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Abstract

This paper studies an analytically tractable model of the formation and evolution of chains of
production. Over time, entrepreneurs accumulate techniques to produce their good using goods
produced by other entrepreneurs and labor as inputs. The value of a technique depends on both
the productivity embodied in the technique and the cost of the particular input; when producing,
each entrepreneur selects the technique that delivers the best combination. The collection of
known production techniques form a dynamic network of potential chains of production: the
input-output architecture of the economy. Aggregate productivity depends on whether the
lower cost firms are the important suppliers of inputs. When the share of intermediate goods
in production is high, the lower cost firms are selected as suppliers more frequently. This raises
aggregate productivity and also increases the concentration of sales of intermediate goods.
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Why do some firms have a lower cost of production? One possibility is that a firm is technically

efficient: it is good at transforming inputs into output. Alternatively, a firm could have access to

a supplier that provides particularly cheap inputs. When inputs are cheap, output is inexpensive

to produce even if production is not efficient. Having a low cost of production depends not just

on what the firm knows, but on who it knows. If finding a low-cost supplier is important, much of

what we think of as aggregate productivity is comprised of relationships that link entrepreneurs.

This paper develops a model of the formation and evolution of input-output links. In the model,

entrepreneurs search for the most cost-effective techniques to produce their goods and for new uses

for their goods. It is based on the premise that there may be multiple ways to produce a good,

each using a different set of inputs.1 When one entrepreneur meets another, she may develop a new

technique for producing her good using the other entrepreneurs’s good as an input. When deciding

which technique to use, an entrepreneur cares both about the technical efficiency of the technique

and about the cost of the inputs. If she can charge a lower price, other entrepreneurs are more

likely to use her good as an input. As new techniques are discovered and as suppliers adjust their

prices, entrepreneurs substitute across methods of production.

The collection of known production techniques form a dynamic network comprising the set of

supply chains available to make each final product. When an entrepreneur discovers a new, more

cost effective technique, the cost savings diffuse through the network. How large those effects

are and how quickly these more efficient techniques are developed hinge on both the density and

structure of the network.2

1For example, an electricity producer may have a production technique that uses oil as an input and another less
productive technique that uses coal.

2Consider an entrepreneur who discovers an extremely cost effective technique. If the firm has many potential
customers (i.e., there are many other firms that have techniques that use the entrepreneur’s good as an input), those
lower prices will ripple down many supply chains. If, however, the firm has few potential customers, the lower prices
may not have much of an immediate impact.

1



I first study a planner’s problem in an economy in which new techniques arrive randomly to

all entrepreneurs at a uniform rate. For this baseline case, there is a closed form expression for

aggregate productivity, relating features of the network (and parameters that shape the network)

to aggregate output. An important determinant of aggregate productivity is whether the lower cost

producers are able to become the important suppliers of the economy. To become an important

supplier, a firm must have many potential customers who know how to use the firm’s good and to

be able to charge those potential customers a relatively low price. When intermediate goods are

more important in production (relative to labor), the ability to charge a low price becomes more

important in winning customers, and the lowest cost firms are more likely to become superstar

suppliers. This increases aggregate productivity and also increases the market concentration in

sales of intermediate goods.

To better understand what determines the emergence of superstar suppliers, I study a simple

extension that allows for heterogeneous rates of link formation across different subgroups. The

particular configuration determines how productivity and demand covary and hence how frequently

the lowest cost firms are selected to supply intermediate goods. Concentration of link formation

among a subset of firms, e.g., in a city, leads to positive correlation of productivity and demand

across subgroups and hence higher aggregate output.

A final extension allows for production functions that use multiple inputs. Raising the number

of inputs makes the cross sectional distribution of marginal cost more concentrated and dampens

the impact of superstar suppliers.

I then study equilibria of a particular market structure with monopolistic competition in sales

of final goods and bilateral two part pricing between all potential input-output pairs. I consider

the set of pairwise stable equilibria: arrangements for which no there are no profitable unilateral or

2



pairwise deviations. For each of these equilibria, all firms set the marginal price equal to marginal

cost (along a non-negative fixed fee) so production chains avoid double marginalization. There

are many equilibria that decentralize the planner’s optimal allocation but differ in how profits are

divided across firms. There is also always at least one equilibrium in which no production occurs

(although there is a sense in which that equilibrium is fragile).

This paper relates to several disparate literatures. Most directly connected is the literature on

social networks, especially as applied to firms. Atalay et al. (2011) document cross-sectional facts

about input-output links, while Chaney (2011) discusses the network structure of international

shipments of goods. Both explain their empirical findings using extensions of the preferential

attachment models of Barabasi and Albert (1999) and Jackson and Rogers (2007). Relative to

this literature, this paper makes three contributions. First, this paper endogenizes the formation of

observed input-output links in the economy. Each entrepreneur selects a supplier from among many

potential suppliers, and these choices are mediated by prices. In the preferential attachment model,

the formation of links is mechanical: no choices are made. The endogeneity of network formation is

advantageous in that it opens the door to the analysis of policy experiments that change incentives

and thus the link formation process. Second, in this model the network structure determines

not just the distribution of input-output links but also both firm level and aggregate productivity,

providing a more clear connection between the network structure and economic variables of interest

such as aggregate output and welfare. Third, this paper gives a natural alternative explanation for

a skewed cross-sectional distribution of input-output links.

The model emphasizes technological interdependence in the spirit of Rosenberg (1979)3. In

3“The social payoff of an innovation can rarely be identified in isolation. The growing productivity of industrial
economies is the complex outcome of large numbers of interlocking, mutually reinforcing technologies, the individ-
ual components of which are of very limited economic consequence by themselves. The smallest relevant unit of
observation is seldom a single innovation but, more typically, an interrelated clustering of innovations.”
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trying to make sense of the black box that is aggregate productivity, this paper provides a structure

that connects features of technological relationships to an aggregate production function and to

cross sectional characteristics of firms.

The structure of the model is also related to the work of Kortum (1997), Eaton and Kortum

(2002), Alvarez et al. (2008), and Lucas (2009) who study flows of ideas. The most closely connected

is Lucas (2009), who studies a model in which individuals learn ideas from other individuals over

time.

The idea that network structure determines how shocks propagate through an economy has been

incorporated into the real business cycle literature, centered around the model of Long and Plosser

(1983). Recently, the discussion has focused on whether shocks to particularly well connected

sectors can account for aggregate fluctuations.4 These models typically assume that each sector

has a representative firm that produces using a Cobb-Douglas production function, using inputs

from all other sectors.5 Like these models, this paper is concerned with how cost savings spill

over to other firms through input-output links. However, while that literature has focused on the

consequences of sectoral shocks taking the input-output structure as given, this paper studies the

endogenous formation and evolution of the input-output structure.

This paper proceeds as follows: Section 1 describes the basic technology, setting up and solving

a social planner’s problem. In this section there are simple formulas relating the density of the

network to aggregate output. Section 2 describes the size distribution. Section 3 discusses market

structures that could be overlaid on the economic environment. Section 4 generalizes the model

4See Horvath (1998), Dupor (1999), Carvalho (2007), Acemoglu et al. (2010), and Foerster et al. (2008). This
literature has focused on the sectoral level both because the most fine input-output data is at that level and because
solving these models involves inverting matrices, which becomes computationally intensive as the number of nodes
in the network grows large.

5Jones (2008) uses a similar model to argue the input-output structure can help us understand cross country
income differences. In that setup misallocation in one sector raises input prices in other sectors, and the magnitude
of the overall effect depends on the input-output structure.
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presented in the first section to multiple types to allow for more interesting network configurations,

while Section 5 studies how particular configurations relate to aggregate output. Section 6 extends

the model to allow for multiple inputs. Section 7 concludes.

1 The Baseline Model

1.1 Economic Environment

There is a unit mass of infinitely-lived firms, and each firm is associated with producing a particular

good. Each good is used for final consumption and potentially can be used as an intermediate input

by other firms. A representative consumer has Dixit-Stiglitz preferences over the goods and supplies

labor inelastically (both of these can easily be relaxed). There is no storage technology.

Over time, each firm accumulates production techniques. For a firm, a technique is method

of producing its good using some other firm’s good as an intermediate input. Each technique

φ = {j, i, z} consists of three components: (i) the good that is produced, j; (ii) the good used

as an input, i; and (iii) a production technology associated with using that input, indexed by the

productivity parameter z:

y =
1

αα(1− α)1−α zx
αL1−α

where y is the quantity of output of good j produced, x is the quantity of good i used as an input,

L is labor.

Time is continuous and firms discover and lose access to techniques randomly over time. Each

firm discovers new techniques at the arrival rate µ̃(t). When firm j discovers a new technique,

φ = {j, i, z} the identity of the supplier i is random and uniformly distributed across all firms in
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the economy.6 The productivity parameter, z, of a technique is drawn from a fixed distribution

with CDF H(·) and is constant over time. It is assumed that the support of H is bounded below

by some z0 > 0 and that
∫∞
z0

log(z)dH(z) <∞. Each existing technique becomes infeasible at rate

δ.7

Given a menu of techniques and input prices, each firm produces using the technique that

delivers the best combination of input cost and productivity. Since the production functions exhibit

constant returns to scale, generically using a single technique is optimal.8
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(b) Techniques that are Used

Figure 1: A Graphical Representation of the Input-Output Structure

Figure 1a shows the set of techniques at a point in time. Each node is a firm, and an edge
that connect two nodes corresponds to a technique. The direction indicates which firm produces
the output, and which firm produces the output. Each edge has a weight associated with the
productivity of the technique. In Figure 1b the solid arrows are techniques that are currently
used, while the dashed arrows correspond to techniques that are not.

At a point in time, the state of the economy can be summarized by the set of available techniques,

Φ(t). Figure 1 gives a visual representation of this set as a weighted, directed graph. In the figure,

6Section 4 relaxes this uniformity.
7δ plays a minor role in the analysis and setting δ = 0 would change little. It is included (i) for generality and (ii)

so that when µ̃(t) is constant there is a well defined steady state.
8In principle a firm could produce using more than one technique. In the analysis I will assume without loss that

each firm uses only a single technique.
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firms are represented by nodes. Each technique is represented by an edge or link connecting two

nodes. Each edge has a direction that corresponds to the flow of goods for the technique, indicating

which firm provides the intermediate input and which produces the output. In addition, each edge

has a weight (a number) corresponding to the productivity of the technique.

Figure 1a shows the set of all available techniques. Note that several firms, C, D, and E, each

have knowledge of multiple techniques that use different producers. In equilibrium they will each

select a single technique with which to produce. Figure 1b gives an example of these selections.

Over time the network will evolve as new techniques are discovered and some old techniques

become infeasible. While the productivity of a technique is constant over time, the attractiveness

of a technique varies with the cost of the associated inputs.

1.2 A Planner’s Problem

Throughout Section 1 I will focus on a planner’s problem in order to build intuition about the

economic environment and to describe solution techniques without getting bogged down with the

details of a particular market structure. There are many market structures that could be layered

on top of the technological environment. In Section 3 I discuss a particular market structure that

decentralizes the planner’s solution.

Consider the problem of a planner that takes the network of techniques as given. At each point

in time the planner makes production decisions and allocates labor to maximize the instantaneous

utility of the representative agent. To increase readability time subscripts will be suppressed when

unnecessary. Let y0
j be production of good j for final consumption. Given the set of existing

techniques, Φ, we can define two subsets relevant for each firm: let ΦS
j be the set of techniques

available to produce good j (potential suppliers for firm j) and let ΦB
j be the set of techniques that
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would use good j as an input (potential buyers of good j). For a technique φ = {j, i, z}, define the

following quantities:

• z(φ) is the productivity parameter associated with the technique.

• s(φ) is the identity of the supplier, in this case i.

• b(φ) is the identity of the buyer, in this case j.

The planner selects a technique for firm j to use, φ∗j , from among the available techniques to

produce good j, ΦS
j . With that, the planner chooses how much of good j to produce, yj , a quantity

of labor, Lj , and the quantity of inputs of good s(φj∗) to use.

Formally, the planner chooses an allocation
{
φ∗j , y

0
j , yj , xj , Lj

}
j∈J

to maximize final consump-

tion:

max

(∫
j∈J

(y0
j )

ε
ε−1

) ε
ε−1

subject to: (i) technological constraints

yj ≤
1

αα(1− α)1−α z(φ
∗
j )x

α
j L

1−α
j , ∀j ∈ J

(ii) goods feasibility constraints

y0
j +

∑
φ∈ΦBj |φ=φ∗

b(φ)

xb(φ) ≤ yj ∀j ∈ J

and (iii) a labor resource constraint ∫
j∈J

Lj ≤ L
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The left hand side of the second constraint for good j consists of the uses of the good: output

for final consumption and for use as an intermediate input in other firms’ production.

Let MCj be the marginal social cost of producing good j (the multiplier on the goods feasibility

constraint for j), and let w be the marginal social cost of labor (the multiplier on the labor resource

constraint). The first order necessary conditions from this problem imply that for each j,

MCj
w

= min
φ∈ΦSj

1

z(φ)

(
MCs(φ)

w

)α
(1)

For each technique φ, 1
z(φ)

(
MCs(φ)

w

)α
gives the marginal social cost of producing good j using that

technique, with the planner using the one that delivers the lowest marginal social cost.

It will be convenient to define qj ≡ 1
MCj

as a measure of the efficiency of producing good j. If

we choose units of utility so that w = 1, we can rewrite equation (1) as

qj = max
φ∈ΦSj

z(φ)qαs(φ) (2)

1.3 The Supply Chain Interpretation

Given the structure of the network, we can back out the production technology used by the social

planner to produce each good. We consider here how labor is allocated across the different stages

of production in the supply chain for each good.

For a given good, say j, the planner uses a particular chain of techniques to produce good j.

Let {φ0φ1φ2...} denote the chain of techniques for good j, with φ0 being furthest downstream (the

technique actually used by firm j).

Let L̄j be total amount of labor used in production of good j for final consumption (given

9



constant returns to scale in production, this is well defined). Also let Lkj be the labor used in the

kth to last stage of production of good j for final consumption, so that L0
j is the labor used by firm

j to produce for final consumption (as opposed to for production of the good for intermediate use).

Aggregating across stages gives L̄j =
∑∞

k=0 L
k
j .

