

survival payoff is monotone, and joint continuation for retailers of a same type is profitable,

then survival is the dominant strategy. If all such retailers survive, no coalition can be formed

to further improve their payoffs. Therefore, payoff-monotonicity ensures that retailers always

adopt the renegotiation-proof strategy. Second, because all the post-survival value functions

relevant to any particular mixing probability have been determined before the probability

is computed, the payoff-monotonicity is more easily testable than directly examining the

number of admissible roots of the polynomial. Finally, the monotonicity should be checked

in the same ordering as the equilibrium computation. If the monotonicity is only violated in

the later steps, multiple equilibria, if any, still agree on the values, choice probabilities and

transition probabilities computed in the earlier steps where monotonicity held.

5 Estimation

Throughout Section 4, the choice probabilities, the transition probabilities and the equilib-

rium value functions are independent of the shocks to profit and sunk costs. Nevertheless,

they still depend on retailers’ profitability types and the market structure. The data, on the

other hand, only contain information on the store formats, which are noisy indicators of the

active retailers’ profitability types. Therefore, to construct a likelihood function using the

choice and transition probabilities, I need to assess the underlying market structure through

the joint distribution of active chain stores’ types. Because all active retailers’ profitability

types are public information for the players of the game, retailers’ equilibrium decisions are

informative on the underlying market structure. Hence, I infer the joint distribution for all

active retailers’ types from their observed equilibrium actions. From there, the likelihood
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function is constructed by integrating over this joint distribution. In Section 5.1, I use a

duopoly example to illustrate the construction of the likelihood function. In Section 5.2, I

generalize this construction and introduce the Nested-Fixed-Point algorithm to estimate the

model.

5.1 A Duopoly Example

Consider a market with two active chain stores, AH and C1000. Their joint type distribution

has four points in the support. Suppose that the initial (post-entry) probabilities in period 1

for these four points are given. Denote them by pE,HH1 , pE,HL1 ,pE,LH1 , and pE,LL1 respectively

(the types in the superscript are alphabetically ordered by the stores’ names). Denote the

post-entry probability conditioning on the observed exits and survivals by p̃E,k1k2

1 , for k1, k2 ∈
{L,H}. If, for instance, both stores are observed to continue in period 1 under the demand c1,

This observation is informative on the underlying market structure. According to Bayes’ rule,

the conditional post-entry probability that AH is type-k1 and C1000 is type-k2 is updated to

p̃E,k1k2

1 =
pE,k1k2

1 PS(ιk1 + ιk2|ιk1 + ιk2 , c1)∑
i∈{L,H}

∑
j∈{L,H} p

E,ij
1 PS(ιi + ιj|ιi + ιj, c1)

,

in which PS(ιi + ιj|ιi + ιj, c1) is the equilibrium transition probability for market ιi + ιj to

remain under demand c1. The numerator is the the probability that AH has type-k1, C1000

has type-k2, and both of them survive under c1. The denominator is the sum of probabilities

that both AH and C1000 survival taking all possible type combinations among them, and

under c1. When no store exits, the post-survival probabilities coincide with the conditional

post-entry probabilities.

If C1000 exits from the market, while AH remains, then the conditional post-entry prob-

ability that AH is type-k1 and C1000 is type-k2 is

p̃E,k1k2

1 =
pE,k1k2

1 PS(ιk1|ιk1 + ιk2 , c1)/
(
nk2

1

)∑
i∈{L,H}

∑
j∈{L,H} p

E,ij
1 PS(ιi|ιi + ιj, c1)/

(
nj

1

) ,
The numerator is the the probability that AH has type-k1, C1000 has type-k2, and only

the type-k2 store exits under c1. Here, nj is the number of type-j stores in the pre-survival

market. If j = k1, i.e., C1000 and AH have the same type, because PS(ιk1|ιk1 + ιj, c1)

summarizes the transition probabilities for both C1000’s exit coupled with AH’s survival and

C1000’s survival coupled with AH’s exit, it needs to be divided by
(
nj

1

)
= 2 to represent the

observed market transition.
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After C1000’s exit, the post-survival type distribution in period 1 is determined by AH’s

type. The probabilities for AH to be type L and type H are pS,L2 and pS,H2 respectively.

For k1 ∈ {L,H}, they are constructed by summing p̃E,k1k2

1 over C1000’s two possible types,

pS,k1

1 =
∑

j∈{L,H} p̃
E,k1j
1 .

Now suppose that after C1000’s exit in period 1, another chain store Dirk enters in period

2 in demand state c2. This equilibrium action is informative on the type of AH, the only

incumbent in the pre-entry market. Hence, the post-survival (or pre-entry) probability for

AH to be type-k1, k1 ∈ {L,H}, conditioning on the observed entry, is

p̃S,k1

1

pS,k1

1 PE(ιC|ιk1 , c2)∑
i∈{L,H} p

S,i
1 PE(ιC|ιi, c2)

.

Then, the post-entry probability for AH to be type-k1 and Dirk to be type-k2, k1, k2 ∈
{L,H} is constructed from p̃S,k1

1 by incorporating Dirk’s initial type,

pE,k1k2

2 =

{
ωp̃S,k1

1 if k2 = H,
(1− ω)p̃S,k1

1 if k2 = L.

Because the distribution of chain store types is updated in each period, the observations’

likelihood contributions are also computed iteratively over time. In the first period of this

duopoly example, if both retailers continue to the next period, collect the conditional post-

entry probabilities, p̃E,k1k2

1 , for the four possible type combinations in the type distribution

vector p̃E1 . The underlying post-entry market structure assumes three values. Denote its

distribution function by P(N|p̃E1 , 0), where 0 is the number of active local stores. Then,

P(N|p̃E1 , 0) =


pE,HH1 if N = 2ιH,

pE,HL1 + pE,LH1 if N = ιH + ιL,

pE,LL1 if N = 2ιL,

0 otherwise.

The observed survival’s likelihood contribution is determined by summing the appropriate

transition probabilities over the distribution of underlying market structures,

PS(2ιL|2ιL, c1)P(2ιL|p̃E1 , 0)+PS(ιL+ιH|ιL+ιH, c1)P(ιL+ιH|p̃E1 , 0)+PS(2ιH|2ιH, c1)P(2ιH|p̃E1 , 0).

If AH continues but C1000 exits, then natural equilibrium requires that AH does not

have inferior profitability type than C1000. Hence, the market structure ιL + ιH can only
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be attributed to a type-H AH and a type-L C1000. Such an observation contributes to the

likelihood by

PS(ιL|2ιL, c1)P(2ιL|p̃E1 , 0, C1000) + PS(ιH|2ιH, c1)P(2ιH|p̃E1 , 0, C1000)

+ PS(ιH|ιL + ιH, c1)P(ιL + ιH|p̃E1 , 0, C1000).

where P(·|p̃E1 , 0, C1000) denotes the market structure distribution conditional on C1000’s

type being no superior to the type of the surviving rival AH. In this example, P(2ιk|p̃E1 , 0, C1000) =

P(2ιk|p̃E1 , 0) for k ∈ {L,H}, whereas P(ιL + ιH|p̃E1 , 0, C1000) = p̃E,HL1 .

In period 2 of the duopoly example, chain store Dirk’s entry contributes to the likelihood

function by

PE(ιC|ιL, c2)P(ιL|p̃S1 , 0) + PE(ιC|ιH, c2)P(ιH|p̃S1 , 0).

This is the sum of probabilities of entry under each possible pre-entry market structure.

If instead a local store becomes active or no retailer enters in this period, the likelihood

contribution is computed in a similar fashion by using the appropriate choice probabilities.

Extending the market structure distribution function P(N|p̃, k) to the cases where k > 0 is

straightforward.

Next, the likelihood construction moves on until the end of the sample. After each entry

and exit, I update the type distribution vector using Bayes’ rule, and compute the likelihood

contribution for each observed action.

