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Abstract

This article concerns an in�nite horizon economy where trade must occur pairwise, using

a double auction mechanism, and where �at money overcomes lack of double coincidence of

wants. Traders are anonymous and lack market power. Goods are divisible and perishable,

and are consumed at every date. Preferences are de�ned by utility-stream overtaking. Money

is divisible and not subject to inventory constraints. The evolution of individual and economy-

wide money holdings distributions is characterized. There is a welfare-ordered continuum of

single price equilibria, reecting indeterminacy of the price level rather than of relative prices.
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1. Introduction

This article contributes to a research program, both classical and contemporary, concerning

the relationship between decentralized trading and allocative eÆciency. Classical economists

observed that chains of transactions link traders who do not deal directly with one another or

even have speci�c knowledge of one another's existence. They understood that such a pattern of

sequential trade within overlapping coalitions reects environmental constraints (e.g., geographic

separation) that rule out having an economywide market (as envisioned by Walras' parable of an

auction) in which all traders would participate directly. Those classical economists, then, regarded

fragmentation of trading coalitions as an important fact for economic theory to take explicitly

into account. In fact, their view about the eÆciency of competitive trade was based on their

assessment that traders largely succeed in overcoming this obstacle, at least insofar as achieving

economywide uniformity of relative prices is concerned.

A closely similar perspective, that a credible welfare characterization of market equilibrium

needs to come to terms with how traders interact strategically in an environment that enforces

fragmented market participation, motivates the model of pairwise trading to be studied here. The

main results establish the existence of equilibrium, display indeterminacy by looking at single

price equilibrium, and characterize the long run behavior of trade and money holdings in these

equilibria.

Analysis of this model supports the classical economists' conjecture that, despite the absence

of a central market, it is possible for equilibrium relative prices to remain constant across trading

pairs and throughout time. This is a nontrivial �nding about the model economy because exchange

and consumption occur in real time and result in endogenous heterogeneity of wealth among both

buyers and sellers. Such heterogeneity might have been suspected to induce disparity of terms of

trade across trading pairs, but is shown not necessarily to do so.

While equilibrium in the model economy is consistent with economywide uniformity of relative

prices, nevertheless the equilibrium price level is indeterminate. Given a �xed, nominal stock of

money, which is taken to be a parameter of the economy, a higher price level implies a stochastically

dominated distribution of real balances among traders in the economy. The lower level of real

balances results in a lower incidence of completed transactions among trading pairs, hence in

economic ineÆciency. The model economy possesses a continuum of distinct, Pareto-ranked,

equilibrium allocations. It remains an open question whether this indeterminacy of equilibrium

reects a fundamental fact about decentralized competition or whether it may be an accidental

consequence of speci�c, fragile, modeling assumptions. This question is discussed further in the
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conclusion.

An informal description of some main features of the model economy, and a brief comparison

with formulation of three prior models of decentralized exchange may be a helpful prelude to

technical exposition. The model economy comprises a continuum of in�nitely lived traders who

populate a discrete time environment. At each date, every trader receives an endowment of a

perishable, divisible, di�erentiated good and enjoys consumption of his own endowment good

and of the endowment goods of some, but not all, other agents. Agents' preferences between

random consumption streams are determined according to a von Neumann-Morgenstern utility

function for \temporary utility" at each date, and by an overtaking criterion to compare in�nite,

expected temporary utility sequences. Indeed, there are gains to economywide trade because each

trader receives higher marginal utility from consumption of others' endowment goods than from

consumption of the good with which he is endowed.

At each date, the population of agents is randomly partitioned into pairs who are able to trade

with one another. All trading pairs satisfy the condition that exactly one agent can obtain utility

from consumption of the other's endowment good. Trading is anonymous, in the sense that no

pair meets more than once and also that each agent knows the variety of good with which his

partner is endowed but nothing else about the partner. A particular double auction mechanism

governs trade within all pairs. The equilibrium concept for the economy is a version of Bayesian

Nash equilibrium.

The model just described most closely resembles that of Green and Zhou (1998). The present

model di�ers from its predecessor in three respects. Equilibrium is de�ned in terms of the evolution

of the economy from an initial state, rather than the analysis being concerned exclusively with

steady state analysis, in order to investigate indeterminacy of equilibrium in its strict sense. The

utility-overtaking criterion is adopted, rather than a discounted utility formulation, in order to

facilitate analysis of dynamic equilibrium without sacri�cing essentiality of money.1 Goods, as

well as money, are modeled as being divisible, in order to remove indivisibility and nonconvexity

as possible causes of price level indeterminacy.

Further perspective on the model is obtained by comparing its formulation with those of Gale

(1986a,b) and of Shi (1995) and Trejos and Wright (1995). As in Gale's model, traders transfer

endowments of divisible goods in random, pairwise meetings that take place in discrete time,

and assumptions of anonymity and absence of time preference prevent monopoly power from

1Money is inessential in the model of Green and Zhou (1998) because agents in that model are unable to consume
their own endowments. Using a combination of analytical and numerical approaches, Zhou (1999a) studies steady
state equilibrium of a model economy in which money is essential and in which agents maximize expected discounted
utility.
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being exercised in these meetings. As in the Shi-Trejos-Wright model, economic activity (i.e.,

the process of receiving endowments, trading, and consumption) takes place repeatedly through

time, rather than each trader consuming only once and then leaving the market as in Gale's

model. Also as Shi-Trejos-Wright, the insuÆciency of trading pairs to garner directly the full

gain to economywide trade takes the particularly stark form of a complete absence of double

coincidence of wants. This assumption gives money an essential role as medium of exchange, as

Gale emphasized would be desirable in an extension of his model. In particular, the presence

of money (which is absent in Gale's model economy) enables the price level, as well as relative

prices of various goods, to be considered explicitly. However, unlike the Shi-Trejos-Wright model,

money here is modeled as being divisible and not subject to inventory constraints.2 Finally, as in

both the Gale and Shi-Trejos-Wright models, exchange within each trade meeting is assumed to

be governed by a strategic form mechanism broadly resembling an auction protocol.

2. The Environment

Economic activity occurs at dates 0; 1; 2; : : :. Agents are in�nitely lived, and they are nonatomic.

For convenience, we assume that the measure of the set of all agents is one. Each agent has a

type in (0; 1]. The mapping from the agents to their types is a uniformly distributed random

variable, independent of all other random variables in the model. Similarly, there is a continuum

of di�erentiated goods, each indexed by a number j 2 (0; 1]. These goods are perfectly divisible

but nonstorable. Each agent of type i receives an endowment of one unit of \brand" i good in

each period. An agent can consume his own endowment and half of the other brands in the

economy; agent i consumes goods j 2 [i; i + 1
2 ](mod 1) (for example, agent 0:3 consumes goods

j 2 [0:3; 0:8], and agent 0:7 consumes goods j 2 [0:7; 1] [ (0; 0:2]). He prefers other goods in his

consumption range to his endowment good; while consumption of his endowment yields utility

c per unit, consumption of any other good in his feasible range yields utility u per unit, and

u > c > 0.3 In addition to the consumption goods, there is a �at money.4 Money is perfectly
2The Shi-Trejos-Wright model amends the Kiyotaki-Wright (1989) model by making goods divisible, while

retaining assumptions of money indivisibility and a one-unit inventory constraint on money holdings, to model
non-par exchange of money for goods. See Green and Zhou (1998) for a discussion of why the indivisibility and
inventory-constraint assumptions are undesirable. Models along the lines of Shi-Trejos-Wright that partially relax
those ad hoc constraints (by posting a �nite bound, greater than 1, on the amount of money carried into a trade
meeting) include Camera and Corbae (1999), Hendry (1993), Molico (1997), and Wallace (1996).

3In principle, a consumption bundle could be de�ned to be a �nite measure � on [0,1) and the utility of � to an
agent i could be de�ned to be c�(fig) + u�((i; i+ 1

2
](mod 1)). In practice, at any date an agent can only consume

his and his trading partner's endowment goods.
4Logically, �at money is an economywide accounting system that satis�es restrictions such as we now describe.

It is customary in the money/search literature, but not logically necessary, to interpret �at money as some physical
object.
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divisible, and an agent can costlessly hold any quantity of it. The total nominal stock of money

remains constant at M� units per capita. We assume that agents do not discount future utility.

Their preferences are characterized by an overtaking criterion with respect to expected utility,

which will be formalized below.

Agents randomly meet pairwise each period. By the assumed pattern of endowments and

consumption sets, there is no double coincidence of wants in any pairwise meeting.5 Each agent

meets a partner endowed with one of his consumption goods with probability one half, and a

partner who can consume his endowment good with probability one half. So, in every meeting,

one partner is a potential buyer and the other is a potential seller.

Consumption goods cannot be used as commodity money because they are nonstorable, so

money is the only medium of exchange available. An agent is characterized by his type and the

amount of money he holds. Each agent has an initial money holdings, which, like the agent's

type, is exogenously and deterministically given. Within the population, types and initial money

holdings are independently distributed. The economywide initial money holdings distribution is

common knowledge.

Within a pairwise meeting, each agent observes the other's type, but not the trading partner's

money holdings and trading history. They cannot communicate about this information either.

For simplicity, we assume that each transaction occurs according to the following simultaneous

move game. The potential buyer submits a bid specifying a maximum price and also a quantity

that he is willing to buy at any price weakly below that maximum price. And the potential seller

submit an o�er specifying the price at which she is willing to sell and the maximum quantity she

will sell at that price. Trade occurs if and only if the bid price is at least as high as the o�er

price, but the bid quantity is no higher than the o�er quantity. In that case, the seller transfers

the quantity of his endowment good prescribed by the bid to the buyer, and the buyer pays with

money at the seller's o�er price.

This particular double auction mechanism is closely related to a family of such mechanisms in

which trade occurs if and only if the bid price is at least as high as the o�er price, the quantity

transferred from the seller to the buyer is then the minimum of the bid and the o�er, and the

transaction price is weakly between the o�er price and the bid price.6 The mechanism de�ned here

fails to belong to the family only because trade is speci�ed not to take place if the o�er quantity

5Strictly speaking, there is a double coincidence of wants only when types i and j are matched, with i � j+1=2
(mod 1). Such a match occurs with probability zero. Hence, we ignore this possibility.

6Examples of such mechanisms are (1) a short side mechanism in which trade occurs at the o�er price if the bid
quantity is less than the o�er quantity and at the bid price otherwise, and (2) a mechanism in which trade occurs
at the midpoint of the bid and o�er prices. The latter mechanism was studied by Chatterjee and Samuelson (1983)
and was shown to be eÆcient for sale of an indivisible good in a static setting by Myerson and Satterthwaite (1983).
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is smaller than the bid quantity|a situation that intuitively would not occur in an equilibrium of

an auction type mechanism in this economy because the seller (who has linear temporary utility)

should be willing to sell his entire endowment if he is willing to sell any of it. By enforcing the bid

quantity to be no greater than the o�er quantity when trade occurs, some algebraic expressions

in the de�nitions and proofs below are made simpler than if explicit reference to the minimum

of the bid and o�er quantities were necessary. However the proofs remain sound, with inessential

modi�cations, for any mechanism in the related family just characterized.

3. The De�nition of Equilibrium

The domain of agents' money holdings is R+ . Let � be the space of countably additive

probability measures on R+ . Suppose that the initial money holdings distribution is given by �0.

At each date, the set of agents is randomly partitioned into pairs. Within each pair, one of

the agents desires to consume the other's endowment. Thus, a bid and o�er are associated with

each pair.

Now we provide an intuitive discussion of the distributions of bids and o�ers, and we state some

formal assumptions about those distributions. Our assumptions are in the spirit of a \continuum

law of large numbers."7 For each random partition � of the agents into pairs at date t, there is

a sample distribution B�
t of bids and a sample distribution O�

t of o�ers. We assume that these

sample distributions do not depend on the partition. That is, there are bid and o�er distributions

Bt and Ot such that for all partitions �, B�
t = Bt and O�

t = Ot. Moreover, because each agent

has a trading partner assigned at random, the probability distribution of the trading partner's bid

and o�er should be identical to the sample distribution. That is, Bt and Ot are the probability

distributions of bid and o�er respectively that are received at date t by each individual agent, as

well as being the sample distribution in each random pairing of the population of agents.

Now let the probability space (
;B;P) represent the stochastic process of encounters faced

by a generic agent. This agent faces a sequence ! of random encounters, one at each date. Agent

i's date-t encounter, with some agent of type j, is characterized by agent j's trading type (buyer

or seller) in the meeting and her bid/o�er price and quantity. Denote the trading partner's type

by !t = (!t1; !t2; !t3), which is interpreted as follows.

If the trading partner is a buyer, !t1 = b; !t2 is the bid price; !t3 is the bid quantity

If the trading partner is a seller, !t1 = s; !t2 is the o�er price; !t3 is the o�er quantity:
7That is, we believe that they are logically consistent with the results from probability theory that we will apply

in our analysis, although they cannot be derived from those results. See Green (1994) and Gilboa and Matsui
(1992) for further discussion.
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The encounters f!tg
1
t=0 � ! are independent across time. 
 is the set of all possible sequences of

encounters that a generic agent in the economy faces.

