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Abstract. This paper provides a directed search model designed
to explain the residual part of wage variation left over after the
impact of education and other observable worker characteristics
has been removed. Workers have private information about their
characteristics at the time they apply for jobs. Firms can observe
these characteristics once workers apply, and hire the worker with
the characteristic that they like. The paper focuses on the case in
which firms aren’t able to condition their wage offers on these char-
acteristics. The paper shows how to extend directed search argu-
ments to deal with arbitrary distributions of worker and firm types.
The paper then illustrates how data on the relationship between
exit wage and unemployment duration can be used to identify the
unobserved distributions of worker and firm types. The model also
has testable predictions. For example, certain easily checked prop-
erties of the offer distribution of wages imply that workers who are
hired by the highest wage firms should also be the workers who
have the shortest unemployment duration. This is in strict con-
trast to the usual directed search story in which high wages are
always accompanied by higher probability of unemployment.

1. Introduction

One shortcoming of most directed search models compared to models
with purely random matching is the fact that they are based on strong
symmetry assumptions. Even papers that are explicitly designed to al-
low for differences among traders (for example Shimer (2005) and Shi
(2002)) restrict themselves to distributions of wages and types with fi-
nite support. At a minimum, this makes it difficult for them to match
with econometric data that tends to involve continuous distributions.
Furthermore, the empirical content of these models applies to the re-
lationship between observables. For example, workers with more edu-
cation will receive higher wages. Apart from differences in these ob-
servables, all traders are assumed to be the same, leaving the models
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mute about the large part of the variation in wages that is apparently
unrelated to observables.

The purpose of this paper is to provide an alternative version of
the directed search model that can be used to explain this residual
variation. In the model, this variation is due to unobservable worker
characteristics, and to the (equally unobservable) value of these char-
acteristics to firms. The empirical content of the model comes from the
relationship it establishes between the offer distribution of wages and
the relationship between wages at which workers leave unemployment
and their average search duration.1 Addison, Centeno, and Portugal
(2004) present evidence to suggest that exit wages and unemployment
duration are negatively correlated. In a more standard directed search
terminology, this means that employment probability seems to be pos-
itively correlated with wage. The evidence is not strong, but it is
striking that it provides no support at all for the classic prediction of
directed search - that workers who apply at high wage firms will have
a lower probability of employment.

It is shown in the model below that any systematic tendency in
this data is tied to the properties of the wage offer distribution. The
relationship between exit wage and unemployment duration is driven by
two considerations. The first is completely intuitive - higher wage firms
will tend to hire workers whose quality is higher, and these workers will
tend to be more likely to find jobs no matter where they apply. This is
confounded by the possibility that higher quality workers will tend to
apply where there are a lot of other high quality workers. This is where
the directed search model plays a role since it ties down the application
strategy for workers of different qualities. The characterization of the
equilibrium application strategy provided below makes it possible to
provide a readily checked property of the offer distribution that will
determine the relationship between exit wage and duration. Assuming
that the wage offer distribution is has the usual skewed (log normal)
shape, it will support an inverse relationship between exit wage and
duration provided the density doesn’t decline too rapidly to the right
of its peak.

A second phenomena that the model in this paper can be used to ad-
dress is duration dependence (Machin and Manning (1999) or Addison,
Centeno, and Portugal (2004)). Workers who have been unemployed
for a long time tend to wait longer for a job offer than workers who

1The model in the paper is static, so the actual relationship is between the
probability of employment and the wage at which a worker is hired. In the steady
state of such a model, the expected duration of unemployment is just the reciprocal
of the probability of employment.
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are newly unemployed. Directed search models typically assume that
all workers are the same or differ only in ways that are observable
to an outsider. Workers apply to high wage firms only because their
equilibrium mixed strategies require them to do so with some positive
probability. When workers’ application behavior is driven by an under-
lying characteristic, workers who adopt a risky application strategy in
one period will tend to persist in this behavior. Workers who have been
unemployed for a long time are more likely to be workers whose types
support a risky application strategy. Duration dependence is then sim-
ply a consequence of the workers underlying characteristic and does
not reflect any kind of discouragement effect. Again, the model below
captures this phenomenon in a simple way.

Finally, the model below illustrates how data on the wage distribu-
tion and the relationship between exit wage and unemployment dura-
tion can be used to attribute wage variation to either variation in the
unobservable characteristics of workers, or to variation in firms valua-
tion of these characteristics.

Most of the paper is concerned with the case where there is a contin-
uum of workers and firms. However, the basic logic of directed search
involves mixed application strategies where workers apply with higher
probability at higher wage firms. It isn’t at all clear what mixed ap-
plication strategies mean when there are a continuum of different firms
to choose from all offering different wages. To get some insight into
this process the paper starts with the analysis of the equilibrium of the
application sub-game that occurs after a finite number of firms have
posted their wages for a finite number of workers. By taking limits of
the equilibrium payoffs as the number of firms and workers grow large,
this approach defines payoffs in a continuum model in which workers
and firms best reply to a distribution of wage offers, and a reservation
wage application strategy for workers. The payoff functions defined
by these limits define a large game that captures the logic of directed
search when there is a continuum of different traders on each side of
the market. The construction of this large game is one of the central
contributions of the paper. The equilibrium arguments are based on
an adaptation of the argument in Peters and Severinov (1997), and
resemble the mixed equilibrium that were characterized in Shi (2002)
and Shimer (2005), albeit under much different assumptions. There
is a unique symmetric equilibrium in which workers randomize over
the wages at which they submit applications. In any finite directed
search game, this application strategy is conceptually straightforward,
but complex since it involves a potentially large number of different
application probabilities for each of the different wages being offered
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in equilibrium. The paper shows the sense in which this application
strategy converges to a simple reservation wage rule similar to the one
in Shimer (2005) as the number of traders becomes large.

After a brief digression about the relationship between wage and em-
ployment probability in the standard directed search model, the paper
begins with a description of search equilibrium with a finite number of
firms and workers. This section is an attempt to motivate the reserva-
tion wage strategy that workers use in the large game. The paper then
presents a basic set of limit theorems that are used to define the payoff
functions in the large search game. The equilibrium in the large search
game is characterized in Section 4, and the relationship between wage
offer distributions and search duration is analyzed. The final section
concludes. Detailed proofs of the limit theorems are contained in an
appendix.

2. Directed Search

Most directed search models compute payoffs by assuming that a
single deviator offers a wage that differs from the wage offered by all the
others (for example, Burdett, Shi, and Wright (2001)). The symmetry
among the non-deviating firms is what makes the calculation possible.
This approach makes it tough to deal with even the simplest wage
distributions. To illustrate how directed search can be modified to deal
with differences among firms, a brief digression to explain a theorem in
Peters (2000) helps to illustrate what is different in the model here.