5.2 The Nested-Fixed-Point Algorithm

The parameter vector θ1 governing C’s evolution can be directly recovered from a partial

likelihood of population dynamics. After θ1 has been estimated, with the choice and transition

probabilities computed by Procedure 1, the construction of the partial likelihood for the other

parameters in Θ proceeds iteratively from the first period (t = t0) of the data to the last

period (t = t0 + T ). In any market i ∈ {1, . . . , I}, this procedure starts with initializing pS0 ,

the type distribution vector for the post-survival market at the end of the pre-sample period.

Then, using the observations on entries and exits, I update the type vector and compute the

likelihood contributions, as illustrated in Section 5.1. The general procedure is depicted in

following flow chart for Procedure 2.

In this procedure, pEi,t denotes the type distribution vector at time t in market i, with

the retailer x’s type fixed at k. The distribution function for underlying market structure P
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PS, PE

Initialize t = t0,p
S
i,t0−1 and log likelihood `i = 0.

nL ← the number of active local stores

Chain

Enters?

Update pSi,t−1 to p̃Si,t−1.

`i ← `i +

log
∑

n∈M P
E(ιC|n, ci,t)P(n|p̃Si,t−1, nL).

Construct pEi,t from p̃Si,t−1.

Update pSi,t−1 to p̃Si,t−1.

`i ← `i + log
∑

n∈M(1 −
PE(ιC|n, ci,t))P(n|pSi,t−1, nL).

Construct pEi,t from p̃Si,t−1.

Local

Enters?

Update p̃Si,t−1 once again.

`i ← `i +

log
∑

n∈M P
E(ιL|n, ci,t)P(n|pSi,t−1, nL).

nL ← nL + 1

Update p̃Si,t−1 one again.

`i ← `i + log
∑

n∈M(1 −
PE(ιL|n, ci,t))P(n|pSi,t−1, nL).

The exit phase

1. Update pEi,t to p̃Ei,t.

2. Add the likelihood contribution from survivals.

(a) If no retailer exits: `i ← `i + log
∑

n∈M PS(n|n, ci,t, aS)P(n|p̃Ei,t, nL);

(b) If only neL > 0 local stores exit:

`i ← `i + log
∑

n∈M PS(n− neLιL|n, ci,t)P(n|p̃Ei,t, nL);

(c) If neL ≥ 0 local stores and neC > 0 chain stores, x1, . . . , xneC , exit:

`i ← `i+log
∑
n∈M

neC∑
h=0

PS(n−(neL+h)ιL−(neC−h)ιH|n, ci,t)P(n|p̃Ei,t, nL, x1, . . . , xneC).

3. Construct pSi,t from p̃Ei,t

t = t0 +T ? t ← t + 1

STOP

YesNo

YesNo

Yes

No

Procedure 2: Likelihood Construction for Market i
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is computed by considering all active retailers’ type distributions. The formula for P is in

Appendix C.

To search for the optimal value of Θ, I use the Nested-Fixed-Point Algorithm (NFXP)

proposed by Rust (1987). This algorithm iterates between an outer loop and an inner loop. It

starts with estimating θ1 directly from the demand data, and initialize values for the rest of Θ.

The upper bound ň is recovered from the historical maximum number of simultaneously active

retailers. Also, it can be set to any arbitrary finite number above the observed maximum.

In the inner loop, it uses Procedure 1 to compute a RNMPE by finding the fixed points of a

sequence of contraction mappings, and return the choice probabilities PE and the transition

probabilities PE,PS. Then, it uses Procedure 2 to evaluate the log likelihood contribution `i

for every market i ∈ {1, . . . , I}, and subsequently sums them up to form the partial likelihood

for the structural parameters. In the outer loop, it searches for new parameter values of Θ to

increase the likelihood value. When the parameter values are updated, they are passed to the

inner loop to solve the model again and regenerate the likelihood value. The algorithm stops

when no further improvement of the likelihood can be found.23 The flow chart for Algorithm

1 presents the details.

23In practice, I use the optimization solver KNITRO’s built-in stopping rules. For details, please refer to

the KNITRO User’s Manual http://www.ziena.com/docs/Knitro60_UserManual.pdf.
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Algorithm 1 (Nested-Fixed-Point Algorithm).

START

Recover θ1, ň from the data

Initialize ir ← 0, i ← 1, `ir ← 0 and Θir

Use Procedure 1 to compute a RNMPE under Θir

Return the choice/transition probabilities PS, PE,PE.

Use Procedure 2 to evaluate the partial likelihood `i

`ir ← `ir + `i

i = I?i ← i + 1

Find Θ̃ that improves `ir

Convergence?

ir ← ir + 1

i ← 1

Θir ← Θ̃

`ir ← 0

STOP

No

Yes

No

Yes

6 Empirical Implementation and Results

This section discusses in order the details of the empirical implementation, the estimation

results, and the policy experiments.
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6.1 Empirical Implementation

The market demand ci,t is defined as the number of inhabitants at time t in postcode area i.

Since all the postcode areas in the sample have a population between 4,000 and 12,000 in 2009,

the demand indicator C is discretized on a 201-point grid with bounds [3500, 12500]. Each

sampled value is located on its nearest grid point. The conditional distribution fC(C ′|C; θ1)

is assumed to be a mixture over 51 reflected random walks in C with uniformly distributed

innovations. This mixture approximates a normally distributed innovation. The parameter

θ1 includes the mean and the standard deviation of the innovation targeted by the approx-

imation. The mean is set to be 0, and the standard deviation equals 161.38, which is the

sample standard deviation of Ci,t.

The upper bound on the number of simultaneously active stores ň is set to 11, the

maximum number observed in the sample. Feasible alternatives ň = 12 and ň = 13 alter

the estimation results negligibly. In total, 77 possible market structures can arise in market

dynamics. Because not every possible market structure is well represented in the sample,

nonparametric identification of the profit function πk(n, c; θk) is nearly impossible. Therefore,

I adopt a parametric approach to specify the profit function as

πk(n, c; θk) =
θk(c/500)

θHnH + θLnL + 1
, k ∈ {L,H}. (8)

An intuitive interpretation for this parametrization is that the profit from every 500 inhabi-

tants is divided into θHnH+θLnL+1 shares, and a type-k retailer attracts θk shares of them.

In this expression, the parameter θk measures the profitability of a type-k retailer. A type-H
retailer earns a profit θH/θL times that of a type-L retailer in the same market. Hence, this

ratio captures the profitability advantage of a type-H relative to a type-L rival. Assumption

1 requires this ratio to be larger than 1.24 In the estimation, I normalize θL to 1. Under this

normalization, the per period profit from every 500 inhabitants is θH/(θH + 1) for a type-H
monopolist, and 1/2 for a type-L monopolist.

I assume that the transitory shocks are normally distributed with mean 0 and variances

σ2
M , σ

2
C, and σ2

C. For lack of historical observations, I assume that all the existing chain stores

at the beginning of the sample period have an identical probability ω to be a type-H retailer.

Finally, the annual discount rate is set to 5%.

With the above parameterizations, the variables to be estimated are down to the proba-

24When this ratio is larger than 1, πk(n, c; θk)− ε for any ε > 0 honors all the requirements in Assumption

1. In practice, I discard the ε term.
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bility for a chain store to become a type-H retailer after entry (ω), the profitability parameter

for type-H retailers (θH), the profitability shock parameters ϕM , σM , and the sunk cost pa-

rameters ϕC, ϕL, σC, σL. For numerical stability, I fix σL at 1.25

The NFXP estimation is coded in Matlab. The likelihood maximization invokes func-

tion ktrlink,which calls the KNITRO optimization libraries. With 201 grid points for the

demand process, 201 grid points for the mixing probability, and ň = 11, each likelihood

evaluation typically takes less than 10 seconds on an off-the-shelf computer, and the en-

tire estimation takes about 1-2 hours. The code and the companion documentations are

downloadable from the author’s website.