The first order conditions imply that Lk+1
j = αLkj : the labor used at each stage is a constant

fraction of the labor used in the subsequent stage. We can therefore write

L̄j =
∞∑
k=0

Lkj =
∞∑
k=0

αkL0
j =

1

1− α
L0
j

We also have the first order condition y0
j = 1

1−αqjL
0
j , so that

y0
j = qjL̄j (3)

In a sense equation (3) should not be surprising; qj was defined to be the ratio of the marginal

social cost of producing good j and the marginal social cost of labor, or the efficiency with which

the planner can produce good j in units of labor.

We can derive a more basic interpretation of equation (3) in terms of more fundamental objects

in the model. With similar notation, we can define qkj to be the efficiency of the kth to last firm

in the chain of production for good j, and z(φk) to be the productivity parameter of the technique

in the kth step. This means that along the supply chain for good j, qkj = z(φk)
(
qk+1
j

)α
. By
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definition, q0
j = qj , so we make repeated substitutions to get

qj = q0
j = z(φ0)

(
q1
j

)α
= z(φ0)

[
z(φ1)

(
q2
j

)α]α
= ...

=
∞∏
k=0

z(φk)
αk

The planner therefore faces a production function describing the social cost of producing good final

j:

y0
j =

[ ∞∏
k=0

z(φk)
αk

]
L̄j (4)

The efficiency with which the planner can produce good j depends on the productivity of each

technique at each step in the supply chain, with the techniques furthest downstream weighted

more heavily.

1.4 The Allocation of Labor and Welfare

We now use several more first order conditions from the planners problem to arrive at an expression

for total final consumption. Define Q ≡
(∫

J q
ε−1
j

) 1
ε−1

, a standard productivity aggregator for

economies with Dixit-Stiglitz preferences. The first order conditions with respect to each y0
j imply

y0
j

Y 0 =
(
qj
Q

)ε
. We can now use the labor resource constraint and equation (3) to write

L =

∫
J
L̄j =

∫
J

y0
j

qj
=

∫
J
Y 0Q−εqε−1

j = Y 0/Q (5)

or more conveniently

Y 0 = QL (6)

To solve for aggregate output, we need to characterize firms’ efficiencies. One could use equa-
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tion (2) to create an operator on {qj}j∈J and look for a fixed point.9 However, with a continuum of

firms, this is neither computationally feasible nor would it be particularly illuminating. We proceed

to impose more structure on the set of techniques motivated by the dynamics of the model.

1.5 The Cross Sectional Distribution of Efficiency

To this point, the treatment of the network of techniques has been quite general. In this section

we impose the probabilistic structure of the dynamic model in order to more clearly characterize

the solution to the planner’s problem. In particular, we will set up a fixed point problem for the

cross sectional distribution of efficiency.

There are two important elements for characterizing the distribution. The first is how techniques

are distributed across firms. The second is the distribution of efficiency delivered by each technique.

We characterize each in turn.

1.5.1 The Distribution of Techniques

Here we describe how techniques are distributed across firms and how this distribution evolves.

Roughly, given the history of Poisson arrival rates of new techniques and decay rates of existing

techniques, the fraction of firms with n techniques at time t can be fully described by a Poisson

distribution with a mean λ̃(t).

More formally, let ω(n, t) be the fraction of firms with access to n techniques at time t. Over

9Taking logs of both sides gives an operator T , where the jth element of T ({log qj}j∈J) is maxφ∈ΦBj
{log z(φ) +

α log qs(φ)}. T satisfies monotonicity and discounting. If the support of z were bounded above, the operator would be
a contraction on the appropriate bounded function space. If the efficiencies {qj}j∈J can take values on the extended
real line, then the mapping will not be a contraction. Indeed, there may be multiple fixed points, as discussed below.
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time, this evolves according to the following law of motion:

ω̇(n, t) = µ̃(t)ω(n− 1, t) + (n+ 1)δω(n+ 1, t)− µ̃(t)ω(n, t)− nδω(n, t) (7)

ω(n, t) increases when a firm with n − 1 techniques discovers a new one and when a firm with

n+ 1 techniques loses one of their n+ 1 techniques. Similarly ω(n, t) decrease when a firm with n

techniques either gains a new technique or loses one of its n techniques.

If at some t0 the distribution of n is given by a Poisson distribution with mean λ̃ (t0), then a

solution to equation (7) is such that at any time t > t0, the distribution of n will also follow a

Poisson distribution with mean λ̃(t), where λ̃(t) satisfies the differential equation:10

˙̃
λ(t) = µ̃(t)− δλ̃(t) (8)

To interpret this, it helps to take the limit as t0 → −∞ (and imposing that limt0→−∞ λ̃ (t0) is

bounded) giving

λ̃(t) =

∫ t

−∞
e−(t−τ)δµ̃(τ)dτ

This is closely related to the fact that the sum of independent Poisson random variables is also

a Poisson random variable. The takeaway from this is that regardless of history of arrival rates

({µ̃(τ)}τ≤t), the cross-sectional distribution of techniques ω(n, t) at a given point in time can be

summarized by a single number, λ̃(t). Since λ̃(t) is also the average number of techniques per firm,

I will refer to it as the density of techniques in the network.

10In fact, for an arbitrary initial distribution, the distribution of links will converge asymptotically to Poisson
distribution.
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1.5.2 The Cross Sectional Distribution of Efficiency

Let F (q) be the fraction of firms with efficiency no greater than q given the decisions of the planner.

This is an endogenous object that will need to be solved for. The strategy is to use the fact that

each potential supplier has efficiency no greater than q with probability F (q) to set up a fixed point

problem for F .

If firm j discovers a single technique φ, there are two parts that determine how useful it is:

a productivity parameter, z, drawn from an exogenous distribution H(z), and the efficiency of

the supplier, qi. Recall from equation (2) that if firm j produces using technique φ = {j, i, z}, j

will produce at efficiency qj = z(φ)qαi . Let G(q) be the cumulative distribution of the efficiency

delivered by a single random technique. Given equation (2), we can write G(q) as

G(q) =

∫ ∞
0

F

((q
z

) 1
α

)
dH(z) (9)

To interpret this, note that for each z, F
(( q

z

) 1
α

)
is the portion of potential suppliers that, in

combination with that z, would leave the firm with efficiency no greater than q.

We now ask, what is the probability that, given all of its techniques, a firm has efficiency no

greater than than q? We can write this as

Pr (qj ≤ q) =

∞∑
n=0

Pr (All n draws are ≤ q)ω (n)

=

∞∑
n=0

G (q)n
λ̃ne−λ̃

n!

= e−λ̃[1−G(q)]

14



To interpret this last expression, if λ̃ [1−G(q)] is a parameter of a Poisson distribution (the arrival

rate of techniques that would provide efficiency better than q), then e−λ̃[1−G(q)] is the probability

that no such techniques arrived.

When the number of firms is large, a standard abuse of the law of large numbers gives Pr (qj ≤ q) =

F (q).11 We can substitute the expression for G(q) from equation (9) to get a fixed point problem

for the distribution of efficiency F (q):

F (q) = e
−λ̃
∫∞
0

[
1−F

(
( qz )

1
α

)]
dH(z)

(10)

This recursive equation is the key to solving the planner’s problem.

1.6 Properties of the Planner’s Solution

Consider the space F̄ of non-decreasing functions f : R+ 7→ [0, 1]. Consider the operator T on this

space defined as

Tf(q) ≡ e
−λ̃
∫∞
0

[
1−f

(
( qz )

1
α

)]
dH(z)

With probability one the planner’s solution will be a fixed point of the operator T on F̄ .

The qualitative behavior of network depends on whether the average number of techniques λ̃ is

greater or less than 1. The more interesting case in which the average number of links exceeds one

will be the focus of this paper, but for completeness I will discuss both.

11The proof of Proposition 1 uses such a law of large numbers for a continuum of random variables described by
Uhlig (1996). To use this one must verify that firms’ efficiencies are pairwise uncorrelated. In the present context this
is not immediately obvious: it is possible that two firms’ supply chains overlap or that one is in the other’s supply
chain. However, by assumption the network is sufficiently sparse that with high probability the supply chains will
not overlap: there is a continuum of firms but only a countable number of those are in any of given firm’s potential
supply chains. Therefore, for any two firms, the probability that their supply chains overlap is zero. The law of large
numbers then implies that equation (10) holds with probability one.
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If firm j does not have access to any techniques, it cannot produce. Similarly, if firm j has

techniques but its suppliers do not, then those suppliers will not be able to produce and consequently

neither will firm j. Continuing with this logic, if a supply chain is finite, it is not viable.

Consider the probability that a single firm will have access to at least one supply chain that

continues indefinitely; only firms with access to such a supply chain will have positive efficiency.

As shown in Appendix B the probability that a firm has no such chains is the smallest root ρ of

ρ = e−λ̃(1−ρ).12 For λ̃ ≤ 1, the probability of no such chains is one, while for λ̃ > 1, the probability

is strictly less than one.13

Few Techniques: λ̃ ≤ 1

If λ̃ ≤ 1, there are so few techniques available that the probability that any individual firm has

access to a viable supply chain is zero. In this case one can show that T is a contraction, with the

unique solution f = 1: all firms produce with efficiency 0.

Many Techniques: λ̃ > 1

As λ̃ crosses the critical value of 1, one can show that there are multiple fixed points of the

operator T on F̄ (see Appendix C). Recall that the functional equation equation (10) was con-

structed from necessary (but not sufficient) conditions to the planner’s problem, so one must check

which of these solutions to equation (10) actually solves the planner’s problem.

There are two solutions in which F (q) is constant for all q, both of which stem from the fact

that equation (10) is formulated as a recursive equation. The first is F (q) = 1 for all q, which again

corresponds to zero efficiency (infinite marginal social cost) for all goods. However, the rationale

12There is a direct analogy between this problem and the Galton-Watson problem. Consider a world in which
every individual has a random number of children drawn from some fixed distribution. The Galton-Watson problem
is: What is the asymptotic probability of extinction?

13The starkly different behavior of the network when λ̃ crosses 1 is called a phase transition. Such a phase transition
is a typical property of random graphs, a result associated with the Erdos-Renyi Theorem. See Kelly (1997) and
Kelly (2005) for examples in which this kind of phase transition is given an economic interpretation.
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is different than when λ̃ ≤ 1; here, the logic is recursive. If the marginal social cost of every input

is infinite, then the marginal social cost of each output must be infinite as well. The allocation

that arises from this solution is feasible, but we will show that it is dominated by another feasible

allocation and is therefore not the solution to the planner’s problem.

There is a second constant solution, F (q) = ρ ∈ (0, 1), which follows a similar recursive logic.

This fixed point implies infinite marginal social cost for those firms that cannot produce, and zero

marginal social cost for all other firms. In other words, any firm with a viable supply chain has

infinite efficiency. The rationale is similar: if inputs have zero marginal social cost, output has zero

social cost. Unfortunately, this leads to an infeasible allocation, and is therefore not a solution to

the planners problem either.14

There is always a third fixed point. In Appendix C a subset F ⊂ F̄ is constructed along with

a partial ordering. The subset does not contain either of the two constant fixed points. We can

show that there is a fixed point of T using the Tarski fixed point theorem, which also provides an

algorithm to numerically solve for such a fixed point. Further we can show that the fixed point is

unique. See Appendix C for a more complete statement of the theorem and a proof.

Proposition 1 There exists a unique fixed point of T on F , F sp. With probability one, F sp is the

CDF of the cross sectional distribution of efficiencies in the solution to the planner’s problem and

aggregate productivity is Q =
(∫∞

0 qε−1dF sp(q)
) 1
ε−1 .

Multiple solutions to first order necessary conditions of the planner’s problem is actually a

feature of most models in which a portion of output is used simultaneously as input, such as

14These two constant solutions have further economic meaning. Given the distribution of productivity draws H(·)
with support [z, z̄] with 0 ≤ z ≤ z̄ ≤ ∞, let q and q̄ be the lowest and highest possible efficiencies among firms that
are able to produce. q (q̄) is derived from the supply chain in which every technique has the worst (best) possible

productivity draw, so that q = z
1

1−α (q̄ = z̄
1

1−α ). If λ̃ > 1 the solution to the planners problem must have F (q̄) = 1
and F (q) = ρ, the two constant solutions to equation (10).
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a standard growth model with roundabout production. If the same good enters a technological

constraint as both an input and an output, the Lagrange multiplier on that good will be on

both sides of a first order condition. Consequently the first order condition will be satisfied if the

Lagrange multiplier takes the value of zero or infinity. One can usually sidestep this issue by finding

an alternative way to describe the production technology, e.g., solving for final output as a function

of primary inputs. Much of the work in the proof of Proposition 1 is in finding and characterizing

such an alternative description of production possibilities.

1.7 A Parametric Assumption

I now describe a special case that proves to be analytically tractable. Assume that the productivity

parameter embodied in a technique is drawn from a Pareto distribution, H(z) = 1 −
(
z
z0

)−ζ
,

with the restriction that ζ > ε − 1 so that final output is finite. In addition, parameterize the

arrival rate (and initial condition) of techniques so that µ̃(t) = µ(t)z−ζ0 for all t which implies that

λ̃(t) = λ(t)z−ζ0 .

With these assumptions we can compare economies with different values of z0 (holding {λ(t)}

fixed). In an economy with a lower z0, there will be two differences: and (ii) techniques have

stochastically lower productivity and (ii) each firm discovers new techniques more frequently. In

fact, the parameterization is such that varying z0 has no impact on the average number of techniques

with productivity above any threshold ẑ, λ̃ (1−H(ẑ)): the two effects cancel exactly. The only

difference is that with a lower z0 there are additional relatively unproductive techniques.

We then look at the limit of a sequence of economies as z0 → 0. This adds many relatively

unproductive techniques (low z) to the economy without changing the number of productive tech-

niques (high z). In the limit, the measure of firms without access to any techniques goes to zero.
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In this special case, we can show that every solution F (·) to equation (10) follows a Frechet

distribution. To see this, note that we can use the change of variables x = (q/z)1/α to write

1−G(q) =

∫ ∞
z0

H ′(z)

(
1− F

((q
z

) 1
α

))
dz

=

∫ (
q
z0

) 1
α

0
H ′
( q

xα

)
(1− F (x)) qαx−α−1dx

Using the functional form H ′(z) = ζzζ0z
−ζ−1, we can then write

λ̃ [1−G(q)] = λz−ζ0

∫ (
q
z0

) 1
α

0
ζzζ0

( q

xα

)−ζ−1
(1− F (x)) qαx−α−1dx

= q−ζλ

∫ (
q
z0

) 1
α

0
αζxαζ−1 (1− F (x)) dx

For any F (·), as z0 → 0, this expression will clearly go to q−ζ multiplied by a constant. Label this

constant θ, so that equation (10) can be written as F (q) = e−θq
−ζ

, the cumulative distribution of a

Frechet random variable. Note that the exponent ζ is the same as that of the Pareto distribution

H. This means that the distribution of efficiencies F inherits the tail behavior of the distribution

of productivity draws, H.

