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Abstract

We study a simple model of production, accumulation, and redistribution, where agents
are heterogeneous in their initial wealth, and a sequence of redistributive tax rates is voted
upon. Though the policy is infinite-dimensional, we prove that a median voter theorem
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1 Introduction

We study a simple model of production, accumulation, and redistribution, where agents are

heterogeneous in their initial wealth, and where a sequence of redistributive tax rates are chosen

through voting. Decisions to save are endogenous, which means that they depend on the time

profile of future tax rates.

Since the tax rate need not be constant, we encounter all the richness and all the difficulty of

the optimal tax literature (see for example Chamley (1985), (1986), Judd (1985), Benhabib and

Rustichini (1997), Chari and Kehoe (1999), Atkeson, Chari and Kehoe (1999)). Furthermore,

since agents vote over a sequence of tax rates, the usual single-peakedness assumption required

for the median voter theorem cannot be used. While poorer households will tend to favor more

redistribution through capital-income taxes than richer households, the specific path preferred by

each household may vary in complicated ways that depend on the distribution of local elasticities

of intertemporal substitution.

The contribution of our paper is twofold. First, we prove that, when preferences are identical

and Gorman aggregable, a Condorcet winner exists. This is achieved by showing that preferences

satisfy an order restriction, as discussed in Rothstein (1990,1991) and in Gans and Smart (1996).

This technique can have a wider application in environments where voting occurs over sequences

of policies but heterogeneity among voters is restricted to a single dimension. Second, we prove

that the policy chosen by majority voting has the “bang-bang” property: capital income taxes

remain at the upper bound until they drop to 0, with at most one period in between. This

generalizes to heterogeneous households a result first proven by Chamley (1986) in the context

of a representative agent. When redistributive considerations are strong and the government

ability to tax capital is limited, it is possible that the median voter prefers to keep the tax rate

at its maximum allowed value in all periods, as we show through an example.

The “bang-bang” property collapses a multidimensional policy vector into a single choice

over the optimal stopping time, with poorer households favoring maximal capital-income taxes

for a longer period than rich ones. Gorman aggregation, however, delivers a stronger result, as

a median voter result applies to all pairwise comparisons of policy sequences.
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2 The Model

We have a production economy where output yt at time t is produced by competitive firms using

capital kt and labor lt according to the production function

yt = F (kt, lt), (1)

with F linearly homogeneous. Without loss of generality, capital depreciates fully in each period.1

There is a continuum of agents of unit measure, with agents indexed by i. In the initial period

0, they each own a wealth level, W i
0 (made of capital and government debt). In each period,

the government levies nonnegative proportional taxes on labor income νt and capital income τ t,

subject to an exogenous upper bound τ̄ .2 The government uses tax receipts and one-period debt

to pay for spending on a public good at an exogenous rate {gt}∞t=0, and to finance a lump-sum

transfer Tt that is used for redistribution.3

Household preferences are given by

∞∑
t=0

βtu
(
ci
t

)

where ci
t is period t consumption by agent i. We will assume that household utilities are re-

stricted to satisfy Gorman aggregation, that is to have linear Engel curves. These preferences

1Any undepreciated capital can be accounted for by adding (1 − δ)kt to the definition of F .
2The upper bound could be justified by the presence of a “black market technology” that allows households

to shield their income from observation by the tax collector at a proportional cost τ̄ . The zero lower bound will

not be binding for the distribution of wealth that we will consider. Also, notice that we assumed the tax rate to

hit both principal and income from capital. This can be changed with no effect on the results.
3Bassetto (2005) proves that the full specification of a government strategy is needed to ensure that a given

policy choice does not give rise to multiple equilibria. We assume here that the government will adjust government

spending in response to unanticipated shortfalls/excesses in tax or borrowing revenues in any given period. This

ensures a unique equilibrium, given tax rates. While government spending is allowed to vary, voters are restricted

to choose policies such that the exogenous target {gt}∞t=0 is achieved at the equilibrium, which would be justified

if all households receive a sufficiently large disutility from deviations from this target. Our analysis could be

extended to account for endogenous spending.
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are exhausted by the exponential and power classes (see Pollak, 1971) which coincide with the

HARA class of utility functions.