6.2 The Results

6.2.1 The Estimates

The estimates are reported in the first column of Table 4. The standard error and the

confidence intervals are constructed by 100-time bootstrap. The bootstrap inference suggests

that the estimates are reasonably accurate.

Estimates Standard Error 90% Confidence Interval 95% Confidence Interval

ω 65.44% 1.90% [62.79%,67.93%] [61.32%,68.45%]

θH 5.47 0.24 [5.17,5.90] [5.07,5.97]

ϕC 221.22 19.31 [192.25,254.16] [188.19,264.94]

ϕL 30.13 2.19 [27.24,33.49] [26.20,34.45]

ϕM 1.58 0.16 [1.34,1.86] [1.32,1.90]

σC 0.67 0.08 [0.54,0.80] [0.53,0.83]

σM 1.27 0.08 [1.14,1.38] [1.13,1.39]

Table 4: The Estimates and the Bootstrap Confidence Intervals

As expected, a large proportion, 65%, of the chain stores establish themselves as type-H
retailers in the market after entry. The estimate of θH is 5.5, confirming the advantageous

position of the type-H retailers relative to the type-L competitors. This estimate helps to

anchor the normalized equilibrium values to Euros. By matching the equilibrium implied

25In practice, separately identifying σL and ϕL turns out to be hard, because of limited variation in type-L
stores’ values. I also set σL to 0.5 and 2 to check the robustness. The estimates, except ϕL, do not change

much.
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chain store profit in 2009 to the information published by the administrative authority HBD,

I conclude that 1 unit of the cost/profit/payoff determined by the estimation is roughly

worth e20,000.26 Suppose that the market has one active type-L local store and one active

type-H chain store. From serving every 500 inhabitants, the local store receives an annual

net-of-shock profit of e2,700, and the chain store receives e14,700.

Conditional on entry, the average post-entry value expected by a chain store potential

entrant is estimated to be around 1.8 million Euro, suggesting that the average sunk costs

actually incurred are below this value. Unconditionally, the estimates of sunk cost parameters

translate into setup costs of 5.5 million Euro for a chain store and 1 million Euro for a local

store, averaged over the transitory shocks. Note that these values are average costs that

potential entrants would have to face each period. Compared to stores’ values, these average

sunk costs turns out to be huge, implying a natural barrier to entry in this industry. Even

for a would-be monopolist chain store potential entrant facing the largest market of 12.5

thousand inhabitants, the average sunk cost is almost 80% of its expected post-entry value.

For a local store potential monopolist, the ratio is 1.4. A possible explanation for the natural

barrier is the zoning regulation. As discussed before, the zoning regulation greatly limits the

availability of business space in residential areas. When such space is unavailable in a certain

year, entry is virtually impossible. The large one-off investment to open a chain store often

yields a much higher expected rate of return than setting up a local store. For instance, on

a market with 8,000 inhabitants, an active chain store is valued 40 to 100 times more than

an local rival, depending on the market structure. This wedge is driven by the chain stores’

superior profitability and longevity.

The probability of entry for a chain store is increasing in the number of consumers and

decreasing in the number of incumbents, as depicted in Figure 4. Facing the high average

sunk cost of entry, even a potential monopolist chain store only has a chance of 29% to enter

the largest market with 12,500 residents in a year. For a potential duopolist chain store, this

probability is merely 13%. According to the model’s probabilistic prediction, over the sample

period, the expected total numbers of chain and local entrants are 469 and 598 respectively,

while the actual numbers are 503 and 486.

26In 2009, the estimated equilibrium implies a flow profit of 2.4 for a chain store, averaged over all the

markets and the profitability shock. HBD reports that the net accounting profit for a supermarket chain

outlet is around e102,920 in the same year. (The per-store sales is e5,146,000, and the net profit is 2%. See

page 15 & 16 in “Dossier Supermarkten (feiten en cijfers)”.) I reckon that the opportunity cost amounts to

e50,000, which gives store owners roughly 1% economic return from investing in a supermarket.
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Figure 4: Entry Probability for a Chain Store
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The equilibrium value functions give the present value of stores’ expected discounted

profit. With the estimates in hand, I can evaluate a chain store entry’s impact on such values.

When an average chain store is certain to enter, Table 5 presents the expected percentage

change of incumbent stores’ values, with the percentage change of flow profit (excluding the

shock) in the parenthesis. The change in values are computed using the estimated post-entry

values averaged over the steady-state demand. Pre-entry markets in the same row (column)

share the same number of type-H (L) incumbent stores. Under the estimated parameter

values of the model, the loss of store value inflicted by the new chain store is expected to

range from 25% to 31% for a type-H incumbent retailer, and from 28% to 66% for a type-L
retailer. The entry only results in a decline of 12%-60% in the flow profit for the incumbents,

suggesting that a significant share of the damage in value is attribute to the reduced chance

of survival.

Before proceeding to the policy experiments, I discuss the equilibrium multiplicity under

the estimated parameters.
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0 Type-L 1 Type-L 2 Type-L 3 Type-L 4 Type-L
0 Type-H -/- -/-66.2% -/-64.2% -/-62.3% -/-60.4%

- (-59.5%) (-50.9%) (-44.7%) (-40.0%)

1 Type-H -31.3%/- -30.1%/-59.2% -29.2%/-57.0% -28.6%/-54.6% -28.3%/-52.1%

(-34.6%) (-31.7%) (-29.3%) (-27.3%) (-25.5%)

2 Type-H -28.6%/- -28.3%/-47.9% -28.1%/-45.6% -28.0%/-43.5% -27.9%/-41.5%

(-23.2%) (-21.9%) (-20.8%) (-19.7%) (-18.8%)

3 Type-H -26.9%/- -26.8%/-37.7% -26.7%/-36.3% -26.7%/-34.9% -26.7%/-33.7%

(-17.5%) (-16.8%) (-16.1%) (-15.4%) (-14.9%)

4 Type-H -25.7%/- -25.7%/-31.1% -25.7%/-30.2% -25.6%/-29.3% -25.6%/-28.5%

(-14.1%) (-13.6%) (-13.1%) (-12.7%) (-12.3%)

Table 5: The expected impact of one more chain on incumbents’ values and flow profits

6.2.2 Equilibrium Multiplicity

First, I examine the equilibrium’s uniqueness by checking the monotonicity of the equilibrium

value function under the estimated parameter values, following Corollary 1. I find that when

market structure includes at least one active type-H retailers, this condition is always satisfied

for both type-H and type-L retailers. Given the ordering of Procedure 1, all the equilibrium

payoffs and survival/entry rules computed prior to the step indexed by (h = 0, l = 1) (which

corresponds to the market structure ιL) must be unique: If there were multiple RNMPE, they

would have agreed on these payoffs and rules. This means that any equilibrium prediction

of market transition involving type-H retailers is unique.

When the market is nearly saturated by only type-L stores, the entry deterrence effect

leads to non-monotone values for the incumbents. Figure 5 visualizes such non-monotonicity

for markets with no type-H chain store and 12,500 inhabitants (C = č). When there are no

more than nine active type-L retailers, the probability for a chain store to enter next period

declines with the number of type-L stores. When the number of post-survival type-L stores

reaches ten, any chain store that enters in the coming period will saturate the market, and

will not be followed by any other entrant. Therefore, its entry probability slightly increases.

After the number of post-survival type-L stores reaches eleven, by the definition of ň, no

chain stores will further enter this market next period. Without the threat of entry, an

active type-L retailer with ten type-L rivals enjoys a higher payoff from joint continuation
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than with nine rivals.

Figure 5: Non-Monotone Post-Survival Payoffs and Chain Entry Probabilities (No Type-H
Rival & 12.5k inhabitants)
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Such non-monotonicity does not induce multiple equilibria if the polynomial equation

(7) never admits more than one root in [0, 1). I further assess the possibility of multiple

equilibria using simulation. To this end, I draw 5000 realizations of wM , and compute the

survival probability for each state (m, c,L, wM) where mixing takes place by finding all the

roots to polynomial (7) in [0, 1). In all cases, the survival probability is unique. Though

not conclusive, this is one piece of strong evidence that the RNMPE under the estimated

parameter values is unique.