That paper begins with a finite model in which firms offer wages
and workers choose application strategies that maximize their expected
wage. There are many different firms who play a Nash equilibrium in
wages, understanding the way that the Nash equilibrium in workers’
application strategies depends on the wages they set. The theorem in
the paper shows that as the number of firms and workers participating
in the market gets large, there is a payoff µ such that any firm who offers
a wage w while all other firms play their Nash equilibrium strategies
receives payoff that converges to

(1) (1 − e−k)(P − w)

where k satisfies

(2)
1 − e−k

k
w = µ

and P is the profit the firm earns when it hires a worker (which is
exogenous and differs across firms).
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Equation (2) is the simple part of the theorem. It puts a specific form
on the relationship between the matching probability and the wage at
which a worker applies. The deeper part of the theorem is (1) which
relates the probability with which firms fill vacancies to the probability
with which workers match. The important point is that the k that
appears in (1) is the same as the one in (2). This means that when
the number of workers and firms is large, every wage that is offered
in every Nash equilibrium must be close to the wage that maximizes
(1) for some firm type constrained by (2). Then if we know the types
of the firms, we could find the equilibrium distribution of wages by
finding the distribution of solutions to this problem for a given µ, then
adjusting µ until the average value of k associated with wages across
the distribution is equal to the actual ratio of workers to firms in the
market.

Conversely, given a distribution of wages, one could work backwards
and find the distribution of firm types that would support the observed
distribution as an equilibrium distribution.2 To find the preferences of
these firms it is only necessary to have information about the rela-
tionship between wages and unemployment probability, which can be
estimated from the duration data. In the model above, wage and em-
ployment probability must vary in a way that traces out a worker’s
indifference curve. Firms preferences at each wage are then found by
finding types whose indifference curves are tangent to this worker in-
difference curve. In particular, this argument makes it clear that wage
and employment probability must be inversely related.

Employment probability isn’t observable, and can only be guessed
by looking at duration. Assuming some steady state dynamic ver-
sion of the directed search model in which workers independently carry
out their application randomizations in every period, two predictions
emerge. First, workers who leave unemployment quickly will tend to
be those who apply to low wage firms. All workers are more likely to
apply to high wage firms, so those who exit after long duration will
tend to leave at high wages. So duration and exit wage should be di-
rectly related. Second, a worker who has been unemployed for a long
time will use the same application strategy as a worker who is newly
unemployed. So there should be no duration dependence.

2This structural procedure is generally impossible in models with a finite set of
types, since most wage distributions cannot be explained with a finite set of types.
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It should be apparent that both these outcomes result largely from
the fact that workers with the same observable characteristics are as-
sumed to be identical. The model that follows is designed primarily to
relax this assumption.

3. Fundamentals

A labor market consists of sets M and N of firms and workers re-
spectively. To begin, assume these sets are finite and consist of m
firms and n workers with n = τm. Each worker has a characteristic
y contained in a closed connected interval Y =

[

y, y
]

⊂ R
+. These

characteristics are observable to firms once workers apply, but initially,
they are private information. When M and N are finite, it will be
assumed that each worker’s characteristic is independently drawn from
a distribution F . The distribution F is assumed to be differentiable
and monotonically increasing and to satisfy the property that F ′(y)

1−F (y)
is

uniformly bounded.3 It is assumed impossible for firms to reward this
characteristic directly. A worker’s payoff is simply the wage he receives.
Workers are risk neutral.

Firms differ, but their characteristics are common knowledge.4 Each
firm j has a single job that it wants to fill. It chooses the wage that it
wishes to pay the worker who fills this job. Each firm’s wage is chosen
from a compact interval W ⊂ R

+. Payoffs for firms depend on the wage
they offer and on the characteristic of the worker they hire. The payoff
for firm j is vj : W×Y → R. It is assumed that vj is jointly continuous,
that the family vj(·, y) is an equi-continuous family of functions from
Y into R, and that the derivative of v with respect to y is bounded for
all w.

The Bayesian game that determines wages and matches starts with
firms simultaneously choosing their wages. After observing the wage
offers each worker applies to one and only one firm. Once applications
are made to the firms, each firm chooses to hire the worker who applies
to it who has the highest characteristic. Since all workers are in some
sense equally well qualified for the jobs that firms offer, we assume that
the firm does not have the option of refusing to hire once it observes
the characteristics of the workers who apply.

3One necessary condition for this to hold is that the density of F at the highest
wage in the support of the distribution must be zero. This rules out, for example,
a uniform distribution, or a distribution in which all workers have an identical
characteristic that is commonly know.

4It would make little difference if these characteristics were private to firms, since
all workers and other firms care about is the firm’s wage.
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4. Equilibrium of the Worker Application Sub-game

To motivate the argument that follows, we start by considering where
workers of different types apply once they see the wage offers of firms.
This section begins to develop the concept of a reservation wage appli-
cation strategy that is the basic building block for analysis of the large
game.

A strategy for worker i in the application sub-game is a function
πi : WN × Y → Sm−1, where Sm−1 =

{

π ∈ R
m
+ :
∑m

i=1 πi = 1
}

.5 This
section analyzes symmetric equilibria in which every worker uses an
application strategy that is a common function of his or her type. The
idea that is fundamental to directed search is that these application
strategies depend on the array of wages on offer. For the purposes
of characterizing the equilibrium in the application sub-game associ-
ated with a fixed set of wages, the notation that captures this will be
suppressed and we write πj(y) to be the probability with which each
worker whose type is y applies to firm j.

Since firms always hire the worker with the highest type who applies,
worker i will match with firm j in equilibrium so long as every other
worker in the market either has a lower type than he does, or applies to
some other firm. So the probability that a worker is hired if he applies
to firm j is given by

[

1 −

∫ y

y

πj (y′) dF (y′)

]n−1

The payoff to the worker is equal to this probability multiplied by the
wage that the firm offers. It will simplify the argument in this section to
assume that wages are ordered in such a way that w1 6 w2 6 . . . 6 wm.

The unique (symmetric) equilibrium for the application sub-game is
given by the following Lemma.

Lemma 4.1. For any array of wages w1, . . . wm offered by firms for
which w1 > 0, there is an array {yK, . . . , ym} with K > 1 and a set
{πk

j }k>K;j>k of probabilities satisfying πk
j > 0 and

∑m

j=k π
k
j = 1 for each

k and such that the strategy

πj(y) =

{

πk
j if j > k; y ∈ [yk, yk+1)

0 otherwise

5We ignore the possibility that a worker might not apply to any firm since that
is a strictly dominated strategy given the assumptions about payoffs.
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Figure 1. Figure 1
w1 w2 w3 w4 w5 w6

y4 y5 y6 y

y1 = y2 = y3

y

is almost everywhere a unique continuation equilibrium application strat-
egy. The probabilities πi

j satisfy

(3)

(

πi
j

πi
i

)n−1

=
wi

wj

for each j > i.
Furthermore, the numbers {yk} and {πk

j } depend continuously on the
wages offered by firms.

The proof is included in the appendix. The theorem is hard to state
because there are many different probabilities that have to be described.
However, the important content of the theorem is displayed in Figure
1.