At each date t, pairwise meetings are independent across the population. That is, for each

agent, !t1 follows a Bernoulli distribution, a potential buyer's bid (!t2; !t3) is drawn from the

bid distribution having c.d.f. Bt, and a potential seller's o�er (!t2; !t3) is drawn from the o�er

distribution having c.d.f. Ot. For t � 1, let Bt be the smallest �-algebra on 
 that makes the

vector of the �rst t coordinates, !t = (!0; !1; : : : ; !t�1), measurable, and B0 = f;;
g. Let Pt be

the probability measure de�ned on Bt. Then, for all t � 0, x 2 R+ , and y 2 [0; 1],

Ptf!t1 = bg = Ptf!t1 = sg =
1

2
(1)

Pt
n
!t2 � x; !t3 � y j!t1 = b

o
= Bt(x; y) (2)

Pt
n
!t2 � x; !t3 � y j!t1 = s

o
= Ot(x; y): (3)

De�ne B = B1 and P = P1.

We focus on symmetric equilibrium, that is, equilibrium in which agents are anonymous, an

agent's strategy is a function of only his own trading history and initial money holdings, and

strategy is symmetric with respect to agents' types. Let � be the trading strategy of a generic

agent with initial money holdings �0. His date-t strategy �t � (�t1; �t2; �t3; �t4) speci�es his

bid and o�er as a function of his initial money holdings and his encounter history !, and it is

measurable with respect to Bt. The bid (�t1; �t2) is the maximum price �t1 at which the agent is

willing to buy and the quantity �t2 that he is willing to purchase (at price no higher than �t1) if

he is paired with a seller of his consumption goods. The o�er (�t3; �t4) represents the price �t3 at

which he is willing to sell and the maximum quantity �t4 that he is willing to sell at price �t3 if

he meets a consumer of his endowment good. Because of the restriction on endowment, �t4 � 1:

As a buyer, the agent has to be able to pay his bid. Let ��t denote the agent's money holdings at

the beg inning of date t by adopting strategy �. Then

�t1(�0; !)�t2(�0; !) � ��t (�0; !): (4)

Given the agent's initial money holdings �0, encounter history !, and strategy � = f�tg
1
t=0,

his money holdings evolves recursively as follows: ��0 (�0; !) = �0 and, for t � 0,

��t+1(�0; !) =

8<
:

��t (�0; !) + �t3(�0; !)!t3 if !t1 = b; �t3(�0; !) � !t2; �t4(�0; !) � !t3
��t (�0; !)� !t2�t2(�0; !) if !t1 = s; �t1(�0; !) � !t2; �t2(�0; !) � !t3
��t (�0; !) otherwise

(5)
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Let v�t (�0; !) denote the agent's utility achieved at date t by adopting strategy �. Then

v�t (�0; !) =

8<
:

�c !t3 if !t1 = b; �t3(�0; !) � !t2; �t4(�0; !) � !t3
u�t2(�0; !) if !t1 = s; �t1(�0; !) � !t2; �t2(�0; !) � !t3
0 otherwise

(6)

Then, strategy � overtakes another strategy �̂ if for all �0 2 R+ ,

lim inf
t!1

E

h tX
�=0

v�� (�0; !)�
tX

�=0

v�̂� (�0; !)
i
> 0 (7)

where E is the expectation operator with respect to the probability measure P.

At the beginning of date t, given all agents' trading strategy �t and the initial money holdings

distribution �0, rational expectation requires that agents' beliefs regarding the c.d.f. of the bid

distributionBt and the c.d.f. of the o�er distributionOt that prevail during date-t trading coincide

with the actual distributions implied by the strategy. That is, for all x; y 2 R+ ,

Bt(x; y) =

Z 1

0
Pt
n
! j�t1(z; !) � x; �t2(z; !) � y

o
d�0(z) (8)

Ot(x; y) =

Z 1

0
Pt
n
! j�t3(z; !) � x; �t4(z; !) � y

o
d�0(z): (9)

Similarly, the money holdings distribution at the beginning of the of date t is de�ned as follows,

for any set A 2 Bt,

�t(A) =

Z 1

0
Pt
n
! j �t(z; !) 2 A

o
d�0(z) (10)

The equilibrium concept we adopt is Bayesian Nash equilibrium with respect to the overtaking

criterion.

Definition. A Bayesian Nash equilibrium is a four tuple h�; �0; fBtg
1
t=0; fOtg

1
t=0i that satis-

�es

(i) �0 is the initial money holdings distribution in the environment.

(ii) No strategy overtakes �, given that fBtg
1
t=0 and fOtg

1
t=0 characterize trading partners'

decisions.

(iii) For each t � 0, Bt and Ot satisfy equations (8) and (9). That is, these distributions

reect the adoption of strategy � by all agents.

We are going to study one particular example of equilibrium, single price equilibrium. In

such an equilibrium, all trades occur at the same price, say p, at all dates, p > 0. That is, all

traders bid to buy one unit or as much as they can a�ord of their desired consumption goods

at price p, and o�er to sell one unit of their endowment goods at price p. We call this a price-p

7



equilibrium. Price-p equilibrium is markovian in the sense that the dependence of agents' strategy

on time and trading history is only through their own current money holdings, despite the dynamic

environment. Formally, de�ne the strategy ~�p as follows, for all �0 2 R+ , encounter history ! 2 
,

and t � 0,

~�pt1(�0; !) = p; ~�pt2(�0; !) = minf~�t(�0; !)=p; 1g (11)

~�pt3(�0; !) = p; ~�pt4(�0; !) = 1 (12)

where ~�t(�0; !) = �~�
p

t (�0; !): Let ~�t 2 � denote the money holdings distribution at the beginning

of date t induced by strategy ~�p. The bid distribution implied by strategy ~�p are as follows: for

any x; y 2 R+ ,

~Bt(x; y) =

8<
:

0 if x < p
~�t([0; py]) if x � p and y < 1
1 if x � p and y � 1

(13)

The o�er distribution implied by ~�p is stationary and degenerate with mass at price p and quantity

1. That is, for any x; y 2 R+ ,

~Ot(x; y) =

8<
:

0 if x � p
0 if x � p and y < 1
1 if x � p and y � 1

(14)

The evolution of the money holdings distribution ~�t is speci�ed in the next section.

In order to show that h~�p; �0; f ~Btg
1
t=0; f

~Otg
1
t=0i is an equilibrium, we �rst investigate the

properties of the dynamic path of the two distributions relevant to the equilibrium at hand:

the economywide money holdings distribution which determines the bid distribution, and the

distribution of an arbitrary individual's money holdings which helps to de�ne the optimality of

the strategy. In the next section, we show both distributions converge asymptotically under a mild

condition on the distribution of initial money holdings. In section 5, we show that the strategy

~�p is optimal.

4. The Convergence of Money Holdings Distributions at Price-p Equilibrium

Given that there is a continuum of nonatomic agents, if all agents adopt strategy ~�p, the

convergence path of the economywide money holdings distribution over time is deterministic.

However, the trading path of a single agent in the economy is random. The probability structure

introduced in section 3 is de�ned in terms of the stochastic process of encounters faced by such an

agent. For a generic agent with initial money holdings �0, the distribution for his possible money

holdings at date t is not necessarily given by the economywide money holdings distribution ~�t,
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which is the money holdings distribution of a potential trading partner at date t. In order to study

the optimality of strategy ~�p, we need to know the evolution of the money holdings distribution

for a single agent with arbitrary initial money holdings �0.

In this section, we show that if all agents adopt the strategy ~�p, and if the initial money

holdings distribution �0 satis�es a certain condition, then the economywide money holdings dis-

tribution converges weakly to a unique geometric distribution at which the economy is stationary.

Furthermore, we show that given the economywide money holdings distribution converges, the

distribution of a generic agent with an arbitrary initial money holdings converges to the aggregate

limit distribution, and the mean of his money holdings converges to the per capita money holdings

in the economy M�.

To show the convergence of the economywide money holdings distribution, as a technical inter-

mediate step, we �rst show the convergence of the economywide distribution and the distribution

of an individual agent if money is indivisible with unit p. That is, all agents' money holdings

are in multiple units of p. We then use the result to prove the convergence of money holdings

distributions when money is divisible.

We now introduce a notation that will be used throughout the paper. In the trading envi-

ronment introduced above, the aggregate nominal quantity of money does not change over time.

That is, in an economy with aggregate nominal quantity of money M , the probability measure �

that represents the economywide money holdings distribution satis�es the aggregation condition,R1
0 �d� =M . Let �M be the restricted probability space where the aggregation condition holds.

That is, �M = f� j� 2 �;
R1
0 �d� =M g.

4.1. The Indivisible Money Case

Consider an economy where the aggregate nominal quantity of money isM ,M > 0, and where

money is indivisible with unit p. In this economy, the support of money holdings distribution

is in the lattice pN of multiples of p. (pN � f0; p; 2p; : : :g.) Denote the set of these probability

measures with support in pN by �pN , and the subset of probability measures in �pN with mean

M to be �M
pN . Given that all agents adopt strategy ~�p, and given the initial distribution �0, the

economywide money holdings distribution evolves deterministically as follows: for any t � 0,

�t+1(f0g) = (1�
m(�t)

2
)�t(f0g) +

1

2
�t(fpg) (15)

and for all k � 1,

�t+1(fkpg) = (1�
m(�t)

2
�
1

2
)�t(fkpg) +

1

2
�t(f(k + 1)pg) +

m(�t)

2
�t(f(k � 1)pg) (16)

9



where m(�t) =
P1

k=1 �t(fkpg) is the measure of agents who have money. The sequence f�tg
1
t=0

of money holdings distributions can be obtained by applying (15) and (16) recursively. It is easy

to check that if �0 2 �M
pN , then at any point of time t � 1, �t 2 �M

pN.

For technical convenience, we work with a transformation of the probability measure � instead

of � itself. De�ne a mapping L:�pN ! [0; 1]1 as follows,

8� 2 �pN 8k 2 N Lk(�) = �([kp;1)) =
X
j�k

�(fjpg): (17)

Obviously, L0(�) = 1, Lk(�) 2 [0; 1] and Lk(�) � Lk+1(�) for all k 2 N. Let � = L(�pN). Then,

for any x 2 �, x satis�es that x0 = 1, xk 2 [0; 1] and xk � xk+1 for all k 2 N. By de�nition, L

is a one-to-one aÆne mapping from �pN to �. The aggregate real money balance corresponding

to the distribution � 2 �M
pN can be written as

P1
k=1 k

�
Lk(�)� Lk+1(�)

�
=
P1

k=1 Lk(�) =M=p.

De�ne S = L(�M
pN). Clearly S is a subset of �.

S =
n
x jx 2 �;

1X
k=1

xk =M=p
o
: (18)

The set S is the space we are going to work with primarily in the �rst half of this section. It is

easy to show the following (the proof is omitted).

Lemma 1. Both S and � are convex. That is, for X = S or X = �, 8x; y 2 X and

8� 2 [0; 1], �x+ (1� �)y 2 X.

By equations (15) and (16), the law of motion of the transformation of money holdings dis-

tribution L(�) is a mapping T :S ! S such that for all x 2 S,

8 k � 1 Tk(x) =
1� x1
2

xk +
1

2
xk+1 +

x1
2
xk�1: (19)

It is easy to show that T0(x) = 1 and T (x) 2 S. For any given �0 2 �M
pN, x

0 = L(�0), x
t =

T (xt�1) = L(�t) for all t � 1. The following lemma states that the mapping T has a unique �xed

point.

Lemma 2. The mapping T has a unique �xed point �x 2 S such that �x = T (�x):

8k 2 N �xk = �mk; where �m =
M=p

1 +M=p
: (20)

10



Proof. For all x 2 S, by equation (19), T (x) = x requires that for all k � 1,

xk = (
1� x1
2

)xk +
1

2
xk+1 +

x1
2
xk�1

and x0 = 1. This system of equations has a unique solution �x that satis�es, for all k 2 N; �xk =

(�x1)
k. Since �x 2 S,

P1
k=1 �xk =

P1
k=1(�x1)

k =M=p, which implies that �x1 =
M=p

1+M=p = �m.

The unique �xed point �x of T given in Lemma 2 corresponds to a geometric money holdings

distribution with parameter �m: �� = L�1(�x) 2 �M
pN . In particular, for all k 2 N, ��(fkpg) =

(1 � �m) �mk. We want to show that starting from a given initial state x0, the economy as a

dynamic system evolving according to mapping T converges asymptotically to the steady state

characterized by �x. Toward this objective, we construct a Liapunov function that is a function

of the state of the dynamic system. We show that the Liapunov function decreases over time

and asymptotically approaches its minimum. Therefore, by a standard argument of dynamical

systems theory, the economy asymptotically approaches a steady state, which is represented by

the unique �xed point of T , �x, which does not depend on the initial state.

