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Abstract

We develop a model with money and alternative assets, both of which can be used as media
of exchange, although potentially with a different liquidity (probability of being accepted).
We first take liquidity to be exogenous and show that even agents/transactions that never
use cash are affected by inflation. We then endogenize liquidity though recognizability —
money is perfectly recognizable, but not everyone is informed enough to distinguish real
from counterfeit claims to other assets. Given heterogeneous costs of becoming informed,
we determine who accepts what in equilibrium, and study the interplay between endogenous
liquidity and monetary policy.

∗We thank the National Science Foundation for research support. The usual disclaimer applies.
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Aringosa walked back to his black briefcase, opened it, and removed one of the bearer
bonds. He handed it to the pilot. “What’s this?” the pilot demanded. “A ten-
thousand-euro bearer bond drawn on the Vatican Bank.” The pilot looked dubious.
“It’s the same as cash.” “Only cash is cash,” the pilot said, handing the bond back.
Dan Brown, The Da Vinci Code.

1 Introduction

What does monetary policy do and what are the effects of on prices and allocations? To a

first approximation, central banks control the rate of return on currency.1 In theories where

currency is essential for at least some transactions, when its rate of return declines agents try

to economize on their holdings of it, so money demand falls, and given the supply, this lowers

the value of money and this makes these transactions more difficult. The reason agents hold

money in the first place, despite a spread between its return and that on alternative assets, is

presumably that it some liquidity advantage: it helps to facilitate said transactions. This is old

news. What is less clear is the following: Which transactions are affected by monetary policy —

only transactions where money is essential, or others as well? And who is affected — only agents

holding cash, or others as well?

In reality, some (many, more and more) transactions take place without the use of currency.

Are these immune from central bank policy? Our answer is, No. In equilibrium, as long as

someone is holding the cash — and of course, somebody must be, even if in the limit it is only

commercial banks holding it for settlement purposes — then there should be general equilibrium

effects on the rates of return on some (most, all) other assets when the central bank adjusts the

rate of return on central bank money. A plausible scenario is that when the rate of return on

currency falls, agents attempt to adjust their portfolios by substituting out of currency, which

affects equilibrium portfolios, rates of return, and potentially all transactions, not only those

1 In standard theory, the no-arbitrage condition known as the Fisher equation tells us that it is equivalent for
the central bank to target the growth rate of money supply, the inflation rate, or the nominal interest rate: a
higher value for any of these policy instruments lowers the return on currency. While one might be able to write
down models where the Fisher equation does not hold, or where it makes a difference whether we target money
growth, inflation or interest rates for some other reason, this is beside the point for the issues at hand.
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that use currency directly.

Consider what happens to money and banking when inflation goes up. Given the interest

rates on demand deposits, individuals at the margin prefer to hold less M0 and more M1. As

the supply of demand deposits increase, their interest rate falls and agents at the margin prefer

to hold more M2. At the end of the day, equilibrium portfolios are less liquid: agents have less

real wealth in cash, more in their saving accounts, and potentially more or less in their checking

accounts. This affects the transactions process in several ways. Suppose an opportunity to

consume or invest comes along, but for whatever reason it requires M0 — they guy won’t take a

check — or maybe M1 but not M2 — he’ll take cash or a check but needs it now. Your portfolio,

which depends on inflation, determines whether the deal goes through (more generally, its size).

Of course, whether the guys accepts M0, M1 or M2 may also depend on equilibrium portfolios. In

general, monetary policy has many lots of implications for the equilibrium structure of portfolios,

transactions, prices and allocations.

This position is not entirely novel. It is related e.g. to anyof the old-fangled “portfolio

theories” of the demand for money, and Wallace (1980, p. 64) speaks to it directly in the context

of overlapping generations models:

Of course, in general, fiat money issue is not a tax on all saving. It is a tax on

saving in the form of money. But it is important to emphasize that the equilibrium

rate-of-return distribution on the equilibrium portfolio does depend on the magnitude

of the fiat money-financed deficit. ... In all these models, the real rate-of-return

distribution faced by individuals in equilibrium is less favorable the greater the fiat

money-financed deficit. Many economists seem to ignore this aspect of inflation

because of their unfounded attachment to Irving Fisher’s theory of nominal interest

rates. (According to this theory, (most?) real rates of return do not depend on the

magnitude of anticipated inflation.) The attachment to Fischer’s theory of nominal
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interest rates accounts for why economists seem to have a hard time describing the

distortions created by anticipated inflation. The models under consideration here

imply that the higher the fiat money-financed deficit, the less favorable the terms

of trade — in general, a distribution — at which present income can be converted

into future income. This seems to be what most citizens perceive to be the cost of

anticipated inflation.