We next solve for θ, which was defined to satisfy

θ = λ

∫ ∞
0

αζxαζ−1 (1− F (x)) dx

Integrating by parts gives

θ = λ

∫ ∞
0

xαζF ′(x)dx
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Plugging in the functional form F (q) = e−θq
−ζ

and making the substitution s = θx−ζ gives

θ = λ

∫ ∞
0

θαs−αe−sds

so that θ satisfies15

θ = Γ(1− α)λθα (11)

where Γ(·) is the gamma function.

With this, we can compute Q, the relevant measure of welfare:

Q =

(∫ ∞
0

qε−1dF (q)

) 1
ε−1

= θ1/ζΓ

(
1− ε− 1

ζ

) 1
ε−1

Putting these together, we get an expression for final consumption:

Y = Γ

(
1− ε− 1

ζ

) 1
ε−1

Γ(1− α)
1

1−α
1
ζ λ

1
1−α

1
ζL (12)

There are several immediate implications. First, aggregate output is increasing in the density of

the network, λ. In a more densely populated network, firms on average have a larger set of supply

chains to choose from, and hence are more likely to have lower cost.

Second, the share of intermediate goods in production α plays two roles. First, as in other models

with roundabout production, it determines the extent to which lower prices of input cost feed back

into lower cost of production. This is the exponent 1
1−α that appears in several places. Second,

α determines the likelihood that the lowest cost producers are selected as the actual suppliers of

15I write equation (11) in this form rather than solving directly for θ in order to emphasize the fact that the
equation has three non-negative roots, two of which are zero and infinity. In addition, in later sections it will be
easier to see parallels with the analogous expressions when this equation when written in this form.
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inputs. Recall that the efficiency delivered by a single technique is zqα, where z is the productivity

embedded in the technique and q is the efficiency of supplier. α determines the relative impact

of each of these factors on the cost effectiveness of a technique, and consequently in the selection

of supplier. When α is high, the cost of the inputs matters more, which means the most efficient

producers are selected as suppliers more frequently. In other words, superstar suppliers will be

much more relevant for aggregate production when α is closer to one. Mathematically, this shows

up in the term Γ(1−α).16 Summarizing, when α is high, each supplier is able to pass through cost

savings to its customers at a higher rate and the most efficient firms are selected to be suppliers

more frequently, so that their high efficiency can be passed through to a larger share of customers.

This will be discussed in greater detail in Section 2

1.8 Dynamics

Over time, some firms discover new techniques while others substitute across techniques in response

to changes in cost along their supply chains. For aggregate quantities, however, all of these changes

can be summarized by changes in the density of the network, λ. All relevant aggregate dynamics

can be summarized by two equations

Y = κλ
1

1−α
1
ζL

and

λ̇(t) = µ(t)− δλ(t)

If the (normalized) arrival rate of new techniques µ(t) is constant over time (and if δ > 0), then

16Γ(x) is decreasing on (0, 1). Γ(1) = 1 and limx→0 Γ(x) =∞.
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there is a steady state with

λss =
µ

δ

Alternatively if the arrival rate of new techniques is growing over time, say µ(t) = µeγt, then

there is a balanced growth path (for any δ ≥ 0) with

λ̇

λ
= γ and

Ẏ

Y
=

1

1− α
1

ζ
γ

2 Size Distribution

Here I discuss two dimensions of the cross sectional distribution of size. First, I give expressions

for the conditional and unconditional distributions of the number of customers (other firms that

purchase intermediate goods). Second, I describe the cross sectional distribution of employment.

2.1 Number of Customers

Consider a single draw of a technique that uses firm i’s good as an input. Given the firm’s effi-

ciency, qi, we can compute the probability that the technique is the potential buyer’s best available

technique. To do this, we first characterize the following object: For a potential customer that has

drawn a technique that uses i, what is the probability that it has no other techniques better that

deliver efficiency better than q?

Given the Poisson distribution over the number of techniques, a firm will have n − 1 other

techniques with probability e−λ̃λ̃n

n!(1−e−λ̃)
. The CDF of efficiency delivered by each of these techniques

is G(q). We can therefore write the probability that the potential buyer has no other technique
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that delivers better than q, conditioning on having at least one technique, as:

∑∞
n=1

e−λ̃λ̃n

n! G(q)n−1

1− e−λ̃
=

1

G(q)(1− e−λ̃)

[ ∞∑
n=0

e−λ̃λ̃n

n!
G(q)n − e−λ̃

]
=

F (q)− e−λ̃

G(q)(1− e−λ̃)

Among techniques that use i as a supplier, the fraction that deliver efficiency less than q

is H
(
q
qαi

)
, with density 1

qαi
H ′
(
q
qαi

)
. We can now characterize the probability that a particular

technique is the potential buyer’s best technique:

Pr (φ is used|qi) =

∫ ∞
0

1

qαi
H ′
(
q̃

qαi

)
F (q̃)− e−λ̃

G(q̃)(1− e−λ̃)
dq̃

How many known techniques use a given firm as a potential supplier? In other words, how

many potential customers does a given supplier have? Across all firms, the distribution over the

number of potential customers follows a Poisson law with mean λ̃. Each one of those techniques has

an equal chance of being the potential buyer’s best technique, so the distribution over the number

of actual customers will also be a Poisson, with parameter:

λ̃

∫ ∞
0

1

qαi
H ′
(
q̃

qαi

)
F (q̃)− e−λ̃

G(q̃)(1− e−λ̃)
dq̃

Using the functional form for H and taking the limit as z0 → 0 yields

λ
qαζi
θ

So among firms with efficiency q, the distribution over the number of customers is a Poisson
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distribution with parameter λ q
αζ

θ . One can see that the distribution among high efficiency suppliers

first order stochastically dominates the distribution among low efficiency suppliers: high efficiency

firms get more customers.

Figure 2 shows the average number of customers at each percentile in the efficiency grouping

for different values of α. As expected, higher efficiency firms are able to attract more customers

than low efficiency firms.

It is notable that curve in Figure 2 depends on only one parameter, α (the share of inputs in

production). This is because buyers choose to use the technique that gives the best combination of

efficiency (z) and input cost (q). α determines the relative importance of these two factors. Recall

that the efficiency associated with a single technique is zqα. If α is large then the the share of

inputs is higher, and the cost of inputs becomes relatively more important. An increase in α makes

the techniques using high efficiency suppliers even more cost effective. In contrast, when α is low,

more weight is put on the idiosyncratic productivity associated with the technique. Because the

productivity draws are drawn from the same distribution regardless of the efficiency of the supplier,

lowering α increases the odds that a low efficiency firm will be able to attract customers; the low

efficiency becomes less relevant to its customers.

When α is higher, more weight is put on the cost of inputs, so the advantage of the high efficiency

suppliers is even larger. The shift is evident in Figure 2: with higher α, the high efficiency firms

are capturing a much larger share of the customers, at the expense of the low efficiency firms.17

We next look at the unconditional distribution over the number of customers among all firms. To

find the mass of suppliers with n customers, we simply integrate over suppliers of each efficiency.

The resulting formula is given in the following proposition, which also describes the tail of the

17It is easy to show a single crossing property: Curves for different values of α in Figure 2 cross exactly once.
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Figure 2: Conditional Distribution of Customers

The mean number of actual customers for each percentile in the efficiency distribution.

distribution.

Proposition 2 Let pn be the mass of firms with n customers. Then

pn =

∫ ∞
0

(
w−α

Γ(1−α)

)n
e
−
(

w−α
Γ(1−α)

)
n!

e−wdw

The counter cumulative distribution has a tail index of 1/α.

It is notable that the distribution of number of customers has only a single parameter, α. In

particular the density of the network, λ does not enter this equation. While a higher λ raises the

number of potential customers for any firm, it also raises the number of alternatives available to

each of those potential customers.

Figure 3 shows the distribution of customers for different values of α. When α is high, more

weight is put on the cost of inputs, so the distribution is more skewed. The tail is thicker, and but

there are also more firms without any customers. In contrast, when α is low, the middle of the
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Figure 3: The Distribution of Customers

Figure 3a gives the mass of firms with n customers for several different values of the input share
α. Figure 3b also gives the mass of firms with n customers, but on a log-log plot, to better show
the tail of the distribution.

distribution is thicker.

2.2 Comparison to Preferential Attachment

The preferential attachment model of Barabasi and Albert (1999) was designed to match the

scale free nature of the distribution of links in several real world networks. For example, relative

to a network in which links are formed randomly and with uniform probability, there are too

many websites with many incoming weblinks and also too many with very few incoming weblinks.

Roughly, the preferential attachment model explains this as follows: There is an initial network and

over time new links are formed and new firms are born. The probability that a new link involves

a particular firm is increasing in the number of links that firm already has.

This paper gives an alternative explanation for skewed cross-sectional distribution of input-

output links. Because entrepreneurs differ in productivity (some have more efficient supply chains

than others), they will also differ in their ability to attract customers. While the distribution of

potential customers is the same as one would expect in a uniformly random network, the distribution
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of actual customers is not. This is precisely because of endogenous selection: some of those firms

with many potential customers are able to offer lower prices and win over a larger fraction of those

potential customers.18

2.3 Distribution of Employment

In characterizing the cross sectional distribution of employment, we first derive a convenient fact.

Let B (q|qi) be the the CDF of the efficiency of customers of suppliers with efficiency qi. In other

words, B (q|qi) is the distribution efficiency among firms whose best technique uses a supplier with

efficiency qi. We will show that in the limit as z0 → 0, B (q|qi) = F (q). We can solve for this

distribution of customers’ actual efficiency with an application of Bayes rule:

B′ (q|qi) =

1
qαi
H ′
(
q
qαi

)
F (q)−e−λ̃

G(q)(1−e−λ̃)∫∞
0

1
qαi
H ′
(
q̃
qαi

)
F (q̃)−e−λ̃
G(q̃)(1−e−λ̃)

dq̃

The numerator is the density of efficiency delivered by techniques that use suppliers with qi,

1
qαi
H ′
(
q
qαi

)
, multiplied by the probability that a such a technique is the potential customer’s best

technique. The denominator is the probability that a technique from i is the customer’s best

technique. We can use the functional forms for H and take a limit as z0 → 0:

lim
z0→0

B′ (q|qi) = lim
z0→0

ζzζ0q
αζ
i q−ζ−1e−θq

−ζ∫∞
z0qαi

ζzζ0q
αζ
i q̃−ζ−1e−θq̃−ζdq̃

= ζθq−ζ−1e−θq
−ζ

= lim
z0→0

F ′(q)

18There is an analogous comparison for the world wide web. The preferential attachment model says the
www.nytimes.com has many incoming links because it happened to have many such links initially, and consequently
many other websites linked to it as well. In contrast, a model with endogenous network formation would give the
explanation that www.nytimes.com offers better content than other sites, and therefore other sites choose to link to
it more frequently.
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This implies that knowing the efficiency of a supplier gives no information about the identity

of its customer. That is, there are no systematic differences between the customers of low and high

efficiency suppliers.

This has two implications. First, it gives insight into the determinants of size. Aside from

more sales of final goods, high efficiency firms will on average be larger because they have more

customers, not because their customers are any bigger.

Second we can treat the characteristics of customers as independent, identically distributed

random variables. This will be helpful in several ways. Of particular use here is the fact that we

can treat the size of a customer as an IID random variable.

Distribution of Employment

We are interested in adding together the labor used to make goods for final consumption and

for intermediate use for each customer. Since the latter can be treated as independent random

variables, it is easiest to work with characteristic functions of the relevant distributions.

Let χ(s) be the characteristic function associated with the cross sectional distribution of em-

ployment. To get at it, we will create a fixed point problem. Roughly, the information that is used

includes:

• Given a firm’s efficiency, the quantity of labor used for production of final output.

• Given a firm’s efficiency, the distribution over the number of actual customers.

• The fact that the quantity of labor used by a customer is independent of the efficiency of the

supplier.

• The fact that if a customer uses L units of labor, the supplier will use αL units of labor to

make the inputs for that customer.
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As described in Appendix D.2, the characteristic function solves the equation:

χ(s) =

∫ ∞
0

exp

is t
− ε−1

ζ

Γ
(

1− ε−1
ζ

) (1− α)L− t−α

Γ(1− α)
[1− χ(αs)]− t

 dt (13)

There are several things to note. First, as L changes, the distribution of labor scales uniformly.19

Second the distribution depends on only two parameters, α and ε−1
ζ . The share of intermediates

matters for the same reason as before, it determines the skew of the distribution of number of

customers. ε−1
ζ is a composite of two parameters, the elasticity of substitution in final consumption,

and ζ, the tail index of both H(·) (the Pareto distribution from which productivity shocks are

drawn) and F (·) (the cross sectional distribution of efficiency). In combination, these parameters

determine the tail index of the distribution of final consumption. When ζ is small, the efficiency

distribution has a thicker tail, inducing a thicker tail in the distribution of final consumption. When

ε is high, consumers are more willing to substitute toward low cost goods, also thickening the tail

of final consumption.

Equation (13) can be used to solve for χ(s) numerically.20 We can consequently use standard

methods to back out the distribution of employment form its characteristic function.

Figure 4 shows the distribution for the parameters α = ε−1
ζ = 1/2 and L = 1. One can see that

this density is quite skewed, with the mode well below the mean of 1.

19In fact, one could write the characteristic function associated with the fraction of labor used by each firm as
χ̂ (s) = χ

(
1
L
s
)
. This satisfies

χ̂ (s) =

∫ ∞
0

exp

is t
− ε−1

ζ

Γ
(

1− ε−1
ζ

) (1− α)− t−α

Γ (1− α)
[1− χ̂ (αs)]− t

 dt

20While equation (13) is a functional equation, it resembles a difference equation. One can solve this using a reverse
shooting algorithm, starting near the point χ(0) = 1 and interpolating.
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Figure 4: The Distribution of Employment

Figure 4a gives the density of employment with α = ε−1
ζ

= 1/2. Figure 4b gives right CDF on
a log-log plot to show the shape of the tail of the distribution.

