### Labor from a Managerial Point of View

Susan Helper Weatherhead School of Management Case Western Reserve University June 11, 2007

# Outline

- US automotive manufacturing is not dead yet
- But, underinvestment in human and organizational capital hurts firms' ability to meet future challenges
  - Offshoring
  - Energy

# US automotive manufacturing remains important

- 873,000 direct jobs in motor vehicle and supplier industries
- 4.5 million jobs in indirect and expendituregenerated employment

- Source: cargroup.org, 2007



Average percentage of auto parts made in the U.S. and Canada for

Source: wsj, 4/2006

# Why are there still so many auto jobs here?

- A big return to skill, integrated problem-solving, and proximity
  - These returns could be increased
- What does an auto worker do?
  - Boron operator
  - Operators who don't operate
  - Gear carrier assembly
- Manufacturing processes can be designed to take advantage of broad-based skills
  - Toyota production system
  - Fast ramp-up of breakthrough innovations

## Offshoring to low-wage countries

- Doesn't necessarily mean low costs, particularly on a life-cycle basis
- Evidence from
  - 40 First-tier suppliers (CAR report)
  - Second-tier suppliers (2006 survey I conducted with Michigan Manufacturing Technology Center)

# Large suppliers: Offshoring has mixed results



Question: Please rate the benefit to your firm of outsourcing the following

# The U.S. Component Manufacturing Industry

- Manufactures metal, plaster, and rubber components for final consumer products.
- Approximately one quarter are solely suppliers to auto industry.
- Many small firms, often squeezed between larger suppliers of raw materials and larger producers of consumer products.
- More tied to region than its customers, but increasingly dispersing out of cities.
- Facing a sudden surge in international competition.
- Represents 10.6% of U.S. manufacturing jobs, up from 8.8% in 1980.

## Data

- Benchmarking Questionnaire
  - 615 plants responded to survey conducted by Michigan Manufacturing Technology Center in spring 2003
    - Highly detailed survey asks about revenues, costs, operations
    - Respondents are presidents, CFOs, plant managers
    - Low response rate (~10%), but no bias in size, productivity
    - Michigan is overrepresented; South is underrepresented
- Relationship Questionnaire
  - Survey sent to plants who answered benchmarking questionnaire
  - Asked about sources of ideas; relationships with customers, suppliers, rivals
  - 65% response rate
- Survey data linked to US Census Zip Code Business Patterns for 2000.

## Customers are offshoring

| They are relocating more of their manufacturing to regions where wages are lower: | Applies to our largest single<br>KCL2006 | Applies to our largest single<br>KCL2003 |
|-----------------------------------------------------------------------------------|------------------------------------------|------------------------------------------|
| In the US and/or Canada                                                           | 22.3                                     | 25.5%                                    |
| In Mexico or in Central or South                                                  |                                          |                                          |
| America                                                                           | 36.4                                     | 41.2%                                    |
| In Eastern Europe                                                                 | 24.9                                     | 15.6%                                    |
| In Asia                                                                           | 42.9                                     | 27.4%                                    |

### Small suppliers are experimenting

Mean percent of work for each step performed by plants that off-shore some work to China



### Results are mixed

| How well have your expectations<br>been met by your offshore sources,<br>in terms of: | Frequency of Positive<br>Responses | Frequency of Negative<br>Responses |
|---------------------------------------------------------------------------------------|------------------------------------|------------------------------------|
| Quality                                                                               | 39.1%                              | 21.7%                              |
| Completeness                                                                          | 47.8%                              | 13.0%                              |
| Timeliness                                                                            | 28.3%                              | 37.0%                              |
| Cost                                                                                  | 67.4%                              | 19.6%                              |

## Worrisome impacts on capability

| Across all of sales - not just one<br>important contract or product line -<br>how (if at all) has company's use of<br>offshore resources affected ability to: | Frequency of Positive<br>Responses | Frequency of Negative<br>Responses |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------------|
| Introduce new products quickly?                                                                                                                               | 23.4%                              | 25.5%                              |
| Address quality issues as they arise?                                                                                                                         | 23.4%                              | 38.3%                              |
| Implement any required engineering changes?                                                                                                                   | 27.7%                              | 31.9%                              |
| Make changes to business processes?                                                                                                                           | 32.6%                              | 23.9%                              |

#### Not all US Manufacturers Doomed by Low-Wage-Country Firms' Lower Landed Cost



© 2006 MMTC Performance Benchmarking Service

### Value-added / FTE is highly skewed:

The top 10% are more than twice as productive as the median shop.