The lower line in the figure represents the set of possible types that
workers might have, from y to y. The upper line represents the array
of wages on offer. There are six firms in this example, each offers a
distinct wage. The theorem says that the set of types can be partitioned
into m − K + 1 different subsets. In the picture there are four such
subsets with cutoff points given by y4, . . . y6. The interpretation of the
interval is that workers whose types are in (yj, yj+1] all choose firm j
as the firm with the lowest index to which they will apply. In other
words, there is a lowest wage to which a worker of type yj will apply.
Following Shimer (2005) we refer to this wage as worker j’s reservation
wage. The leftmost arrows emanating from each point on the horizontal
axis point to this reservation wage. The second important part of the
theorem is illustrated by the fact that there are shorter arrow pointing
at higher wages as well. Specifically, this means that the worker of type
yj will apply with positive probability at every wage above his or her
reservation wage.

The complexity of the statement comes from the fact that the prob-
ability with which the worker of type yj applies to each of the wages
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above his or her reservation wage is different. Nonetheless, the theo-
rem provides considerable regularity since it shows both that all work-
ers whose types are in the interval (yj, yj+1] have the same reservation
wage, and apply to each wage above their reservation wage with the
same probability.

Workers in the interval (y4, y5] in the picture above, won’t apply
to any firm whose wage is below w4. Workers whose types are in the
interval (y5, y6] won’t apply at any wage below w5. So these reservation
wages are non-decreasing functions of type.

All types of workers except for the highest randomize when they ap-
ply. The second part of the theorem suggests how this randomization
works out when the labor market is very large. Equation (3) requires
that workers apply with the highest probability to wages near their
reservation wage. The higher a wage offer is relative to a worker’s
reservation wage, the lower the probability with which the worker will
apply. Notice that this is very different from what happens in the stan-
dard directed search story in which higher wages always imply higher
application probabilities. In the standard story, workers have to be
indifferent about applying at all different wages. Application proba-
bilities have to be higher at high wage firms so that the probability
of being hired falls as the wage rises. Here indifference also drives the
application strategy, but the probability of being hired at the higher
wage firm falls for a worker of any given type because he faces stiffer
competition at the higher wage firms, not because there are more ap-
plicants.

Notice, however, that (3) suggests that differences in application
probabilities is a ’small numbers’ phenomena. If n is very large, then
πi

i and πi
j have to be almost equal equal to one another in order for (3)

to hold, no matter what the difference between wi and wj is. If n is
very large, these differences in application probabilities should tend to
disappear leading to a situation in which workers appear to be applying
to all wages above their reservation wage with the same probability. We
report a formal result of this kind below.

Finally, it is worthwhile to give some intuition about why the equi-
librium works out the way it does. For example, an alternative that
might seem reasonable is that workers and firms match assortatively
with the highest quality workers applying to the highest wage firms,
with lower quality workers applying exclusively at lower wages. To see
why this won’t work, consider the lowest worker type yj who applies
at wage wj. If workers application strategies involve sorting, worker
yj will be hired for sure if he applies at any wage below wj and will
be hired at the wage wj if no higher type workers apply. Any worker
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who has type yk < yj is less likely than worker yj to be hired at a firm
offering a wage w′ < wj , but has exactly the same chance as worker
yj of being hired at wage wj. So workers with types below yj would
strictly prefer to apply at wage wj than at any lower wage. To prevent
this, there must be some chance that workers with types below yj also
apply at wage wj in equilibrium.

All the outcomes depend on the number of workers and firms. To
avoid adding notation, everything is indexed by n and it is assumed
that the ratio of the number of workers to firms is constant and equal
to τ . Fix an array of wages. Let {π1(·), . . . , πm(·)} be the continua-
tion equilibrium associated with this array of wages. Observe that by
Lemma 4.1, each function πj(y) is a step function with jumps at the
points yj. Define the step function

ωn(y) = min {wj : πj(y) > 0}

As above, this notation suppresses the fact that the function depends on
the array of wages on offer. This is the lowest wage to which a worker of
type y applies with positive probability in the continuation equilibrium.
Alternatively, it is worker y’s reservation wage. This function is a
step function whose ’steps’ occur at the critical points yj identified by
Lemma 4.1. The limit from the left of ωn(yj) at yj is wj−1, while the
right limit of ωn(yj) = wj . Denote its ’inverse’ function by

y∗n(w) = sup {y′ : ωn(y
′) ≤ w}

In words, the inverse function gives the highest type who chooses a firm
offering wage w with strictly positive probability. Despite the fact that
the notation suppresses this, bear in mind that the functions y∗n and
ωn both depend on the array of wages on offer.

4.1. Wages. Consider the firm who offers the wage wj (i.e., the jth

lowest wage). The probability with which a worker drawn randomly
both comes to firm j and has a type at least y is

∫ y∗

n(wj)

y

πj(y
′)dF (y′)

Let j̃(y) = {j′ : ωn(y) = wj′} be the index of the lowest wage to which
a worker of type y applies. Using this the integral above can be written

j
∑

j′=j̃(y)

πj′

j [F (yj′+1) − max [F (yj′), F (y)]]

if ωn(y) ≤ wj . The integral is zero otherwise. Then from firm j’s point
of view, it looks exactly as if n worker types are being independently
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drawn from the probability distribution

φj(y) ≡ 1 − π
j̃(y)
j [F (yj̃(y)+1) − F (y)] −

j
∑

j′=j̃(y)+1

πj′

j [F (yj′+1) − F (yj′)]

The distribution function φj(y) has an atom of size

1 −

j
∑

j′=1

πj′

j [F (yj′+1) − F (yj′)]

at y.
The firm will always hire the worker who has the highest type. The

probability distribution for the type hired by the firm is then the prob-
ability distribution of the highest order statistic from this distribution.
This gives the expected payoff for firm j as

(4)

∫ y

y

vj(wj, y)dφ
n
j (y)

By Lemma 4.1, the distribution function φn(y) is continuous at each
point y in firm j’s wage. So φn(·) varies continuously in the weak
topology with firm j’s wage. As the family of functions vj(·, y) is equi-
continuous, the integral is a continuous function of the wage wj that
the firm offers. The existence of a mixed strategy equilibrium in firms’
wages then follows from standard theorems.

5. Equilibrium in a Large Game

Despite the conceptual simplicity of firms’ payoff implied by (4), it
is difficult to provide much in the way of characterization of the Nash
equilibrium of the firms’ part of the game. It is tempting to jump to a
continuum of workers and firms to see if this helps the characterization.
A significant complication in this regard arises from the fact that in a
large game, payoffs should be defined for every feasible action against
every possible distribution of the actions of the others. For firms this is
at least conceptually straightforward since wage distributions are well
understood. For workers, the application ’strategy’ is not a well defined
object in the continuum. The distribution of such things is then a moot
point.