6.3 Policy Experiments

I conduct two policy experiments to examine the effects of policy changes on market structure:

cutting the sunk cost of entry and subsidizing type-L stores.

39



The estimated average sunk costs are high compared to store values, which suggests that

reducing sunk cost of entry is an effective way to encourage store entry. In the Netherlands,

policy makers can efficiently achieve such reduction by abolishing the zoning regulation. To

examine the impact of this policy change, I simulate 50 times the market dynamics for 10

years, using equilibrium transition probabilities used for the simulation are computed under

46 equal-distance values of ϕC, ϕL, between the estimated values 221.22, 30.13 and their 90%-

reduced values 22.12 and 3.01. The market structure at end of 2010 are used to initialize the

simulations. The other primitive values are held constant in all simulations.

Table 6 presents some statistics on the market compositions for this experiment, averaged

over all the simulations for three sets of different values of ϕC and ϕL. The first column is

the benchmark case under the estimated value ϕC = 221.22 and ϕL = 30.13. The second

and third column corresponds to 50% and 10% of the estimated ϕC, ϕL. In general, creative

destruction will continue to dictate the market dynamics: local store incumbents will be

gradually replaced by chain stores. For lower values of the sunk costs, such process is consid-

erably accelerated. According to the prediction, if abolishing zoning regulation can reduce

the sunk costs to 60%, the number of chain store entrants in the next 10 years will double.

If the reduction is 90%, the number of chain store entrants in the next 10 years will be seven

times higher than in the benchmark case, and the number of chain store incumbents in 2020

will be twice as many as the benchmark value. With the competition intensified, the market

selection on chain stores is more pronounced: the fraction of type-L chain stores in 2020 is

only 2.6% under 10% sunk costs, almost ten times lower compared to the benchmark value

of 23.8%. The local stores are suppressed harder under the lower sunk costs: very few local

store will survive in 2020 if the sunk costs are cut to 10%. In fact, such creative destruc-

tion process will continue beyond 2020, resulting in markets populated only by type-H chain

stores in the long run steady state.

Figure 6 depicts the stores’ net present values in 2010 and 2020 against different levels of

ϕC and ϕL. One interesting finding is that for any given value of the sunk cost parameters,

although the average number of type-H stores is predicted to be higher in 2020 than in 2010,

the active type-H stores’ value is also higher. This is because the entry of the chain stores are

predicted to primarily happen in markets populated by type-L. In 2010, around one third

of the markets only had type-L stores. In 2020, this percentage will decrease to 24% even

when the sunk costs are not cut, and to 2.5 when the sunk costs are cut to 10%. As a result,

type-L stores absorbing a large part of the impact from the new chain entrants. However,
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ϕC,ϕL set at the level of 100% 60% 10%

10-Year average No. chain incumbents 1.45 1.56 2.38

10-Year average No. local incumbents 0.53 0.42 0.24

No. chains in 2020 1.39 1.59 3.00

No. locals in 2020 0.44 0.24 0.04

10-Year total No. chain entrants 0.48 0.96 3.55

10-Year total No. local entrants 0.39 0.38 0.63

10-Year total No. chain exited 0.62 0.90 1.92

10-Year total No. local exited 0.54 0.73 1.17

Average % of chains are type-L in 2020 23.99% 13.90% 2.62%

% of markets with only type-L stores in 2020 21.40% 9.45% 0.69%

Table 6: Market Dynamics under Different ϕC and ϕL

when ϕC is cut to 10%, the fierce competition induced by chain stores’ entry almost reverses

this effect, and reduces the incumbent type-H stores’ average value in 2020 to almost the

same as that in 2010.

Anticipating the local stores’ future, policy makers may want to provide subsidy to main-

tain the local stores’ presence. In the Netherlands, various aid programs aiming at helping

small supermarkets are available. In the second policy experiment, I consider a direct sub-

sidy scheme–tax rebate for type-L stores. Like in the first experiment, I forward simulate 50

times the market evolution from 2010 to 2020, using the equilibrium transition probabilities

computed under 51 equal-distance values of θL between the normalized 1 (no subsidy) and

2. Recall the profit function specification in Equation (8), θL = 2 implies that the subsidy

scheme matches every euro that a type-L store makes. The other primitive values are hold

constant in all simulations.

Table 7 presents the market composition statistics for the second experiment, averaging

over all the simulations for three different values of θL. The first column is the benchmark case

under the normalized value θL = 1. The second and third column corresponds to 50% subsidy

and the match-every-euro subsidy program respectively. Increased subsidy encourages local

stores’ participation. A 50% subsidy increases the number of local store entrants almost by

three folds, and reduces their exits by 13%. In 2020, with 50% subsidy, the average number

of incumbent local stores in each market will exceed 1. With 100% subsidy, this number will

exceed 2.
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Figure 6: Average Post-Survival Payoffs under Different ϕC and ϕL
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θL set at the level of 100% 150% 200%

10-Year average No. chain incumbents 1.45 1.58 1.63

10-Year average No. local incumbents 0.52 0.99 1.56

No. chains in 2020 1.39 1.60 1.67

No. locals in 2020 0.44 1.20 2.22

10-Year total No. chain entrants 0.48 0.41 0.32

10-Year total No. local entrants 0.39 1.09 2.03

10-Year total No. chain exited 0.62 0.35 0.18

10-Year total No. local exited 0.54 0.47 0.39

% of markets with only locals in 2020 8.82% 9.52% 11.01%

% of markets with only chains in 2020 70.62% 45.08% 25.20%

Table 7: Market Dynamics under Different θL
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Though such tax rebate program is effective in preserving the local stores, it can be costly

to implement. Figure 7 is to help policy makers with the budgetary planning. To achieve

the target of on average one local store per market in 2020, government will need to provide

a 10-year aid package valued 150 million Euro. Limiting the percentage of markets without

a single local store to around 30% in 2020 will require investing a sizable sum of almost 500

million Euro.

Figure 7: Policy Targets v.s. Budget
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7 Discussion and Conclusion

In this paper, I develop and estimate a tractable oligopoly model for Dutch retail grocery

industry. The chain stores’ domination over their local rivals is estimated to be sizable. This

quantitatively explains the creative destruction process at work in this industry. Indeed,

in the long run steady state of the model, almost all local stores are predicted to exit the

market.
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The attractive features of this model are threefold. First, market-level data of local

demand and store entry and exit are sufficient for the estimation. Store-level performance

data, which are often hard to acquire due to stores’ confidentiality policies, are not required.

Second, clear-cut results on equilibrium existence, uniqueness, and computation ensure the

reliability of the estimates and the counterfactual analysis. Third, the light computational

burden allows counterfactual analysis of many policy alternatives at a very low cost.

Much of the model’s simplicity arises from the contraction property of the Bellman equa-

tions for equilibrium payoffs. The proposed model can be extended in the following ways

to accommodate more complex dynamics, while still retaining such a contraction property

and leaving the central equilibrium existence, computation, and uniqueness results intact.

First, more store-level heterogeneity can be accounted for by allowing more than two store

formats and/or profitability types. More store formats can better capture, for instance, the

size differences among stores. With more than two profitability types, the natural equilib-

rium requires higher type stores to continue for sure, if lower type stores survive with positive

probability. Second, more market-level heterogeneity can be accounted for by allowing store

profit to depend on first-order Markovian (income, household size, etc.) or time-invariant

(region, ethic composition, etc.) market characteristics other than demand. The downside of

such complications is the increased computational burden. With extra Markovian variables,

the model has a larger state space. With market fixed-effects, distinct contraction mappings

define the equilibrium payoffs for markets with different characteristics. Nevertheless, mod-

ern computer power and parallel computing techniques ensure that even with 877 distinct

markets, the model can be estimated within reasonable time.
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Appendices

A Computational Details for the Duopoly Example in

Section 4.1

In this appendix, I supplement Section 4.1 with more details on the five-step procedure

computing the RNMPE.