3 Market Structure and Decentralized Equilibria

We will consider a market structure in which there is monopolistic competition across final goods

but bilateral two part tariffs for intermediate goods. In addition we will consider contracting

terms that are “pairwise stable.”21 This equilibrium concept is reminiscent of Nash equilibrium,

except there is no explicit description of a formal game. We will characterize the set of contracting

arrangements for which the are no profitable unilateral or mutually beneficial pairwise deviations.

As an equilibrium concept, pairwise stability captures the dynamic spirit of the model. As new

techniques are found, some of the cost savings are passed on to downstream customers in the form

of lower prices. An important aspect of this is that when the terms of a contract are no longer

optimal, those terms can be renegotiated to reflect the change in cost structure in the supply chain.

While the equilibrium definition is a static one, the motivation is inherently dynamic, and pairwise

21As an equilibrium concept, pairwise stability is used frequently in the networks literature (Jackson (2008) provides
an excellent survey). For many applications in this literature, payoffs are a function of the particular links that are
formed, and the idea is to find a network of links for which no pair of nodes wish to change whether or not they
are connected (see Jackson (2003)). Here, the usual concept is extended to include contractual terms of trade in any
input output relationship.
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deviations capture the spirit of the renegotiation that would take place over time.22

One result will be that for each technique that is used in equilibrium, marginal price equals

marginal cost. While the space of possible contracts is fairly large, it seems reasonable to focus on

a space of contracts that allows for this possibility. Anything other than this kind of two part tariff

would lead to double marginalization and leave surplus on the table. Input-output relationships

are generally long-lived, so it would be surprising if the contracting terms remained inefficient. In

addition, the informational demands of these contracts (in equilibrium) are not large. Firms do

not need to know that much about the environment to get the terms of the contract right.23 While

these concerns are outside the model, they motivate the focus on two part pricing.

Monopolistic competition across final goods leads to a uniform markup of ε
ε−1 . This gives

surplus for each final good that is divided across firms in that supply chain. We will show that

allowing for two part tariffs decentralizes the planner’s solution: in this decentralization, the inputs,

outputs, and labor used by each firm are the same as the the efficient allocation. Each firm will

choose the technique that gives the best combination of cost/productivity. There are many ways

to divide the surplus from sales of final goods across supply chains, but this is not relevant for the

allocation of resources. Since the marginal input price equals marginal cost, the quantity supplied

will be efficient, and since labor is supplied inelastically the monopoly markup on final goods is not

22Another a solution concept, Nash bargaining, is tricky precisely because of renegotiation: there is no well defined
outside option. If a supplier i and buyer j are bargaining over the contract terms for a technique, it is natural that
if the bargaining breaks down j will use its next best supplier. However, if this happens, does j renegotiate with
its current contracts with its customers? More generally, the Nash bargaining solution requires well defined outside
options, and to do this would require a well defined order of negotiation and renegotiation across pairs of firms.

23Another consideration is that allowing for bilateral two part tariffs leads to a characterization of equilibrium that
is tractable. Consider an alternative in which firms set a single price for all customers. A difficulty in solving for the
optimal prices in this world is that demand curves facing firms are not continuous let alone differentiable, as lowering
a price a little may allow a supplier to beat out a competitor and give a spike in quantity demanded (or may allow
the buyer to lower its price enough to beat out its competitor, giving that buyer and consequently the supplier a
spike in quantity demanded). If two part tariffs are not available, solving for the optimal prices (and consequently
the allocation) is quite challenging.
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distortionary.24

3.1 Pairwise Stable Equilibrium

Here we define a pairwise stable equilibrium. This has two stages. First an “arrangement” deter-

mines which techniques are used and pricing for each of those techniques. Second, firms set prices

of final goods and select their input mix. In defining an arrangement, care is taken to ensure enough

structure so that payoffs after deviations are well defined.

Definition 1 An arrangement consists of the following:

(i) For each technique φ ∈ Φ (t), define the triple {p(φ), τ(φ), A(φ)} ∈ R+ × R×{0, 1}.

p(φ) and τ(φ) are the price and fixed part of a two part tariff. A(φ) = 1 implies that the

supplier associated with the technique, s(φ), is willing to supply goods at those terms, whereas

A(φ) = 0 indicates she is not.

(ii) For each firm, j, a ordering of techniques. Formally, this is a bijective function Oj : ΦS
j →{

1, ...,
∣∣∣ΦB

j

∣∣∣}.

Let φ∗j ≡ arg min{φ∈ΦSj |A(φ)=1}Oj(φ) be the technique actually used by firm j in the arrange-

ment. This is jointly determined by the ordering Oj and the whether or not each of j’s potential sup-

pliers are willing to accept the contracting terms of the arrangement. ΦB∗
j ≡

{
φ ∈ ΦB

j |φ = φ∗b(φ)

}
is the set of customers that use firm j’s good as an input in the arrangement.

Given an arrangement, firms choose a price and quantity for final output along with an input

mix to maximize profit. p0
jy

0
j is revenue from final output,

∑
φ∈ΦB∗j

[p(φ)x(φ) + τ(φ)] is revenue from

output for use as an intermediate input, and τ
(
φ∗j

)
+ p

(
φ∗j

)
x
(
φ∗j

)
is the cost of intermediates

24If labor were supplied elastically, the only differences between the planner’s allocation and the decentralized
equilibrium would be that less labor would be supplied because of the monopoly markups and all production would
scale down in proportion to the decrease in aggregate labor.
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inputs used in production. Profit for firm j is

πj = max
p0
j ,y

0
j ,L,x

p0
jy

0
j +

∑
φ∈ΦB∗j

[p(φ)x(φ) + τ(φ)]− τ
(
φ∗j
)
− p

(
φ∗j
)
x− wL

subject to the technological constraints and a downward sloping demand curve for final output:

y0
j +

∑
φ∈ΦB∗j

x(φ) ≤ 1

αα (1− α)1−α z
(
φBj
)
x
(
φBj
)α
L1−α

y0
j ≤ D

(
p0
j

)

Given an arrangement,
{
{p(φ), τ(φ), A(φ)}φ∈ΦBj

, Oj

}
j∈J

, consider two types of deviations:

A unilateral deviation for firm j is an alternative order Ôj and/or an alternative acceptance

Â(φ) for each φ ∈ ΦB
j .

For a technique φ, a pairwise deviation is an alternative two part tariff p̂(φ), τ̂(φ), an alterna-

tive acceptance for the supplier s(φ) about whether to accept the contract, Â(φ), and an alternative

ordering for the buyer, Ôb(φ).

Either of these types of deviations delivers an alternative arrangement, and hence alternative

payoffs.

Definition 2 A pairwise stable equilibrium is an arrangement
{
{p(φ), τ(φ), A(φ)}φ∈ΦBj

, Oj

}
j∈J

,

firms choices,
{
p0
j , y

0
j , xj , Lj

}
j∈J

, and a wage w such that

• Given wages and profits, the final consumers maximize utility.

• For each j ∈ J ,
{
p0
j , y

0
j , xj , Lj

}
maximize firm j’s profit given the arrangement, wages, and

the final demand.
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• Labor and final goods markets clear

• There are no unilateral deviations that would increase a firm’s profit.

• There are no pairwise deviations that would increase each firms’ profit.

Let qpwj be the efficiency of firm j, equal to the wage divided by marginal cost. In Appendix E

we prove the following:

Proposition 3 In any pairwise stable equilibrium:

(i) For each technique that is actually used, price is equal to marginal cost, p
(
φ∗j

)
= w

qpwj
, and

the fixed fee is nonnegative, τ
(
φ∗j

)
≥ 0;

(ii) qpwj = maxφ∈ΦSj
z(φ)

(
qpws(φ)

)α
These conditions are the same as the necessary conditions to the planners problem. In fact,

there are many pairwise stable equilibria that decentralize the planner’s solution. In each of these,

marginal costs are the same as in the planner’s solution, but the various equilibria differ in the fixed

part of the tariffs. In each of these equilibria, the markup in the sales of goods to the final consumer

generates a profit for each good. This profit is then divided up across the supply chain to produce

that good according to the fixed fees.25 Normally the markups would distort the consumption-

leisure margin, but since labor is supplied inelastically, the markup has no effect on the allocation

of goods and labor. Even if labor were elastic, all of these equilibria would generate the same

aggregate production function as the planner would choose.

There are additional equilibria which do not decentralize the planner’s problem. For example,

there is always an equilibrium in which all firms set a price of infinity (this corresponds to one of

25There is an upper limit to the fees that can be charged in equilibrium: they cannot be so high that the buyer
would find it beneficial to use an alternative supplier. Short of that limit, any nonnegative fee will do.
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constant fixed points of equation (10)).

There is a sense in which that equilibrium is fragile (along with any others that might exist).

There is a slightly perturbed economic environment no such equilibrium exists. More specifically,

consider adding to each firm’s techniques a production function that uses only labor, y = qL, with

q common to all firms. In this environment we can provide a welfare theorem: every pairwise stable

equilibrium decentralizes the planner’s solution.

Proposition 4 If q > 0, then with probability one F sp = F pw and Qsp = Qpw.

See Appendix E for proof. For the remainder of the paper, we will focus on equilibria that

decentralize the planner’s allocation.

3.2 An Alternative Interpretation of the Model

An alternative interpretation of the model is that the technology embodied in a technique is non-

rival and freely available for others to replicate. In this interpretation, each good is produced by an

island of identical firms, and labor is perfectly mobile across islands. The state of technology can

still be represented as a network, but each node is an island of firms producing a single good rather

than an individual entrepreneur. Again, the network represents the input-output architecture of

the economy, but among islands of firms. In this interpretation perfect competition might be a

more natural benchmark with all prices are set at marginal cost. It is straightforward to show that

competitive equilibrium allocations correspond to those of pairwise stable equilibria.
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4 Asymmetric Networks

The preceding analysis studied a very specific type of network, and leaves open the question of how

alternative network configurations would affect aggregate productivity. For example, if many firms

are in the center of a city and others are in the outskirts, how would aggregate productivity respond

to increased concentration? If some entrepreneurs were particularly active in finding new techniques

(and others particularly inactive), how would this change patterns of diffusion of productivity gains

from newly discovered techniques?

To get at these, we first extend the previous setup to allow for more interesting network con-

figurations. There are multiple types of firms, indexed by k ∈ K. The only structural difference

between firms of different types is how frequently they are involved with new techniques that are

discovered. Let Mt be the mass of each type k firms and, abusing notation, let K be the number

of types (in addition to the set of types).

The social planner’s problem is exactly the same as in Section 1.2 and all first order conditions

carry over. Instead of characterizing the distribution of efficiency across all firms, it will be conve-

nient to characterize the distribution among firms of each type. Let Fk(q) be the fraction of type

k firms with efficiency less than q. We proceed to characterize these distributions by setting up a

fixed point problem.

We next define several objects that have analogs in Section 1. ωk(n; k′) is the fraction type k

firms that have access to n techniques with suppliers of type k′. At a given point in time this follows

a Poisson distribution with mean λ̃k(k
′). Let Gk(q; k

′) be the distribution of efficiency provided by
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a single technique drawn by a type k firm with supplier type k′. Gk(q; k
′) is then:

Gk(q; k
′) =

∫ ∞
0

Fk′

((q
z

) 1
α

)
dH(z)

Given Gk(q; k
′), we can compute Pr (qj ≤ q|j is type k), the probability that, given all of its

draws of techniques, a firm of type k has efficiency no greater than q:

Pr (qj ≤ q|j is type k) =
∏
k′∈K

∞∑
n=0

ωk(n; k′)Gk(q; k
′)n = e−

∑
k′ λ̃k(k′)[1−Gk(q;k′)]

The same abuse of the law of large numbers gives Fk(q) = Pr (qj ≤ q|j is type k), giving the fixed

point problem, K functional equations for the K unknown functions {Fk(·)}k∈K :

Fk(q) = e
−
∑
k′∈K λ̃k(k′)

[
1−
∫∞
0 Fk′

(
( qz )

1
α

)
dH(z)

]
(14)

4.1 A Parametric Assumption

We will use the same functional forms as in the one type model, H(z) = 1−
(
z
z0

)−ζ
and λ̃k(k

′) =

λk(k
′)z−ζ0 . We will then look at the equilibrium of the limiting economy as z0 → 0. With a similar

argument, we will show that any set of solutions to equation (14) must follow Frechet distributions.

As before we can write

λ̃k(k
′)
[
1−Gk(q; k′)

]
= q−ζλk(k

′)

∫ (
q
z0

) 1
α

0
αζxαζ−1 (1− Fk′(x)) dx
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Substituting into equation (14) for each k′ we get

− logFk(q) = q−ζ
∑
k′∈K

λk(k
′)

∫ (
q
z0

) 1
α

0
αζxαζ−1 (1− Fk′(x)) dx

For any set of {Fk(·)}k∈K , as z0 → 0, this expression goes to q−ζ multiplied by a constant. For

each k, label this constant θk so that Fk(q) = e−θkq
−ζ

.

We next solve for {θk}k∈K , which are defined to satisfy

θk =
∑
k′∈K

λk(k
′)

∫ ∞
0

αζxαζ−1 (1− Fk′(x)) dx =
∑
k′∈K

λk(k
′)

∫ ∞
0

xαζF ′k′(x)dx

Plugging in the functional form for Fk′(q) gives

θk = Γ(1− α)
∑
k′∈K

λk(k
′)θαk′ (15)

Notice also that, as before, for any {λk(k′)}k,k′∈K there are three solutions to equation (15): θk =

0, ∀k ∈ K, θk =∞,∀k ∈ K, and a third solution that is the solution to the planner’s problem.

4.2 Aggregate Output

Given the distribution of efficiency across firms, total output will be Y 0 = QL where Qε−1 =∫
J q

ε−1
j (again, the analysis in the one type economy carries over). It will be convenient to define

Qk ≡
(∫∞

0 qε−1dFk(q)
) 1
ε−1 to be a productivity aggregator among firms of type k. We can then

write

Qε−1 =
∑
k∈K

MkQ
ε−1
k
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With the functional forms, we can write (as before):

Qk = θ
1/ζ
k Γ

(
1− ε− 1

ζ

) 1
ε−1

The productivity aggregator for the whole economy can then be written as

Qε−1 = Γ

(
1− ε− 1

ζ

)∑
k∈K

Mkθ
ε−1
ζ

k

5 Superstars and Productivity Spillovers

The purpose of this section is to demonstrate how changing the configuration of the network

affects aggregate output. We consider examples in which there are two types of firms, indexed by

k ∈ {A,B}. The total mass of firms is MA +MB = 1. Again, the types of firms differ only in how

frequently they are involved with new techniques that are discovered. For a firm of type k let λk

be the (cumulative) arrival rate of techniques, so that λk =
∑

k′ λk(k
′).