The Liapunov function we choose to use can be interpreted as the expected hazard rate for

the corresponding distribution. De�ne Z: �! R+ , for all x 2 �,

Z(x) =

1X
k=0

(xk � xk+1)
2

xk
: (21)

For technical reasons, we de�ne the function Z on the larger space � instead of on S. For Z to

be a Liapunov function, it should be continuous in some metric, it should be decreasing along

the trajectory of the system de�ned by T , and it should have a unique minimum on S where it is

applied. We show that Z has these properties one by one. Many of the technical proofs are given

in the appendix.

Lemma 3. The function Z is strictly convex on �.

Using Lemma 3, the following lemma shows that the function Z is strictly decreasing along

the trajectory de�ned by T .

Lemma 4. For all x 2 S, Z(T (x)) < Z(x), unless x = T (x).

Proof. De�ne mappings �:S ! � and �:S ! � as follows: for all x 2 S, k 2 N,

�k(x) =
xk+1

x1
; �0(x) = 1; �k+1(x) = x1xk:

11



The measure � is a normalized left shift of x, and � is a normalized right shift of x. It is easy to

check that �(x) 2 � and �(x) 2 �, but neither is necessarily an element of S. Then by (19), T (x)

can be rewritten as a convex combination of x, �(x) and �(x),

T (x) =
x1
2
�(x) +

1

2
�(x) +

1� x1
2

x:

Since Z is strictly convex on � by Lemma 3, unless �(x) = �(x) = x,

Z(T (x)) <
x1
2
Z(�(x)) +

1

2
Z(�(x)) +

1� x1
2

Z(x)

=
x1
2

1

x1

�
Z(x)� (1� x1)

2
�
+
1

2

�
(1� x1)

2 + x1Z(x)
�
+
1� x1
2

Z(x)

= Z(x):

It is easy to verify that �(x) = x if and only if x = T (x). Therefore, unless x = T (x), we have

Z(T (x)) < Z(x).

Because of the aggregation condition (
P1

k=1 xk =M=p), S is a subset of the complete metric

space (X ; d), where X = fx 2 [0; 1]1 j
P1

k=0 xk < 1g and d is the usual `1-metric associated

with X , for any x; y 2 X ,

d(x; y) =

1X
k=0

jxk � ykj: (22)

By standard argument, (S; d) is a complete subspace of (X ; d). The following two lemmas state

that both Z and T are continuous mappings in metric d.

Lemma 5. The function Z is continuous on S.

Lemma 6. The mapping T is continuous on S.

The set S we have been working with is unfortunately not compact. To insure the convergence of

the system from some initial state, we introduce a subset of S that is compact and closed under

mapping T .

De�ne an ordering relation between two vectors x and y: y dominates x (denoted by x �d y)

if and only if for all k 2 N; xk � yk. For a given � 2 X , let S� be the set of vectors in S that are

dominated by �,

S� = fx 2 S jx �d �g: (23)

Lemma 7. For every vector � 2 X , the set S� is compact.

12



The vector � can be any element of X . In particular, let �� denote the geometric vector de�ned

by some � 2 (0; 1): for all k 2 N,

��k = �k: (24)

The vector �� as de�ned above is an element of X as well as �. Also, it is a �xed point of T , i.e.,

T (��) = ��. The following lemma states that for ��, S�� is closed under T .

Lemma 8. For any x 2 S and any � 2 (0; 1), if x �d �
�, then T (x) �d �

�.

By Lemma 8, if state x0 satis�es the following condition on the initial distribution of money

holdings,

(ID1) there exist � 2 (0; 1) and t � 0 such that T t(x0) �d �
�

then all the subsequent states of the dynamic system T n(x0), for all n � t; are dominated by ��

as well, hence, they are elements of S�� .

Proposition 1. Consider an environment where money is indivisible with unit p. Suppose

that the initial money holdings distribution �0 is such that x0 = L(�0) satis�es condition ID1. As

a dynamic system evolving from x0 according to mapping T , this economy converges asymptotically

to the steady state characterized by distribution �x, which uniquely satis�es T (�x) = �x and d(�x; 0) =

d(x0; 0).

Proof. Suppose that condition ID1 holds, that is, there exist � 2 (0; 1) and t � 0 such that

T t(x0) �d ��. Then T n(x0) 2 S�� for all n � t. By Lemma 7, S�� is a compact set, and by

Lemma 5, the function Z is continuous on S, hence on S�� , so Z achieves its minimum on S�� .

Furthermore, by Lemma 3, Z is strictly convex on S, hence on S�� , Z has a unique minimum on

S�� . Last, Z is strictly decreasing along the trajectory of the system de�ned by T by Lemma 4.

Therefore, Z is a Liapunov function. With this Liapunov function, we show next the convergence

of the system from the initial state x0.

From the given x0, construct a sequence fxng1n=1 by applying T recursively, xn = T n(x0).

Consider the sequence excluding the �rst t elements, fxng1n=t, which has just been shown to lie

within S�� . By Lemma 4, the corresponding sequence fZ(xn)g1n=t is monotonically decreasing.

Since S�� is compact, there exist a subsequence fxnkg that converges to some x̂ 2 S�� . Suppose

that x̂ is not a �xed point of T . Then by Lemma 4, Z(T (x̂)) < Z(x̂). Since Z is continuous and T

is continuous, there exists Æ > 0 such that for all y satisfying d(x̂; y) < Æ, Z(T (y)) < Z(x̂). Since
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fxnkg converges to x̂, there exists K such that for all k � K, d(x̂; xnk) < Æ, hence, Z(T (xnk)) <

Z(x̂), or,

Z(xnk+1) < Z(x̂): (25)

But since fZ(xn)g1n=t is monotonically decreasing, and since x̂ is the limit of xnk ,

Z(xnk+1) � Z(x̂) (26)

which contradicts (25). Therefore, the limit x̂ has to be a �xed point of T . Since T has a unique

�xed point �x in S by Lemma 2, �x = x̂ 2 S�� . Hence, for the given initial state x0, T n(x0)! �x as

n!1. This strengthened statement, that the entire sequence (rather than only the subsequence

selected above) converges to �x, follows from a standard argument involving the Liapunov function

Z.

The convergence of T t(x0) to �x as t!1 in `1-metric implies that for each k, T t
k(x

0)! �xk as

t!1, which by de�nition, implies weak convergence of the corresponding sequence of probability

measures �t ) �� as t!1, where �� is the probability measure corresponding to the �xed point

�x.

Corollary 1.1. Consider an environment where money is indivisible with unit p. Suppose

that the initial money holdings distribution �0 is such that x0 = L(�0) satis�es condition ID1,

and that all agents adopt strategy ~�p. Then the economywide money holdings distribution f�tg
1
t=0

converges weakly to the unique geometric distribution ��.

Next we show that the money holdings distribution of a generic agent with an arbitrary initial

money holdings converges, given that the economywide money holdings distribution converges.

Suppose that all agents adopt strategy ~�p, and that the initial state x0 = L(�0) satis�es

condition ID1, that is, the economywide money holdings distribution converges to a geometric

distribution de�ned on pN. Consider an agent with initial money holdings �0 = lp, l 2 N. Let

'lt 2 �pN represent the probability distribution of the agent's date-t money holdings ~�t(lp; !),

that is, for any set D 2 Bt, '
l
t(D) = Ptf! j ~�t(lp; !) 2 D g. Then, 'l0(flpg) = 1 and 'l0(fkpg) = 0

for all k 6= l. For any 'lt 2 �pN, de�ne ylt = L('lt), hence, y
lt 2 �. Obviously, 'lt and ylt

uniquely determine each other. As xt represents the date-t aggregate state of the economy, ylt

represents the distribution of the date-t personal state for the agent with initial money holdings

lp. Given that the distribution of money holdings in the population follows the path of fxtg1t=0,

the distribution of the agent's personal state from one date to the next is a mapping U : ���! �
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such that for any arbitrary individual state y 2 �, for any aggregate state x 2 �, and for all k � 1,

Uk(y; x) =
1� x1
2

yk +
1

2
yk+1 +

x1
2
yk�1 (27)

and U0(y; x) = 1, where x1 is the measure of agents holding money at the date (hence able to

purchase) as de�ned above, which is taken as given by each agent. That is, if ylt represents

the distribution of the agent's date-t state and xt represents the aggregate date-t state, then the

distribution of his date-(t + 1) state is given by yl(t+1) = U(ylt; xt). The following proposition

states that each agent's money holdings probability distribution converges to the same geometric

distribution as the economywide money holdings sample distribution does. The initial money

holdings of an agent do not matter in the limit.

Proposition 2. Consider an environment where money is indivisible with unit p. Suppose

that the initial money holdings distribution �0 is such that x0 = L(�0) satis�es condition ID1, and

that all agents adopt strategy ~�p. Then the money holdings distribution of a generic agent with

initial money holdings �0 = lp, f'ltg
1
t=0, converges weakly to the same aggregate limit regardless

of �0.

Proof. Consider a trader with initial money holdings �0 = lp, l 2 N who, as everyone else in

the economy, adopts strategy ~�p. To prove that the trader's money holdings ~�t(�0; !) converges

weakly to the aggregate limit, we need to show that for all k, jyltk � �xkj ! 0 as t ! 1. Given

that the aggregate state xt converges to �x, i.e., for any k � 1, xtk ! �xk as t!1, it is suÆcient

to show that for all k, jyltk � xtkj ! 0 as t!1. We show this by induction on k.

For any t � 0, given that the date-t aggregate state xt and the distribution of the agent's

personal state ylt, by equations (19) and (27), the corresponding date-(t + 1) states are de�ned

as follows, for any k � 1,

xt+1
k =

1� xt1
2

xtk +
1

2
xtk+1 +

xt1
2
xtk�1

y
l(t+1)
k =

1� xt1
2

yltk +
1

2
yltk+1 +

xt1
2
yltk�1:

The di�erence of the above two equations is, for any k � 1,

y
l(t+1)
k � xt+1

k =
1� xt1
2

(yltk � xtk) +
1

2
(yltk+1 � xtk+1) +

xt1
2
(yltk�1 � xtk�1): (28)

Then, given that ylt0 = xt0 = 1,

d(yl(t+1); xt+1) =

1X
k=1

jy
l(t+1)
k � xt+1

k j �
1

2

� 1X
k=1

jyltk � xtkj+
1X
k=2

jyltk � xtkj
�
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or

d(yl(t+1); xt+1) � d(ylt; xt)�
1

2
jylt1 � xt1j: (29)

That is, fd(ylt; xt)g1t=0 is a weakly decreasing sequence, and since it is bounded below by zero, it

has a limit �. Then, equation (29) implies that jylt1 � xt1j ! 0 as t!1.

Now suppose that for all j � k, jyltj � xtjj ! 0. We want to show that jyltk+1 � xtk+1j ! 0.

By induction hypothesis,
Pk

j=1 jy
lt
j � xtj j ! 0. Since d(ylt; xt) =

P1
j=1 jy

lt
j � xtj j ! �, we haveP1

j=k+1 jy
lt
j � xtjj ! �. Then,

���
1X

j=k+1

jy
l(t+1)
j � xt+1

j j �
1X

j=k+1

jyltj � xtjj
���! 0 as t!1: (30)

By equation (28),

1X
j=k+1

jy
l(t+1)
j � xt+1

j j �
1X

j=k+1

jyltj � xtjj �
1

2
jyltk+1 � xtk+1j+

xt1
2
jyltk � xtkj

or

1

2
jyltk+1 � xtk+1j �

���
1X

j=k+1

jy
l(t+1)
j � xt+1

j j �
1X

j=k+1

jyltj � xtj j
���+ jyltk � xtkj: (31)

Applying (30) and induction hypothesis to (31), we have jyltk+1� xtk+1j ! 0 as t!1. Hence, by

induction, for all k � 1, jyltk � xtkj ! 0 as t!1.

We have studied an economy with the following features: money is indivisible with unit p,

the aggregate nominal quantity of money is M , the initial money holdings distribution �0 is

such that x0 = L(�0) satis�es condition ID1, and all agents adopt strategy ~�p. We have shown

that, in such an environment, both the economywide money holdings sample distribution and

the money holdings probability distribution of a generic agent with an arbitrary initial money

holdings converge weakly to the unique geometric distribution de�ned on support pN with mean

M .

4.2. The Divisible Money Case

Now, we return to the environment introduced in section 2 where aggregate nominal quantity

of money is M�, and where money is perfectly divisible. We �rst de�ne the law of motion of the

economywide money holdings distribution given that all agents adopt strategy ~�p.

Suppose that the economywide money holdings distribution is � at the beginning of a date.