Step 1: Duopoly Market with Two Type-H Retailers For some distributions of WM ,

the expectation over WM in Equation (6) has a closed-form expression. For instance, if WM

is assumed to be independent of C and normally distributed with mean 0 and variance σ2
C,

then,

vE(2ιH, c,H)

=Prob
(
vS (2ιH, c,H) > ϕM exp(W ′

M)
)(

vS (2ιH, c,H)−
∫ log max{0,vS(2ιH,c,H)}

−∞
ϕM exp(W ′

M)φ(W ′
M)dW ′

M

)

=Φ

(
log max

{
0, vS (2ιH, c,H)

}
− logϕM

σM

)
vS (2ιH, c,H)

− exp(σ2
M/2)Φ

(
log max

{
0, vS (2ιH, c,H)

}
− logϕM − σ2

M

σM

)
,

where Φ is the c.d.f. for standard normal distribution. In this expression, log max
{

0, vS (2ιH, c,H)
}
−

logϕM is the “ceiling” value of WM to ensure profitable continuation for a type-H incumbent.

The expectation overWM is hence computed only on the interval (−∞, log max
{

0, vS (2ιH, c,H)
}
−

logϕM). By using this expression to compute vE(2ιH, c,H), one can avoid the numerical in-

tegration over WM . This is one of the major consequence and benefit of Assumption 2. In

the remaining part of the duopoly example, as well as in the empirical implementation of the

model, I maintain the normality assumption on WM .

Step 2: Duopoly Market with Both Types of Retailers. Next, consider a type-L
retailer who faces a type-H competitor. In a natural MPE, this retailer’s survival implies

the survival of the type-H rival. Following its survival, a chain store may further enter in

next period, and regardless of this chain store’s realized type, the type-L retailer receives
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zero continuation value in next period. Equation (1) defines vE(ιL + ιH, C,L) as

vE(ιL + ιH, c,L) =EWM
[max{0, βEC [πL(ιL + ιH, C

′)− ϕM exp(W ′
M)

+ (1− PE(ιC + ιL|ιL + ιH, C
′))vE(ιL + ιH, C

′,L) C = c]}].

Given the value of PE(ιC + ιL|ιL+ ιH, C) for all C, the right-hand side of the equation defines

a contraction mapping. Its unique fixed point determines vE(ιL + ιH, c,L). Using Equation

(2), the associated post-survival payoff vS(ιL + ιH, c,L) can be quickly computed.

Next, consider a type-L retailer who faces a type-H competitor. In a natural MPE, this

retailer’s survival implies the survival of the type-H rival. Moreover, no retailer will further

enter this market following its survival, given the formidable sunk cost of entry. Equation

(1) defines vE(ιL + ιH, C,L) as

vE(ιL + ιH, c,L) = EWM

[
max{0, vS (ιL + ιH, c,L)− ϕM exp(W ′

M)}
]

(9)

in which vS (ιL + ιH, c,L) = βEC
[
πL(ιL + ιH, C

′) + vE(ιL + ιH, C
′,L) C = c

]
. Again, the

right-hand side of the equation defines a contraction mapping. Its unique fixed point deter-

mines vE(ιL + ιH, c,L), and subsequently vS(ιL + ιH, c,L). Again, the expectation over WM

on the interval (−∞, log(vS (ιL + ιH, c,L))− logϕM) has a closed-form expression.

Then, the entry rule to a market occupied by a type-H monopolist and the survival rule

for a type-L retailer facing a type-H rival are determined as

aE(ιH, c, wC,C) = I{ωvE (2ιH, c,H) + (1− ω)vE (ιL + ιH, c,L) > ϕC exp(wC)},

aE(ιH, c, wL,L) = I{vE(ιL + ιH, c,L) > ϕL exp(wL)},

aS(ιL + ιH, c, wM ,L) = I{vS(ιL + ιH, c,L) > ϕM exp(wM)}.

By imposing distributional assumptions on wC, wL, I can compute the (joint) choice prob-

ability for a chain store or a local store to enter when the market is monopolized by a type-H
retailer, the demand is c, and the shocks on sunk costs are integrated out. Denote these

probabilities by PE(ιC|ιH, c) and PE(ιL|ιH, c). In this duopoly example and in the empiri-

cal implementation, I assume that wC and wL independently and normally distributed, with

mean 0 and standard deviations σC, σL respectively. Then,

PE(ιC|ιH, c) = Prob(aE(ιH, c, wC,C) = 1)

= Φ
((

log
(
ωvE (2ιH, c,H) + (1− ω)vE (ιL + ιH, c,L)

)
− logϕC

)
/σC
)
,

PE(ιL|ιH, c) = Prob(aE(ιH, c, wL,L) = 1) = Φ
((

log
(
vE (ιL + ιH, c,L)

)
− logϕC

)
/σL
)
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Because at most one extra retailer can rationally enter this market in a RNMPE, the entry

and the subsequent type realization outcome leads to one out of three possible post-entry

market structures with non-trivial probabilities. A function PE(mE|mS, c, a
E) computes the

transition probability of entry for the post-entry market structure to become mE, when the

pre-entry market structure is mS, the demand is c, and the entry rule is given by aE. With

PE(ιC|ιH, c) and PE(ιL|ιH, c) computed as the functions of the entry rules, the transition

probabilities for the pre-entry market with one type-H monopolist are compactly expressed

as

PE(2ιH|ιH, c, aE) = ωPE(ιC|ιH, c),

PE(ιL + ιH|ιH, c, aE) = (1− ω)PE(ιC|ιH, c) + PE(ιL|ιH, c),

PE(ιH|ιH, c, aE) = (1− PE(ιC|ιH, c))(1− PE(ιL|ιH, c)).

Let function PS(mS|mE, c, a
S) defines the transition probability of survival for the post-

survival market to become mS, when the post-entry market is mE, the demand is c, and the

survival rule is defined by aS. Because the type-H retailer never exits before the type-L rival,

the probability for market structure ιL + ιH to remain solely relies on the type-L retailer’s

choice. Hence,

PS(ιL+ιH|ιL+ιH, c, a
S) = Prob(aS(ιL+ιH, c, wM ,L) = 1) = Φ

(
log max

{
0, vS (ιL + ιH, c,L)

}
/σM

)
.

For econometrician who does not observe the shocks wL, wC and wM , the transition proba-

bilities and the choice probabilities are essential in forming the expectations in the equilibrium

payoff function vE’s computation, and in building the likelihood function towards recovering

Θ.

Step 3: Type-H Monopolist & Type-H Duopolist Facing One Type-L Rival. The

post-entry payoff for a type-H monopolist, vE(ιH, ·,H), is

vE(ιH, c,H) = EWM

[
max{0, vS (ιH, c,L)− ϕM exp(W ′

M)}
]
,

= Φ

(
log vS (ιH, c,H)− logϕM

σM

)
vS (ιH, c,H)− exp(σ2

M/2)Φ

(
log vS (2ιH, c,H)− logϕM − σ2

M

σM

)
,

(10)

where log(vS (ιH, c,H)) is the ceiling value of WM to ensure profitable continuation for the

type-H incumbent.
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If this incumbent faces a type-L rival in the post-entry market, the transition probability

PS(ιL + ιH|ιL + ιH, c, a
S) gives the likelihood that this type-L retailer rationally chooses to

leave the market. The post-entry payoff for the type-H retailer is

vE(ιL + ιH, c, ιH) = (1− PS(ιL + ιH|ιL + ιH, c, a
S))EWM

[max{0, vS (ιH, c, ιH)− ϕM exp(W ′
M)}]

+ PS(ιL + ιH|ιL + ιH, c, a
S)
(
vS (ιL + ιH, c, ιH)− EWM

[exp(W ′
M)|vS(ιL + ιH, c,L) > ϕM exp(W ′

M)]
)
.