To focus on the influence of the configuration, I will hold the total number of techniques in the

network constant but vary their distribution. In other words, I will let {λk(k′)} and {Mk} vary

subject to

λ = MA (λA(A) + λA(B)) +MB (λB(A) + λB(B))

holding λ constant.

The heterogeneity across types is parameterized as follows: Let ρs ≡ λA
λB

= λA(A)+λA(B)
λB(A)+λB(B) (s is for

“supplier”). This is a measure of how much more frequently type A firms discover new techniques.

When ρs is larger, type A has a larger advantage in finding potential suppliers.
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Similarly, let ρb ≡ (λA(A)+λB(A))/MA

(λA(B)+λB(B))/MB
(b is for buyer). This is a measure of how much more

frequently type A firms find potential buyers. When ρb is larger, type A has a larger advantage

in finding potential buyers. If ρb = 1 then the probability of being a supplier is uniform across all

firms. If ρb > 1, then a new technique is relatively more likely to use a type A firm than would be

suggested by MA and MB.

Given the values of ρs and ρb (along with the assumption that λA(B)
λA(A) = λB(B)

λB(A) which can easily

be abandoned) we can solve for the implied values of {λA(A), λA(B), λB(A), λB(B)}:

λA(A) =
ρbMA

ρbMA +MB

ρs
ρsMA +MB

λ

λA(B) =
MB

ρbMA +MB

ρs
ρsMA +MB

λ

λB(A) =
ρbMA

ρbMA +MB

1

ρsMA +MB
λ

λB(B) =
MA

ρbMA +MB

1

ρsMA +MB
λ

To compute aggregate output, we need an expression for the productivity aggregator Q =(∫
J q

ε−1
j

) 1
ε−1

. Given the values of {λk(k′)}k,k′∈K we can solve for the values of θA and θB using

equation (15). With this, we can then solve for the productivity aggregator Q:

Qε−1 = MAQ
ε−1
A +MBQ

ε−1
B ∝MAθ

ε−1
ζ

A +MBθ
ε−1
ζ

B

where QA and QB are the productivity aggregators among firms of each type. We are interested

in how Q varies as the structure of the network changes.

Specialization

We first consider an environment in which firms specialize in activities. Type A firms have an
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advantage in finding new production techniques (ρs > 1) but type B firms have an advantage in

finding potential buyers (ρb < 1). One can think of type A firms as specializing in R&D and type

B firms as specializing in marketing.

Figure 5 shows aggregate output relative to a uniform network (ρs = ρb = 1) with the same

number of total techniques. It is evident that when firms specialize, Aggregate output is quite a

bit lower than a uniformly random network.

Because the R&D firms discover more techniques, they are more productive. However, the firms

specializing in marketing are acquiring a larger share of potential customers. The cost savings found

by the R&D firms get less of a chance to be passed on to other firms: the wrong firms are supplying

the inputs.
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Figure 5: Specialization: Varying ρs > 1, ρb < 1

Figure 5 shows aggregate output relative to a uniform network for various values of activity
(Figure 5a and Figure 5b show the same graph at different scales). When ρs is larger, type A
firms discover techniques more frequently. When ρb < 1, type B firms find potential buyers
more frequently.

Hubs

We first consider the case in which type A firms are hubs: they are more likely to discover new

techniques and they are relatively more likely to be the supplier when other firms get new techniques.
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This scenario is motivated by a partially urbanized economy in which urban entrepreneurs interact

with each other frequently, while rural entrepreneurs are less active. Formally we set ρs = ρb and

vary this common number for various values of MA. Figure 6 shows aggregate output relative to a

uniform network (ρs = ρb = 1) with the same number of techniques per firm. When the network is

close to uniform, aggregate output rises with the increased concentration of techniques among type

A firms. However this relationship is non-monotonic; as ρs, ρb → ∞, relative productivity slowly

falls back to 1.

Aggregate output is higher than in the uniform network because the more productive firms

are becoming the important suppliers in the economy. When ρs > 1, type A firms draw many

techniques and are therefore more likely to have high efficiency. While type B firms draw a smaller

number of techniques, the techniques they do draw are likely to have type A firms as suppliers,

meaning that the type B firms are likely to end up with a low marginal cost. When ρb, ρs → ∞,

the impact disappears, because all type B firms are essentially disconnected from the network

and are no longer able to benefit from the high efficiency of the type A firms. Type A firms are

extremely productive (there are more techniques among them) but fewer firms are producing, and

consequently less gains from variety. These effects exactly offset, and aggregate output is the same

as the uniform case.

For intermediate values, the increase in aggregate output in response to concentration is larger

when MA is small. This happens because more techniques are concentrated within the type A

firms, so productivity among those firms is high. Type B firms are likely to have techniques that

use type A firms, so that they are increasingly able to benefit from the high productivity among

type A that is due to the increased concentration. This is most stark as MA → 0, in which case

the peak of the curve rises unboundedly. More formally, for a given MA, set ρb = ρs = 1/2
MA

. Then
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Figure 6: Type A are Hubs: Varying Both ρs and ρb

Figure 6 shows aggregate output relative to a uniform network for various values of activity
(Figure 6a and Figure 6b show the same graph at different scales). When the common value of
ρp and ρs is larger, a larger share techniques involve type A firms.

limMA→0Q =∞.26

Advantage in Finding Potential Suppliers

We next examine the case in which ρs varies but ρb = 1, shown in Figure 7. In this case

type A firms are more likely to discover new techniques, but do not have any advantage in finding

potential buyers. Here we can see that total output is smaller than the uniform case (and the drop

is persistent: as ρs →∞, relative productivity stays depressed below 1). Here, while type A firms

are more productive as a group than they would be in the uniform case, the type B firms are less

able to take advantage of this, because the techniques they find aren’t especially concentrated on

the type A firms. As a result, type B firms are less productive in than they would be in the uniform

case, so much so that this dominates the increased productivity among type A firms.

The intuition for why aggregate productivity is lower than the uniform case can be found in

26An even more stark example (which is easier to analyze by hand) is ρs = MB
MA

and ρb → ∞. This leads to

(normalizing λ = 1), λA(A) = 1/2
MA

, λB(A) = 1/2
MB

, λA(B) = λB(B) = 0. Here, no matter how few type A firms there
are, half of all total techniques are drawn by those firms. However, all techniques use type A firms as inputs. Again,
we have limMA→0 Q =∞.
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equation (15) relating the average efficiencies of each type: θk = Γ(1 − α)
∑

k′∈K λk(k
′)θαk′ . Note

that θk is a linear combination of concave functions of each of the θk′s. Thus θk would be higher if

the θk′s were closer together.
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Figure 7: Type A discover techniques more frequently: Varying ρs with ρb = 1

Figure 7 shows aggregate output relative to a uniform network for various values of activity
(Figure 7a and Figure 7b show the same graph at different scales). When ρs is larger, type A
firms discover techniques more frequently.

Advantage in Finding Potential Buyers

Lastly we examine the the case in which ρs = 1 but ρb varies, so that A has an advantage in

finding potential buyers, but not in finding potential suppliers. As shown in Figure 8, aggregate

productivity is exactly the same as in the uniform case. Considering this and the previous case, we

can infer the different roles of ρb and ρs. ρs generates productivity differences across the different

types, as drawing more techniques leads to (on average) higher productivity. ρb determines how

much of these productivity differences spill over to the other types. In this case where ρs = 1, there

are no productivity differences to spill over, so varying ρb makes no differences. Compare this to

ρs 6= 1, in which case varying ρb can make a big difference.
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Figure 8: Type A discover potential buyers more frequently: ρs = 1, Varying ρb

Figure 8 shows aggregate output relative to a uniform network for various values of activity.
When ρb is larger, type A firms are more likely to find potential buyers. This is not a misprint;
all three lines take the constant value 1.

6 Multiple Inputs

In the preceding analysis, each firm used a single input in production. While this is assumption

makes the analysis (and visualization) of the model economy considerably easier, it is obviously at

odds with production in the real world. In this section we extend the analysis so that firms use

multiple inputs. While there are several ways to model what happens when firms discover new

production methods, I will focus on a version that I consider to be both natural and tractable.

A firm needs to accomplish a fixed set of tasks. Over time, firms discover new techniques to

accomplishing each task, and each of these techniques is a sub-production function that requires a

particular input. In this way, a firm can improve production by finding techniques that are more

cost effective in accomplishing individual tasks.27

The central assumption is that each firm uses a production function that combines N tasks into

a unit of output. To accomplish each task, the firm uses a technique. For the technique used for

27An alternative modeling strategy is that a new technique requires an entirely new input bundle. In that model,
a firm would change suppliers all at once, rather than one at a time.
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the nth task, let zn be the cost of inputs and qn be the efficiency of the supplier associated with

that task. Then the production is such that the efficiency of the firm is

q =

N∏
n=1

(znq
α
n)

1
N

The production function that justifies this can be written in two ways that are equivalent as long

as the firm minimizes cost:

y =

N∏
n=1

(
znx

α
nL

1−α
n(

1−α
N

)1−α ( α
N

)α
) 1

N

y =
1

(1− α)1−α

N∏
n=1

( α
N

)− α
N

N∏
n=1

z
1
N
n

(
N∏
n=1

x
1
N
n

)α
L1−α

The difference between the two is that in the first version labor is explicitly allocated separately to

each task. The important feature is that α is the share of intermediate inputs.

Let F (q) be the fraction of firms with efficiency no greater than q. We will use the same method

as before to solve to define a fixed point problem for F .

For a firm, let vn be the efficiency of a firm in accomplishing the nth task. Also, the number

of techniques a firm has to accomplish a given task is follows a Poisson distribution with mean

λ̃ (which is the same for each task). Let K(v) be probability that vn < v.28 Then by the same

analysis as before, we can write

K(v) = e
−λ̃
∫∞
0

[
1−F

(
( vz )

1/α
)]
dH(z)

28The analysis can easily be extended so that λ̃ varied by task, which would imply that the CDFs of each vn to be
different (i.e. Kn(·)).
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Since q =
∏N
n=1 v

1
N
n , we can write F (q) as

F (q) =

∫ ∞
0

...

∫ ∞
0

K

(
qN∏N
n=2 vn

)
dK (v2) dK (v3) ...dK (vN )

We now impose the parametric assumptions H(z) = 1− (z/z0)−ζ and λ̃ = λz−ζ0 . As shown in

Appendix F, in the limiting economy as z0 → 0, the fraction of tasks with techniques delivering

efficiency no greater than v converges to a Frechet distribution

K(v) = e−θv
−ζ

θ = λθαΓ
(

1− α

N

)N

The expression for F is messier, but we can derive an expression for aggregate productivity Q =(∫∞
0 qε−1dF (q)

) 1
ε−1 :

Q = Γ

(
1− (ε− 1) /ζ

N

) N
ε−1

λ
1

(1−α)ζ Γ
(

1− α

N

)N 1
(1−α)ζ

This generalizes the formula for aggregate productivity with a single input given by equa-

tion (12).Since Γ
(
1− α

N

)N
and Γ

(
1− (ε−1)/ζ

N

) N
ε−1

are decreasing in N , aggregate productivity is

declining in the number of inputs, as shown in Figure 9.

Aggregate productivity declines with the number of inputs as a consequence because the tail of

superstar suppliers shrinks. This happens because of two mutually reinforcing mechanisms. First,

the distribution of efficiency F (q) becomes more concentrated. With a single input, a firm would

end up with a high efficiency with one great technique. With more inputs, a firm that gets lucky

enough to draw a great technique for one of its tasks may only have low efficiency techniques for its
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Figure 9: Aggregate Productivity by Number of Inputs

Figure 9 shows aggregate productivity Q the as the number of inputs changes. The parameters
are α = 1/2, ζ = 4, and ε = 4, with λ set so that the limiting aggregate productivity when the
number of inputs grows large is 1. The purple line is the asymptotic aggregate productivity as
the number of inputs grows large.

other tasks. The more inputs there are, the harder it is for a firm to have a high overall efficiency,

as the the law of large numbers (across tasks) begins to kick in.

On top of this, when efficiencies are more concentrated among potential suppliers, it becomes

harder to draw a high efficiency technique for a single task. The efficiency provided by a technique

is zqα, and less dispersion in q implies that relatively high efficiency techniques are drawn less

frequently.

A stark feature of the model that drives this result is that all tasks enter symmetrically into

production. If instead production were dominated by relatively few core tasks, then the distribution

of efficiencies would be less concentrated and superstar suppliers would be more relevant.

Alternatively, if tasks are substitutes then the high efficiency tasks will have a large cost share.

In the limit as the elasticity of substitution goes to infinity, the N input model would converge to
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the single input model.

7 Conclusion

This paper has described a tractable model of the formation and evolution of chains of production.

The model aggregates easily, with a simple formula connecting features of the network to aggregate

output. A key feature driving aggregate productivity is whether the low cost producers are able

to become the important suppliers of the economy. To become an important supplier, a firm must

have many potential customers who know how to use the firm’s good and to be able to charge

those potential customers a low price. When intermediate goods are more important in production

(relative to labor), the ability to charge a low price becomes more important in winning customers,

and the lowest cost firms are more likely to become superstar suppliers. This increases aggregate

productivity and also increases the market concentration in sales of intermediate goods.

With more interesting network configurations, the model can be solved almost as easily. With

multiple types, aggregate productivity depends on how productivity and demand covary across

groups. Holding the total quantity of techniques fixed, concentration of link formation among a

subset of firms, e.g., in a city, leads to positive correlation and higher aggregate output. In contrast,

negative correlation, e.g., if some firms specialize in R&D whereas others specialize in marketing,

can lead to significantly lower output.
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Appendix

A Notation

A chain of techniques is a sequence of techniques (finite of infinite) φ0φ1φ2... with the s(φk+1) =
b(φk). Given the set of all existing techniques, Φ, we can define several objects.