Although these ideas ring true, the problem is that they are not so easy to formalize. There

are many questions unanswered in the above discussion. How can the Fisher equation not hold?

What is it that allows different assets, especially money and other assets, to bear different rates

of return? In the models Wallace mentions, it is not differences in liquidity. It is difficult

to generate a portfolio of assets with differential liquidity in any standard frictionless model,

even overlapping generations models, because there is no role for liquidity in those models, and

no-arbitrage conditions must equate the rates of returns across assets after adjusting for risk.2

To model liquidity, one needs to “look frictions in the face” (Hicks 1935) by making explicit

assumptions about spatial, temporal, and informational problems, which is what more modern

monetary theory is all about.3

We introduce mutliple assets in a benchmark modern monetary model, the one in Lagos

and Wright (2005), hereafter LW, and derive the liquidity properties of the assets endogenously.

Lagos and Rocheteau (2005) also consider multiple assets in LW — in their case, money and

capital, but they are equally liquid. If the first-best capital stock is sufficiently large, they show

money is not essential, but if this stock is too low the economy overaccumulates capital absent

2Notice that Wallace talks about “saving” and defines returns in terms of the rate “at which present income
can be converted into future income” — there is no mention of the transactions role or medium of exchange role
of assets.

3An alternative approach to modelling liquidity (e.g. Glosten and Milgrom 1985 and Kyle 1985) considers
bilateral transactions between either a buyer or seller and a middleman with asymmetric information. These
models generally assume that the buyer or seller has more information about expected future payoffs of the asset
than the middleman. These models fall silent on the questions we care about here — e.g. explaining liquidity
differences between cash and other assets.
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money and hence money enhances efficiency. But money and capital must bear the same return.

Geromichalos, Licari and Suarez-Lledo (2006) study LW with money and real assets in fixed

supply, like the claims to “trees” in a standard Lucas (1978) asset-pricing model. They show

money is essential if and only if the supply of the real asset is too low, and discuss the effect of

policy on asset prices, rates of return, and allocations. But again, all assets are equally liquid

and hence must bear the same return.

Differential liquidity was considered in a related model by Lagos (2005), with two assets

meant to resemble stocks and bonds. There, when assets are valued both for their rates of

return and for their use as media of exchange, even if they are equally liquid, one can go some

distance toward resolving much-discussed puzzles in the asset pricing literature; and if they are

differentially liquid, one can go a lot further. However, his liquidity differentials are exogenous,

and he does not discuss monetary policy at all, mainly because there is no money in that model.

Differential liquidity between money and capital was considered by Aruoba, Waller and Wright

(2007), but although there were some words to the effect that recognizability was relevant, these

fifferentials are basically exogenous in that model. The goal here is to take the recognizability

idea more seriously to make differential liquidity endogenous.

The first thing we do is to generalize the environment Geromichalos et al. to allow for

exogenous liquidity differentials, by simply assuming that some agents accept only money. This

allows more interesting outcomes (e.g. in Geromichalos et al. monetary equilibrium only exists

for negative inflation rates), and allows us to formalize some of the above points concerning

monetary policy. In particular, we show that even agents/transactions that never use cash

are affected by inflation. We then endogenize liquidity by incorporating information explicitly.

Suppose money is perfectly recognizable, but not everyone is informed enough to distinguish

real from counterfeit claims to other assets. Assuming agents have differential costs of becoming

informed, we determine who beomces informed and who accepts which assests in equilibium,
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and analyze how this depends on policy.

2 A Benchmark Model

Time is discrete and continues forever. There is a [0, 1] continuum of infinitely-lived agents.