To get around this difficulty, this section provides a theorem that
shows that limit payoffs of all traders depend on their own actions, on
the distribution of wages, and on a single reservation wage function for
workers. This result suggests a natural definition of equilibrium for the
continuum game.
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Let G be a distribution of wages. Suppose that firms’ preferences
can be parameterized by elements in some interval H of the real line.
Let H be a distribution function on H. Firms preferences can then
be written vh(w, y) where h ∈ H. To approximate the distribution of
wages, let Gn be a sequence of step functions that converges weakly to
G. Let {wn

1 , . . . , w
n
m} be the finite array of wages whose distribution is

Gn.
Now fix a firm type h and a wage w to be offered by that firm.

Suppose that in this approximation, firm h has the jnth

highest wage.
For any distribution function, Gn, let G−

n (w) be the left limit of Gn, so
that (1 −G−

n (w))m is the number of firms whose wage offer is at least
w. Recall that the non-decreasing function ωn : Y →W represents the
lowest wage at which worker of type y will apply, and that yn(w) =
supy ωn(y) ≤ w is the highest worker type who will apply to a firm who
offers wage w.

Theorem 5.1. Let G be a distribution of wages, w an arbitrary wage
offered by a firm of type h, and w−, the largest wage in the support of
G that is less than or equal to w. Let Gn be a sequence of distributions
that converges weakly to G. Let jn be the corresponding sequence of
indices of firm h’s wage (i.e., such that w is the jth

n lowest wage in the
distribution associated with Gn). There is a non-decreasing right con-
tinuous function ω(y) and a non-decreasing right continuous function
y∗(w) (both of which depend on G) such that

(5) lim
n→∞

[

1 −

∫ y∗

n(w)

y

πn
jn

(y)dF (y)

]n−1

=
w−

w
e−

R y∗(w−)
y

k(y′)dF (y′)

and

lim
n→∞

∫ y

y

vh(w, y)dφ
n
jn

(y) =

(6)

w−

w

∫ y∗(w−)

y

k(y)vj(w, y)e
−

R y∗(w−)
y

k(y′)dF (y′)F ′(y)dy+vh(w, y
∗(w))

(

1 −
w−

w

)

where
k(y) =

τ

1 −G−(ω(y))

Furthermore y∗(w) = sup {y : ω(y) ≤ w}.

The proof of the theorem is, again, included in the appendix. A
number of more descriptive comments are in order here.

First, the formulas above differ depending on whether the wage offer
a firm makes, or the wage at which a worker applies, are in the support
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of the existing distribution G of wages. If they are, then w and w− are
the same. The probability with which a worker is hired when he or she
applies to a firm offering wage w is then given by the simpler formula

e−
R y∗(w)
y

k(y′)dF (y′)

while the profit for the firm who offers a wage in the support of G is
∫ y∗(w)

y

k(y)vj(w, y)e
−

R y∗(w)
y

k(y′)dF (y′)F ′(y)dy

At first glance, these formulas seem independent of the distribution
G. Recall however, that k(y) = τ

1−G−(ω(y))
. The function ω(y) is the

common reservation wage function used by all workers, and y∗(w) is
it’s ’inverse’. So all traders payoffs are determined by their own ac-
tions (offer or apply at wage w), the distribution of wages G and the
reservation wage function ω.

To see how these formulas work when a firm offers a wage outside
the support of the existing distribution, it might help to consider the
case where G has all firms offering the same wage, say w0. Then 1 −
G−(w) = 1 for every wage less than or equal to w0. Since the reservation
wage function will have its range in the support of the distribution G,
ω(y) = w0 for all y. Then k(y) = τ for all y. By the definition of the
inverse function y∗(w0) = y.

With these preliminaries, a worker of type y who applies to a firm
offering the wage w0 is hired with probability

e−
R y∗(w)
y

k(y′)dF (y′) = e−
R y

y
τdF (y′) = e−τ(1−F (y))

Recall that this formula is slightly different from the formula in the
usual story because workers types differ. The worker is hired if no
worker with a better type shows up. In the usual story, the worker
is hired if he is the winner of a lottery in which applicants are chosen
with equal probability.

The payoff to a firm who offers w0 in the support of the distribution
is

∫ y

y

τvj(w0, y)e
−τ(1−F (y)F ′(y)dy

Now suppose that a single deviating firm offers a wage w1 > w0.
Then by (5), the probability with which a worker is hired when he
applies to this deviating firm is

w0

w1

e−τ(1−F (y))

13



This is just the analog of (2) in the sense that it says that the distribu-
tion G supports a ’market’ payoff for each type equal to w0e

−τ(1−F (y))

which will be unchanged by the deviation.
The deviating firm’s payoff is given by

w0

w1

∫ y

y

τvj(w1, y)e
−τ(1−F (y))F ′(y)dy + vh(w1, y)

(

1 −
w0

w1

)

Equilibrium can now be calculated by finding a wage w0 for which this
latter expression is never larger than the payoff the firm receives when
it offers w0.

What is most important about the theorem is that it gives limit pay-
offs that, apart from exogenous stuff, depend only on firm and worker
choices (the wage offered or applied to), the distribution of wages G,
and a single reservation wage rule ω(y). These formulas provide a nat-
ural definition of equilibrium in the large game. First, if every firm
chooses a wage that is a best reply to the distribution G and the func-
tion ω, then the associated distribution of best replies should be equal
to G. Secondly, each worker type should find that his or her expected
payoff is the same when they apply to any wage at or above their reser-
vation wage ω(y), and this payoff should be at least as large as it is
when they apply at any wage below their reservation wage.

This is the notion of equilibrium that is adopted in the rest of the pa-
per. Before proceeding, it is useful to clarify somewhat the relationship
between this approach and the right approach, which is to compute the
limits of sub-game perfect Nash equilibria as the number of workers and
firms grow. A brief digression on this follows.

Let H be a distribution of firms’ types and Hnthe distribution of
firms’ types in a finite approximation consisting of n workers and m
firms, where n

m
= τ . Imagine constructing the sequence of approxi-

mations so that Hn converges weakly to H . Since firms’ first stage
payoff functions are continuous when there are finitely many workers
and firms according to Lemma 4.1, an equilibrium for the entire game
must exist in which firms use mixed strategies to set their wages in
the first stage. Suppose fortuitously that every finite approximation
has an equilibrium in which each firm uses a pure strategy in equilib-
rium when setting its wage. This pure strategy equilibrium supports
a distribution Gn of wages. This distribution has a weak limit G as n
becomes large. Then the formulas in Theorem 5.1 give the limit values
of payoffs to workers of each type facing the equilibrium distribution
of wages. The Theorem also provides the limit value of the payoff for
any wage w played against the equilibrium wages of all the other firms.
If G is not an equilibrium distribution in the limit game (in the sense
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described above, that G is a best reply to itself), then some type of firm
does strictly better in the limit game than he could do by playing the
limit of his equilibrium pure strategy. Then convergence means that
he will do strictly better in the finite approximations as well when n is
large enough. So the weak limits of (pure strategy) equilibrium wage
distributions from large finite games must be equilibrium distributions
in the limit game. This is the sense in which we can use the payoff
functions from the limit game to approximate what happens in large
finite approximations.