Parallel to the L transformation made in the indivisible money case, we need to know only the
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evolution of the money holdings distribution de�ned on sets of the form [y; 1) rather than on any

arbitrary set D � R+ . Let �(�)[y; 1) for any y 2 R+ be the measure of agents whose after-trade

money holdings are at least y conditional on being a seller. To characterize �(�)[y; 1) for any

y � p, note that a seller's higher-than-y money holdings after trade can result from either of

two types of transaction. The seller can begin with a before-trade money holdings no lower than

y��b, and acquire �b 2 [0; p) units from a buyer with only �b units of money by selling �b=p units

of his endowment. He can also start with at least y � p units of money before trade, and acquire

p units from a buyer with at least p units of money by selling 1 unit of his endowment. That is,

8y � p �(�)[y;1) =

Z
[0;p)

�[y � �b; 1)d�(�b) + �[p;1)�[y � p;1): (32)

If y < p, then a seller may have more than y units of money after trade from either of two kinds of

transaction: starting with at least y� �b units before trade, and acquiring �b 2 [0; y) units from a

buyer with only �b units of money; or trading with a buyer with at least y units of money. That

is,

8y 2 (0; p) �(�)[y;1) =

Z
[0;y)

�[y � �b; 1)d�(�b) + �[y;1): (33)

Similarly, for any y 2 R+ , let �(�)[y; 1) be the measure of agents whose after-trade money

holdings are at least y conditional on being a buyer. In particular, a buyer's after-trade money

holdings is always nonnegative, that is,

�(�)[0;1) = 1: (34)

For any y > 0, a buyer can only have a higher-than-y money holdings after trade if he has more

than y + p units of money before trade and spends p units to buy consumption goods. If he has

less than p units, he will spend all of it and reduce his money holdings to 0. That is,

8y > 0 �(�)[y;1) = �[y + p;1): (35)

Then, since half of the agents are buyers and half are sellers, the evolution of the money

holdings distribution, T : �! �, is given by the following, for all � 2 �,

8y � p T (�)[y; 1) =
1

2

hZ
[0;p)

�[y � �b; 1)d�(�b) + �[p;1)�[y � p;1) + �[y + p;1)
i
(36)

8y 2 (0; p) T (�)[y; 1) =
1

2

hZ
[0;y)

�[y � �b; 1)d�(�b) + �[y;1) + �[y + p;1)
i
: (37)

Obviously, T (�)[0; 1) = 1. It is easy to check that if � 2 �M�
; then T (�) 2 �M�

: Equations (36)

and (37) together de�ne the evolution of the economywide money holdings distribution, which
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is �t = T t(�0) at date t. Note that when the support of � is the p-lattice pN, for any k 2 N,

T (�)[kp; 1) de�ned by (36) and (37) coincides with Tk(L(�)) de�ned by (19) in the indivisible

money case.

The dominance relationship �d de�ned on � in last subsection is the restriction to �pN of the

relationship of stochastic dominance de�ned on �: for any �1; �2 2 �, �1 � �2 if and only if for

any y 2 R+ , �1[y;1) � �2[y;1). The following lemma states that the mapping T preserves the

relationship of stochastic dominance.

Lemma 9. For any �1; �2 2 �, if �1 � �2, then T (�1) � T (�2).

Divide the agents according to their money holdings into two groups: those whose money

holdings are integer multiples of p (on-lattice) and those whose money holdings are between

integer multiples of p (o�-lattice). It can be shown that over the dynamic path of economy, the

measure of the on-lattice group is increasing in time. Intuitively, in most pairwise trades, buyers

and sellers either keep their status (on- or o�-lattice) or exchange their status. These trades do not

a�ect the size of either group. But when a buyer and a seller, both with money holdings strictly

between 0 and p (o�-lattice), meet, the buyer spends all his money on the preferred consumption

good, and hence reduces his after-trade money holdings to 0. In other words, trading among this

group of agents results half of the group moving from o�-lattice status to on-lattice status. The

following lemma summarizes this intuition and states a quantitative implication.

Lemma 10. For any � 2 �, fT n(�)(pN)g10 is a nondecreasing sequence, and satis�es the

following relationship: for all n � 0,

T n+1(�)(pN) � �(pN) + 2�(2n+1)
h
�(np; (n+ 1)p)

i2
: (38)

Proof. Consider all the possible pairwise meetings between a buyer with �b units of money and

a seller with �s units of money where trade occurs. Let �0b and �0s denote the corresponding

after-trade money holdings.

(i) If �b 2 pN and �s 2 pN, then, �0b 2 pN and �0s 2 pN.

(ii) If �b � p, then �0z 2 pN i� �z 2 pN where z = b; s.

(iii) If �b 2 (0; p) and �s 2 pN, then, �0b = 0 2 pN and �0s 62 pN.
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(iv) If �b 2 (0; p) and �s 62 pN, then, �0b = 0 2 pN and �0s 62 pN almost surely.

Among these four types of active trade, the �rst three do not change the measure of agents with

money holdings on the lattice pN. The last type of trade moves the buyer's money holdings onto

the lattice. A subset of the last type of trades occur among agents (both buyers and sellers) with

money holdings in (0; p). Therefore,

T (�)(pN) � �(pN) �
1

2

h
�(0; p)

i2
� 0 (39)

that is, T (�)(pN) � �(pN). Hence, for any � 2 �, fT n(�)(pN)g10 is nondecreasing in n.

To prove the second part of the lemma, we �rst prove the following claim: For any � 2 �,

n � 1 and � � n,

T � (�)
�
(n� �)p; (n� � + 1)p

�
� 2���(np; (n+ 1)p): (40)

We prove the claim by induction on � . When � = 0, (40) holds with equality. Suppose the

claim holds for � = k < n, consider the case when � = k + 1. Given the matching technology

and the strategy, half of the agents with money holdings in ((n � k)p; (n � k + 1)p) are buyers

(note that n � k � 1) whose after-trade money holdings will be in ((n � k � 1)p; (n � k)p) =

((n� (k + 1))p; (n� (k + 1) + 1)p). Hence,

T k+1(�)
�
(n� (k + 1))p; (n � (k + 1) + 1)p

�
�

1

2

h
T k(�)

�
(n� k)p; (n� k + 1)p

�i

�
1

2

h
2�k�(np; (n+ 1)p)

i
= 2�(k+1)�(np; (n+ 1)p)

where the second inequality is due to the induction hypothesis. That is, (40) holds for � = k+1.

By induction, (40) holds for all � � n.

By the above claim, for all n � 0,

T n(�)(0; p) � 2�n�(np; (n+ 1)p): (41)

By (39), (41) and the fact that T n(�)(pN) is nondecreasing in n, for all n � 0, for all � 2 �,

T n+1(�)(pN) � T n(�)(pN) +
1

2

h
T n(�)(0; p)

i2
� �(pN) + 2�(2n+1)

h
�(np; (n+ 1)p)

i2
:

That is, (38) holds.

Applying Lemma 10, we show an even stronger result: asymptotically, all agents' money

holdings will be integer multiples of p.

Lemma 11. For any � 2 �M�
, T n(�)(pN) ! 1 as n!1.
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For an arbitrary probability measure � 2 �, de�ne �+ be the probability measure resulting

from right shifting all the probability mass in interval ((n�1)p; np) to the point np on the p-lattice

for all n � 1, that is,

�+f0g = �f0g; 8n � 1 �+fnpg = �
�
(n� 1)p; np

i
: (42)

Similarly, let �� be the probability measure resulting from left shifting all the probability mass

in interval (np; (n+ 1)p) to the point np on the p-lattice for all n � 0, that is,

8n � 0 ��fnpg = �
h
np; (n+ 1)p

�
: (43)

The supports of �+ and �� are within pN, and �+; �� 2 �. By de�nition,

�� � � � �+: (44)

Let g� denote the probability measure de�ned on R+ but with g�(pN) = 1 that corresponds to

the geometric vector �� for some � 2 (0; 1) introduced in last subsection, that is, for any k � 1

and x 2 [0; p),

g�[kp� x; 1) = g�[kp; 1) = �k

g� 2 �. It is easy to check that g� is a �xed point of T , that is, T (g�) = g�. If �+ is stochastically

dominated by some g� where � 2 (0; 1), given that the mapping T preserves stochastic dominance

(Lemma 9), we have

T (��) � T (�) � T (�+) � g�: (45)

Lemma 12. For an arbitrary � 2 �, if there exists � 2 (0; 1) such that �+ � g�, then for any

n � 0, [T n(�)]+ � g�.

Now we are ready to show the convergence of the economywide money holdings distribution.

The condition on the initial money holdings distribution �0 that guarantees the convergence of

the distribution is formally very similar to condition ID1.
8

(ID2) There exist � 2 (0; 1) and t > 0 such that [T t(�0)]
+ � g�.

The following proposition states that, under this condition, the limit distribution is the probability

measure corresponding to the geometric distribution with mass on the p-lattice pN and mean M�.

That is, the limit distribution is gm
�
, where m� = M�=p

1+M�=p .

8However the mapping T is de�ned in terms of p, which is an exogenous parameter of the indivisible money
economy but an endogenous price in the divisible money economy. Thus, despite their formal similarity, condition
ID2 does not relate the initial money holdings distribution to exogenous parameters of the economy as ID1 does.
A suÆcient condition ID3 for ID2, to be formulated below, will avoid reference to the price or other endogenous
quantities.
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Proposition 3. Suppose that the initial money holdings distribution �0 2 �M�
satis�es

condition ID2. Then the sequence of money holdings distributions evolving from �0 according to

mapping T converges weakly to the steady state characterized by geometric distribution gm
�
: That

is, T n(�0)) gm
�
as n!1.

Proof. Take an arbitrary initial distribution �0 2 �M�
such that there exist � 2 (0; 1) and

t � 0, satisfying [T t(�0)]
+ � g�. Without loss of generality, assume that �+0 � g�. Let l1 = 0 and

n1 = 0. We construct a subsequence fT lk+nk(�0)g
1
n=0 of the sequence fT

n(�0)g
1
n=0 by repeating

the following, three-step procedure for all k � 2.

(i) By Lemma 11, there exists nk � nk�1 + lk�1 such that

T nk(�0)(pN) > 1�
1

kp
:

(ii) Let �+k � [T nk(�0)]
+, and ��k � [T nk(�0)]

�. By Lemma 12, given that �+0 � g�, �+k � g�:

Hence,

��k � T nk(�0) � �+k � g�: (46)

Furthermore, de�ne M+
k =

R1
0 �d�+k , and M�

k =
R1
0 �d��k . Since T nk(�0)(pN ) <

1
kp (pN

denotes the complement of pN), and
R1
0 �dT nk(�0) =M�, we have

M+
k < M� + 1=k and M�

k > M� � 1=k: (47)

De�ne

m+
k �

M+
k =p

1 +M+
k =p

and m�
k �

M�
k =p

1 +M�
k =p

:

Consider �+k and ��k as the initial distributions of an economy where money is indivisible

with unit p. Then, given that �+k � g� and ��k � g�, both L(�+k ) and L(�
�
k ) satisfy condition

ID1. By Corollary 1.1, T n(�+k ) weakly converges to gm
+

k and T n(��k ) weakly converges to

gm
�
k as n!1. Hence, for � = 6=(kp), for all j � 0,

9 l+kj 8n � l+kj

���T n(�+k )[jp;1) � [m+
k ]

j
��� < �=6 = 1=(kp):

Since the mean of T n(�+k ) is M
+
k and m+

k < 1, there exists J such that for all j � J ,

T n(�+k )[jp;1) < �=12 and (m+
k )

j < �=12. Take l+k = maxflk0; : : : ; lkJg. Then,

8n � l+k 8 j � 0
���T n(�+k )[jp;1)� [m+

k ]
j
��� < �=6 = 1=(kp):
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By the same argument, there exists l�k such that

8n � l�k 8 j � 0
���T n(��k )[jp;1)� [m�

k ]
j
��� < �=6 = 1=(kp):

Take lk = maxfl+k ; l
�
k g. Then, by (46),

T lk(��k ) � T lk+nk(�0) � T lk(�+k ) (48)

and for all j � 0,���T lk(�+k )[jp;1) � [m+
k ]

j
��� < 1=(kp) and

���T lk(��k )[jp;1)� [m�
k ]

j
��� < 1=(kp): (49)

(iii) Increase k by 1. Go back to step (i).