Source: Performance Benchmarking Service: metalworking respondents

# Look at the variance among tool & die shops serving automotive!

|                                                          | Low Volume Machining |           |           |
|----------------------------------------------------------|----------------------|-----------|-----------|
| Measures                                                 | Тор                  | Median    | Bottom    |
|                                                          | 10%                  |           | 10%       |
| Average Hourly Wage, Shop Employees                      | \$ 21.75             | \$ 18.00  | \$ 15.24  |
| Employee Turnover Rate                                   | 100.0%               | 21.6%     | 0.0%      |
| Design Employees as a Percent of Total Employees         | 17.6%                | 9.8%      | 2.3%      |
| Dollar Value of Machinery per FTE                        | \$164,759            | \$ 52,768 | \$ 28,743 |
| Percent of Machines More than 20 Years Old & Not         |                      |           |           |
| Upgraded                                                 | 75.7%                | 40.5%     | 0.0%      |
| Percent of Employees Using a Computer at Least Once a    |                      |           |           |
| Week                                                     | 100.0%               | 64.1%     | 26.3%     |
| Customers Who Received Advise on Products/Materials as   |                      |           |           |
| a Percentage of Total Sales                              | 100.0%               | 40.0%     | 0.0%      |
| Average Hours per Machine Setup                          | 0.2                  | 0.9       | 3.1       |
| Running Hours as a Percentage of Available Hours         | 91.1%                | 69.2%     | 35.7%     |
| Percent of Units Scrapped Due to Errors                  | 0.1%                 | 0.5%      | 1.9%      |
| Percent of Deliveries Made by Original Ship Date         | 100.0%               | 90.0%     | 70.0%     |
| Inventory Turns (Cost-of-Goods-Sold / Total Inventory)   | 55.1                 | 11.0      | 5.5       |
| Hours Shop is Open as a Percent of Total Hours in a Year | 71.9%                | 46.6%     | 25.7%     |

#### Thinking About Offshore Competition ... Comparing a US gray iron foundry to a low-wage offshore competitor

| Cost of Goods Sold (COGS) |             |                           |             |
|---------------------------|-------------|---------------------------|-------------|
|                           | US          | Assumption About Offshore | Offshore    |
| FTE Employees             | 70.0        | 1/4 as productive         | 324.3       |
| Annual Payroll per FTE    | \$ 32,422   | 1/10 as expensive         | \$ 3,242    |
| Annual Fringes per FTE    | \$ 5,721    | 1/20 as expensive         | \$ 286      |
| COGS Labor                | \$2,670,000 |                           | \$1,144,083 |
| Purchased Material & Svcs | \$3,910,000 | 10% cheaper per unit      | \$3,831,800 |
| Utilities                 | \$ 400,000  | 10% cheaper per MMBTU     | \$ 416,910  |
| Plant & Eqpt Expense      | \$ 520,000  | 25% lower                 | \$ 390,000  |
| Total COGS                | \$7,500,000 |                           | \$5,782,793 |

17

#### **Thinking About Offshore Competition ...**

| Payoff to US Initiatives  |                                       |        |        |
|---------------------------|---------------------------------------|--------|--------|
| Landed Cost Inde          |                                       |        |        |
| Initiative                | Impact of Initiative                  | Value  | Change |
| Memo: Baseline            |                                       | 116.95 |        |
| Reduce Waste 10%          | Cuts labor, capital, & material cost  | 116.70 | -0.25  |
| Reduce Material Cost 10%  | Cuts material cost (and maybe weight) | 112.63 | -4.32  |
| Reduce Pay 10%            | Cuts labor costs                      | 113.12 | -3.83  |
| Reduce Fringes 10%        | (but may increase turnover)           | 116.27 | -0.67  |
| Increase Productivity 10% | Cuts FTE heads from 70 to 73          | 112.44 | -4.50  |
| Devalue US Dollar 10%     | Raises offshore costs                 | 106.54 | -10.41 |