Assumption 1 Household preferences are given by4

u(c) =
σ

1 − σ

(
A

σ
c + B

)1−σ

. (2)

Each household is endowed with 1 unit of labor, which it supplies inelastically. W i
t is the

wealth of household i at time t, consisting of capital and maturing bonds. The period-by-period

household budget constraint is

yi
t = (1 − τ t) rtW

i
t + (1 − νt) wt + Tt ≥ ci

t + W i
t+1, (3)

where rt is the gross return to capital and wt is the wage at time t. We have imposed the no

arbitrage condition by stipulating that the net return on bonds and capital are equal. We also

assume that households cannot run Ponzi schemes:

lim
t→∞

(
t+1∏
s=1

(rs(1 − τ s))
−1)W i

t+1 ≥ 0 (4)

The household budget constraint in present value form is:

∞∑
t=0

ci
t

t∏
s=0

(rs(1 − τ s))
−1 = W i

0 +
∞∑

t=0

(Tt + wt (1 − νt))
t∏

s=0

(rs(1 − τ s))
−1 (5)

For convenience we define prices qt :

qt = β−t
t∏

s=1

(rs)
−1 (6)

Rather than working with the sequence {τ t}∞t=0, it is more convenient to work with the following

transformation, which is one to one over the relevant domain:

1 + θt :=
t∏

s=0

(1 − τ s)
−1 (7)

4The HARA class reduces to logarithmic utility for σ = 1, to quadratic utility for σ = −1, to CRRA utility

for σ > 0 and B = 0, to linear utility for σ = 0, and to exponential utility for σ → ∞ and B > 0.

4



We can write (5) as:

∞∑
t=0

βtci
tqt (1 + θt) = W i

0 +
∞∑

t=0

(Tt + wt (1 − νt)) βtqt (1 + θt) (8)

Let cs and bs represent the aggregate levels of consumption and bonds at time s.

Definition 1 A competitive equilibrium is

{
cs, ks, bs, τ s, νs, Ts, rs,ws,

{
ci
s,W

i
s

}
i∈(0,1)

}∞

s=0

that satisfies

1. {{
ci
s,W

i
s

}
i∈(0,1)

}∞

s=0
(9)

maximize household utilities subject to (3) and (4);

2. Factor prices equal their marginal products:

rt = Fk (kt, 1) , wt = Fl (kt, 1) ;

3. Markets clear ∫
ci
tdi = ct,

∫
W i

t di = kt + bt;

4. The government budget satisfies:

a) τ trt (kt + bt) + νtwt + bt+1 = rtbt + gt + Tt (10)

b) lim
t→∞

(
t+1∏
s=1

(rs(1 − τ s))
−1)bt+1 = 0

Let the sequence {gs}∞s=0 represent the exogenous government expenditures. With no as-

sumptions on the sequence, it would of course be possible that some gs > f s (f s−1 (...f 0(k0))

where fn (kn) = F (kn, 1) , so that the feasibility condition (11) in the Theorem below cannot

be satisified; however, a competitive equilibrium will exist if we assume that {gs}∞s=0 is not too

high. We assume further that this sequence is sufficiently small that no household faces a budget

5



constraint with negative resources in any of the competitive equilibria analyzed below.5 First, we

characterize properties of the competitive equilibria that will be used in proving the subsequent

theorems.

Theorem 1 For any sequence {cs, ks}∞s=0, there exists a competitive equilibrium

{
cs, ks, bs, τ s, νs, Ts, rs,ws,

{
ci
s,W

i
s

}
i∈(0,1)

}∞

s=0

if and only if the sequence satisfies

1.

kt+1 + ct + gt = F (kt, 1) (11)

2.

(Fk (kt+1, 1) (1 − τ̄))−1 ≤ βtu′ (ct+1)

u′ (ct)
≤ (Fk (kt+1, 1))−1 (12)

Proof. First, we prove that conditions 1 and 2 are sufficient. We set rt = Fk (kt, 1) , wt =

Fl (kt, 1) . Taxes on capital satisfy

(1 − τ t+1)
−1 =

βtrt+1u
′ (ct+1)

u′ (ct)
=

1 + θt+1

1 + θt

. (13)

In present value form the government budget constraint is:

∞∑
t=0

(wtνt − Tt) βtqt (1 + θt) =
∞∑

t=0

(gt − τ trtkt) βtqt (1 + θt) + b0

Pick any sequence {νt, Tt, bt+1}∞0 that satisfies the above, as well as (10).6 This sequence is not

unique because of Ricardian equivalence.