Now we have a subsequence fT lk+nk(�0)g
1
n=0 of the sequence fT

n(�0)g
1
n=0 that satis�es (48)

and (49). We want to show that this subsequence weakly converges to gm
�
. By (48), for all

y 2 R+ ,

T lk(��k )[y; 1) � T lk+nk(�0)[y; 1) � T lk(�+k )[y; 1) (50)

By (47), it is easy to check that for any j � 0,���(m+
k )

j � (m�)j
��� < 1=(kp) and

���(m�
k )

j � (m�)j
��� < 1=(kp): (51)

Therefore, for any " > 0, k � 6=("p), for any y > 0, write y = jp� x with j � 1, and x 2 [0; p),���T lk+nk(�0)[y;1) � gm
�

[y;1)
��� =

���T lk+nk(�0)[y;1)� (m�)j
���

�
���T lk+nk(�0)[y;1)� T lk(�+k )[y;1)

���+ ���T lk(�+k )[y;1)� (m�)j
���

�
���T lk(��k )[y;1)� T lk(�+k )[y;1)

��� + ���T lk(�+k )[y;1) � (m+
k )

j
���+ ���(m+

k )
j � (m�)j

���
�

���T lk(��k )[y;1)� (m�
k )

j
���+ 2

���T lk(�+k )[y;1)� (m+
k )

j
���+

���(m�
k )

j � (m�)j
���+ 2

���(m+
k )

j � (m�)j
���

� 6=(kp) < ":

The second inequality is due to (50) and the last is due to (49) and (51) given that T lk(��k )[y;1) =

T lk(��k )[jp;1) and T lk(�+k )[y;1) = T lk(�+k )[jp;1). That is, the subsequence fT lk+nk(�0)g
1
n=0

weakly converges to gm
�
.

The foregoing argument can be generalized as follows. Consider an arbitrary number sequence

i0 < i1 < i2 < : : : and consider the sequence fT ij (�0)g
1
j=0. This sequence has a subsequence

that converges weakly to gm
�
. Since every subsequence of fT n(�0)g

1
n=0 has a subsequence that

converges weakly to gm
�
, the entire sequence must converge weakly to gm

�
.

The requirement that the initial distribution �0 satis�es condition ID2 is fairly weak. The

following lemma gives a class of initial distributions that satisfy the condition.
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Lemma 13. For any given equilibrium price p > 0, if there exist Jp > 0 and �p 2 (0; 1) such

that for all j > Jp, �0(jp; 1) � �j+1
p , then �0 satis�es condition ID2.

Proof. To prove condition ID2 holds, we need to show that there exist � 2 (0; 1) and t > 0

such that for all j > 0, T t(�0)(jp;1) � �j+1.

LetK = 0 if �0f0g > 0, andK = minfj j�0((j�1)p; jp ] 6= 0g otherwise. Then, �0(jp; 1) = 1

for all j < K. We �rst show by induction on K a claim: that TK(�0)f0g > 0. For K=0, the

claim holds automatically. Suppose that it holds for K = n, that is, �0((n � 1)p; np ] 6= 0 and

�0(jp; 1) = 1 for all j < n implies that T n(�0)f0g > 0. Consider the case when K = n + 1.

Given that �0(np; (n+1)p ] 6= 0 and �0(jp; 1) = 1 for all j < n+1, by the de�nition of T given

in equations (36) and (37),

T (�0)
�
(n� 1)p; np

i
=

1

2
�0

�
np; (n+ 1)p

i
> 0:

Applying the induction hypothesis, we have T n+1(�0)f0g > 0. That is, the claim holds.

Given that �0(jp; 1) � �j+1
p for all j > Jp, applying equations (36) recursively, we have

TK(�0)(jp;1) < �j+1
p for all 8 j > Jp +K.

By the above claim, TK(�0)f0g > 0, hence TK(�0)(0; 1) < 1. Then, there exists � 2 [�p; 1)

such that TK(�0)(0; 1) � �Jp+K+1. For j � Jp + K, TK(�0)(jp;1) � TK(�0)(0; 1) �

�Jp+K+1 � �j+1. For j > Jp +K, TK(�0)(jp;1) � �j+1
p � �j+1 since �p � �. That is, for all

j 2 N, TK(�0)(jp;1) � �j+1. Therefore, [TK(�0)]
+ � g�, or equivalently, �0 satis�es condition

ID2.

Condition in Lemma 13 is more transparent than ID2 given that it is expressed directly in

terms of the initial distribution �0. However, it is still cumbersome since it depends on equilibrium

price p, which is endogenous. In fact, if the condition holds for one particular price, it holds for

any other price. The following proposition exploits this feature and gives a suÆcient condition

for ID2 that depends only on exogenous parameters.

Proposition 4. If the initial money holdings distribution �0 has a tail that is stochastically

dominated by the tail of a geometric distribution, that is, if

(ID3) there exist J > 0 and � 2 (0; 1) such that for all j > J; �0(j; 1) � �j+1

then �0 satis�es condition ID2.
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Proof. We need to show only that if �0 satis�es condition ID3, then for any p > 0, there exist

Jp > 0 and �p 2 (0; 1) such that for all j > Jp, �0(jp; 1) � �j+1
p . Then, by Lemma 13, condition

ID2 holds.

Take an arbitrary p > 0. First, note that if p � 1, take Jp = J and �p = �. Then by ID3, for

all j > Jp, �0(jp; 1) � �0(j; 1) � �j+1 = �j+1
p .

Next, consider the nontrivial case 0 < p < 1. De�ne Jp to be any integer such that

Jp �
J + 1

p
and �p = �1=x where x =

Jp + 1

pJp
:

Obviously, �p 2 (�; 1) since x > 1. For any j > Jp, take kj to the integer such that kj =

maxfk j jp � k g. That is, kj � jp < kj + 1. The �rst inequality implies that �0(jp; 1) �

�0(kj ; 1): The second inequality leads to

kj + 1 > jp > Jpp �
J + 1

p
p = J + 1

that is, kj > J . Then, by condition ID3,

�0(kj ; 1) � �kj+1 = (�xp)
kj+1 � (�xp)

jp = �

Jp+1

pJp
jp

p = �

Jp+1

Jp
j

p :

Since j > Jp,
Jp+1
Jp

> j+1
j . Therefore, given that �p < 1,

�0(jp; 1) � �0(kj ; 1) � �

Jp+1

Jp
j

p < �
j+1
j
j

p = �j+1
p :

That is, the claim holds: for all j > Jp, �0(jp; 1) � �j+1
p .

As a practical matter, economists are not likely to �nd condition ID3 restrictive. There are

at least two classes of initial money holdings distributions �0 satisfy the condition. One class

of distributions consists of those with �nite support (that is, there is a Y > 0 such that for

all y � Y , �0[y;1) = 0). Probability measures with �nite support are dense in the space of

probability simplex �. The other class of distributions includes those that are results of injecting

money into a steady state economy with a geometric distribution of money holdings by giving

uniformly bounded amount to agents whose money holdings are below some particular level (i.e.,

\poor" people).

We can conclude now that if the initial money holdings distribution satis�es condition ID3

and if all agents adopt strategy ~�p, then by Proposition 3, the economywide money holdings

distribution converges weakly to a unique geometric distribution at which the environment is

stationary.
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Given that the economywide money holdings sample distribution converges, in what follows,

we apply the result of the indivisible money case and show that the probability distribution of

money holdings of a generic agent with an arbitrary initial money holdings converges to the

aggregate limit distribution gm
�
.

Consider an agent with an initial money holdings �0. Let '�0t 2 � denote the probability

distribution of the agent's date-t money holdings ~�t(�0; !), that is, for any set D 2 Bt, '
�0
t (D) =

Ptf! j ~�t(�0; !) 2 D g. Then '�00 is degenerate and satis�es that for all y � �0, '
�0
0 [y; 1) = 1, and

for all y > �0, '
�0
0 [y; 1) = 0. Similar to the evolution of the economywide distribution (which

follows the path of f�tg
1
t=0 given by (36) and (37)), the evolution of the individual agent's money

holdings distribution from one date to the next is a mapping U : ��� ! � such that for any

individual distribution ' 2 � and any economywide distribution � 2 �, for all y � p,

U('; �)[y;1) =
1

2

hZ
[0;p)

'[y � �b; 1)d�(�b) + �[p;1)'[y � p;1) + '[y + p; 1)
i

(52)

and for all y 2 (0; p),

U('; �)[y;1) =
1

2

hZ
[0;y)

'[y � �b; 1)d�(�b) + �[y;1) + '[y + p; 1)
i
: (53)

Note that if the support of � is the p-lattice pN, then for any k 2 N, U('; �)[kp;1) de�ned in

(52) and (53) coincides with Uk(L('); L(�)) de�ned by (27) in the indivisible money case. Then,

given initial individual money holdings distribution '�00 and initial economywide distribution �0,

the sequence f'�0t g
1
t=0 is recursively de�ned: for all t � 0, '�0t+1 = U('�0t ; �t) where �t = T t(�0)

given by (36) and (37).

The following proposition shows that in a divisible money environment, an individual agent's

money holdings distribution, regardless of his initial money holdings, converges to the same ge-

ometric distribution as the economywide money holdings distribution does. Similar to the proof

of Proposition 3, we bound the money holdings distribution by two distributions in indivisible

money environments, and then applying Proposition 2.

Proposition 5. Consider any p > 0. Suppose that the economywide initial money holdings

distribution �0 2 �M�
satis�es condition ID3, and that all agents adopt strategy ~�p. Then the

money holdings distribution of a generic agent with initial money holdings �0, f'
�0
t g

1
t=0, converges

weakly to the same aggregate limit distribution gm
�
regardless of his initial money holdings �0.

Proof. Consider an agent with an arbitrary initial money holdings �0. By Proposition 3, the

economywide money holdings distribution converges weakly to the geometric distribution gm
�
.
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Let �+n = [T n(�0)]
+, ��n = [T n(�0)]

�, and let M+
n , M

�
n , m

+
n and m�

n be de�ned the same way as

in the proof of Proposition 3. Then for any " > 0, there exists t � 0 such that jm+
t �m�j < "=6

and jm�
t �m�j < "=6, which implies that for any j � 1,

j(m+
t )

j � (m�)j j < "=6 and j(m�
t )

j � (m�)j j < "=6: (54)

By the evolution of the individual's money holdings distribution (52) and (53), it is easy to check

the following claim holds: For any '1; '2 2 � and �1; �2 2 �, if '1 � '2 and �1 � �2, then for

all n � 0, Un('1; �1) � Un('2; �2). For the t chosen above, we have

['�0t ]� � '�0t � ['�0t ]+ and ��t � �t � �+t

where [ � ]+ and [ � ]� are de�ned as in (42) and (43). Applying the above claim, for all n � 0,

Un(['�0t ]�; ��t ) � Un+t('�00 ; �0) � Un(['�0t ]+; �+t )

which implies that for all y 2 R+ ,

Un(['�0t ]�; ��t )[y; 1) � Un+t('�00 ; �0)[y; 1) � Un(['�0t ]+; �+t )[y; 1) (55)

As noted earlier, both U(['�0t ]�; ��t ) and U(['�0t ]+; �+t ) can be interpreted as the law of mo-

tion of the individual agent's money holdings distribution given by (27) in an indivisible money

environment, where the individual agent's initial money holdings distribution is given by ['�0t ]�

and ['�0t ]+ respectively, and the economywide initial distribution is given by ��t and �+t respec-

tively. It is easy to verify the hypothesis that the economywide initial money holdings distri-

bution satis�es condition ID3, hence it satis�es condition ID2, implies that x�t = L(��t ) and

x+t = L(�+t ) satisfy condition ID1. Then, by applying Proposition 2, Un(['�0t ]�; ��t )) gm
�
t and

Un(['�0t ]+; �+t ) ) gm
+
t as n ! 1. (Note that, the proof of Proposition 2 does not require the

individual agent's initial distribution to be degenerate). With the same argument as in the proof

of Proposition 3, then, there exists n̂ � 0 such that for all n � n̂, for all y = jp � x with j � 1

and x 2 [0; p),

���Un(['�0t ]�; ��t )[y; 1)� (m�
t )

j
��� < "=6 and

���Un(['�0t ]+; �+t )[y; 1)� (m+
t )

j
��� < "=6: (56)

This is because Un(['�0t ]�; ��t )[y; 1) = Un(['�0t ]�; ��t )[jp; 1) and Un(['�0t ]+; �+t )[y; 1) =

Un(['�0t ]+; �+t )[jp; 1). By (54) and (56), for all n � n̂,

���Un(['�0t ]�; ��t )[y; 1)� (m�)j
��� < "=3 and

���Un(['�0t ]+; �+t )[y; 1)� (m�)j
��� < "=3 (57)

26



Therefore, for any n � n̂, for y = jp� x with j � 1 and x 2 [0; p),

���Un+t('�00 ; �0)[y; 1)� gm
�

[y; 1)
��� =

���Un+t('�00 ; �0)[y; 1)� (m�)j
���

�
���Un+t('�00 ; �0)[y; 1)� Un(['�0t ]+; �+t )[y; 1)

���+ ���Un(['�0t ]+; �+t )[y; 1)� (m�)j
���

�
���Un(['�0t ]�; ��t )[y; 1)� Un(['�0t ]+; �+t )[y; 1)

���+
���Un(['�0t ]+; �+t )[y; 1)� (m�)j

���
�

���Un(['�0t ]�; ��t )[y; 1)� (m�)j
���+ 2

���Un(['�0t ]+; �+t )[y; 1)� (m�)j
���

< ":

The second inequality is due to (55) and the last one is due to (57). Hence, regardless of the

agent's initial money holdings �0, U
n('�00 ; �0)[y; 1)) gm

�
as n!1.