Let C(j) be the set of chains of techniques with the property φ0φ1φ2... with the additional
property that b(φ0) = j. These are the distinct supply chains available that could be used to
produce good j. For example, if firm j1 has access to a single technique φ1 with supplier j2, and
j2 has access to two techniques φ2 and φ3, then C contains the three distinct chains φ1, φ1φ2, and
φ1φ3.

Let CN (j) ⊆ C(j) be the set of chains of techniques to produce good j with exactly N tech-
niques. Let bN (j) ≡ |CN (j)| be the number of such distinct supply chains of length N .

Lastly, let C∞(j) ⊆ C(j) be the set of infinite chains of techniques to produce good j. These
are all of the viable supply chains to produce good j. C∞N (j) is the set of chains of techniques of
length N that form the beginning of an infinite supply chains. For example, φ0φ1φ2... ∈ C∞(j),
then φ0φ1 is in C∞2 (j).

B The Number of Supply Chains

For completeness, we show the derivation of two results from the theory of branching processes
that will be used in this paper (see for example Athreya and Ney (1972)).

Let p(k) be the probability that a firm has exactly k techniques, in this case equal to e−λ̃λ̃k

k! ,
and PN (l, k) be the probability that, in total, l different firms have among them k supply chains
of length N . Note that PN (1, k) is the probability a firm has exactly k supply chains of length N
(i.e., the probability that bN = k).

Define ϕ(x) =
∑∞

k=0 p(k)xk to be the probability generating function for the random variable

b1. In this case ϕ(x) = e−λ̃(1−x). Also, for each N , let ϕN (·) be the probability generating function
associated with bN . If ϕ(N) is the N -fold composition of ϕ then we have the convenient result:

Claim 1 ϕN (x) = ϕ(N)(x)

Proof. We proceed by induction. By definition, the statement is true for N = 1. Noting that∑∞
k=0 P1(l, k)xk = ϕ(x)l, we have

ϕN+1(x) =
∞∑
l=0

PN+1(1, l)xl =
∞∑
l=0

∞∑
k=0

PN (1, k)P1(k, l)xl =
∞∑
k=0

PN (1, k)
∞∑
l=0

P1(k, l)xl

=

∞∑
k=0

PN (1, k)ϕ(x)k = ϕN (ϕ(x))

We immediately have the following:

Claim 2 For any x, E
[
xbN

]
= ϕ(N)(x).
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Proof. E
[
xbN

]
=
∑∞

k=0 PN (1, k)xk = ϕN (x) = ϕ(N)(x)
We next study the probability that a single firm has no chains that continue indefinitely. This

can be characterized as follows:

Claim 3 The probability that a single firm has no chains that continue indefinitely is the smallest
root, ρ, of y = ϕ(y).

Proof. The probability that a firm has no chains greater than length N is given by PN (1, 0), or
equivalently ϕ(N)(0). Then the probability that a single firm has no chains that continue indefinitely
is limN→∞ ϕN (0).

Next note that that ϕ is increasing and convex, ϕ(1) = 1, and ϕ(0) ≥ 0. This implies that in
the range [0, 1], the equation ϕ(y) = y has a either a unique root at y = 1 or two roots, y = 1 and
a second in (0, 1).

Let ρ be the smallest root. Noting that for y ∈ [0, ρ), y < ϕ(y) < ρ, while for y ∈ (ρ, 1) (if such
y exist), ρ < ϕ(y) < y. Together these imply that if y ∈ [0, 1), the sequence {ϕN (y)} is monotone
and bounded, and therefore has a limit. We have ϕN+1(0) = ϕ(ϕN (0)). Taking limits of both
sides (and noting that ϕ is continuous) gives limN→∞ ϕN+1(0) = ϕ(limN→∞ ϕN (0)). Therefore
the limit must be a root of y = ϕ(y), and therefore must be ρ. In other words, it must be that
limN→∞ ϕN (0) = ρ.

Claim 4 If λ̃ ≤ 1 then with probability 1 the firm has no chains that continue indefinitely. If λ̃ > 1
then there is a strictly positive probability the firm has a chain that continues indefinitely.

Proof. In this case, we have ϕ(x) = e−λ̃(1−x). If λ̃ ≤ 1 then the smallest root of y = ϕ(y) is y = 1.
If λ̃ > 1 the smallest root is strictly less than 1.

C Existence and Characterization of the Solution to the Planner’s
Problem

The strategy is as follows: We define a sequence of random variables {XN}N∈N with the property
that the maximum feasible efficiency of a firm is given by the limit of this sequence, if such a limit
exists. We then show that XN converges to a random variable Xsp in Lε−1. Next we show that the
distribution of Xsp is given by the unique fixed point of T in F , a subset of F̄ (and of course that
such a fixed point exists). Letting F sp be this least fixed point, we apply the law of large numbers
for continuum of random variables (Uhlig (1996)) to argue that the cross-sectional distribution of
efficiencies (in Lε−1) is given by F sp and that aggregate productivity is simply ‖Xsp‖ε−1.

C.1 A Unique Fixed Point

We begin by defining three functions, f̄ , f1, and f , in F̄ . To do so, we define several objects

that will parameterize these functions. Let ρ ∈ (0, 1) be the smallest root of ρ = e−λ̃(1−ρ). In
the definition of f̄ , q2 and β are defined as follows: Let β > ε − 1, let q2 be defined so that

q1−α
2 > max

{
1, λ̃

α
β exp

∫∞
z0

log(z)dH(z)
}

. In the definition of f , q0 = z
1

1−α
0 . The three functions
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are:

f̄(q) ≡

{
ρ, q < q2

1− (1− ρ)
(
q
q2

)β
, q ≥ q2

f1(q) ≡
{
ρ, q < 1
1, q ≥ 1

f(q) ≡
{
ρ, q < q0

1, q ≥ q0

Consider the partial order on F̄ , the set of right continuous, weakly increasing functions f :
R+ → [0, 1] given by the binary relation �: f1 � f2 ⇔ f1(q) ≤ f2(q)∀q ≥ 0. Clearly f̄ � f1 � f .
Let F ⊂ F̄ be the subset of set of nondecreasing functions f : R+ → [0, 1] that satisfy f̄ � f � f .

Lemma 1 Tf � f and f̄ � T f̄

Proof. We first show that Tf � f . For q ≥ q0 this is immediate, as Tf(q) ≤ 1 = f(q). For q < q0,
we have

Tf(q) = e
−λ̃
∫∞
0

[
1−f

(
( qz )

1
α

)]
dH(z)

= e
−λ̃
∫∞
q/qα0

[1−ρ]dH(z) ≤ e−λ̃[1−ρ](1−H(q1−α
0 )) = ρ = f(q)

We now proceed to f̄ . First, for q < q2, we have T f̄(q) = e−λ̃
∫∞
0 (1−f̄)dH(z) ≥ e−λ̃(1−ρ) = ρ = f(q).

Next, as an intermediate step, we will show that for q ≥ q2:(
q

q2

)−β
> λ̃

[
exp

∫ q/qα2

0
ln
(
z
β
α

)
dH (z)− ln

(
(q/qα2 )

β
α

)
H (q/qα2 )

]

We start with q1−α
2 > λ̃

α
β exp

∫∞
0 ln (z) dH (z) which can be written as

q1−α
2 > λ̃

α
β exp

[∫ q/qα2

0
ln (z) dH (z) +

∫ ∞
q/qα2

ln (z) dH(z)

]

Using the fact that q ≥ q2 and that
∫∞
x ln(z)dH(z) ≥ ln(x) [1−H(x)] gives

q1−α > λ̃
α
β

[
exp

∫ q/qα2

0
ln (z) dH (z) + ln (q/qα2 ) [1−H (q/qα2 )]

]

Raising both sides to β
α and dividing (q/qα2 )

β
α gives the desired result.
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Next, beginning with 1− T f̄(q) ≤ − lnT f̄(q)

1− T f̄ (q)

1− ρ
≤ λ̃

∫ ∞
0

1− f̄
(

(q/z)
1
α

)
1− ρ

dH (z)

≤ λ̃ exp

∫ ∞
0

ln

1− f̄
(

(q/z)
1
α

)
1− ρ

 dH (z)

= λ̃ exp

∫ q/qα2

0
ln

(
(q/z)

1
α

q2

)−β
dH (z)

= λ̃ exp

[∫ q/qα2

0
ln
(
z
β
α

)
dH (z)− ln

(
(q/qα2 )

β
α

)
H (q/qα2 )

]

<

(
q

q2

)−β
=

1− f̄ (q)

1− ρ

This then gives, for q ≥ q2, T f̄(q) ≥ f̄(q).

Lemma 2 There exist least and greatest fixed points of the operator T in F , given by limN→∞ T
N f̄

and limN→∞ T
Nf respectively.

Proof. Proof: The operator T is order preserving, and the F is a complete lattice. By the Tarski
fixed point theorem, the set of fixed pints of T in F is also a complete lattice, and hence has a least
and a greatest fixed point given by limTN f̄ and limTNf respectively.

C.2 Existence of a Limit

We first show that the planer’s problem is well defined. Given the set of techniques at a point in
time, Φ, let C∞j be the set of distinct infinite chains available to produce good j. For each chain
c ∈ C∞j and each n ≥ 0, let zn(c) is the productivity of the nth technique in chain c. In other
words, for a chain c of techniques φ0φ1φ2... with φ0 furthest downstream, zn(c) = z(φn). Finally
let q(c) ≡

∏∞
n=0 zn(c)α

n
.

We want to define qj to be the efficiency provided by the most cost effective supply chain
available to produce j, or more formally that qj = supc∈C∞j q(c). To do this, we first argue that

for each c, q(c) is well defined. The concern is that for some c the sequence
{∏N

n=0 zn(c)α
n
}

might

not converge. The following proposition shows that it does.
Define qN (c) ≡

∏N−1
n=0 zn(c)α

n
for N ≥ 1 with q0(c) ≡ 1.

Lemma 3 Assume z0 > 0. Then for each c ∈ C∞j , limN→∞ qN (c) exists.

Proof. For each n, we can decompose log zn(c) into log z+
n (c) − log z−n (c), where log z+

n (c) =
max{log zn(c), 0} and log z−n (c) = max{−logzn(c), 0}. We then have log qN (c) =

∑N−1
n=0 α

n log z+
n (c)−
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∑N−1
n=0 α

n log z−n (c).
∑N−1

n=0 α
n log z+

n (c) is a monotone sequence so it converges to a (possibly in-

finite) limit.
∑N−1

n=0 α
n log z−n (c) is a monotone sequence bounded by log(1/z0)

1−α so it converges to a

limit in the range
[
0, log(1/z0)

1−α

]
. Therefore qN (c) converges to a (possibly infinite) limit.

Next, we define the random variable XN,j = maxc∈C∞j qN (c). Roughly, the remainder of this

subsection shows that XN,j converges qj . Since qj = supc∈C∞j limN→∞ qN (c), we are essentially

proving that the limit can be passed through the sup.
A useful property of the variable XN,j is that its CDF is TNf1. It will also be useful to define

the random variables ȲN,j and YN,j . These variables will be constructed so that their CDFs are
TN f̄ , and TNf respectively.

To do this, we expand the probability space as follows: For each realization of Φ, let q̃(c) be a

random variable with CDF f̄−ρ
1−ρ drawn independently for each c ∈ C∞N,j .

For N ≥ 1, let ȲN,j ≡ maxc∈C∞N,j qN (c)q̃(c)α
N

and YN,j ≡ maxc∈C∞N,j qN (c)qα
N

0 . We also define

Ȳ0,j and Y0,j to have CDFs f̄ and f respectively.
To improve readability, the subscript j will be suppressed when not necessary.

Lemma 4 {XN}N∈N,
{
ȲN
}
N∈N, and {YN}N∈N are uniformly integrable in Lε−1.

Proof. First, Recall that Ȳ0 is defined to have the cumulative distribution f̄ . Since the T is
order preserving, the relations TNf1 � TN f̄ and TN f̄ � TN−1f̄ imply that TNf1 � f̄ . As
a consequence, Ȳ0 first-order stochastically dominates each XN and ȲN , and, by the identical

argument, YN . Therefore E
∣∣Ȳ0

∣∣ε−1
=

qε−1
2

1− ε−1
β

< ∞ serves as a uniform bound on each E |XN |ε−1,

E
∣∣ȲN ∣∣ε−1

, and E |YN |ε−1.

Lemma 5 There exists a random variable Xsp such that XN converges to Xsp almost surely and
in Lε−1.

Proof. Let MN ≡ XN∏N
n=0 µn

where µn ≡
∫∞
z0
wα

n λ̃(1−ρ)H′(w)e−λ̃(1−ρ)[1−H(w)]

1−e−λ̃(1−ρ) dw. We first show that

MN is a submartingale that is uniformly integrable in Lε−1.
To do this, we define a set DN as follows: Let c∗N = arg maxc∈C∞N qN (c) so that XN = qN (c∗N ).

Let DN ⊆ C∞N be the set of chains in C∞N for which the first N − 1 links are c∗N−1. In other words,
all chains in DN are of the form c∗N−1φ for some φ.

Define the random variable DN = maxc∈DN qN (c). Since DN ⊆ C∞N , it must be that XN ≥ DN .
We now show that E [DN |CN−1] ≥ µN−1XN :

The number of chains in DN is at least one. The probability that |DN | = k is
e−λ̃[1−ρ][λ̃(1−ρ)]

k

[1−e−λ̃[1−ρ]]k!

for k ≥ 1. To see this, note that for any node, the number of techniques is poisson with mean λ̃.
Each of those has probability 1 − ρ of being viable (having a chain that continues infinitely), and
we are conditioning on at least one viable technique.

Each of those techniques has a productivity drawn from H. For any φ such that c∗N−1φ ∈ DN ,
we have that

Pr
(
qN (c∗Nφ) < x|C∞N−1

)
= Pr

(
z(φ)α

n
< x/XN−1

)
= H

(
(x/XN−1)α

−N
)
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Therefore the probability that all k of the chains in DN give qN (c∗Nφ) < x given XN−1 is

Pr
(
DN < x|C∞N−1, |DN | = k

)
= H

(
(x/XN−1)α

−N
)k

With this, the CDF of DN , given C∞N1
, is

Pr
(
DN < x|C∞N−1

)
=

∞∑
k=1

Pr (DN < x|XN−1, |DN | = k) Pr (|DN | = k)

=
∞∑
k=1

H
(

(x/XN−1)α
−N
)k e−λ̃[1−ρ]

[
λ̃ (1− ρ)

]k[
1− e−λ̃[1−ρ]

]
k!