The converse isn’t necessarily true. There is no guarantee that equi-
libria from the limit game are necessarily close to pure strategy equi-
libria in any finite approximation. This isn’t too big a problem, since
if there are such limits, the equilibrium for the large game will find
them. On the other hand, the argument above isn’t obviously true for
sequences of mixed equilibria. So finding equilibrium in the large game
may not uncover all the limits of equilibria from large finite games.

Finally, one limit calculation helps to illustrate why the probability
functions disappear in the limit. To make the argument a little easier,
assume that G is differentiable. The following argument calculates the
limit value of the probability with which a worker of type y applies
to some firm whose wage is less than or equal to w. The point is to
show that this probability will be equal to the ratio of the measure
of firms who offer wages between worker y’s reservation wage and w,
to the measure of firms who offer wages above y’s reservation wage.
The interpretation is that when there are many workers and firms, y
behaves almost as if he is applying with equal probability to every firm
who offers a wage above his reservation wage.

The formal calculation of this probability in the game with n workers
is

j:wj=w
∑

j′=j:wj=ωn(y)

πn
j′(y) =

m

n− 1

j:wj=w
∑

j′=j:wj=ωn(y)

(n− 1)πn
j′(y)

Gn(wj′+1) −Gn(wj′)

wj′+1 − wj′
(wj′+1 − wj′) =

Observe that in this formula m(Gn(wj′+1) −Gn(wj′)) = 1 by the con-
struction of the approximation. This can be written as

m

n− 1

∫ w

ωn(y)

(n− 1)πn
w(y)G′

n(w)dw
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making the obvious substitutions. By the bounded convergence theo-
rem and the differentiability of G, this converges to

1

τ

∫ w

ω(y)

k(y)G′(w)dw

Substituting for k(y) gives
∫ w

ω(y)

G′(w)

1 −G(ω(y))
dw

This gives the desired result.

6. Properties of Equilibrium

This section simply forges ahead with the idea that the distribution
G and reservation wage function ω must satisfy the two conditions
of equilibrium described above. Fix G. Since this case hasn’t been
addressed in the literature, assume G is differentiable. The second
condition for equilibrium says that workers should receive the same
payoff by applying at every firm whose wage is above their reservation
wage. Formally

(7) we−
R y∗(w)
y

k(y′)dF (y′) = constant

for each w ≥ ω(y). The total derivative of the function with respect to
wage should then be zero. That is

we−
R y∗(w)
y

k(y′)dF (y′)k(y∗(w))F ′(y∗(w))
dy∗(w)

dw
= e−

R y∗(w)
y

k(y′)dF (y′)

giving

(8) w
τ

1 −G(w)
F ′(y∗(w)) =

1

dy∗(w)/dw

Since y∗(w) is the inverse function of ω(y) at each point where this
derivative exists,

(9) ω(y)
τ

1−G(ω(y))
F ′(y) =

dω(y)

dy

The boundary condition is simply that ω(y) = wG where wG is the
highest wage in the support of G. The solution to this equation gives
the equilibrium reservation wage strategy ω for workers in response to
any differentiable distribution G of wage offers by firms.

One implication of (9) is that ω(y) is strictly increasing. Then
y∗(ω(y)) = y, and from (5), a worker of type y who applies to a firm
offering wage ω(y) is offered a job with probability 1. Workers with
higher types than y simply won’t apply to a firm who offers a wage
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ω(y). This means that the symmetric reservation wage function ω(y)
also describes workers’ payoff in the continuation equilibrium associ-
ated with a distribution G. The constant of the right hand side of (7)
is equal to ω(y). It follows from the same equation that the probability
with which a worker of type y trades with a firm offering wage w is

simply equal to ω(y)
w

. Then we can rewrite (7) as

(10) we−
R y∗(w)
y

k(y′)dF (y′) = ω(y)

The equilibrium distribution G will vary with the distribution of
firms’ and workers’ types which are unobservable. In particular, any
distribution G can be supported for an appropriate choice for the distri-
bution of firm types. This is another way of saying that the theory itself
does not impose any restrictions on the distribution of wages apart from
those implied by assumptions about the distribution of firms’ types.

The only other observables are the labour market experiences of
workers, the wages that they are hired at and their unemployment
experience. Their matching probability is not observed, but their du-
ration at the time they find jobs presumably is observable. Duration
is just the inverse of the matching probability. The theory does im-
pose restrictions on the relationship between the wage distribution and
duration.

The probability that a worker of type y is hired by some firm, using
the reasoning above, is given by

Q(y) =

∫ wG

ω(y)

e−
R y∗(w)
y

k(y′)dF (y′) G′(w)

1 −G(ω(y))
dw

Since the expected wage is constant for a worker of type y at every
wage above ω(y), this can be written as

Q(y) =

∫ wG

ω(y)

ω(y)

w

G′(w)

1 −G(ω(y))
dw

The expected duration of unemployment for a worker of type y is
1

Q(y)
. Of concern below is how this matching probability varies with

the worker’s type. Since higher types have higher reservation wages,
the way this function varies with type depends on the way the function

ψ(w) =

∫ wG

w

w

w′

G′(w′)

1 −G(w)
dw′

in wage w. This function represents the expectation of the ratio of any
wage to wages in the distribution G that are higher than that wage.
This function isn’t particularly simple, but its’ properties are readily
checked numerically using only data from the wage distribution. Of
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particular interest are the situations in which this function is mono-
tonic. If ψ′(w) > 0, for example, this means that the ex ante probabil-
ity with which a worker of type y trades is an increasing function of y
because of the monotonicity of ω(y).

Again, y is unobservable. What is observable is the actual duration
of workers hired at different wages. From (6), the probability that a
worker hired by the firm who offers wage w has a type less than or
equal to y0 is given by

∫ y0

y
k(y)e−

R y∗(w)
y

k(y′)dF (y′)F ′(y)dy

∫ y∗(w)

y
k(y)e−

R y∗(w)
y

k(y′)dF (y′)F ′(y)dy
=

∫ y0

y
τ

1−G(ω(y))
ω(y)
w
F ′(y)dy

∫ y∗(w)

y
τ

1−G(ω(y))
ω(y)
w
F ′(y)dy

Note that this probability is conditional on some worker being hired
by the firm, which explains the denominator. The equality follows by
substituting for k(y) and using (10). Substituting (9) gives an even
simpler formulation

(11)

∫ y0

y
ω′(y)dy

w − ω(y)

This expression is readily seen to be declining in w. The interpretation
is that an increase in the wage moves the distribution function for the
type hired by the firm to one that first order stochastically dominates
the original distribution.

Now use this distribution to take expectations of Q(y) to get the
following:

Proposition 6.1. If ψ(w) is monotonically increasing (decreasing)
then the expected duration of unemployment for a worker hired by a
firm is an decreasing (increasing) function of the wage offered by the
firm.