5The analysis could be extended to the case in which some households are insolvent, but this would require

assumptions about the consequences of insolvency. Notice also that we abstract from the nonnegativity constraint

on consumption; if σ > 0 and B ≤ 0, the constraint will never be binding.
6It is possible that for a given {gs}∞s=0 with large elements some of the lump-sum transfers Tt will be negative,

since we have not explicitly constrained them to be non-negative. However, as is clear from Theorem 3 below,

a median voter with wealth below the mean will not prefer a tax sequence that relies solely on lump-sum taxes

because of distribution considerations.
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The household first order condition, iterating (13), is

A
(

A
σ
ci
t + B

)−σ

A
(

A
σ
ci
0 + B

)−σ =
qt (1 + θt)

1 + θ0

=
A
(

A
σ
ct + B

)−σ

A
(

A
σ
c0 + B

)−σ (14)

This implies
A

σ
ci
t + B = αi

(
A

σ
ct + B

)
(15)

If αi is set such that the present value budget constraint (5) holds at the given prices and taxes,

the resulting sequence solves the household’s optimization problem.

We now have to show that
∫

ci
tdi = ct, which will hold if

∫
αidi = 1. Integrating the present

value budget constraints over households we have:

∞∑
t=0

βtqt (1 + θt)

∫ (
αict +

σB (αi − 1)

A

)
di =

W0 +
∞∑

t=0

(Tt + wt (1 − νt)) βtqt (1 + θt)

(16)

From the feasibility constraint we have ct + gt = F (kt, 1) − kt+1, which implies

∞∑
t=0

(ct + gt) βtqt (1 + θt) =
∞∑

t=0

F (kt, 1) βtqt (1 + θt) −
∞∑

t=0

kt+1β
tqt (1 + θt)

Using the zero-profit condition of the firms we have:

∞∑
t=0

(ct + gt) βtqt (1 + θt) = k0 +
∞∑

t=0

(wt + τ trtkt) βtqt (1 + θt)

Using (10) this is equivalent to:

∞∑
t=0

ctβ
tqt (1 + θt) = W0 +

∞∑
t=0

(Tt + wt (1 − νt)) βtqt (1 + θt) (17)

For (17) and (16) to hold simultaneously we must have
∫

αidi = 1, which implies market clearing.

To prove necessity, the feasibility condition 1 is implied by market clearing and the household

and government budget constraints; condition 2 is implied by the first-order conditions of the

household problem (14) and the bounds on capital-income tax rates.

7



3 The Median Voter Theorem

In this section we prove that the median voter theorem will hold in our setting. We assume

that the sequence of taxes and transfers is set by voting at time 0. Since agents vote over an

infinite sequence of tax rates and transfers, the usual single-peakedness assumption required for

the median voter theorem cannot be used. Our proof will instead rely on the following two

observations:

1. Households differ from each other along a single dimension, i.e., their initial capital holdings.

2. Any change in tax rates affects households in two ways: by the redistribution of wealth that

it implies, and by the distortion in after-tax prices that it generates. Gorman aggregation

and the fact that all households have the same discount factor imply that the distortion in

after-tax prices has a proportional effect on all households, independent of wealth. Thus,

all households trade off a single, common measure of distortions against the degree of

redistribution engineered by the distortion. Households of different wealth will disagree

on the optimal point along this trade-off, but their disagreement will naturally be ordered

according to their initial wealth level.

To prove the theorem we first establish the following Lemma:

Lemma 1 For each household i there exists a function G : R
4 → R such that the utility of the

household in a competitive equilibrium is G (V, c0, τ 0,W
i
0 − W0) where V, the utility of the agent

with average wealth, is
∑∞

t=0 βtu (ct). Also,

sign

(
∂G (V, c0, τ 0,W

i
0 − W0)

∂c0

)
= sign

(
∂G (V, c0, τ 0,W

i
0 − W0)

∂τ 0

)
=

sign
(
W0 − W i

0

)
.