The weak convergence of the random variable ~�t(�0; !) established in Proposition 5 is now

shown to imply the convergence of E[~�t(�0; !)] to the aggregate mean money holdings M�.

Proposition 6. Consider any p > 0. Suppose that the economywide initial money holdings

distribution �0 2 �M�
satis�es condition ID3, and that all agents adopt strategy ~�p. Then the

expected money holdings of a generic agent adopting strategy ~�p converges to the per capita money

holdings M� regardless of his initial money holdings �0. That is, for any �0 2 N,

lim
t!1

E[~�t(�0; !)] =M�: (58)

Proof. Consider a generic agent with initial money holdings �0 = lp+x, l 2 N and x 2 [0; p), who,

as everyone else in the economy, adopts strategy ~�p. Suppose the economywide initial distribution

�0 satis�es condition ID3, hence it satis�es condition ID2. We �rst show that there exists a date tl

such that the sequence of distributions of the trader's money holdings from tl on, f'
�0
t (�0; !)g

1
t=tl

,

is dominated by a geometric distribution. Note that since condition ID2 is satis�ed, by Lemma

12, there exist t0 and �0 2 (0; 1) such that for all t � t0, [T t(�0)]
+ � g�

0
.

Given that the agent's initial money holdings is �0, for all y � �0, '
�0
0 [y;1) = 1, and for

all y > �0, '
�0
0 [y;1) = 0. By the law of motion (52) and (53), after l + 1 repeated operations

of U on '�00 , '�0l+1f0g = U l+1('�00 ; �0)f0g > 0, and for all y > (2l + 1)p + x, '�0l+1[y;1) = 0.

Then, for all t > l + 1, '�0t f0g = U t('�00 ; �0)f0g > 0, and for all y > (l + t)p + x, '�0t [y; 1) =

U t('�00 ; �0)[y; 1) = 0. Or equivalently, ['�0t ]+[p;1) < 1, and for all j > l+1+ t, ['�0t ]+[jp;1) =

0. Take tl = maxfl + 1; t0g. Choose �l 2 [�0; 1) such that ['�0t ]+[p;1) < (�l)
l+1+tl . Since

['�0t ]+[jp;1) is decreasing in j, for j � l+1+tl, ['
�0
t ]+[jp;1) � ['�0t ]+[p;1) � (�l)

l+1+tl � (�l)
j .
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For j > l + 1 + tl, ['
�0
t ]+[jp;1) = 0 � (�l)

j. Therefore, ['�0t ]+ � g�l . Given that �0 � �l and

tl � t0, [�tl ]
+ = [T tl(�0)]

+ � g�
0
� g�l . That is, both [�tl ]

+ and ['�0tl ]
+ are dominated by g�l .

Then, by a similar argument as in the proof of Proposition 5, for all t � tl,

'�0t = U t('�00 ; �0) = U t�tl('�0tl ; �tl) � U t�tl(['�0tl ]
+; [�tl ]

+) � g�l :

A random variable with geometric distribution corresponding to g�l is integrable. Because the

distributions of the sequence of trader's money holdings from tl on, f~�t(�0; !)g
1
t=tl

, is dominated

by the same geometric distribution, ~�t(�0; !) is uniformly integrable for t � tl. Then, by Theorem

25.12 (Billingsley 1995), weak convergence of '�0t to the aggregate limit distribution which is

geometric with mean M� by Proposition 5, implies that the expectation of ~�t(�0; !) converges to

the same mean M�.

This concludes our investigation of the distributions in the economy, given the all agents adopt

the presumed optimal strategy ~�p. To summarize, if the economywide initial money holdings

distribution �0 satis�es condition ID3, then the economywide money holdings sample distribution

as well as each individual agent's money holdings probability distribution converges. Furthermore,

the mean money holdings of each individual agent converges to the per capita money holdings

M� in the economy.

5. The Existence of Price-p Equilibrium

In this section, we show that if the initial distribution �0 satis�es condition ID3, the price-p

equilibrium de�ned in Section 3 is a Bayesian Nash equilibrium. In particular, we show that for

an arbitrary agent, given that all other agents in the economy adopt the strategy ~�p de�ned in

(11) and (12),9 it is optimal for the agent to adopt strategy ~�p as well. That is, no strategy

overtakes ~�p.

Consider a generic agent of any type. Suppose that the agent's initial money holdings is

�0. Since �0 is �xed and is taken as given when we compare di�erent strategies, for notational

convenience, we will suppress �0 as an argument of all functions such as � and ��t in the rest of

the section, and write them as functions of ! alone. Also note that given all the other agents

adopt strategy ~�p and the agent in question has measure 0, although his trading history will be

determined by his strategy �, his encounter history ! is independent of the strategy he adopts.

Let ��t (!) denote the agent's money holdings at the beginning of date t with encounter history

! if he adopts strategy �, ��0 (!) = �0. De�ne the agent's achievement function at the beginning

9Hence, the bid and o�er distributions are given by f ~Btg
1
t=0 and f ~Otg

1
t=0 de�ned in (13) and (14).
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of date t, A�
t : 
 ! R+ , to be the sum of his total utility up to date t and the future utility that

will be bought by the money accumulated up to date t, ��t , given that the agent buys his future

consumption goods at price p. That is, for any encounter history ! 2 
,

A�
t (!) =

t�1X
�=0

v�� (!) +
��t (!)

p
u (59)

where v�� (!) is de�ned in (6), and ��t (!) is de�ned recursively by (5). For notational convenience,

de�ne for all t � 0,

~At = A~�p

t ; ~vt = v~�
p

t ; ~�t = �~�
p

t : (60)

By the de�nition of the overtaking criterion (7), given that all other agents adopt strategy

~�p, any strategy that speci�es at any point of time to o�er at a price lower than p is obviously

overtaken by the corresponding strategy which replaces the lower o�er price by p. This is because

any transaction that would occur at price lower than p would have occurred at price p. Hence, the

seller in transaction would have been better o� by obtaining more money while su�ering the same

endowment loss or by obtaining the same amount of money while su�ering the less endowment

loss. In the rest of the paper when we compare strategies with ~�p, we exclude those strategies

with o�er price lower than p at any point of time. The following lemma shows that strategy ~�p

is associated with the highest achievement function of any strategy.

Lemma 14. Consider any p > 0. If all other agents adopt strategy ~�p, then for an arbitrary

agent facing any encounter history ! 2 
, adopting a strategy �, for all t � 0, A�
t (!) � ~At(!):

Proof. We prove the lemma by induction. Consider an agent of type i with a history ! 2 
.

Obviously, A�
0 (!) =

~A0(!) = �0u=p. Assume that the lemma holds up to date t, we compare an

arbitrary strategy � with ~�p at the beginning of date t+ 1, t � 0.

(i) !t1 = s; !t2 = p; and !t3 = 1. In this case, regardless of the agent's strategy (including ~�p),

A�
t+1(!) = A�

t (!).

(ii) !t1 = b; !t2 = p; and !t3 = 0: This is a case that the buyer encountered has no money. So

regardless of the strategy (including ~�p), no trade can take place. Consequently A�
t+1(!) =

A�
t (!).

(iii) !t1 = b; !t2 = p; and !t3 = y 2 (0; 1]. Adopting strategy ~�p implies ~At+1(!) � ~At(!) =

y(u� c) > 0: Depending on the strategy �, there are three subcases.
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(a) �t3(!) > p. Since the seller's o�er price is higher than the buyer's bid price p, no trade

will take place if strategy � is adopted. Hence, A�
t+1(!)�A

�
t (!) = 0 < ~At+1(!)� ~At(!).

(b) �t4(!) < y. In this case, the seller's o�er quantity is smaller than the amount buyer

wants to buy, no trade will take place if strategy � is adopted. Hence, A�
t+1(!) �

A�
t (!) = 0 < ~At+1(!)� ~At(!).

(c) �t3(!) = p and �t4(!) � y. In this case, trade yields the same net gain as by adopting

strategy ~�p, A�
t+1(!)�A�

t (!) = y(u� c) = ~At+1(!)� ~At(!).

In all three cases, A�
t+1(!) �

~At+1(!) � A�
t (!) � ~At(!) � 0: The last inequality is implied

by the induction hypothesis.

Therefore, we conclude that for any strategy �, for all history ! 2 
, A�
0 (!)�

~A0(!) = 0, and for

all t � 0, A�
t+1(!)�

~At+1(!) � 0: By induction, for all t � 0, A�
t (!) � ~At(!).

Proposition 6 states that if all other agents adopt strategy ~�p, and if the economywide initial

distribution �0 satis�es condition ID3, the expected money holdings of an agent adopting strategy

~�p converges to M�. The next lemma shows that if an agent adopts some other strategy �, then

in the limit, he may end up with more money on average.

Lemma 15. Consider any p > 0. Suppose that the economywide initial money holdings

distribution �0 satis�es condition ID3, and that an arbitrary agent adopts strategy � while all other

agents adopt strategy ~�p. If E[A�
t (!)� ~At(!)] 6! �1 as t!1, then lim inft!1 E[��t (!)] �M�.

Proof. For strategy �; for all ! 2 
, de�ne Æ�(!) to be the set of dates at which the agent

who adopts strategy � meets a buyer with money, and either his o�er price is above p or his o�er

quantity is below the buyer's bid quantity,10

Æ�(!) =
n
t j!t1 = b and !t3 > 0 and (�t3(!) > p or (�t3(!) = p and �t4(!) < !t3))

o
:

On these occasions, trade will not occur which would have occurred had the agent adopted strategy

~�p.

Claim 1. If E[A�
t (!)� ~At(!)] 6! �1 as t!1, then

P
t2Æ� !t3 <1 a.s.

10These are the relevant deviations of o�er strategy, since they block trade that would have occurred otherwise.
As stated earlier, we do not explicitly consider the deviation of o�ering at price below p since it is obviously
suboptimal. Also, we need not consider the case in which an agent deviates by o�ering to sell at price p and
quantity below 1, but the quantity happens to be above the buyer's bid quantity. In that case, trade will occur at
the buyer's bid quantity.
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To prove this, consider an arbitrary encounter sequence ! 2 
. For any date t 2 Æ�(!), given that

the agent adopts strategy �, no trade takes place, hence, A�
t+1(!)�A

�
t (!) = 0. On the other hand,

if the agent adopts strategy ~�p, then trade takes place at price p, ~At+1(!)� ~At(!) = !t3(u�c) > 0.

Therefore,

8t 2 Æ�(!) A�
t+1(!)� ~At+1(!) = A�

t (!)� ~At(!)� !t3(u� c): (61)

For t 62 Æ�(!), it is easy to check, as for all the cases considered in the proof of Lemma 14,

that A�
t+1(!) �

~At+1(!) = A�
t (!) � ~At(!). Hence, by (61) and the fact that A�

0 (!) =
~A0(!), ifP

t2Æ�(!) !t3 =1, then

lim
t!1

[A�
t (!)� ~At(!)] = lim

t!1

X
t2Æ�(!)

�!t3(u� c) = �1:

Therefore, if Pf! j
P

t2Æ�(!) !t3 =1g > 0, then limt!1 E[A�
t (!)� ~At(!)] = �1, which contra-

dicts to the assumption. Thus, the claim holds.

Given claim 1, for any " > 0, there exists t" > 0 such that Pf! j
P

t2Æ�(!); t>t"
!t3 < "g >

1 � "=2. Recall that for all t 2 Æ�(!), ~�pt2(!) = p, ~�pt3(!) = 1. De�ne �"(!) � min ft j t �

t"; ~�t(!) = 0g.

Claim 2. �" <1 a.s.

Suppose to the contrary. Let A = f! j 8t ~�t(!) > 0 g and suppose that P(A) > 0. Take an

arbitrary date t. For all n 2 N, de�ne Dn � f! j ~�t(!) 2 [np; (n+1)p) g. Then A =
S
n2N(A\Dn).

Since P(A) > 0, there exists j 2 N such that P(A \ Dj) > 0. Given that all other agents play

strategy ~�p and the random matching at each date is independent of those at other dates, the

probability that an agent with money holdings ~�t(!) 2 Dj spends all of his money in next j

consecutive dates is (1=2)j . That is,

P
n
! j ~�t+j(!) = 0 and ! 2 A \Dj

o
=
�1
2

�j
P(A \Dj) > 0

which contradicts the de�nition of the set A.

Claim 3. For all ! 2 
, for all t � �"(!), ~�t(!) � ��t (!) + p
P

�2Æ�(!); t"<�<t
!�3.

This claim can be proved by induction. For t = �"(!), the claim holds automatically since

~�t(!) = 0 � ��t (!)+ p
P

�2Æ�(!); t"<�<t
!�3. Suppose that it holds for some t � �"(!), consider the

date-(t+ 1) transaction.