(11)

Because one more retailer may join the monopoly market, the post-survival payoffs in

Equations (10) depends on the transition probabilities of entry defined by PE.

vS (ιH, c,H) = βEC [πH(ιH, C
′) + PE(2ιH|ιH, C ′, aE)vE(2ιH, C

′,H)

+ PE(ιL + ιH|ιH, C ′, aE)vE(ιL + ιH, C
′,H) + PE(ιH|ιH, C ′, aE)vE(ιH, C

′,H)|C = c].

Since entry is not possible in the duopoly market, the post-survival payoff in Equations

(11) is

vS (ιL + ιH, c,H) = βEC [πH(ιL + ιH, C
′) + vE(ιL + ιH, C

′,H)|C = c].

Given that the relevant transition probabilities in Equations (10) and (11) have been de-

termined, the expectations in the above post-survival payoffs are taken only over exogenously

evolving variables C. In addition, the post-entry payoff vE(2ιH, ·,H) has been determined

in Step 1. Therefore, Equations (10) and (11) together define a contraction mapping with

its fixed point determining vE(ιH, ·,H) and vE(ιL + ιH, ·,H). Obtaining vS(ιH, ·,H) and

vS(ιL + ιH, ·,H) from there is straightforward.

The continuation decision for the type-H monopolist is a single-agent problem. Hence, the

survival rule for this retailer is aS(ιH, c, wM ,H) = I{vS(ιH, c,H) > ϕM exp(wM)}. Under the

normality assumption, the associated choice probability P S(ιH|ιH, c,H) and the transition

probabilities PS(ιH|ιH, c, aS) and PS(ι0|ιH, c, aS) follow immediately.

The continuation decision for the type-H duopolist may depend on the type-L rival’s

choice. If vS(ιH, c,H) < vS(ιH + ιL, c,L), after the type-L rival’s exit, the type-H retailer’s

solo continuation becomes unprofitable. This situation arises because the type-L retailer’s

continuation deters future entry by a chain store. Because the new chain store entrant is likely

to become another type-H retailer, the incumbent type-H retailer is better off if continuing

with the type-L rival than without. Hence, this type-H incumbent’s continuation decision is

dictated by the type-L rival’s payoff vS(ιH + ιL, c,L). If vS(ιH, c,H) > vS(ιH + ιL, c,L), the
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type-H’s continuation decision is unaffected by the type-L rival’s choice. Combining these

two cases, the survival rule for the type-H duopolist is determined as

aS(ιH + ιL, c, wM ,H) = I{max{vS(ιH, c,H), vS(ιH, c,L)} > ϕM exp(wM)}.

The associated choice probability P S(ιH+ιL, c,H) and the transition probabilities PS(ιH|ιH+

ιL, c, a
S) and PS(ι0|ιH + ιL, c, a

S) are easily obtained under the normality assumption. In

light of how the type-L’s presence affects the continuation of the type-H retailer, the ceiling

value of WM for the type-H incumbent’s survival in Equation (11) is hence determined by

log max{0, vS (ιH, c,H) , vS (ιL + ιH, c,L)}. Under the normality specification, the expecta-

tion over WM still has a closed-form expression.

Step 4: Duopoly Market with Two Type-L Retailers. The survival problem on a

duopoly market with two type-L retailers is a carbon copy of the static game presented in

Figure 3. In a RNMPE, if simultaneous survival is individually profitable, then retailers

will both choose to survive. Otherwise, the strategy in the static game assign non-negative

probability to “Exit”, and results in zero expected payoff. Therefore, vE(2ιL, ·,L) satisfies

vE(2ιL, c,L) = EWM

[
max{0, vS(2ιL, c,L)− exp(W ′

M)} C = c
]

= Φ

(
log vS (2ιL, c,L)− logϕM

σM

)
vS (2ιL, c,L)− exp(σ2

M/2)Φ

(
log vS (2ιL, c,L)− logϕM − σ2

M

σM

)
,

in which vS(2ιL, c,L) = βEC
[
πL(2ιL, C

′) + vE(2ιL, C
′,L) C = c

]
.

Similar to Equation (6), the necessary condition for vE(2ιL, ·,L) defines a contraction

mapping, with its fixed point determining vE(2ιL, ·,L). Consequently, vS(2ιL, c,L) can be

computed.

Then, the entry rule to a market occupied by a type-L monopolist are determined as

aE(ιL, c, wC,C) = I{ωvE (ιL + ιH, c,H) + (1− ω)vE (2ιL, c,L) > ϕC exp(wC)},

aE(ιL, c, wL,L) = I{vE(2ιL, c,L) > ϕL exp(wL)}

The associated choice probabilities are

PE(ιC|ιL, c) = Φ
(
(log

(
ωvE (ιL + ιH, c,H) + (1− ω)vE (2ιL, c,L)

)
− logϕC)/σC

)
,

PE(ιL|ιL, c) = Φ
(
log vE (2ιL, c,L − logϕL) /σL

)
The transition probability for the post-entry market structure are

PE(ιL + ιH|ιL, c, aE) = ωPE(ιC|ιH, c),

PE(2ιL|ιL, c, aE) = (1− ω)PE(ιC|ιL, c) + PE(ιL|ιL, c),

PE(ιL|ιL, c, aE) = (1− PE(ιC|ιL, c))(1− PE(ιL|ιL, c)).
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Step 5: The Rest. A type-L monopolist’s survival decision depends on if entry happens

next period. The likelihood of entry is given by PE(ιC|ιL, c) and PE(ιL|ιL, c). Therefore, the

post-entry value satisfies

vE(ιL, c,L)

= EWM

[
max{0, vS(ιL, c,L)− exp(W ′

M)} C = c
]

= Φ

(
log vS (ιL, c,L)− logϕM

σM

)
vS (ιL, c,L)− exp(σ2

M/2)Φ

(
log vS (ιL, c,L)− logϕM − σ2

M

σM

)
,

(12)

in which

vS (ιL, c,L) = βEC [πL(ιL, C
′) + PE(ιL + ιH|ιL, C ′, aE)vE(ιL + ιH, C

′,L)

+ PE(2ιL|ιL, C ′, aE)vE(2ιL, C
′,L) + PE(ιL|ιL, C ′, aE)vE(ιL, C

′,L)|C = c].

Given the quantities calculated in Steps 1–4, the right-hand side of (12) defines a contrac-

tion mapping with vE(ιL, ·,L) as its fixed point. With this, vS(ιL, ·,L) follows. The entry

rule to an empty market by a chain store depends on whether the local store following this

chain store in the entry sequence enters. The local store’s entry choice is characterized by

the entry rules to a monopoly market, which have been determined in Step 2 and 4. Hence,

aE(ι0, c, wC,C) = I{ωEWL
((aE(ιH, c, wL,L)vE (ιL + ιH, c,H) + (1− aE(ιH, c, wL,L))vE (ιH, c,H))

+ (1− ω)(aE(ιH, c, wL,L))vE (2ιL, c,L) + (1− aE(ιH, c, wL,L))vE (ιL, c,L)) > ϕC exp(wC))}
.

Because WC and WL are independent, the associated choice probability of entry is

PE(ιC|ι0, c) = Φ
((

log
(
ω(PE(ιL|ιH, c)vE (ιL + ιH, c,H) + (1− PE(ιL|ιH, c))vE (ιH, c,H))

+ (1− ω)(PE(ιL|ιL, c)vE (2ιL, c,L) + (1− PE(ιL|ιL, c))vE (ιL, c,L))
)
− logϕC

)
/σC

) .

The entry rule and the choice probability of entry by a local store is similarly determined.