=
e
λ̃[1−ρ]H

(
(x/XN−1)α

−N
)
− 1

eλ̃[1−ρ] − 1

We can now compute the conditional expectation of DN (using the change of variables w =

(x/XN−1)α
−N

):

E
[
DN |C∞N−1

]
=

∫ ∞
0

xα−N
1

XN−1

(
x

XN−1

)α−N−1

λ̃ (1− ρ)H ′
(

(x/XN−1)α
−N
) eλ̃[1−ρ]H

(
(x/XN−1)α

−N
)

eλ̃[1−ρ] − 1
dx

= XN−1

∫ ∞
0

wα
N
λ̃ (1− ρ)H ′ (w)

eλ̃[1−ρ]H(w)

eλ̃[1−ρ] − 1
dw

= µNXN−1

Putting this together, we have

E
[
MN |C∞N−1

]
=

1∏N
n=0 µn

E
[
XN |C∞N−1

]
≥ 1∏N

n=0 µn
E
[
DN |C∞N−1

]
=

1∏N
n=0 µn

µNXN−1 = MN−1

We next need to show that {MN} is uniformly integrable, i.e., that supN E [MN ] < ∞. We
know that supN E [XN ] <∞. So it suffices to show a uniform lower bound on

∏N
n=0 µn. Since each

µn ≥ zα
n

0 and z0 < 1, we have that
∏N
n=0 µn ≥

∏N
n=0 z

αn
0 ≥

∏∞
n=0 z

αn
0 = z

1
1−α
0 .

We have therefore established that {MN}N∈N is a uniformly integrable (in L1) submartingale,
so by the martingale convergence theorem, there exists an M such that MN converges to M almost
surely. By the continuous mapping theorem, there exists an Xsp such that XN converges to Xsp

almost surely. Since each Xε−1
N is dominated by the integrable random variable Ȳ ε−1

0 , by dominated
convergence we have that XN converges to Xsp in Lε−1.

Proposition 5 With probability one, Xsp = supc∈C∞ q(c)

Proof. We first show that Xsp ≥ supc∈C∞ q(c) with probability one. Consider any realization of
techniques, Φ. For any ν > 0, there exists a c∗ ∈ C∞ such that q(c∗) > supc∈C∞ q(c) − ν. There
also exists an N1 such that N > N1 implies qN (c∗) > q(c∗)− ν. Lastly, with probability one there
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exists an N2 such that N > N2 implies XN < Xsp + ν. We then have for N > maxN1, N2 that

Xsp > XN − ν = max
c∈C∞N

qN (c)− ν ≥ qN (c∗)− ν > q(c∗)− 2ν > sup
c∈C∞

q(c)− 3ν, w.p.1

This is true for any ν > 0, so Xsp ≥ supc∈C∞ q(c). We next show the opposite inequality. For any
N , we have

sup
c∈C∞

q(c) ≥ sup
c∈C∞

qN (c)z
αN

1−α
0 = XNz

αN

1−α
0

Since this is true for any N and limN→∞ z
αN

1−α
0 = 1, we can take the limit to get supc∈C∞ q(c) ≥ Xsp

with probability one.

C.3 Characterization of the Limit

We will show below that log ȲN − log YN converges to 0 in probability. Since XN ∈ [YN , ȲN ], it
must be that both ȲN and YN converge to Xsp in probability. Convergence in probability implies
convergence in distribution, which gives to implications. First, TN f̄ and TNf converge to the
same limiting function. Since these are the least and greatest fixed points of T in F , this limiting
function, fsp, is the unique fixed point of T in F . Second, since TN f̄ � TNf1 � TNf , fsp is the
CDF of Xsp.

Lemma 6 For any η > 1, limN→∞ 1− ϕ(N)

(
f̄
(
ηα
−N

q0
)
−ρ

1−ρ

)
= 0

Proof. We first show that for x ∈ [0, 1], d
dxϕ

(N)(x) ≤ λ̃N . To see this, note that ϕ is convex and

ϕ′(1) = λ̃, so that ϕ′(x) ≤ λ̃ for x ≤ 1. In addition, if x ∈ [0, 1] then ϕ(x) ∈ (0, 1], which implies
ϕ(N)(x) ∈ (0, 1] for each N . We then have

d

dx
ϕ(N)(x) =

N∏
n=1

ϕ′
(
ϕ(n−1)(x)

)
≤ λ̃N

With this, for any x, we can bound ϕ(N)(x) by

ϕ(N)(x) = ϕ(N)(1)−
∫ 1

x
ϕ(N)′(w)dw

≥ 1− λ̃N
∫ 1

x
dw

≥ 1− λ̃N [1− x]
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To complete the proof, we show that limN→∞ λ̃
N

[
1−

f̄
(
ηα
−N

q0
)
−ρ

1−ρ

]
= 0. Recall that f̄(q)−ρ

1−rho ={
0 q < q2

1−
(
q
q2

)−β
q ≥ q2

. We have for q ≥ q2

lim
N→∞

λ̃N

1−
f̄
(
ηα
−N
q0

)
− ρ

1− ρ

 = lim
N→∞

λ̃Nqβ2

(
η−βα

−N
)

= 0

Next we use this to show that log ȲN − log YN converges to zero in probability.

Lemma 7 For any η > 1, limN→∞ Pr
(
ȲN/YN > η

)
= 0.

Proof. For any chain c ∈ CN , define the following two objects: q̄N (c) ≡ qN (c)q̃(c)α
N

(recall that

for each c ∈ C∞N q̃(c) was a random variable with CDF f̄−ρ
1−ρ ) and qN (c) ≡ qN (c)qα

N

0 (q0 is the same

as a random variable with CDF
f−ρ
1−ρ ). With these definitions, we have ȲN,j ≡ maxc∈C∞N,j q̄N (c) and

YN,j ≡ maxc∈C∞N,j qN (c).

Conditional on the set of techniques Φ, we have that for each chain c in C∞N (if any exist) that

q̄N (c)/qN (c) =
(
q̃(c)
q0

)αN
. We therefore have:

Pr
(
q̄N (c)/qN (c) < η|Φ

)
= Pr

((
q̃(c)

q0

)αN
< η|Φ

)
=
f̄
(
ηα
−N
q0

)
− ρ

1− ρ

If there are bN such chains of length N , the probability that every one of them of them gives

q̄N (c)/qN (c) < η is

(
f̄
(
ηα
−N

q0
)
−ρ

1−ρ

)bN
so that

Pr
(
ȲN/YN < η|Φ

)
≥

 f̄
(
ηα
−N
q0

)
− ρ

1− ρ

bN

Recall from Appendix B that for any x, E
[
xbN

]
= ϕ(N)(x) where ϕ(N) is the N -fold composition

of ϕ and the expectations are taken over realizations of Φ. We can use this to show

Pr
(
ȲN/YN < η

)
= E

[
Pr
(
ȲN/YN < η|Φ

)]
≥ E


 f̄

(
ηα
−N
q0

)
− ρ

1− ρ

bN
 = ϕ(N)

 f̄
(
ηα
−N
q0

)
− ρ

1− ρ


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Put differently, limN→∞ Pr
(
ȲN/YN > η

)
≤ limN→∞ 1 − ϕ(N)

(
f̄
(
ηα
−N

q0
)
−ρ

1−ρ

)
. We complete the

proof by applying the previous lemma.
We now come to the main result.

Proposition 6 There is a unique fixed point of T on F , F sp. F sp is CDF of Xsp. Aggregate

productivity is Q =
(∫∞

0 qε−1dF sp(q)
) 1
ε−1 with probability one.

Proof. The combination of log ȲN − log YN
p→ 0, ȲN ≥ XN ≥ YN , and XN

p→ Xsp implies that
ȲN

p→ Xsp and YN
p→ Xsp.

We first show that there is a unique fixed point, which is also the CDF of Xsp. The CDFs
of ȲN and YN are TN f̄ and TNf respectively. The least and greatest fixed points of T in F are

limN→∞ T
N f̄ and limN→∞ T

Nf respectively. Convergence in probability implies convergence in
distribution, so the least and greatest fixed point are the same, and that the fixed point is the CDF
of Xsp. Call this fixed point F sp.

Since
{
ȲN
}

and {YN} are uniformly integrable in Lε−1, we have by Vitali’s convergence theorem
that Ȳ N → Xsp in Lε−1 and Y N → Xsp in Lε−1.

Putting all of these pieces together, we have that the CDF of qj is F sp. We next show that

aggregate productivity is the Q =
(∫∞

0 qε−1df sp(q)
) 1
ε−1 . For this we simply apply the law of large

numbers for a continuum economy of Uhlig (1996). To do this, we must verify that the efficiencies
are pairwise uncorrelated. This is trivial: consider two firms, j and i. Since the number of firms in
any of j’s supply chains is countable, the probability that i and j have overlapping supply chains is
zero. The theorem in Uhlig (1996) also requires that the variable in question has a finite variance,
and if it does, the then the L2 integral exists. Here we are interested in the Lε−1 norm, so we require

the Xsp is Lε−1 integrable. Therefore we have that Q =
(∫∞

0 qε−1df sp(q)
) 1
ε−1 with probability one.

D Size Distribution

D.1 Number of Customers

Proposition 7 Let pn be the mass of firms with n customers. Then

pn =

∫ ∞
0

(
w−α

Γ(1−α)

)n
e
−
(

w−α
Γ(1−α)

)
n!

e−wdw

The counter cumulative distribution has a tail index of 1/α.
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Proof.

pn =

∫ ∞
0

(
λ
θ q
αζ
)n
e−

λ
θ
qαζ

n!
dF (q)

=

∫ ∞
0

(
λθα

θ

(
θq−ζ

)−α)n
e
−
(
λθα

θ (θq−ζ)
−α)

n!
ζθq−ζ−1e−θq

−ζ
dq

=

∫ ∞
0

(
w−α

Γ(1−α)

)n
e
−
(

w−α
Γ(1−α)

)
n!

e−wdw

The second line uses the fact that θ = Γ(1− α)λθα. We can rewrite this as

pn =

∫ ∞
0

une−n

n!

e−[Γ(1−α)u]−1/α

Γ(1− α)
1
αα

u−
1
α
−1du

Since e−[Γ(1−α)u]−1/α

Γ(1−α)
1
α α

is slowly varying as u→∞, applying Theorem 2.1 of Willmot (1990) gives

pn ∼
e−[Γ(1−α)n]−1/α

Γ(1− α)
1
αα

n−
1
α
−1, n→∞

Therefore the counter-cumulative distribution, Pr (# customers > n), has a tail index of 1/α.

D.2 The Distribution of Employment

Let χ(s) be the characteristic function associated with the cross sectional distribution of employ-
ment. This is the central object of interest, but to get at it, we take several intermediate steps. If
L0(q) is the (deterministic) quantity of labor used producing final output for a firm with efficiency
q, let χ0(s|q) be the characteristic function for labor used for final demand. We have

χ0(s|q) =

∫ ∞
−∞

eislδ
(
l − L0(q)

)
dl = eisL

0(q)

∫ ∞
−∞

eisxδ(x)dx

= eisL
0(q)

where δ is the Dirac delta function.
We showed above that the quantity of labor used by a single customer can be treated as an IID

random variable. Recall also the convenient fact that if firm j uses Lj units of labor, j’s supplier
will use αLj units of labor to make the inputs for j. If Lj is an IID random variable, αLj is as
well. With this in mind, let χ1(s) be the characteristic function associated with the labor required
to make the inputs for a single customer. If the density of labor is Pr(Lj = l), the density of labor
used for a supplier is 1

α Pr
(
Lj = 1

α

)
, so that we have
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χ1(s) =

∫ ∞
−∞

1

α
Pr

(
Lj =

l

α

)
e−isldl =

∫ ∞
−∞

Pr

(
Lj =

l

α

)
e−i(αs)

l
αd

(
l

α

)
= χ(αs)

Let χint (s|q) be the characteristic function associated with the labor used for all intermediates
among firms with efficiency q. Using the fact that the characteristic function of the sum of in-
dependent random variables is the product of the characteristic functions of each of the random
variables, we can write χint (s|q) as

χint (s|q) =
∞∑
n=0

χ1(s)n Pr (n customers|q) =
∞∑
n=0

χ1(s)n
(
λ
θ q
αζ
)n
e−λ

qαζ

θ

n!
= e−

λ
θ
qαζ[1−χ1(s)]

= e−
λ
θ
qαζ [1−χ(αs)]

where the second equality uses the fact that among firms with efficiency q the distribution of
customers is Poisson with parameter λ

θ q
αζ .

We can put these together to derive an expression for χ(s|q), the characteristic function asso-
ciated with the distribution of employment among firms with efficiency q:

χ (s|q) = χ0 (s|q)χint (s|q) = eisL
0(q)e−

λ
θ
qαζ [1−χ(αs)]

Lastly we can integrate across firms, which delivers a single recursive equation that defines χ(s):

χ (s) =

∫ ∞
0

χ (s|q) dF (q) =

∫ ∞
0

eisL
0(q)e−

λ
θ
qαζ [1−χ(αs)]dF (q)

We now plug in the functional forms L0(q) =
(θq−ζ)

− ε−1
ζ

Γ
(

1− ε−1
ζ

) (1− α)L and dF (q) = θζq−ζ−1e−θq
−ζ
dq

to give

χ (s) =

∫ ∞
0

e

is

(θq−ζ)
− ε−1

ζ

Γ(1− ε−1
ζ )

(1−α)L


e−µ

θα(θq−ζ)
−α

θ
[1−χ(αs)]θζq−ζ−1e−θq

−ζ
dq

and using a change of variables along with the fact that θ = Γ(1− α)λθα gives

χ(s) =

∫ ∞
0

exp

is t
− ε−1

ζ

Γ
(

1− ε−1
ζ

) (1− α)L− t−α

Γ(1− α)
[1− χ(αs)]− t

 dt (16)

E Pairwise Stable Equilibria

We are careful here to use notation that allows for the possibility that a firm uses a production
chain with a cycle: at least some of the input from j is used in as an intermediate good in the
supply chain used by j. In this case, if a firm decides to lower its price of final output, it sells more
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final output but also raises the demand for its good as an intermediate input.