As in Lagos and Wright (2005), hereafter LW, each period these agents participate in in two

distinct markets: a frictionless centralized market CM, and a decentralized market DM where

agents meet anonymously and there is a standard double coincidence problem. These frictions

make a medium of exchange essential (see Kocherlakota 1998, Wallace 2001, and Aliprantis et

al. 2007 for in-depth discussions of anonymity and essentiality). At each date in the CM there

is a consumption good x that agents can produce using labor h according to x = h, and utility

is U(x) − h.4 In the DM there is a different good q that gives utility u(q) and is produced at

disutility cost c(q). We assume U 0(0) = u0(0) =∞, and we define the efficient quantities x∗ and

q∗ by U 0(x∗) = 1 and u0(q∗) = c0(q∗).

There are for now two assets. First there are claims to a real asset in fixed supply A, just

like the ‘trees” in the Lucas (1978) asset-pricing model, it the sense that a unit of the asset

gives off a constant dividend δ each period. Second, there is fiat money, the supply of which

grows according to M̂ = γM (for any variable, including M , we let M̂ denote its value next

period). Money M̂ −M = (γ− 1)M is injected or withdrawn using lump sum transfers or taxes

(although it is equivalent here to assume the government uses new money it to buy x in the CM

since we have quasi-linear utility). In what follows, we assume γ > β where β is the rate of time

preference; we do consider the limit where γ → β, which is the Friedman rule. Let φ be the CM

price of money and ψ the CM price of the real asset, both in terms of x.

As shown in Lagos and Rocheteau (2005) and Geromichalos et al. (2006), an agent with a

units of the real asset may not necessarily bring all of it to the DM when the terms of trade

4 It is easy to generalize these assumptions by allowing many goods and more general technologies in the CM,
but for our purposes it suffices to concentrate on the simplest formulation. What is important for tractability, if
not for the overall logic of the theory, is that CM utility is quasi-linear.
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in the DM are determined through bargaining (with, for simplicity, perfect information in the

sense that agents can observe each other’s asset holdings). Bargaining entails a hold-up problem:

when an agent brings additional assets into a match, the terms of trade can become increasingly

unfavorable. Thus, an agent may choose to acquire a large quantity of the real asset for its

productive value, but only bring a portion to the DM as a medium of exchange. There is no

similar effect onm, because it yields no dividend. Since money only possesses value as a medium

of exchange, there is no reason to acquire it and not bring it to the DM. So, in general, agents

in the CM choose a portfolio comprised of m units of money, a1 units of the asset they do not

take to the DM, and a2 units that they do take to the DM.

Let V (m,a1, a2) denote the value function of an agent entering the DM and W (y) the value

function of an agent entering the CM with a portfolio worth y = φm+(δ+ψ)(a1+ a2) (clearly,

in the frictionless CM, it is only the total value of the portfolio y that is relevant, not its

composition). Then

W (y) = max
x,h,m̂,â1,â2

{U(x)− h+ βV (m̂, â1, â2)}

s.t. x = h+ y − φm̂− ψ(â1 + â2) + T,

where T = (γ − 1)M is the lump sum transfer. If we substitute for h, it is immediate that the

value function is linear, W 0(y) = 1, and the first order conditions are:5

x : U 0(x) = 1 (1)

m̂ : φ ≥ βV1(m̂, â1, â2), = if m̂ > 0 (2)

â1 : ψ ≥ βV2(m̂, â1, â2), = if â1 > 0 (3)

â2 : ψ ≥ βV3(m̂, â1, â2), = if â2 > 0 (4)

Notice that x = x∗ and (m̂, â1, â2) do not depend on y. For simplicity, assume there is a unique

5We are assuming an interior solution for h; see LW for conditions to guarantee this is valid in these kinds of
models.
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solution (m̂, â1, â2) to (2)-(4) satisfying the second order conditions (this is necessarily true

under assumptions like those in LW).

In the DM, there is a fixed probability λ of a bilateral meeting in which an agent is a con-

sumer, and an equal probability of a bilateral meeting in which he is a producer. We distinguish

two types of meetings where an agent is a buyer: with probability ρ we have what we call a

type 2 meeting, where the seller accepts either m or a2; and with probability 1 − ρ we have a

type 1 meeting, where the seller accepts only m. For now ρ ∈ (0, 1), and is exogenous; later ρ is

endogenous. In either type of meeting, the seller cares only about the total value of the buyer’s

assets that he is willing to accept. Therefore, in a type 2 meeting, the seller considers the total

value of cash and assets that the buyer has available φm+ (ψ+ δ)a2, while in a type 1 meeting

he only looks at φm. Of course, the amount that a buyer ultimately pays p in any meeting is

constrained by what he has available: pj ≤ yj , where y1 = φm and y2 = φm+ (ψ + δ)a2.