The associated transition probabilities are

PE(ιL + ιH|ι0, c, aE) = ωPE(ιC|ι0, c)PE(ιL|ιH, c),

PE(2ιL|ι0, c, aE) = (1− ω)PE(ιC|ι0, c)PE(ιL|ιL, c),

PE(ιH|ι0, c, aE) = ωPE(ιC|ι0, c)(1− PE(ιL|ιH, c)),

PE(ιL|ι0, c, aE) = (1− ω)PE(ιC|ι0, c)(1− PE(ιL|ιL, c)) + (1− PE(ιC|ι0, c))PE(ιL|ι0, c),

PE(ι0|ι0, c, aE) = (1− PE(ιC|ι0, c))(1− PE(ιL|ι0, c)),

PS(ι0|ιL, c, aS) = Φ
(
log
(
vS (ιL, c,L)− logϕM

)
/σM

)
.
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Finally, all that remain undetermined is the survival rule for duopoly retailers of identical

type and the associated choice and transition probabilities. Reconsider the static game

presented in Figure 3: in a RNMPE, if the post-survival value for a duopolist exceeds

ϕM exp(wM), then both retailers continue for sure. Otherwise, checking the post-survival

value for a monopolist is essential.

If the monopoly post-survival value also exceeds ϕM exp(wM), the reduced-form contin-

uation game has no pure strategy equilibrium. Instead, it admits a unique mixed-strategy

equilibrium, in which each retailer chooses a survival probability to leave its rival indifferent

between exiting and surviving. The equilibrium thus has the following survival rules for

k ∈ {H,L}.

aS(2ιk, c, wM , k) =


1 if vS(2ιk, c, k) > ϕM exp(wM),
vS(ιk,c,k)−ϕM exp(wM )
vS(ιk,c,k)−vS(2ιk,c,k)

if vS(2ιk, c, k) ≤ ϕM exp(wM), vS(ιk, c, k) > ϕM exp(wM)

0 otherwise.

If the monopoly post-survival value is low than ϕM exp(wM), pure exit is the only equi-

librium strategy of the static game–no unilateral deviation not improve the payoff, and no

mixing is possible. In this case, the survival rule in the RNMPE is

aS(2ιk, c, wM , k) =

{
1 if vS(2ιk, c, k) > ϕM exp(wM),

0 otherwise.

Under either equilibrium, the transition probabilities for a duopoly market with two type-

k retailers are

PS(2ιk|2ιk, c, aS) = Prob(aS(2ιk, c,W
′
M , k) = 1) + EWM

[aS(2ιk, c,W
′
M , k)2|0 < aS(2ιk, c,W

′
M , k) < 1],

PS(ιk|2ιk, c, aS) = EWM
[2aS(2ιk, c,W

′
M , k)(1− aS(2ιk, c,W

′
M , k))|0 < aS(2ιk, c,W

′
M , k) < 1],

PS(ι0|2ιk, c, aS) = 1− PS(2ιk|2ιk, c, aS)− PS(ιk|2ιk, c, aS)Prob(aS(2ιk, c,W
′
M , k) = 0)

+ EWM
[(1− aS(2ιk, c,W

′
M , k))2|0 < aS(2ιk, c,W

′
M , k) < 1]

= Φ

(
log vS (2ιK , c,K)− logϕM

σM

)
+ max

{
0,Φ

(
log vS (ιK , c,K)− logϕM

σM

)

− Φ

(
log vS (2ιK , c,K)− logϕM

σM

)}
×
vS(ιK , c,K)− exp(σ2

M/2)Φ
(

log vS(ιK ,c,K)−logϕM−σ2

σ

)
vS(ιK , c,K)− vS(2ιK , c,K)

With this part of the survival rule and choice and transition probabilities determined, the

equilibrium construction is concluded. Finally, note that when computing PS(·|2ιk, c, aS),

the expectation over WM has a closed-form expression under normality specification in this
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duopoly case. However, when the number of retailers involved in mixing exceeds three, closed-

form expression in general fails to exist. Therefore, I use important sampling to numerically

integrate over WM to compute the transition probabilities. Because the calculation of the

transition probabilities for every state is only conducted once for every set of parameter

values, this numerical integration does not pose formidable computational challenge.

B Proof for Section 5

B.1 Sketch Proof for Proposition 1

Proof. The proof for Proposition 1 requires straightforward extension to the equilibrium

existence proof in Abbring, Campbell, and Yang (2010). Therefore, I only review the four

key steps here, and refer interested readers to their paper.

1. Show that Procedure 1 covers νE, νS, and PE for all (m, c, k). The descending order

of (h, l) ensures such completeness.

2. Show that Procedure 1 always produces well-defined νE, νS for all (m, c, k). This is a

nontrivial step. It is achieved by first proving that TL and TH are contraction mappings

in Procedure 1. As discussed in Section 5, the descending order of (h, l) ensures it.

Then, when equation (13) is invoked to compute the survival rules, it needs to have

a root in [0, 1) if the equilibrium survival rule cannot imply pure exit. Note that the

right-hand side of equation (13) collapses to νS(m − (mk − 1)ιk, c, k) − ϕM exp(wM)

when p = 0 and to νS(m, c, k) − ϕM exp(wM) when p = 1. When mixing takes place,

νS(m, c, k) ≤ ϕM exp(wsM); If the survival rule cannot imply pure exit, the monopoly

post-survival payoff overcomes the profitability shock and νS(m − (mk − 1)ιk, c, k) >

ϕM exp(wM). Therefore, intermediate value theorem ensures that at least one root in

[0, 1) always exists.

3. Verify that the choice probabilities are generated by survival rules satisfying the re-

quirement in Definition 1 and 2.

4. Verify that νE is constructed as an equilibrium post-entry payoff, and νS an equilib-

rium post-survival payoff. The computed PE is consequently verified to be the choice

probabilities under RNMPE, and PE and PE to be the transition probabilities.
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B.2 Sketch Proof for Proposition 2

Proof. Proposition 2, as well as its proof, is based on the uniqueness proposition for the payoff-

monotone equilibrium in Abbring, Campbell, and Yang (2010). I hence avoid reiterating on

the details and only give the sketch here.

The contraction property of the functional operators TL and TH ensures that if fed with

unique choice/transition probability, they always produce unique fixed points. Consequently,

the uniqueness of the RNMPE solely rests on the uniqueness of the choice/transition prob-

ability under each state. It is rather simple to show that multiplicity of choice probability

only arises when stores are mixing between continuation and exit, and polynomial equation

13 admits multiple roots between 0 and 1.

When the monotonicity condition in Corollary 1 is satisfied for some (m, c, k), the right-

hand side of equation (13) changes monotonically from νS(m−(mk−1)ιk, c, k)−ϕM exp(wM) >

0 when p = 0 to νS(m, c, k)− ϕM exp(wM) < 0 when p = 1. Therefore, the polynomial only

have one root between 0 and 1, if mixing takes place under (m, c, k). If this condition is

satisfied for all (m, c, k), the RNMPE is unique.

C Computation Details

C.1 Choice Probabilities & Transition Probabilities of Entry

As demonstrated in Section 4.1, the choice probabilities of entry for a local store depends on

the post-entry payoffs. A chain store’s choice probabilities depend on if the local store after

it enters or not, and the post-entry payoffs generated from the sequence of entries.

PE(ιL|m, c) = Φ
((

log
(
νE (m + ιL, c,L)− ϕL

)
− logϕL

)
/σL
)
,

PE(ιC|m, c)

= Φ
((

log
(
ω(PE(ιL|m + ιH, c)ν

E (m + ιH + ιL, c,H) + (1− PE(ιL|m + ιH, c))ν
E (m + ιH, c,H))

+ (1− ω)(PE(ιL|m + ιL, c)ν
E (m + 2ιL, c,L) + (1− PE(ιL|m + ιL, c))ν

E (m + ιL, c,L))
)

− logϕC

)
/σC

)
.

.