In particular, given an arrangement, for each φ ∈ ΦB∗
j , let xb(φ)

(
y0
j

)
be the quantity of good

j sold to firm b(φ) given y0
j , holding constant the final output of other firms. xb(φ)

(
y0
j

)
is an

nondecreasing and weakly concave function of y0
j . The profit for firm j can be written as:

πj = max
p0
j ,y

0
j ,L,x

p0
jy

0
j +

∑
φ∈ΦB∗j

[
p(φ)xb(φ)

(
y0
j

)
+ τ(φ)

]
− wL− p (φ∗)x− τ (φ∗)

subject to

y0
j +

∑
φ∈ΦB∗j

xb(φ)

(
y0
j

)
≤ 1

αα(1− α)1−α z (φ∗)xαL1−α

y0
j ≤ D

(
p0
j

)
The first order conditions with respect to inputs deliver cost minimization, so that firm j’s marginal
cost is cj ≡ 1

z(φ∗)p (φ∗)αw1−α. The price of final output p0
j then satisfies:

p0
j = arg max

p
(p− cj)D(p) +

∑
φ∈ΦB∗j

(p(φ)− cj)xb(φ) (D(p))

Note that if good j is in the supply chain to produce good j (there is a cycle), firm j internalizes
how changing final output would affect there sales of j as an intermediate.

Proposition 8 In any pairwise stable equilibrium, for each technique φ∗ that is used, p(φ) = cs(φ).

Proof. Assume there is a φ∗ = {j, i, z} such that x (φ∗) > 0 and p (φ∗) 6= ci. Consider the deviation

p̂ (φ∗) = ci

τ̂ (φ∗) = τ (φ∗) + xj (p (φ∗)− ci) +K

where K ∈
(

0,
(
p̂0
j − ĉj

)
ŷ0
j −

(
p0
j − ĉj

)
y0
j +

∑
φ∈ΦB∗j

(p(φ)− ĉj)
[
xb(φ)

(
ŷ0
j

)
− xb(φ)

(
y0
j

)])
. Given

i’s cost ci, the cost for j of the new technique is ĉj = 1
z(φ∗)c

α
i w

1−α. The change in profit for i from
the deviation is

π̂i − πi = τ̂ (φ∗)− τ (φ∗) + (p̂ (φ∗)− ci) x̂j − (p (φ∗)− ci)xj = K > 0

The change in profit for j from the deviation is

π̂j − πj = − [τ̂ (φ∗)− τ (φ∗)] + p̂0
j ŷ

0
j − p0

jy
0
j +

∑
φ∈ΦB∗j

p(φ)
[
xb(φ)

(
ŷ0
j

)
− xb(φ)

(
y0
j

)]
−
{[
wL̂j + cix̂j

]
− [wLj + p (φ∗)xj ]

}
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substituting in the expressions for τ̂ , p̂, and ĉ, we have

π̂j − πj =
(
p̂0
j − ĉj

)
ŷ0
j −

(
p0
j − ĉj

)
y0
j +

∑
φ∈ΦB∗j

(p(φ)− ĉj)
[
xb(φ)

(
ŷ0
j

)
− xb(φ)

(
y0
j

)]
−K

+

[(
(1− α) +

ci
p (φ∗)

α

)(
p (φ∗)

ci

)α
− 1

]
ĉj

y0
j +

∑
φ∈ΦB∗j

xb(φ)

(
y0
j

)
We know that [(1− α) + xα]x−α ≥ 1 for α ∈ [0, 1] (since xt is a convex function of t we

can use Jensen’s inequality to get (1 − α)x−α + αx1−α ≥ x(1−α)(−α)+(1−α)α = 1). Therefore(
(1− α) + ci

p(φ∗)α
)(

p(φ∗)
ci

)α
≥ 1, so that

π̂j − πj ≥
(
p̂0
j − ĉj

)
ŷ0
j −

(
p0
j − ĉj

)
y0
j +

∑
φ∈ΦB∗j

(p(φ)− ĉj)
[
xb(φ)

(
ŷ0
j

)
− xb(φ)

(
y0
j

)]
−K > 0

Therefore the deviation is mutually beneficial.

Proposition 9 In any pairwise stable equilibrium, for each technique φ∗ that is used, τ (φ∗) ≥ 0.

Proof. If τ (φ∗) < 0, for some φ∗ = {j, i, z} then consider the unilateral deviation Â (φ∗) = 0 (the
supplier i refuses the contract).

After the deviation, every firm’s input price remains the same except j. j’s price will change
and will use a technique from an alternative supplier (the next one on his list if there is one)
and hence an alternative supply chain. The quantity produced by i will change: it will no longer
produce inputs for j, and if the i is in j’s alternative supply chain, i may produce more for that
chain. However, since price equals marginal cost, this change in quantity produced has no effect
on i’s profit. We therefore have

π̂i = πi − τ (φ∗) > πi

which confirms the unilateral deviation.

Proposition 10 In any pairwise stable equilibrium, qj = maxφ∈ΦSj

{
z(φ)qαs(φ)

}
.

Proof. Assume that φ∗j = φ1 ≡
{
j, i1, z1

}
and let cj = z1qαi1 . Toward a contradiction, assume

there exists a φ2 =
{
j, i2, z2

}
∈ ΦS

j and that cj > ĉj ≡ z2qαi2 .

Consider the pairwise deviation: Ôj
(
φ2
)

= 1, Ôj
(
φ1
)
> 1, Âi2

(
φ2
)

= 1, p̂
(
φ2
)

= ci2 , and

τ̂
(
φ2
)

=
maxp(p−ĉj)D(p)−maxp(p−cj)D(p)

2 > 0.
In the deviation, j′s marginal cost falls, but every other firm’s marginal cost is unchanged.

Therefore j lowers its price of final output, but no other firm does, so the quantity of final output
of j rises.

Firm j finds the deviation profitable, π̂j > πj , because marginal cost has fallen: (i) j now makes
a positive profit on each unit of output sold as intermediate output (if j is in a cycle, then profit
from intermediates would rise even more); (ii) The change in profit from final sales is greater than
the fee τ̂

(
φ2
)
; and (iii) j no longer as to pay τ

(
φ1
)

(which is nonnegative).
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Firm i2 also finds the deviation profitable, π̂i2 > πi2 , because it now collects τ̂
(
φ2
)
. Since price

equals marginal cost, changes in quantity produced as intermediates have no impact on its profit.
This confirms the unilateral deviation.
We now show that if there if each firm has access to a technology to produce its good using only

labor, yj = qL with common productivity q, then in every pairwise stable equilibrium aggregate
productivity Q is the same as in the planner’s problem.

If qpwj is the efficiency of firm j in a pairwise stable equilibrium, let F pw = Pr
(
qpwj < q

)
be the

cross sectional CDF of efficiencies in such an equilibrium. We can compare this to the distribution
of efficiencies that solve the planner’s problem, F sp.

Proposition 11 In any pairwise stable equilibrium, F pw = F sp and Qpw = Qsp.

Proof. In both the planner’s problem and in any pairwise stable equilibrium, each firm chooses
the technique that delivers the most cost effective combination:

qj = max

{
q, max
φ∈ΦBj

{
z(φ)qαs(φ)

}}

For each firm j, we are interested in the efficiency in the social planner’s problem, qspj , and efficiency
in a pairwise equilibrium. These satisfy the following three equations:

qspj = max

{
sup
c∈C∞

q(c), sup
N∈N

max
c∈CN

qN (c)qα
N

}
, w.p.1

qpwj ≥ sup
N∈N

max
c∈CN

qN (c)qα
N

qpwj ≤ qspj , w.p.1

These can be interpreted as follows: First, the chain with the maximum feasible efficiency available
to the planner is either an infinite chain or a finite chain that ends with the furthest firm upstream
using the outside option. Second, in any pairwise stable equilibrium, the efficiency of a firm must
be at least that of any finite chain that ends with a firm using its outside option q. If otherwise, at
least one of the firms in that chain is must be using a suboptimal technique. Third, efficiency in a
pairwise stable equilibrium must be feasible. The first and third equations are satisfied only with
probability one because the planner may deviate from the maximum feasible efficiency for a set of
firms with measure zero.

The remainder of the proof follows broadly along the same lines as Appendix C with some
minor modifications. As a result I will only provide a sketch, pointing out the differences. We can
construct an operator in the same manner as before:

Tf(q) ≡

 0, q < q

e
−λ̃
[
1−
∫∞
0 f

(
( qz )

1
α

)
dH(z)

]
, q ≥ q
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We can also define three functions.

f(q) ≡
{

0, q < q

1, q ≥ q

f1(q) ≡
{

0, q < 1
1, q ≥ 1

f̄(q) ≡

{
0, q < q2

1−
(
q
q2

)−β
, q ≥ q2

With the additional restriction that q2 > q.
Let F be the subset of F̄ defined by {f |f̄ � f � f}. In the same manner as before, we can

show that T f̄ � f̄ and Tf � f . This means that there is a least and greatest fixed point of T in

F , given by limN→∞ T
N f̄ and limN→∞ T

Nf respectively.

Define YN ≡ maxN̂≤N maxc∈CN̂
∏N̂−1
n=0 q(c)qα

N̂
. With this we can define variables XN ≡

max
{
YN ,maxc∈CN

∏N−1
n=0 q(c)

}
and ȲN ≡ max

{
YN ,maxc∈CN

∏N−1
n=0 q(c)q̃(c)α

N
}

, where q̃(c) is

a random variable drawn independently for each c in CN for each realization of Φ. The CDFs of
XN , ȲN , and YN are TNf1, TN f̄ , and TNf respectively.

Let Xsp ≡ limN→∞XN and Xpw ≡ limN→∞ YN In the same manner as before we can show that
these limits exists and that with probability 1 we have both Xsp = qsp and Xpw ≤ qpw ≤ Xsp.
Lastly, we can show that F sp is the unique fixed point of T on F , and is the CDF of both Xsp and
Xpw. Applying the law of large numbers gives Qsp = Qpw.

F Multiple Inputs

Fraction of tasks that deliver efficiency no greater than v is K(v):

K(v) = e
−λ̃
∫∞
0

[
1−F

(
( vz )

1/α
)]
dH(z)

Since q =
∏N
n=1 v

1
N
n , we the cross sectional distribution of efficiency F (q) is

F (q) =

∫ ∞
0

...

∫ ∞
0

K

(
qN∏N
n=2 vn

)
dK (v2) dK (v3) ...dK (vN )

We now impose the parametric assumptions H(z) = 1− (z/z0)−ζ and λ̃ = λz−ζ0 . This gives

K(v) = e
−λ
∫∞
z0

[
1−F

(
( vz )

1/α
)]
ζz−ζ−1dz

= e−λv
−ζ ∫ (v/z0)1/α

0 [1−F (r)]αζrαζ−1dr

Taking a limit as z0 → 0 gives

K(v) = e−θv
−ζ

where θ = λ
∫∞

0 [1− F (r)]αζrαζ−1dr
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Next, we solve for θ. To do this we can rewrite F (q) as (using the substitution wn = θv−ζn )

F (q) =

∫ ∞
0

...

∫ ∞
0

e−θ(q
N/
∏N
n=2 vn)

−ζ
θζv−ζ−1

2 e−θv
−ζ
2 dv2...θζv

−ζ−1
N e−θv

−ζ
N dvN

=

∫ ∞
0

...

∫ ∞
0

e−(θq−ζ)
N
/
∏N
n=2 wne−w2dw2...e

−wNdwN

so that the density is

F ′(q) =
1

q
Nζ

(
θq−ζ

)N ∫ ∞
0

...

∫ ∞
0

e−(θq−ζ)
N
/
∏N
n=2 wne−w2

dw2

w2
...e−wN

dwN
wN

We can take the expression for θ, integrate by parts, and substitute in for F ′ to get

θ = λ

∫ ∞
0

[1− F (r)]αζrαζ−1dr

= λ

∫ ∞
0

F ′ (r) rαζdr

= λ

∫ ∞
0

1

r
Nζ

(
θr−ζ

)N ∫ ∞
0

...

∫ ∞
0

e−(θr−ζ)
N
/
∏N
n=2 wne−w2

dw2

w2
...e−wN

dwN
wN

rαζdr

Making the substitution u =
(θr−ζ)

N∏N
n=2 wn

, this becomes

θ = λθα
∫ ∞

0

∫ ∞
0

...

∫ ∞
0

e−ue−w2
dw2

w2
...e−wN

dwN
wN

u1− α
N

(
N∏
n=2

wn

)1− α
N
du

u

= λθαΓ
(

1− α

N

)N
Aggregate productivity Q can be computed as follows:

Qε−1 =

∫ ∞
0

qε−1dF (q)

=

∫ ∞
0

qε−1 1

q
Nζ

(
θq−ζ

)N ∫ ∞
0

...

∫ ∞
0

e−(θq−ζ)
N
/
∏N
n=2 wne−w2

dw2

w2
...e−wN

dwN
wN

dq

Making the substitution u =
(θq−ζ)

N∏N
n=2 wn

and this becomes

Qε−1 = θ
ε−1
ζ

∫ ∞
0

(
N∏
n=2

wn

)1− ε−1
ζ
/N

u
1− ε−1

ζ
/N
∫ ∞

0
...

∫ ∞
0

e−ue−w2
dw2

w2
...e−wN

dwN
wN

du

u

= θ
ε−1
ζ Γ

(
1− (ε− 1) /ζ

N

)N
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so that aggregate productivity is

Q = Γ

(
1− (ε− 1) /ζ

N

) N
ε−1

λ
1

(1−α)ζ Γ
(

1− α

N

)N 1
(1−α)ζ

F.1 Number of Customers

Given efficiency qi, efficiency that a single technique that uses that good delivers efficiency less

than by a technique is probability that a v is H
(
v
qαi

)
, with density 1

qαi
H ′
(
v
qαi

)
. The probability

that the potential buyer has no other techniques better than v is simply K(v) (more properly, the

probability is K(v)−e−λ̃

(1−e−λ̃)
∫∞
0 F

(
( vz )

1/α
)
dH(z)

which converges to K(v) as z0 → 0). So the probability that

a technique is the potential buyer’s best is
∫∞

0
1
qαi
H ′
(
v
qαi

)
K(v)dv. Since the number of potential

buyer’s follows a Poisson distribution with mean Nλ̃, the number of actual buyers is Poisson with
mean:

Nλ̃

∫ ∞
0

1

qαi
H ′
(
v

qαi

)
K (v) dv → Nλ

∫ ∞
0

1

qαi
ζ

(
v

qαi

)−ζ−1

e−θv
−ζ
dv

= N
λ

θ
qαζi
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