The unusual part of this proposition is the first part. When ψ(w)
is increasing, workers who are hired at high wage firms will tend on
average to have spent less time searching for jobs than workers who are
hired by low wage firms. This is quite unlike standard directed search
where high wages and long duration must go together. This prediction
is not a particularly strong test of the model, since the function ψ(w)
may not be monotonic. Notice however, that it is a testable conse-
quence of the model that does not rely on any knowledge about the
distributions of the unobservables.
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The expected duration for a worker hired by a firm offering a wage
w is given by the reciprocal of

∫ y∗(w)

y

ω′(y)

w − ω(y)
ψ(ω(y))dy

using the expression for the density of the type of worker hired by the
firm that was derived above. It is apparent from this expression that
when ψ(w) is non-monotonic, then there will be no systematic relation-
ship between the wage at which a worker is hired and his probability of
matching measured as his expected duration. Even in this dimension,
the result is quite different from the standard directed search model
where wage and employment probability must be inversely related.

Let Φ(w) be the expected duration of unemployment for workers
hired at wage w, which could be estimated from existing data. This
function, along with the actual wage distribution constitute the ob-
servables in this problem. Fix a set of types, say [0, 1]. Using the last
expression, the functional equation

∫ y∗(w)

y

ω′(y)

w − ω(y)
ψ(ω(y))dy =

1

Φ(w)

can be solved to recover the function ω(y). The distribution of worker
types is then recovered by solving (9). The distribution of firm types
must then be chosen to support the observed distribution G when firms
best reply to G and the symmetric strategy ω(·) used by workers. This
makes it possible to recover the productivity of the unobserved distri-
bution of types.

The point of this last argument is simply to show how the model can
be used to decompose the wage variation into variation in workers’ and
firms’ types. We leave the analysis of this for future work.

7. Conclusion

This paper illustrates how a directed search model can be used to
account for the residual part of wage variation. Part of this involves
adjusting the directed search model to allow for rich variation in the
types of workers and firms. This improves on existing models that use
extensive symmetry assumptions that force the models to behave in
counter-factual ways. In the variant proposed here, rich distributions
of firm and worker characteristics can be incorporated.

The directed search model does impose some structure on the data.
Surprisingly it restricts the relationship between the wage distribution
and the function relating unemployment duration and exit wage. Some
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wage distributions (the uniform being an example) have the property
that workers who leave unemployment at high wages must also have
shorter unemployment duration. This prediction is distinctly different
from standard directed search models where unemployment duration
and wage must be positively related.

The driving force in the model presented here is the equilibrium of
the workers’ application sub-game. Contrary to what one might expect,
low quality workers do not restrict their applications to low wage firms.
On the contrary, low quality workers make applications at all kinds of
different wages. The higher the unobservable quality of the worker, the
more discriminating the worker is in the wages at which he applies.
It is this property that breaks the strong relationship between wage
and unemployment probability. Higher quality workers are more likely,
everything else constant, to be hired by firms. High quality workers also
apply to higher wage firms on average. In this sense high wages and
short duration should be related. This relationship is not unambiguous
however. As a workers quality rises, he is more likely to be hired at
any given firm, but he will also restrict his applications to firms whose
wages are higher. This by itself reduces the probability of employment
because high wage firms have bigger queues - the usual directed search
story.

Finally, the paper illustrates how observable data on wages and du-
ration can be used to recover the unobserved distributions of firms’ and
workers’ types.

8. Appendix

8.1. Proof of Lemma 4.1.

Proof. The proof is inductive.
Evidently a worker with the highest type will be hired with probabil-

ity one where ever he applies, so every equilibrium strategy must have
the highest type worker apply to one of the firms who offer the highest
wage. If wm−1 = wm set ym = 1 and πm

m = 1. In this case observe that
a worker of type ym is just indifferent between applying to firm m and
m− 1.

Otherwise, fix an open interval (ym, y). The expected payoff to
worker i with a type in this interval who applies to firm m is

[

1 −

∫ y

y

πm (y′) dF (y′)

]n−1

wm

20



The expected payoff to applying to any firm j whose wage is wj < wm

is
[

1 −

∫ y

y

πj(y
′)dF (y′)

]n−1

wj

Now observe that for ym close enough to y, workers will strictly prefer
applying to firm m than applying to firm j, even if all the workers
whose types are higher apply to firm m with probability 1. In other
words, for workers whose type is close enough to y, applying to one
of the firms whose wage is highest strictly dominates any other choice.
Thus there is some interval near y such that workers whose types are
in this interval apply to firm m with probability 1 in every Bayesian
equilibrium. The lowest type for which this is true is the type ym such
that

[

1 −

∫ y

ym

dF (y′)

]n−1

wm = wm−1

or the type y that satisfies,

(12) [F (y)]n−1wm = wm−1

Then πi
m(y) = 1 ≡ πm

m for every i and for every y ∈ (ym, y]} must be
true in every Bayesian equilibrium of this sub-game.

Note that ym is a continuous function of wm and wm−1 and that
ym → 1 as wm−1 → wm. Since πm

m is constant, it is trivially a continuous
function of wm and wm−1. Furthermore, note that a worker of type ym

gets the same payoff from every firm whose index is greater than or
equal to m− 1.

Now suppose that we have defined cutoff valuations {yk+1, . . . , ym}
and probabilities πk′

j′ for k′ = k + 1, . . .m and j′ > k′, satisfying
∑

j′>k′ πk′

j′ = 1 for each k′. Suppose that these satisfy the following
conditions:

• (C.1) - πj′(y) = πk′

j′ for each y ∈ (yk′, yk′+1) and πj′ = 0 other-
wise, in every symmetric Bayesian equilibrium;

• (C.2) - a worker of type yk′ where yk′ ∈ {yk+1, . . . , ym}, gets the
same payoff from every firm whose index is at least k′ − 1;

• (C.3) - each of these numbers is a continuous function of wages
wk, . . . wm.

If yk+1 = y, then we have shown that the Bayesian continuation equi-
librium for this sub-game is almost everywhere uniquely defined (the
exceptions are the cutoff values yk). So suppose yk+1 > y. We now
show that properties (C.1) to (C.3) can be extended to some interval
[yk, yk+1) which will be non-degenerate provided wk < wk−1.
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If wk = wk+1, or wk−1 = wk, set yk = yk+1, π
k
k = 0 and πk

j = πk+1
j

for each j > k. It is straightforward that valuations {yk, . . . , ym} and
probabilities πk′

j′ for k′ = k, . . .m satisfy conditions (C.1) to (C.3) of
the induction hypothesis.

Otherwise either wk−1 < wk < wk+1 or k = 1. Each of these cases
can be analyzed the same way. In the former case, observe that in this
construction, worker types larger than yk+1 will never apply to firm k.
Thus for y close enough to yk+1 applying to any firm with wage rate
below wk will be strictly dominated by applying to firm k no matter
what workers with types in the interval (y, yk+1) choose to do. In the
case where k = 1 firm k is already the lowest wage firm. In either
case, we conclude that there is an interval of types (yk, yk+1), with yk

possibly equal to y, such that workers with types in this interval will
apply with positive probability only to firms with wages at least wk in
every Bayesian equilibrium.