Proof. Subtracting the average budget constraint from the budget constraint of household i

and substituting (14) we obtain:

∞∑
t=0

βt
(
ci
t − ct

)(A

σ
ct + B

)−σ

= r0 (1 − τ 0)
(
W i

0 − W0

)(A

σ
c0 + B

)−σ
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Using (15) we obtain:

(
αi − 1

) σ

A

∞∑
t=0

βt

(
A

σ
ct + B

)1−σ

= r0 (1 − τ 0)
(
W i

0 − W0

)(A

σ
c0 + B

)−σ

(
αi − 1

)(1 − σ

A

)
V = r0 (1 − τ 0)

(
W i

0 − W0

)(A

σ
c0 + B

)−σ

αi = 1 +
Ar0 (1 − τ 0) (W i

0 − W0)
(

A
σ
c0 + B

)−σ

V (1 − σ)

Therefore the utility attained by household i is:

G
(
V, c0, τ 0,W

i
0 − W0

)
=
(
αi
)1−σ

V =[
1 +

Ar0 (1 − τ 0) (W i
0 − W0)

(
A
σ
c0 + B

)−σ

V (1 − σ)

]1−σ

V
(18)

The partial derivatives follow trivially.

Theorem 2 The tax sequence preferred by the household with median wealth is a Condorcet

winner.7

Proof. We will use an order restriction to prove the theorem. Consider two competitive

equilibrium sequences {ct}∞t=0 and {ĉt}∞t=0 , and two initial tax rates τ 0 and τ̂ 0. Define V :=∑∞
t=0

σ
1−σ

(
A
σ
ct + B

)1−σ
and V̂ :=

∑∞
t=0

σ
1−σ

(
A
σ
ĉt + B

)1−σ
.

Construct the set of households that (weakly) prefer the competitive equilibrium associated

with ({ct}∞t=0, τ 0) to the one associated with ({ĉt}∞t=0, τ̂ 0):

H :=

{
W i

0 :

[
1 +

Ar0 (1 − τ 0) (W i
0 − W0)

(
A
σ
c0 + B

)−σ

V (1 − σ)

]1−σ

V ≥
[
1 +

Ar0 (1 − τ̂ 0) (W i
0 − W0)

(
A
σ
ĉ0 + B

)−σ

V̂ (1 − σ)

]1−σ

V̂

} (19)

7An alternative proof of this result which only works for CRRA preferences and linear technology is in Benhabib

and Przeworski (2006).
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Conversely, let Ĥ be the set of households that (weakly) prefer the other equilibrium:

Ĥ :=

{
W i

0 :

[
1 +

Ar0 (1 − τ 0) (W i
0 − W0)

(
A
σ
c0 + B

)−σ

V (1 − σ)

]1−σ

V ≤
[
1 +

Ar0 (1 − τ̂ 0) (W i
0 − W0)

(
A
σ
ĉ0 + B

)−σ

V̂ (1 − σ)

]1−σ

V̂

} (20)

We need to prove that both H and Ĥ are convex, independently of the choice of sequences.

To do so, we consider the ratio of the utility for a household with initial capital W i
0 in the two

equilibria, and we take the derivative of its logarithm, which is

(1 − σ)

Ar0(1−τ0)(A
σ

c0+B)
−σ

V (1−σ)
− Ar0(1−τ̂0)(A

σ
ĉ0+B)

−σ

V̂ (1−σ)[
1 +

Ar0(1−τ0)(W i
0−W0)(A

σ
c0+B)

−σ

V (1−σ)

]−1 [
1 +

Ar0(1−τ̂0)(W i
0−W0)(A

σ
ĉ0+B)

−σ

V̂ (1−σ)

]−1

The sign of the derivative is independent of W i
0. This proves the convexity of H and Ĥ, and the

theorem.