(i) If !t1 = b; !t2 = p; !t3 2 [0; 1]; then ~�t+1(!) = ~�t(!) + p!t3.
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(a) If t 2 Æ�(!), then trade does not occur if the agent adopts strategy �, so ��t (!) =

��t+1(!). By induction hypothesis,

~�t+1(!) � ��t (!) + p
X

�2Æ�(!); t"<�<t

!�3 + p!t3 = ��t+1(!) + p
X

�2Æ�(!); t"<�<t+1

!�3:

(b) If t 62 Æ�(!), trade occurs at price p and quantity !t3 with both strategies � and ~�,

then, by induction hypothesis,

~�t+1(!) � ��t (!) + p
X

�2Æ�(!); t"<�<t

!�3 + p!t3 = ��t+1(!) + p
X

�2Æ�(!); t"<�<t+1

!�3:

(ii) If !t1 = s; !t2 = p; !t3 = 1; then ~�t+1(!) = ~�t(!)� p, and t 62 Æ�(!).

(a) If ~�t(!) < p, then, ~�t+1(!) = 0 � ��t+1(!) + p
P

�2Æ�(!); t"<�<t+1 !�3:

(b) If ~�t(!) � p, then, given that �t3(!) � 1 and the induction hypothesis,

~�t+1(!) � ��t (!) + p
X

�2Æ�(!); t"<�<t

!�3 � p �t3(!) = ��t+1(!) + p
X

�2Æ�(!); t"<�<t+1

!�3:

That is, ~�t+1(!) � ��t+1(!) + p
P

�2Æ�(!); t"<�<t+1 !�3. Hence, the claim holds for all t � �"(!).

By Claim 3, for all ! 2 
 such that
P

t2Æ�(!); t>t"
!t3 < ", for all t � �"(!),

��t (!)� ~�t(!) � �p ": (62)

Since �" <1 a.s., for the " chosen above, there exists �" > 0 such that Pf! j �"(!) � �"g > 1�"=2.

De�ne


1(") =
n
!
��� X
t2Æ�(!); t>t"

!t3 < " and �"(!) � �"

o


2(") =
n
!
��� X
t2Æ�(!); t>t"

!t3 � " or �"(!) > �"

o
:

Then 
 = 
1(") [
2("), P(
1(")) > 1� " and P(
2(")) < ". Take " = 1=n2. For ! 2 
1(1=n
2),

t1=n2 � �1=n2(!) � �1=n2 . For a �xed n, consider the sequence f��t (!)� ~�t(!)g for t � �1=n2 . Let


1n � 
1(1=n
2) and 
2n � 
2(1=n

2).

lim inf
t!1

E[��t (!)� ~�t(!)] � lim inf
t!1

Z

1n

(��t (!)� ~�t(!))dP(!)

+ lim inf
t!1

�Z

2n

��t (!)dP(!) �

Z

2n

~�t(!)dP(!)
�
: (63)

The �rst term on the right hand side of (63) is greater than (�p=n2)P(
1n) � �p=n2 because

(62) holds for all ! 2 
1n. We will now prepare to consider the second term on the right side of

(63). Note that by Proposition 6, the limit of E[~�t(!)] exists and equals M�.
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Claim 4. For any n � 1, limt!1

R

2n

~�t(!)dP(!) =M�P(
2n).

To prove this claim, for any t � 0, de�ne

�t �
n
! j 9t̂ [t1=n2 < t̂ � t and t̂ 2 Æ�(!)] or �1=n2(!) > �1=n2

o
:

Then, for all t � 0, �t � �t+1, [
1
t=0�t = 
2n, and P(�t) ! P(
2n) as t ! 1. Hence, for any

" > 0, there exists t1 � 0 such that for all t � t1,

jP(�t)�P(
2n)j <
"

3M�
: (64)

Let � be the parameter such that the geometric distribution g� dominates both the aggregate

money holdings distribution as well as the agent's money holdings distribution from some date

onward. (See the proof of Proposition 6 for the construction of �.) For the " above, choose k > 0

such that X
j�k

j(1� �)�j < "=3:

By Proposition 5, the distribution of the agent's money holdings converges weakly to the aggregate

money holdings distribution gm
�
. That is, for the k chosen above, for all � 2 (0; (m�)k), there

exists t2 � t1 such that for all t � t2, jPf~�t(!) � kpg�(m�)kj < �, which implies 0 < (m�)k�� <

Pf~�t(!) � kpg. Since f
2nn�tg
1
t=0 is decreasing and P(
2nn�t) ! 0 as t ! 1, there exists

t3 � t2 such that for all t � t3, P(
2nn�t) � (m�)k � � < Pf~�t(!) � kpg. Then, for all t � t3,Z

2nn�t

~�t(!)dP(!) �

Z
f!: ~�t(!)�kpg

~�t(!)dP(!): (65)

Furthermore, given that the agent's money holdings distribution is dominated by g� from some

date on, there exists t4 � t3 such that for all t � t4, Pf~�t(!) � kpg � �k. Then, for all t � t4,Z
f!: ~�t(!)�kpg

~�t(!)dP(!) �
X
j�k

j(1� �)�j < "=3: (66)

By inequalities (65) and (66), for all t � t4,Z

2nn�t

~�t(!)dP(!) � "=3: (67)

For any t � �1=n2 , �t 2 Bt. For any � > t, !� is independent of Bt, and in particular,

the distribution of the trading partner's money holdings conditional on Bt is given by �� , and

the conditional probability that the trading partner is a potential seller is one half. Therefore,

analogously to Proposition 6, lim�!1 E[~�� (!)j�t] = M�. Then, for all t � t4, there is a ��t such

that for all � � ��t, ���
Z
�t

~�� (!)dP(!) �M�P(�t)
��� < "=3: (68)
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Combining the results given by (64), (67) and (68), for some t � t4, for all � � ��t, we have

���
Z

2n

~�� (!)dP(!) �M�P(
2n)
���

�
���
Z
�t

~�� (!)dP(!) �M�P(�t)
���+M�

���P(�t)�P(
2n)
���+

Z

2nn�t

~�t(!)dP(!)

< "=3 +M� ("=3M�) + "=3 = ":

That is, the claim holds.

By Claim 4, the second lim inf on the right hand side of (63) can be broken down to two terms,

lim inf
t!1

�Z

2n

��t (!)dP(!) �

Z

2n

~�t(!)dP(!)
�
= lim inf

t!1

Z

2n

��t (!)dP(!) �M�P(
2n): (69)

The �rst term of the right hand side of (69) is nonnegative. Therefore,

lim inf
t!1

E[�
�
t (!)� ~�t(!)] � �p=n2 �M�P(
2n) � �

p+M�

n2
: (70)

Take limits as n ! 1 in inequality (70). The left hand side is unrelated to n, hence constant,

and the right hand side goes to 0. Therefore, lim inft!1 E[��t (!)] � limt!1 E[~�t(!)] = M� by

Proposition 6.

Now, we are ready to show the last step for the existence of the price-p equilibrium.

Proposition 7. Consider any p > 0. If the economywide initial money holdings distribution

�0 2 �M�
satis�es condition ID3, and if all other agents adopt strategy ~�p, then it is optimal for

an arbitrary agent to take strategy ~�p as well. That is, there is no strategy � that overtakes ~�p.

Proof. For an arbitrary strategy �, consider the following two cases.

Case 1. lim supt!1 E[��t (!)] � M�. Then, for any " > 0, there exists an in�nite set

G�
" = ft jE[��t (!)] � M� � "=2g. Since limt!1 E[~�t(!)] = M� by Proposition 6, the set J�" =

ft jE[~�t(!)] < M� + "=2g is also in�nite. For all t 2 G�
" \ J�" , by Lemma 14,

0 � E[A
�
t � ~At] = E[

t�1X
�=0

v�� �
t�1X
�=0

~v� ] + E[
��t
p
�

~�t
p
]u � E[

t�1X
�=0

v�� �
t�1X
�=0

~v� ]�
u

p
"

Since " can be arbitrarily small, the above inequality implies that

lim inf
t!1

E[

t�1X
�=0

v�� �
t�1X
�=0

~v� ] � 0:

By de�nition of overtaking criterion (7), strategy � does not overtake ~�p.
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Case 2. lim supt!1 E[��t (!)] < M�. By the proof of Lemma 14, for all ! 2 
, fA�
t (!) �

~At(!)g
1
t=0 is a weakly decreasing sequence. If E[A�

t (!)� ~At(!)] 6! �1 as t!1, by Lemma 15,

lim inft!1 E[��t (!)] �M�, which contradicts to the assumption. If E[A�
t � ~At]! �1 as t!1,

and since

E[A
�
t � ~At] = E[

t�1X
�=0

v�� �
t�1X
�=0

~v� ] + E[
��t
p
�

~�t
p
]u

then we have

lim inf
t!1

E[

t�1X
�=0

v�� �
t�1X
�=0

~v� ] � lim inf
t!1

E[A
�
t � ~At] +

u

p

�
M� � lim inf

t!1
E[�

�
t ]
�
= �1:

Again by the de�nition (7), strategy � does not overtake ~�p.

By Proposition 7, strategy ~�p is a Bayesian Nash strategy according to the overtaking criterion.

This proves (ii) of the equilibrium de�nition, and (iii) is evidently satis�ed. Hence, the price-p

equilibrium always exists.

6. Conclusion

This article has provided an analysis of equilibrium in an in�nite horizon economy where

trade must occur pairwise rather than in a central market, and where the exchange of �at money

for goods overcomes a lack of double coincidence of wants. Although an agent can bargain

with only one trading partner at a time, trade has the characteristics of anonymity and absence

of market power. These characteristics are ensured by assumptions about the random matching

process for pairwise trade, agents' lack of information about trading partners' money holdings and

histories, and absence of time preference. (This last assumption deprives an agent's current trading

partner of monopoly power because the agent considers consumption in the future to be a perfect

substitute for current consumption.) Goods in the economy are divisible and perishable, with new

endowments being received and consumption occurring at every date. Money is also divisible,

and is not subject to inventory constraints. Exchange within each trading pair is governed by a

double auction mechanism.

Two main results have been obtained. The �rst is a characterization of the evolution of

individual agents' money holdings and of the economywide distribution of these holdings when

trading occurs as extensively as possible at a speci�ed, economywide price. This characterization

is instrumental to deriving the second result: that for any price, and for any initial distribution of

money holdings that is dominated in the tail by a geometric distribution, there is an equilibrium

in which all trades occur at the speci�ed price. This second result shows the existence and also
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the indeterminacy of single price equilibrium, a special class of Bayesian Nash equilibrium of the

economy.

That single price equilibrium exists, despite the fragmentation of trading activity, con�rms

an expectation that economists have long held.11 While not a foregone conclusion, this result

is consistent with numerous earlier �ndings such as those cited in the introduction. Camera

and Corbae (1999) show that price dispersion characterizes equilibrium in a model economy

that resembles the present one in many respects, but trading in that economy is not completely

anonymous because agents observe their trading partners' money holdings. As Rubinstein and

Wolinsky (1990) emphasize, lack of anonymity is conducive to the existence of many equilibria in

which agents can be treated disparately.

The indeterminacy of equilibrium in the model economy is a surprising result. The nature of

this indeterminacy is rather di�erent from that which is familiar from Walrasian general equilib-

rium models such as overlapping generations models with �at money.12 In those models, there

is an indeterminacy of relative prices between various dated, location speci�c, state contingent

commodities. In the present model, all such commodities would trade at par because they all

have the same nominal price. It is the nominal price level, rather than the relative prices of

various goods, that is indeterminate. This price level indeterminacy has a real e�ect through its

inuence on the distribution of money holdings, with agents not holding money being unable to

participate in bene�cial transactions. This e�ect is a further example of the existence of Pareto

dominated equilibria in coordination game models, such as macroeconomic models due to Cooper

and John (1988) and Diamond (1984), where an ineÆciently low level of economywide search ef-

fort or other complementary investment results from agents' failure to take proper account of the

positive external e�ects of their actions. The trading mechanism in the present model does not

provide a coordination device to take advantage of the positive externality that sellers collectively

could provide by o�ering their endowment at a lower nominal price. If the market price could be

lowered in that way, then the aggregate real money balances M�=p in the economy would increase

and welfare would improve.

There are a number of alternative model economies that might be examined to investigate

whether the indeterminacy of equilibrium is robust to re-speci�cation. Among them would be

to substitute Stahl-Rubinstein strategic bargaining for a double auction mechanism as a repre-

sentation of strategic price/quantity determination for transactions; to impute discounted utility

11Indeed, we strongly suspect that all stationary Bayesian Nash equilibria in this model economy are single price
equilibria. Green and Zhou (2001) prove this result for a virtually identical model.

12Cass (1992) and Werner (1990) show that indeterminacy of equilibrium is a generic feature of Walrasian
economies with incomplete markets or other forms of restricted market participation.
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preferences, rather than preferences characterized by an overtaking criterion, to agents; and to

introduce a durable good alongside the perishable commodities currently traded. We consider the

�rst of these alternatives, Stahl-Rubinstein bargaining, to be the one most likely to overturn the

indeterminacy result by itself.