Given these assumptions, we now describe our bargaining solution for the DM.6 Consider a

type j meeting between a buyer with (m,a1, a2) and a seller with (m̃, ã1, ã2). The former pays

pj to the latter for qj units of the good, determined by the generalized Nash solution

max [u(qj) +W (y − pj)−W (y)]θ [−c(qj) +W (ỹ + pj)−W (ỹ)]1−θ (5)

subject to pj ≤ yj , where y and ỹ describe total wealth of the buyer and seller, and yj describes

the wealth available to the buyer in this particular meeting. This bargaining problem is easy,

mainly because W (y) is linear, and leads to the following:

Lemma 1. The solution to (5) is

qj = min
©
z−1(yj), q

∗ª and pj = min {yj , y∗} ,

6The terms of trade in these type of models can be determined in a number of ways without changing the
basic results. Aruoba, Rocheteau and Waller (2007) analyze several alternative bargaining solutions, Rocheteau
and Wright (2005) analyze price taking and price posting, and Galenianos and Kircher (2007) or Dutta, Julien
and King analyze auctions (in version that has some multilateral meetings).
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where yj is the wealth available to the buyer in a type j meeting, the function z is given by

z(q) ≡ θu0(q)c(q) + (1− θ)u(q)c0(q)

θu0(q) + (1− θ)c0(q)
,

q∗ is defined by u0(q∗) = c0(q∗), and y∗ = z(q∗). Also, z0(q) > 0 for all q < q∗.

Given this, the DM value function satisfies

V (m,a1, a2) = λ0W (y) + λ1 [u(q1) +W (y − p1)] + λ2 [u(q2) +W (y − p2)] + k,

where λ0 = 1 − λ, λ1 = λ(1 − ρ), λ2 = λρ and k is a constant. Notice that when the agent is

not a buyer, he may or may not be a seller, and this effects his continuation value W , but since

Lemma 1 implies the terms of trade do not depend on a seller’s state and W is linear, we can

represent this by W (y) plus a term k that does not depend on y. In particular, we do not need

to discuss when an individual seller accepts a and when he does not, or which individual sellers

accept a and which do not; what is relevant for asset demand and hence for equilibrium here is

only what happens when an individual is a buyer, not what happens when he is a seller.

Differentiating V , after inserting the derivatives of qj with respect to (m,a1, a2) which we

get from Lemma 1, we have

V1(m,a1, a2) = φ [1 + λ1c(q1)1{y1 < y∗}+ λ2c(q2)1{y2 < y∗}] (6)

V2(m,a1, a2) = ψ + δ (7)

V3(m,a1, a2) = (ψ + δ) [1 + λ2c(q2)1{y2 < y∗}] , (8)

where 1{Φ} is the indicator function that equals 1 iff Φ is true, and c(q) ≡ u0(q)
z0(q) −1. Notice that

c(q) represents a liquidity premium: c(qj) is the value of an additional unit of asset in a type j

meeting, over and above its return if it is simply carried forward to the next CM. We assume

c0(q) < 0.7 Updating (6)-(8) and inserting Vi(m̂, â1, â2) into (2)-(4), we arrive at conditions

7This assumption generally involves third derivatives of the utility function, but LW shows it always holds if
θ is close to 1, and it holds for any θ if c is linear and u0 is log concave. These same conditions also guarantee
that there is a unique solution to the first order conditions.
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determining demand for the three assets:

m : φ ≥ βφ̂ [λ1c(q̂1)1{ŷ1 < y∗}+ λ2c(q̂2)1{ŷ2 < y∗}+ 1] , = if m̂ > 0 (9)

a1 : ψ ≥ β(ψ̂ + δ), = if â1 > 0 (10)

a2 : ψ ≥ β(ψ̂ + δ) [λ2c(q̂2)1{ŷ2 < y∗}+ 1] , = if â2 > 0 (11)

We are now ready to discuss equilibria. Generally, an equilibrium can be defined in terms of

time paths for asset holdings (m,a1, a2), asset prices (φ, ψ), the DM terms of trade (pj , qj) for

j = 1, 2, and the CM allocation (x, h) for every individual, satisfying the utility maximization

conditions derived above, the bargaining solution, and the obvious market clearing conditions.