4 The Taxes Preferred by the Median Voter

We assume that the median voter’s wealth, Wm
0 , is below the mean.8 We show in the theorem

below that the capital-income taxes preferred by the median voter are decreasing over time and

have have the “bang-bang” property: they are either at their maximum level or at 0 in all periods

except at most one. The median voter will always prefer maximal taxes on capital in period 0

and strictly positive taxes in period 1, which rules out no taxes as the voting equilibrium. We

provide an example where the preferred tax rate remains at the upper bound for ever.9

Theorem 3 The capital tax sequence {τ t}∞0 preferred by the median voter has the bang-bang

property: if τ t < τ̄ , then τ s = 0 for s > t.

8If the median voter has wealth above the mean, then using arguments similar to those below, it can be shown

that he will prefer zero capital taxes forever.
9This example is not inconsistent with Judd (1985): Judd proves that the taxes preferred by any agent in the

economy converge to 0 if the economy is at a steady state and the equilibrium is interior.
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Proof. From Lemma 1, the initial tax will be τ̄ if the wealth of the median voter is below

the mean.

Case 1: At the allocation preferred by the median voter G (V, c0, τ 0,W
m
0 − W0) is increasing

in V .

To derive implications for the entire sequence of taxes, consider first the consumption and

capital sequence that maximizes V. This will solve

max
{ct}∞t=0

∞∑
t=0

βt σ

1 − σ

(
A

σ
ct + B

)1−σ

subject to (11) and (12). The solution involves the Euler equation u′ (ct−1) = βFk (kt, 1) u′ (ct)

and hence setting θt = 0 (or τ t = 0) for all t ≥ 1: since V is the utility of the household

having mean wealth, this household does not have any incentive to distort the economy. Since

we assumed the government is constrained to nonnegative capital income taxes, this solution is at

a corner; in terms of the allocation, it is at the maximum growth compatible with the constraint

(12), though the constraint is not binding.

Let {c∗t , k∗
t }∞t=0 be the preferred sequences of aggregate consumption and capital by a house-

hold with median wealth within those that satisfy (11) and (12). This allocation will be imple-

mented by a sequence of capital income taxes {τ ∗
t}∞1 .

An equivalent statement for the theorem is , if u′ (c∗t ) > [βFk (kt+1, 1) (1 − τ̄)]u′ (c∗t+1

)
, then

u′ (c∗s) = βFk (ks+1, 1) u′ (c∗s+1

)
for all s > t. Suppose this were not true. Then {c∗i}∞s=t+1 does

not satisfy the first-order conditions for solving

max
{cs}∞s=t+1

∞∑
s=t+1

βs σ

1 − σ

(
A

σ
ct + B

)1−σ

(21)

subject to (11) and (12) from period t+1 on, given kt+1. It is thus possible to find an alternative

sequence {c∗∗s }∞s=t+1 such that ({c∗}t
s=0, {c∗∗s }∞s=t+1) satisfies (11) and (12), but such that, for
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sufficiently small ε > 0,

∞∑
s=t+1

βs σ

1 − σ

(
A

σ
c∗∗t + B

)1−σ

=
∞∑

s=t+1

βs σ

1 − σ

(
A

σ
c∗t + B

)1−σ

+ ε =⇒
t∑

s=0

βs σ

1 − σ

(
A

σ
c∗t + B

)1−σ

+
∞∑

s=t+1

σ

1 − σ

(
A

σ
c∗∗t + B

)1−σ

=
∞∑

s=0

βs σ

1 − σ

(
A

σ
c∗t + B

)1−σ

+ ε

(22)

The new sequence has the same initial consumption, but a higher value for the utility aggregate

V . By hypothesis we have G (V, c0, τ 0,W
m
0 − W0) strictly increasing in V. As a consequence, the

new sequence would be preferred by the median household, which is a contradiction.