Indeterminacy of the steady state money holdings distribution, which is the key to the equi-

librium indeterminacy result in the present model, has been exhibited in closely related model

economies with discounted utility preferences and a durable, tradable good.13 We conjecture that

these economies exhibit indeterminacy of dynamic equilibrium from an initial state (under some

assumptions such as that the initial money holdings distribution is nice and that the discount

factor is close to 1), as well as indeterminacy of steady state distributions.

Regarding the issue of Stahl-Rubinstein bargaining versus double auction mechanisms, and

more generally regarding a research program of investigating the robustness of the equilibrium in-

determinacy result derived here, we would o�er three methodological observations. First, neither

of the two types of representation of strategic transactions is a literal model of actual economic

activity or is the uniquely privileged representation in any other way, especially since a wide

spectrum of mechanisms are actually used to conduct various transactions. At the very least, the

result proved here warrants the interpretation that some transaction mechanisms may be suscep-

tible to indeterminacy of equilibrium if they are predominantly used in an economy. We hope

that the present result may stimulate the development of further models that pay closer attention

to the micro-structure of transactions and that might provide deeper understanding of what is

required for equilibrium to be determinate. Second, while indeterminacy of equilibrium may be a

symptom that a model is incompletely speci�ed (in a sense resembling the idea that when there

are fewer equations than unknowns, a well motivated equation may have been ignored), indetermi-

nacy does not necessarily show that a model is misspeci�ed or implausible. While indeterminacy

of equilibrium would be an inconvenient situation for policy analysis, the possibility that actual

economies may exhibit this feature cannot be ruled out. Third, assumptions or features of speci-

�cation that make the di�erence between a model economy having determinate or indeterminate

equilibrium should be regarded as economically crucial. Once discovered to have such an e�ect,

an assumption should not be regarded as merely a convenient formal simpli�cation|even if that

is why it was originally introduced. In view of the indeterminacy of equilibrium that results when

indivisibility and �nite-inventory-constraint assumptions about money are avoided in a random

matching model, such determinacy-inducing assumptions should not casually be adopted.

13Cf. Green and Zhou (1998), Zhou (1999a,b).
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Appendix

The Proof of Lemma 3: The function Z is strictly convex on �.

Take arbitrary x; y 2 �, x 6= y, and � 2 (0; 1). Let w(�) = (1 � �)x + �y = x + �(y � x).

The set � is convex, hence w(�) 2 �. For all k 2 N, de�ne Æk � yk � xk and

zk(w(�)) �
(wk(�) � wk+1(�))

2

wk(�)
=

(xk � xk�1 + �(Æk � Æk+1))
2

xk + �Æk
:

Direct computation reveals that

d2Z(w(�))

d�2
=

1X
k=0

d2zk(w(�))

d�2
=

1X
k=0

2

xk + �Æk

�
Æk � Æk+1 �

Æk(xk � xk+1 + �(Æk � Æk+1)

xk + �Æk

�2
� 0:

Moreover d2Z(w(�))
d�2

= 0 if an only if 8k 2 N
d2zk(w(�))

d�2
= 0, which is equivalent to 8k 2 N yk+1xk =

ykxk+1, that is (since x0 = y0 = 1), 8k 2 N xk = yk. Given that x 6= y, d2Z(w(�))
d�2

> 0. Hence, Z

is strictly convex on �.

The Proof of Lemma 5: The function Z is continuous on S.

We need to show that for any given " > 0, for any x 2 S, there exists a Æ-neighborhood of x

such that for all y satisfying d(x; y) < Æ, jZ(x)� Z(y)j < ".

Fix an arbitrary " > 0, and an arbitrary x 2 S. Since xk is decreasing in k and
P1

k=1 xk =M ,

there exists I � 1 such that

xI < "=8: (71)

Let J = max fj j j � I; xj > 0g. So xJ > 0. Without loss of generality, assume J � I � 1. Let

Æ = ("=8)xJ > 0. (Otherwise xJ+1 = 0, so J + 1 satis�es xJ+1 < "=8.) Then for any y such that

d(x; y) < Æ,

yI � jyI � xI j+ xI � d(x; y) + xI < ("=8)xJ + "=8 � "=4: (72)

For all k 2 N, de�ne �k(x) � (xk � xk+1)=xk � 1, and �k(y) � (yk � yk+1)=yk � 1. Then, for

k � I � 1, xk � xJ ,

j�k(x)� �k(y)j �
1

xk

�
jxk+1 � yk+1j+ jxk � ykj

yk+1

yk

�
<

2

xJ

"

8
xJ =

"

4
: (73)

Now, applying (71){(73), we have

jZ(x)� Z(y)j
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=

I�1X
k=0

���(xk � xk+1)�k(x)� (yk � yk+1)�k(y)
���+X

k�I

(xk � xk+1)�k(x) +
X
k�I

(yk � yk+1)�k(y)

�
I�1X
k=0

�
(xk � xk+1)j�k(x)� �k(y)j+ jxk � ykj�k(y) + jxk+1 � yk+1j�k(y)

�
+ xI + yI

<
I�1X
k=0

(xk � xk+1)
"

4
+

I�1X
k=0

jxk � ykj+
I�1X
k=0

jxk+1 � yk+1j+ "=8 + "=4

< "=4 + "=8 + "=8 + "=8 + "=4 < ":

We have shown that for any given " > 0, for any x 2 S, there is Æ > 0 such that for all y satisfying

d(x; y) < Æ, jZ(y)� Z(x)j < ". Hence, Z is continuous on S.

The Proof of Lemma 6: The mapping T is continuous on S.

We need to show that for any given " > 0 and x 2 S, there is a Æ > 0 such that for all y

satisfying d(x; y) < Æ, d(T (x); T (y)) < ".

Fix an arbitrary " > 0 and an arbitrary x 2 S. By (19), for all y 2 S, for all k � 1,

Tk(y) =
1� y1
2

yk +
1

2
yk+1 +

y1
2
yk�1:

Take Æ = "=3 > 0, and let y be such that d(y; x) < Æ. Then,

d(T (x); T (y)) =

1X
k=1

jTk(y)� Tk(x)j

=

1X
k=1

1

2

�
jxk � ykj+ jxk+1 � yk+1j+ x1jxk � ykj+ x1jxk+1 � yk+1j+ (yk + yk+1)jx1 � y1j

�

<
1

2

�
"=3 + "=3 + "=3 + "=3 + "=3 + "=3

�
= "

Therefore, T is continuous on S.

The Proof of Lemma 7: For every vector � 2 X , the set S� is compact.

To prove S� is compact, we need to show that S� is complete and totally bounded subset of

X . The completeness of S� is trivial given that S is complete, and the proof is omitted here. To

show that S� is totally bounded, we need to show that there exist a �nite "-net for S� in X for

any " > 0.
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Fix an arbitrary " > 0. Since � 2 X ,
P1

k=0 �k < 1. Hence, there exists I > 0 such thatP
k>I �k < "=2. For any x 2 S�, let x̂ be the vector of x truncated at I, x̂ = (x0; x1; : : : ; xI ; 0; 0; : : :).

Then d(x; x̂) =
P

k>I xk �
P

k>I �k < "=2. Let Ŝ� be the set of x̂ associated with x 2 S�. The

set Ŝ� is a totally bounded in I-dimensional Euclidean space (with the usual metric). Let A be

a �nite "=2-net for Ŝ�. Then A is a �nite "-net for S�.

The Proof of Lemma 8: For any x 2 S and any � 2 (0; 1), if x �d �
�, then T (x) �d �

�.

Suppose that there exists � 2 (0; 1) such that x �d ��. By de�nition, x �d �
� implies that

xk � �k for all k 2 N. By equation (19), for all k � 1,

Tk(x) =
1

2

�
(1� x1)xk + xk+1 + x1xk�1

�
�

1

2

�
(1� x1)�

k + �k+1 + x1�
k�1

�
:

Since the expression in the right hand side of the above inequality is an increasing function of x1

and by assumption, x1 � �,

Tk(x) �
1

2

�
(1� �)�k + �k+1 + ��k�1

�
= �k:

By de�nition, T0(x) = 1 = ��0. Therefore, T (x) �d �
�.

The Proof of Lemma 9: For any �1; �2 2 �, if �1 � �2, then T (�1) � T (�2).

For any �1; �2 2 � such that �1 � �2, for any nondecreasing function f : R+ ! [0; 1], we

have14 Z 1

0
fd�1 �

Z 1

0
fd�2: (74)

For any y � p, de�ne

f(x) =

�
�1[y � x;1) if x < p
�1[y � p;1) if x � p

Then, by (32) and (74),

�(�1)[y;1) =

Z 1

0
f(x)d�1(x) �

Z 1

0
f(x)d�2(x)

=

Z
[0;p)

�1[y � x; 1)d�2(x) + �2[p;1)�1[y � p;1)

�

Z
[0;p)

�2[y � x; 1)d�2(x) + �2[p;1)�2[y � p;1) = �(�2)[y;1)

14This is a standard result about stochastic dominance.
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The last inequality holds because �1 � �2. For any y < p, de�ne

f(x) =

�
�1[y � x;1) if x < y
1 if x � y

Then, by (33) and (74),

�(�1)[y;1) =

Z 1

0
f(x)d�1(x) �

Z 1

0
f(x)d�2(x)

=

Z
[0;y)

�1[y � x; 1)d�2(x) + �2[y;1)

�

Z
[0;y)

�2[y � x; 1)d�2(x) + �2[y;1) = �(�2)[y;1)

That is, �(�1) � �(�2). Also, by equations (34) and (35), �(�1)[0;1) = �(�2)[0;1) = 1, and for

any y > 0,

�(�1)[y;1) = �1[y + p;1) � �2[y + p;1) = �(�2)[y;1)

we have �(�1) � �(�2): Hence, by (36) and (37), �1 � �2 implies T (�1) � T (�2).

The Proof of Lemma 11: For any � 2 �M�
, T n(�)(pN) ! 1 as n!1.

By Lemma 10, for a given � 2 �M�
, T n(�)(pN) is nondecreasing in n. Since T n(�)(pN) is

bounded by 1, it has a limit � � 1. We want to show that � = 1. Suppose to the contrary, � < 1.

Let n� � minfn jnp > 2M�=(1� �) g. Since for any n � 0, T n(�) 2 �M�
, or

R1
0 �dT n(�) =M�,

we have T n(�)[n�p; 1) < (1� �)=2, which implies

1X
l=n�

T n(�)(lp; (l + 1)p) <
1� �

2
:

Correspondingly,
n��1X
l=0

T n(�)(lp; (l + 1)p) >
1� �

2
: (75)

Therefore, there exists l� < n� such that for an in�nite sequence n0; n1; : : :, for any k � 0,

T nk(�)(l�p; (l� + 1)p) >
1� �

2n�
(76)

(otherwise, a contradiction of (75)). Without loss of generality, assume that for any k � 0,

nk+1 � nk + l� + 1. Then, by Lemma 10 and (76), for any k � 0,

T nk+1(�)(pN) � T nk+l
�+1(�)(pN)

� T nk(�)(pN) + 2�(2l
�+1)

h
T nk(�)(np; (n+ 1)p)

i2

� T nk(�)(pN) + 2�(2l
�+1)

h1� �

2n�

i2
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The assumption � < 1 then implies that limk!1 T nk+1(�)(pN) = 1, which contradicts the fact

that for any k � 1, T nk+1(�)(pN) � 1. Hence, � = 1.

The Proof of Lemma 12: For an arbitrary � 2 �, if there exists � 2 (0; 1) such that �+ � g�,

then for any n � 0, [T n(�)]+ � g�.

Take an arbitrary � 2 � and some � 2 (0; 1) such that �+ � g�. We �rst show that

[T (�)]+ � T (�+): (77)

Since both [T (�)]+ and T (�+) have all their probability mass concentrated on pN, we need to

check (77) only on pN. For any k � 1, the only transactions that would result di�erence between

[T (�)]+fkpg and T (�+)fkpg are those trades between buyers with money holdings �b 2 (0; p)

and sellers with money holdings �s 2 ((k � 1)p; kp) such that �b + �s < kp. Such a trade

will add the seller to the measure [T (�)]+fkpg, but for T (�+), the same trade occurs as if it

is between a buyer with �b = p units of money and a seller with �s = kp units of money,

which increases the seller's money holdings to (k + 1)p rather than kp. That is, for all k � 1,

[T (�)]+[(k + 1)p; 1) � T (�+)[(k + 1)p; 1). It is easy to check that [T (�)]+fpg = T (�+)fpg.

Therefore, [T (�)]+ � T (�+). Repeatedly applying (77), we have for any n � 0,

[T n(�)]+ � T ([T n�1(�)]+) � T 2([T n�2(�)]+) � : : : � T n(�+) � g�:

The last inequality is because �+ � g�.
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