18

# Costs & benefits often forecast incorrectly

- Accounting is wrong
  - Over-emphasis on direct labor.
  - OEMs misunderstand costs and require unproductive moves overseas.
  - Many important costs are not in the standard spreadsheet:
    - distraction of top management (lost focus on innovation at home)
    - Increased risk from long supply chain, esp. with JIT
  - Increased "handoff costs" between US and foreign operations
    - Products must be more clearly specified
    - Quality problems may be harder to solve due to geographic and cultural distance
    - More difficult communication among product design, engineering, and production hinders serendipitous discovery of new products and processes
    - Reduced quality, increased time-to-market

 $\Rightarrow$  Long term less innovation

### How can this be?

- Debate over impacts of offshoring is stalled because carried out at high level of abstraction—even inside firms
- Managers don't always understand the process that employees actually use
  - If they underestimate interface complexity, may underinvest in proximity or governance
  - Cost projections explicitly assume that overseas plants will equal US productivity

#### "Learning Lean" vs. "Lean Standardization" model

- Lean standardization model Achieves significant performance improvements by focusing solely on the technical elements of lean production without modifying HR practices & culture change to encourage worker involvement
- Learning lean model Combines low-waste manufacturing practices (lean) with an involved, empowered, & prepared workforce focused on innovation, quality & organizational flexibility (learning)

21

### "Learning Lean" model generates better performance because

- Continuous innovation is needed because plants must handle more variety & falling average order sizes as highest-volume orders are most likely to be lost
- Routine self-management is needed to reduce costly supervisory overhead
- Continuous improvement requires knowledge that only direct workers have

22

## Example: Delphi Kokomo Printed Circuit Boards

- Delphi Kokomo brought back work from Singapore
  - Increased capacity utilization on existing machines
    - Quality improvement
    - Earlier inspection
  - More broadly trained skilled workers
- Highly paid workers stay a long time—develop deep knowledge
- Knowledge-sharing requires trust between labor and management
  - Union can be a vehicle for negotiating and enforcing agreements about who benefits from productivity improvements

# Off-shoring: local or global optimum?

- Off-shoring has benefits given current US automotive product development system (saves money)
- But, distance can drive interfaces (as well as vice versa)!
  - US vs Japan product design strategy
    - US OEM tolerates lower, slower interaction to achieve lower measured cost of off-shored design
    - Japanese emphasize understanding of context: employees need to understand not just their own job, but the context within which they do their job
      - Indian designer makes mistake because not continually reminded of the function of his design
  - Choice of organization will affect evolution of interfaces
  - Is off-shoring hindering evolution of US industry to a more efficient product development process?

## Developing Capabilities for Clean Cars

## Not much progress recently...

Adjusted Fuel Economy by Model Year (Three Year Moving Average)



Source: http://www.epa.gov/otaq/cert/mpg/fetrends/420s06003.pdf

## Big increases in auto energy efficiency will require major effort

- Invention and innovation
  - Fuel cells, hydrogen
- Ramping up to mass production
  - Regenerative braking
- Incremental improvement using existing technology
  - Can be the source of significant gains
    - Tenneco diesel—cut NOx emissions by 90%
    - Debug production process for recyclable seats
  - Second-tier suppliers a weak link
    - Tooling sector is in trouble
    - Other second tier suppliers
      - Weak product development capabilities
      - Much room for reducing energy use in production

# But capabilities for this effort are lacking

- Shortage of skilled workers
  - Auto industry buyouts
    - ¾ of Delphi employees
    - 38,000 GM, 35,000 Ford, 11,000 Chrysler employees
  - National Association of Mfrs study
    - 90% of manufacturers report moderate to severe shortage of skilled production employees
    - 65% report moderate-to-severe shortage of scientists and engineers
  - Yet firms are proposing wage cuts
- Employee involvement programs are atrophying

## Conclusions

- US automotive manufacturing is not dead yet
- But, underinvestment in human and organizational capital hurts firms' ability to meet future challenges
  - Offshoring
  - Energy