By the induction hypothesis, a worker of type yk+1 will receive the
same payoff from each firm k + 1 through m. This payoff is given by

[

1 −

j
∑

i=1

πk+i
k+j [F (yk+i+1) − F (yk+i)]

]n−1

wk+j

when this worker applies to firm k + j. By the induction hypothesis,
this payoff is equal to wk for each j > 1. Notice that this payoff is
independent of what workers whose types are in the interval (yk, yk+1)
choose to do. A worker i of type y ∈ (yk, yk+1) who applies to firm
k + j receives payoff
(13)
[

1 −

∫ yk+1

y

πk+j(y)dF (y)−

j
∑

i=1

πk+i
k+j[F (yk+i+1) − F (yk+i)]

]n−1

wk+j

while the same worker who applies to firm k gets

(14)

[

1 −

∫ yk+1

y

πk(y)dF (y)

]n−1

wk

The function described in (14) is non-decreasing in y and has a limit
from the left at yk+1 equal to wk. Since applying to firms whose
wages are lower than wk is a strictly dominated strategy of a worker
of type y close enough to yk+1, it must be the case that for every i,
∫ yk+1

y
πi

k+j(y)dy is strictly positive for some j. Then from (13) and

(14),
∫ yk+1

y
πk+j(y)dy must be strictly positive for all j.

The payoff must be the same at firm k and k+ j for each j > 0 and
for every y ∈ (yk, yk+1). This requires that (13) and (14) must be equal
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identically in y. Differentiating this identity repeatedly gives

(15)

(

πk
k+j (y)

πk
k(y)

)n−1

=
wk

wk+j

implying that πk
k+j are constant.

They can all be determined from the condition

(16)
m−k
∑

j=0

πk
k+j = 1

Notice that by the induction hypothesis, the limits from the left of (13)
and (14) at yk+1 must both be equal to wk. Thus (15) and (16) are
also sufficient for identity of the payoffs.

Having found the value for πk
k we can determine the lower bound yk.

Since workers with higher types and higher investments only apply to
firms whose wages are at least wk, this worker is sure to be hired if he
applies to the k − 1st firm, assuming that there is one. On the other
hand, since he is lowest type who applies to the kth firm, he will be
hired by the kth firm only if no other worker with a higher type applies.
Then define yk as follows: if k = 1, then yk = y1 = y; otherwise if

(17)
[

1 − πk
k (F (yk+1) − F (y))

]n−1
wk = wk−1

has a solution that exceeds y, set yk equal to this solution; otherwise
set yk = y.

This argument extends conditions (C.1) and (C.2) by construction.
Property (C.3) is readily verified using, for example, the maximum
theorem since wk+j > 0 by assumption. �

8.2. A preliminary Result.

Lemma 8.1. For any sequence Gn there is a sub-sequence such that
ωn(y) converges weakly to a right continuous non-decreasing function
ω(y). Define y∗n(w) = sup {y : ωn(y) ≤ w}. The sequence y∗n(·) con-
verges weakly to a right continuous non-decreasing function y∗(·).

Proof. By construction each ωn(y) is right continuous and non-decreasing,

and for each n
∫ w

w
dwn(y) ≤ wG − wG where wG and wG are the max-

imum and minimum points in the support of G respectively. Hence
by Helly Compactness Theorem, wn(y) has a subsequence that con-
verges weakly to an non-decreasing right continuous function. Simi-
larly, y∗n(·) is non-decreasing and right continuous, and so has a weak
limit y∗(·). �
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8.3. Proof of Lemma 8.2.

Lemma 8.2. For any wage w, let w− be the largest wage in the support
of G that is less than or equal to w. Let jn be the index of w in the
nth approximation to G. Let ω(y) be a limit of the sequence ωn(y) as
defined in Lemma 8.1. Then limn→∞ πn

jn(y)(n− 1) = τ
1−G−(ω(y))

and

lim
n→∞

(

1 −

∫ y∗(w)

y

πn
jn(y′)dF (y′)

)n−1

=

w−

w
e
−

R y∗(w−)
y

τ

1−G−(ω(y′))
dF (y′)

Proof. Let y < y. The expected payoff to any type is strictly positive in
equilibrium. Let v(y) be any point-wise limit for this payoff as n goes
to infinity. For any finite n, there is a firm m who offers the highest
wage in the support of the distribution Gn. Call this highest wage wm.
This highest wage is no higher than w.

By Lemma 4.1, every worker type y applies to this firm with strictly
positive probability. Then from (13), the payoff to a worker of type y
who applies to firm m is bounded above by

(18) (1 − πn
m(y)(1− F (y)))n−1w

This is an upper bound for two reasons. Firm m will offer a wage that
is no higher than w, and workers whose types are higher than y will
apply to firm m with probability at least as high as a worker of type y.

We first show that πn
m(y)(n− 1) is uniformly (in y) bounded above

by an integrable function, then work down to show the result for firms
with indices lower than m. Suppose to the contrary, it has a limit that
exceeds some constant b(y). Then the upper bound given by (18) can
be no larger than

lim
n→∞

(1 − (
b(y)

n− 1
)(F (y) − F (y)))n−1w

= exp

{

log
(

1 − 1
n−1

b(y)(1 − F (y))
)

1
n−1

}

w

= e−b(y)(F (y)−F (y))w

where the last result follows by L’Hopital’s rule. Since the upper bound
on the worker’s payoff must be at least v(y), then limn→∞ πn

m(y)(n−1)
must have an upper bound b(y) that satisfies e−b(y)(F (y)−F (y))w ≥ v(y),
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for all y, or b(y)(F (y) − F (y)) ≤ − log
(

v(y)
w

)

. Now observe that

∫ y

y

b(y′)dF (y′) ≤

∫ y

y

b(y′)(1−F (y′))
F ′(y′)

1 − F (y′)
dy′ ≤ − log

(

v(y)

w

)

·B·(y−y)

where B is the uniform bound on the ratio F ′(y′)
1−F (y′)

. Thus the bound b(y)

is an F -integrable function of y that uniformly bounds πn
m(y)(n − 1)

for all n large enough. Define k(y) = limn→∞ πn
m(y)(n− 1).