Given the other variables, the CM allocation is obvious: we know x = x∗ from (1), and we can

get h from the budget equation. Hence, (x, h) will remain implicit in the following discussion. A

special case is a steady state equilibrium, where the real variables (q1, q2) are constant over time,

which from the bargaining solution implies φm and ψa2 are constant as well, and in particular

φ/φ̂ = M̂/M = γ. We restrict attention to steady states in much of what follows, and to

monetary equilibria, where φ > 0, m̂ > 0, q1 > 0 and (9) holds with equality.

From Lemma 1, qj is an increasing function of yj and q1 ≤ q2 ≤ q∗. In fact, it is easy to

show that qj ≤ q̄, where q̄ is the q that maximizes the buyer’s surplus u(q) − p = u(q) − z(q),

and q̄ ≤ q∗ with strict inequality unless θ = 1.8 Notice that c(q̄) = 0. The next result is that

a2 > 0 in any equilibrium (not only steady state) as long as λ2 > 0; intuitively, since it is costly

to carry cash when γ > β, agents do not carry enough to get q̄, and so it is always optimal to

bring at least a little of the real asset to the DM in order to get closer to q̄.

Lemma 2. If ρ > 0, then a2 > 0 in any equilibrium.

Proof: Suppose a2 = 0. Then q1 = q2 ≡ q0. Given γ > β, we know q0 < q̄ ≤ q∗ by standard
8See Geromichalos et al. (2007) for details. Intuitively, let ȳ = z(q̄) ≤ y∗. Then the buyer’s surplus is

decreasing in y for y > ȳ, because the value of what he pays y increases by more than the value of what he gets
q. And ȳ < y∗ unless θ = 1 due to a standard holdup problem: unless the buyer has all the bargaining power, the
q that maximizes his surplus is not the q∗ that maximizes the total surplus.
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results. Since q0 < q∗, from (9) at equality

(λ1 + λ2)c(q0) + 1 = φ/βφ̂ = γ/β > 1,

which implies c(q0) > 0. Since we are supposing a2 = 0, feasibility implies a1 = A > 0, and (10)

holds at equality. Thus, ψ = β(ψ̂ + δ). Then (11) implies λ2c(q0) ≤ 0, a contradiction. ¥

We now have m > 0 and a2 > 0, and it remains to determine whether a1 = 0 or a1 > 0. To

answer this, let q̃ < q̄ be defined by c(q̃) ≡ (γ − β) /βλ1, and let

Ā ≡ [z(q̄)− z(q̃)] (1− β) /δ > 0.

The next result, the proof of which is in the Appendix, tells us that A ≤ Ā (the real asset is

relatively scarce) implies a1 = 0, and A > Ā (the real asset is plentiful) implies a1 > 0. Given

A, the latter case becomes more likely when γ or ρ decreases, and when β, δ or λ increases.

Proposition 1. (i) If A ≤ Ā there exists a unique steady state monetary equilibrium, and in

this equilibrium, (q1, q2) solves

Aδ = [z(q2)− z(q1)] {1− β[λ2c(q2) + 1]} (12)

γ = β [λ1c(q1) + λ2c(q2) + 1] , (13)

prices are φ = z(q1)/M and ψ = [z(q2)− z(q1)] /A − δ, and the portfolio is (m,a1, a2) =

(M, 0, A). (ii) If A > Ā there exists a unique steady state equilibrium, and in this equi-

librium, (q1, q2) = (q̃, q̄), prices are φ = z(q̃)/M and ψ = βδ/ (1− β), and the portfolio is

(m,a1, a2) = (M,A− Ā, Ā).

Before using Proposition 1 to discuss the economics of the model, we need a little more

notation. Imagine an asset that costs 1 unit of x in the pays 1 + r units of x in the next CM,

but cannot be brought to (or traded in) the DM. Its return, the risk free real interest rate, is

pinned down by 1 + r = 1/β. Now imagine an asset that costs 1 dollar in the CM and pays
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1+ i dollars in the next CM, and similarly cannot be traded in the DM. Its return, the risk free

nominal rate, is 1 + i = φ/φ̂β. Hence, 1 + i = (1 + r)φ/φ̂. This is the Fisher equation, which

can be interpreted as a simple no-arbitrage condition between real and nominal assets traded

in the CM but not the DM. Given this, we can equivalently discuss monetary policy in terms

of either the nominal rate i or the inflation rate φ/φ̂, which in steady state equals the rate of

money growth γ.