Case 2: At the allocation preferred by the median voter G (V, c0, τ 0,W
m
0 − W0) is decreasing

in V . Then we can prove by contradiction that capital income taxes must be at their upper bound

at all periods. Suppose this were not true. Then pick the first period in which the growth rate

of marginal utility is below its lower bound:

[β (1 − τ̄) Fk (kN , 1)] <
u′ (cN−1)

u′ (cN)

Then change u′ (cN−1) proportionately by a factor dΨ (this entails raising the capital tax rate

in period N) and change u′ (cN) ...u′ (cM) by a corresponding factor dΦ so feasibility remains

satisfied, where M is the first period after N where:

[βFk (kM+1, 1)] >
u′ (cM)

u′ (cM+1)

The required adjustment in ct is:

dcN−1

dΨ
=

u′ (cN−1)

u′′ (cN−1)
= − (σ−1cN−1 + A−1B

)
dct

dΦ
=

u′ (ct)

u′′ (ct)
= − (σ−1ct + A−1B

)
for t = N, ...M

The implied change in capital is:

dkN = −dcN−1 = dΨ
(
σ−1cN−1 + A−1B

)

12



dkt = dΨ

(
t−1∏
j=N

Fk (kj, 1)

)(
σ−1cN−1 + A−1B

)
+ dΦ

t−1∑
s=N

t−1∏
j=s+1

Fk (kj, 1)
(
σ−1cs + A−1B

)
for t = N + 1, ...M + 1. Since dkM+1 = 0,10

0 = dΨ
(
Aσ−1cN−1 + B

)
+ dΦ

M∑
s=N

s∏
j=N

(Fk (kj, 1))−1 (Aσ−1cs + B
)

From the Euler equation, and the non-negativity of capital income taxes:

βFk (kt, 1)
(
Aσ−1ct + B

)−σ ≥ (Aσ−1ct−1 + B
)−σ

If dΨ < 0 this implies that

−dΨ
(
Aσ−1cN−1 + B

)1−σ ≥ dΦ
M∑

s=N

βs−N+1
(
Aσ−1cs + B

)1−σ

The effect that this change has on the utility index is:

dV =
M∑

s=N−1

βsu′(cs)dcs

= βN−1
(
Aσ−1cN−1 + B

)1−σ
dΨ +

M∑
s=N

βs
(
Aσ−1cs + B

)1−σ
dΦ ≤ 0

The change will be strictly negative, unless u′(cN−1)/u
′(cN) = βFk(kN , 1), i.e., unless τN = 0.

If instead τN = 0, then the unperturbed allocation (cN−1, . . . , cM) maximizes
∑M

t=N−1 βtu(ct)

subject to (11) and to the initial and terminal values for capital, kN−1 and kM+1. By strict

concavity of utility, the perturbed allocation has a negative (second-order) effect on V .

Finally we can show that the perturbation constructed above to satisfy (11) also satisfies (12).

The perturbation raises cN−1 and decreases cN through cM , in a way that leaves the marginal

rate of substitution between cj and cj+1 unaffected when N < j < M . So between N − 1 and

N the perturbation raises the capital income tax, which was not at the maximum. Between j

and j + 1, with N < j < M , the marginal rate of substitution is unaffected, but the marginal

productivity of capital is higher due to the higher consumption and lesser accumulation in period

10If M = ∞, we can take limM→∞
(∏M

j=N Fk(kj , 1)
)−1

dkM+1 = 0.
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N − 1. Therefore for the competitive equilibrium to hold, we need to raise the capital income

tax from 0 to a positive number, which is feasible. Between periods M and M + 1, we need to

lower the capital income tax and we can do that since it is positive.

Case 3: At the allocation preferred by the median voter G (V, c0, τ 0,W
m
0 − W0) is stationary

with respect to V . Then we can prove again that capital income taxes must be at their upper

bound at all periods. Suppose this were not true. Then pick the first period in which the growth

rate of marginal utility is below its lower bound:

[β (1 − τ̄) Fk (kN , 1)] <
u′ (cN−1)

u′ (cN)

Then we can increase the consumption in periods 0, . . . , N − 1 and decrease consumption in

periods N, . . . ,M , where M is the first period after N where:

[βFk (kM+1, 1)] >
u′ (cM)

u′ (cM+1)

This perturbation can be achieved by raising capital income taxes in period N and lowering them

in period M + 1, while keeping them at τ̄ for t < N and at 0 for periods N + 1 < t < M + 1.

This perturbation yields a first-order increase in initial consumption c0, which brings about a

first-order benefit on the median voter; if G is stationary with respect to V , any cost from the

distortions imposed on V would only have a higher-order impact. Hence, the perturbation would

be beneficial.