Now we extend this uniform upper bound to firms with indices below
m. From (15)

(19) πn
j (y)(n− 1) =

(wm

w

)
1

n−1
πn

m(y)(n− 1)

for each j such that πn
j (y) > 0. From the previous result, the right hand

side of this equation is uniformly bounded by the F -integrable function
wm

w
b(y), so the left hand side is also uniformly bounded. Furthermore,

taking limits in (19) with respect to n gives

lim
n→∞

πn
jn(y)(n− 1) = k(y)

Recall that ωn(y) is the lowest wage to which a worker of type y ap-
plies with positive probability in the continuation equilibrium with n
workers. From (19)

(20)
∑

j:wj≥ωn(y)

πn
j (y)(n− 1) = πn

m(y)(n− 1)
∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

The sum on the left hand side of this last equation is n − 1 since the
application probabilities sum to one. On the right hand side, observe
that

∑

j:wj≥ωn(y)

1 ≤
∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

≤

(

wm

wj∗n

)
1

n−1 ∑

j:wj≥ωn(y)

1

Dividing this by m gives

(1−G−
n (ωn(y))) ≤

∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

/m ≤

(

wm

wj∗n

)
1

n−1

(1−G−
n (ωn(y)))

This implies that

lim
n→∞

∑

j:wj≥ωn(y)

(

wm

wj

)
1

n−1

/m = 1 −G−(ω(y))
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where ω(y). Then from (20)
(21)

lim
n→∞

πn
jn(y)(n− 1) = lim

n→∞

n− 1

1 −G−
n (ωn(y)) ·m

=
τ

1 −G−(ω(y))
= k(y)

which gives the first result in the Lemma.
For the second result, recall that jn is the index of wage w in the

nth approximation to G. The wage wjn−1 is the highest wage in the nth

approximation that is less than or equal to w . Now observe that

lim
n→∞

(

1 −

∫ y∗

n(w)

y

πn
jn(y′)dF (y′)

)n−1

=

(22)

lim
n→∞

(

1 −

∫ y∗

n(wjn
−1)

y

πn
jn(y′)dF (y′) −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn(y′)dF (y′)

)n−1

By the definition of y∗n(wjn−1), a worker of this type who applies to the
firm offering wage w will be hired with probability

(

1 −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn(y′)dF (y′)

)n−1

He will be hired for sure if he applies to the firm offering wjn−1. So
∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn(y′)dF (y′) = 1 −

(wjn−1

w

)
1

n−1

Substitute this into (22) above to get

lim
n→∞

(

(wjn−1

w

)
1

n−1

−

∫ y∗

n(wjn
−1)

y

πn
jn(y′)dF (y′)

)n−1

=

lim
n→∞

exp

{

(n− 1) log

(

(wjn−1

w

)
1

n−1
−

1

n− 1

∫ y∗

n(wjn
−1)

y

πn
jn(y′)(n− 1)dF (y′)

)}

Since the exponential function is continuous, the limit can moved inside
the first bracket. So we compute

(23) lim
n→∞

log
(

(wjn
−1

w

)
1

n−1 − 1
n−1

{

∫ y∗

n(wjn
−1)

y
πn

jn(y′)(n− 1)dF (y′)
})

1
n−1

which can be written as

lim
x→0

log
((

w(x)
w

)x

− x
{

∫ y∗

n(w(x))

y
πn

jn(y′)(n− 1)dF (y′)
})

x
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By construction, wjn−1 converges to w−, the largest wage in the support

of G that is less than or equal to w. The integral
∫ y∗

n(wjn
−1)

y
πn

jn(y′)(n−

1)dF (y′) converges by the bounded convergence theorem and (21) to

e−
R y∗(w−)
y

k(y′)dF (y′)

So the integral should be thought of as a function of x whose derivative
at 0 is zero. The function w(x) is simply the sequence wjn−1, which
converges, so should again be thought of as function whose derivative
at zero is zero. Note that with this definition, w(0) = w−. Then apply
L’Hopital’s rule to get the limit of (23) as

w−

w
e−

R y∗(w−)
y

k(y′)dF (y′)

�

8.4. Proof of Theorem 5.1.

Proof. The proof of Theorem 5.1 now follows from Lemmas 8.2 and
8.1. A firm of type h who offers wage w has profit

∫ y

y

vh(w, y)dφ
n
jn

(y)

where jn is the index of the wage w in the distribution Gn associated
with the nth approximation. Substituting for φ gives

∫ y∗

n(w)

y

vh(w, y)d

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

=]

∫ y∗

n(wjn
−1)

y

vh(w, y)d

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

∫ y∗

n(w)

y∗

n(wjn
−1)

vh(w, y)d

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

=

∫ y∗

n(wjn
−1)

y

vh(w, y)nπ
n
jn

(y)

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n−1

F ′(y)dy+

vh(w, y
∗
n(w)) − vh(w, y

∗
n(wjn−1))

[

1 −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn

(y′)dF (y′)

]n

+

∫ y∗

n(w)

y∗

n(wjn
−1)

[

1 −

∫ y∗

n(w)

y

πn
jn

(y′)dF (y′)

]n

vy(w, y)dy
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That last two terms in this expression are derived by integrating by
parts. Now observe that a worker of type y∗n(wjn−1) is just indiffer-
ent between applying at the wage wjn−1 and being hired for sure, or
applying at wage w and being hired with probability

[

1 −

∫ y∗

n(w)

y∗

n(wjn
−1)

πn
jn

(y′)dF (y′)

]n−1

So substitute
wjn

−1

w
for this probability in the second term, and take

limits to get

∫ y∗(w−)

y

vh(w, y)k(y)
w−

w
e−

R y∗(w−)
y

k(y′)dF (y′)+

vh(w, y
∗(w))

(

1 −
w−

w

)

The first term follows from the bounded convergence theorem and
Lemma 8.2. The second term follows from the substitution made above,
and from the fact that y∗n(w) − y∗n(wjn−1) converges to zero with n (if
not, the probability of being hired at wage w for traders between y∗n(w)
and y∗n(wjn−1) goes to zero. This also reduces the last term to zero
because the derivative of v with respect to y is bounded (and the term
multiplying it is less than 1).

The last part of the argument is to show that

y∗(w) = sup{y : ω(y) ≤ w}

Suppose the contrary that for some w, y∗(w) > sup{y : ωn(y) ≤ w} =
y∗n(w) for all large n. Observe that for each n, ωn(y

∗
n(w)) ≥ w. Further-

more, note that a worker of type y∗n(w) has a type that is at least as high
as any other worker who applies at wage w. So such a worker is hired
for sure at wage w. Let y0 = limn→∞ sup{y : ωn(y) ≤ w} < y∗(w).

At the other extreme, if y∗(w) is not a continuity point of ω, then
since the latter function is right continuous and non-decreasing, there
is a point y0 < y1 < y∗(w) at which ω is continuous (and ω(y1) ≤ w).
For large n, it must be that ωn(y1) > w since otherwise y∗n(w) would
be at least as large as y1. Yet since y1 is a continuity point of ω and
ωn converges weakly to ω, ωn(y1) → ω(y1).

Then using Lemma 8.2, the payoff to a worker of type y∗n(w) who
applies at the wage ωn(y) is converging to

we
−

R y1
y0

k(y′)dF (y′)
< w
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This contradicts the property that workers should receive the same
expected payoff by applying to all wages that are at least as large as
their reservation wage.

A similar argument establishes a contradiction when y0 = limn→∞ sup{y :
ωn(y) ≤ w} > y∗(w).
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