The candidate transition probability PE can be computed directly as the function of PE,
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instead of αE,

PE(mE|mS, c,PE) =



ωPE(ιC|mS, c)PE(ιL|mS + ιH, c) if mE = mS + ιH + ιL,

(1− ω)PE(ιC|mS, c)PE(ιL|mS + ιL, c) if mE = mS + 2ιL,

ωPE(ιC|mS, c)(1− PE(ιL|mS + ιH, c)) if mE = mS + ιH,

(1− ω)PE(ιC|mS, c)(1− PE(ιL|mS + ιL, c))

+(1− PE(ιC|mS, c))PE(ιL|mS, c) if mE = mS + ιL,

(1− PE(ιC|mS, c))(1− PE(ιL|mS + ιH, c)) if mE = mS,

0 otherwise.

C.2 Choice Probabilities & Transition Probabilities of Survival

When type-k stores are mixing between survival and exit under m, c, k, wM), the following

polynomial equation determines the equilibrium survival rules as its roots in [0, 1), if νS gives

the (candidate) post-survival equilibrium payoffs,

mk−1∑
i=0

(1−αS)mk−1−i(αS)i
(
mk − 1

i

)
(νS(m− (mk−1− i)ιk, c, k)−ϕM exp(wM)) = 0. (13)

where m = m if k = L, and m = m −mLιL if k = H. If there are more than one roots in

[0, 1), the equilibrium survival rules are multiple. To compute the choice probability under

(m, c, k) and the transition probabilities conditional on (m, c), one would need to integrate

the probabilistic survival rules over the random variable WM . A blunt force implementation of

such integration is to first discretize or draw WM , then to solve (13) repeatedly and compute

αS under each grid point or realization of WM . This approach is not only computationally

expensive, owing to the task of finding high order polynomials’ roots, but also inaccurate,

due to the fact that the infinite support of WM challenges the precision of the approximation.

As a solution, I work with a “reversed approach” which first discretizes αS on the interval

[0, 1], then finds wM satisfying

mk−1∑
i=0

(1− αS)mk−1−i(αS)i
(
mk − 1

i

)
νS(m− (mk − 1− i)ιk, c, k) = ϕM exp(wM).

This equation makes use of the observation that ϕM exp(wM) in all of the polynomial coeffi-

cients, except the scaler, cancels out. Note that computing wM only requires summation and

multiplication, operations that computers can execute with much higher speed and precision

than solving polynomials. Once all wM are nailed, its density function fWM
defines the proba-

bility that each corresponding αS has in forming the choice/transition probabilities. Suppose
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that there are S grids points for αS between [0, 1]. Denote these points as p[1], . . . , p[S]

with p[1] = 0 and p[S] = 1, and the associated market-level shocks as wM [1], . . . , wM [S].

When the payoff-monotone condition in Proposition 2 is violated, wM [1], . . . , wM [S] might

not be an increasing sequence. I then use only the J ≤ S wM which follow a descending

order from wM [S]. Relabel them as x[1], . . . , x[J ], and the associated survival probabilities

as q[1], . . . , q[J ]. The choice probability of survival under the normality assumption is27

J∑
j=2

(Φ(xM [j]/σM)− Φ(xM [j − 1]/σM)) (q[j] + q[j − 1])/2 + Φ(xM [J ]/σM).

The transition probabilities are computed using the same approach. Again, the compu-

tation of αS is not necessary. The computational details for the choice probabilities and the

transition probabilities of survival are demonstrated in the flow chart below.

C.3 Functional Operator TL and TH

Finally, the functional operators TL and TH are defined as

(TLf)(Hh,l
S ) =Φ

 log max
{

0, fS
(
Hh,l
S

)}
− logϕM

σM

 fS
(
Hh,l
S

)

− exp(σ2
M/2)Φ

 log max
{

0, fS
(
Hh,l
S

)}
− logϕM − σ2

M

σM


(14)

and

(THf)(Hh,l
S ) =

mL∑
j=0

PS(mHιH + jιL|m, c)fS(mHιH + jιL, c,H)− exp(σ2
M/2)

× Φ

 log max
{

0, fS
(
Hh,l
S

)
, νS (mHιH + ιL, c,L) , νS (mHιH +mLιL, c,L)

}
− logϕM − σ2

M

σM


(15)

27This is equivalent to picking the largest mixing probability when equilibrium multiplicity occurs. When

equilibrium multiplicity occurs, ideally, the RNMPE that generates the highest likelihood value should be

picked. However, the iterative nature of the NFXP algorithm forbids a straightforward selection of the

equilibria.
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HS =

(m, c, k)

k = L?

w(HS) ← log max{0, νS(HS)}
w(HS) ←

log max{0, νS(mHιH + ιL, c,L)}
m ← m.

w(HS) ←
max{log max{0, νS(HS)}, w(m, c,L), w(m, c,L)}

w ← log max{0, νS(ιH, c,H)}
m ← m − mLιL.

w(HS) ≥
w(HS)?

For all i ∈ {0, . . . ,mk},
PS(m − iιk|m, c, αS) ←{
Φ(w(HS)/σM) if i = 0,

0 otherwise.

Discretize [0, 1] into S equal-distance points p[1], . . . , p[S].

For any probabilities p[s], s ∈ {1, . . . , S}, find corresponding w[s] satisfying,
mk−1∑
i=0

(1− p[s])mk−1−i(p[s])i
(
mk − 1

i

)
(νS(m− (mk − 1− i)ιk, c, k) = exp(wsM)).

If w[s] is not a monotone sequence, pick and relabel the monotone sub-sequence as x[j]

(descending from w[S]), and relabel the associated probabilities as q[j]

For all i ∈ {0, . . . ,mk}, PS(m − iιk|m, c) ←

Φ(w(HS)/σM) +
J∑
j=2

(Φ(xM [j]/σM)− Φ(xM [j − 1]/σM)) (q[j] + q[j − 1])/2 if i = 0,

J∑
j=2

(Φ(xM [j]/σM)− Φ(xM [j − 1]/σM))
(
mk

mk−i

)
((q[j])mk−i(1− q[j])i + (q[j − 1])mk−i(1− q[j − 1])i)/2 if 0 < i < mk,

(1− Φ(w(HS)/σM)) +
J∑
j=2

(Φ(xM [j]/σM)− Φ(xM [j − 1]/σM)) ((1− pj)mk + (1− pj−1)mk)/2 if i = mk,

0 otherwise.

STOP

NoYes

Yes

No

Procedure 3: Compute the Candidate Choice/Transition Probabilities of Survival
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in which

PS(mHιH|m, c) = max

{
0,Φ

 log max
{

0, fS
(
Hh,l
S

)}
− logϕM

σM


−max

{
Φ

(
log max

{
0, νS (mHιH + ιL, c,L)

}
− logϕM

σM

)
,

Φ

(
log max

{
0, νS (mHιH +mLιL, c,L)

}
− logϕM

σM

)}}
,

and

fS (m, c, k) = βEC

[
πk(m, C ′) +

∑
ME

PE(ME|m, C ′,PE)gE(ME, C ′, k) C = c

]
.

with

gE(ME, C ′, k) =

{
f(ME, C ′, k) if (ME, C ′, k) ∈ Hh,l

S

νE(ME, C ′, k) if (ME, C ′, k) ∈ Hh+,l+
S , for h+ ≥ h, l+ > l or h+ > h, l+ ≥ l.

At last,

νS (m, c, k) = βEC

[
πk(m, C ′) +

∑
ME

PE(ME|m, C ′,PE)νE(ME, C ′, k) C = c

]
.

C.4 Market Structure Distribution Function P

The distribution function for underlying market structure P is computed by considering all

active retailers’ type distributions. Formally, it is

P(N|p, nL) ≡
∑

j counts of H,|p|−j counts of L among k1,k2,...,knC

pk1k2...knC if N = jιH + (|p| − j + nL)ιL, j ∈ {0, . . . , |p|}

0 otherwise.

For a market structure with j type-H stores and (|p| − j + nL) type-L stores, its proba-

bility is the sum of all elements in the type distribution vector p whose sequences of types

{k1, k2, . . . , knC
} have j counts of H and |p| − j counts of L.
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