Theorem 4 In period 0, the capital tax preferred by the median voter is τ̄ . In period 1, it is

strictly positive.

Proof. Equation (18) is strictly increasing in τ 0 for W i
0 < W0, hence setting τ 0 = τ̄ is

optimal for the median voter. Intuitively, the initial capital-income tax is lump-sum: it achieves

redistribution at no cost in terms of distortions.

To prove that the preferred level of τ 1 is strictly positive, notice that V is maximized by the

sequence τ t = 0, t ≥ 1, and that the constraint τ t ≥ 0 is not binding. Hence, any increase in τ 1

locally has only second-order effects on V , but feasibility and (14) imply that c0 has a first-order
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increase. Equation (18) will thus increase as τ 1 is perturbed from 0 to a strictly positive number

(holding all future taxes at 0).

While the theorem above rules out no taxes for ever as a possible outcome, it is instead

possible that the median voter will find maximal taxes forever to be its preferred choice, if the

redistribution concern is sufficiently strong. Let the ratio of the initial median wealth to mean

wealth be R =
W m

0

W0
.

Corollary 1 If preferences are CRRA (B = 0 and σ > 0 in (2)) and production is linear (y = rk

in (1)), the capital tax preferred by the median voter is τ̄ forever if

1 +
σr (1 − τ̄) (R − 1)(

1 − β
1
σ r

1−σ
σ (1 − τ)

1
σ

)
r
(
1 − β

1
σ (r (1 − τ))

1−σ
σ

)−1 ≤ 0,

which can only happen if σ > 1.11

Proof. Under the CRRA preferences and linear technology

G (V, c0, τ 0,W
m
0 − W0) is (weakly) decreasing in V if[

1 + σ
Ar0 (1 − τ 0) (W i

0 − W0)
(

A
σ
c0 + B

)−σ

(1 − σ) V

]
≤ 0 (23)

Furthermore, it is straightforward to prove that, when σ > 1, ∂2G/∂V 2 < 0, ∂2G/∂c0∂V > 0,

and ∂2G/∂V ∂τ 0 > 0. The competitive equilibrium with τ t = τ̄ for all periods t ≥ 0 has

both the lowest value of V and the highest values of c0 and τ 0 among all competitive equi-

libria. Hence, it is sufficient to check that ∂G/∂V is strictly negative at this equilibrium

to ensure that it is negative at all possible equilibria. Theorem 3 then implies the desired

result. For taxes set at τ t = τ̄ , t ≥ 0, the discounted utility and initial consumption of

the agent with average wealth W0 are V = σ (1 − σ)−1 (c0)
1−σ
(
1 − β

1
σ (r0 (1 − τ̄))

1−σ
σ

)−1

and

c0 =
((

1 − β
1
σ (r (1 − τ̄))

1−σ
σ

)
(1 − τ̄) + τ̄

)
rW0. Substituting these into (23) we obtain the

Corollary.

11It can also be proven that the condition in the corollary is necessary; for linear preferences and CRRA utility,

taxes will necessarily converge to 0 if (18) is strictly increasing in V .
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As an example of the Corollary, consider the case r = 1/β, σ = 2, B = 0 and β = .96, and

no government spending.12 If more than 50% of the population has no capital, maximal taxes

for ever will be the political outcome whenever τ̄ < 2.63%.13

5 Conclusion

In this paper, we established a median voter result for a class of economies in which an entire

sequence of tax rates is chosen once and for all, and we characterized the solution preferred by

the median voter. We proved that each household finds it optimal for the economy to converge

to a steady state, so that Judd’s (1985) result of no capital income taxes in the limit applies,

with the exception of cases in which an upper bound on capital income taxation binds for ever.

Our results can be useful even in environments where government policy is not set once

and for all. First, establishing that the household with median wealth is pivotal in all pairwise

comparisons of policy sequences is a likely useful step in proving existence of a median voter for

dynamic political-economic equilibria where policy choices are made more frequently. Secondly, it

is often the case that governments choose infrequently sequences of tax policies that will remain

in effect for a finite period of time. Our method, based on Rothstein’s (1990,1991) original

insight, can be adapted to prove the existence of a median voter for these multidimensional

choices as well.14
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