We now rewrite (12)-(13), the equilibrium conditions for the case where A ≤ Ā, as

(1 + r)Aδ = [z(q2)− z(q1)][r − λ2c(q2)] (14)

i = λ1c(q1) + λ2c(q2). (15)

Let q2 = α(q1) and q1 = μ(q2) denote the implicit functions characterized by (14) and (15),

repectively. We establish in the Appendix that μ is decreasing while α is increasing, and that

they intersect for some q1 ∈ [0, q̄], as seen in Figure 1. For A ≤ Ā, as in Figure 1-A, the

intersection of α and μ determines the equilibrium (q1, q2) ∈ [0, q̄]2, from which we can recover

prices and the portfolio from Proposition 1. For A > Ā, as in Figure 1-B, the intersection of α

and μ occurs at q2 > q̄, and the equilibrium is (q1, q2) = (q̃, q̄). Equilibrium is thus conveniently

characterized by the intersection of q1 = μ(q2) and q2 = ᾱ(q1) = min{α(q1), q̄}.

When A ≤ Ā, q2 < q̄ and a bears a liquidity premium, c(q2) > 0. In this case (11) implies

ψ > βδ/ (1− β) = δ/r — i.e. the price of the asset exceeds the present value of its dividend

stream, because it reflects not only the asset’s fundamental value, but also it’s value as a medium

of exchange. To be precise, in steady state (11) at equality yields

ψ =
βδ [1 + λ2c(q2)]

1− β [1 + λ2c(q2)]
=

δ

r

∙
1 +

(1 + r)λ2c(q2)

r − λ2c(q2)

¸
,

which exceeds the fundamental price δ/r whenever λ2 > 0 or q2 < q̄.9 On the other hand, when

A > Ā, we have q2 = q̄ and the price of the asset is equal to its fundamental value, ψ = δ/r.

9An alternative but equivalent way to price a in equilibrium with A < Ā comes from the bargaining solution,
which says z(q1) =Mφ and z(q2) = A(ψ + δ) +Mφ, and hence implies Aψ = z(q2)− z(q1)− δA.
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Figure 1:

The reason that the asset carries no liquidity premium in this case is that A > Ā implies a1 > 0,

so that agents at the margin are indifferent between holding a for its dividend stream alone and

as a medium of exchange. Of course, m bears a liquidity premium in any equilibrium where

q1 > 0, since its fundamental value is 0.

When A < Ā, we obtain the following relationships between the equilibrium and the exoge-

nous variables.

x = i A δ λ ρ
∂q1
∂x

− − − + −
∂q2
∂x

− + + + ?

∂φ

∂x
− − − + −

∂ψ

∂x
+ − ? ? +

Table 1: Comparative Statics when A < Ā

Formal derivations are in the Appendix, but the results are easy to see in Figure 1-A. For

example, an increase in i shifts the μ curve southwest but leaves α unchanged, leading to a

reduction in both q1 and q2. Intuitively, as the nominal rate increases, agents try to economize

on money, reducing its CM price φ and hence its DM value q1 = z−1(φM). Given this, agents
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substitute into the real asset a, which raises its price ψ, but the net effect is to lower q2 =

z−1(φM + ψA).10

An interesting implication of this result is that the observed return on a between meetings

of the CM, 1 + δ/ψ, decreases with i; Geromichalos et al. (2007) interpret this kind of result

as saying inflation is bad for stock market returns. So the Fisher equation apparently does not

hold for this asset: its observed return is not independent of nominal interest or inflation rates.

The reason of course is that i affects the demand for m, which affects the demand for a, and

hence its price and return. Note that this would not happen if a were never used as a medium

of exchange, since ρ = 0 entails the usual result ψ = δ/r, and ∂ψ/∂i = 0. It is when assets have

some liquidity premium that the idea behind the Fisher equation (real returns do not depend

on inflation) goes wrong.

Other results of interest include the folllwing. An increase in δ shifts the α curve northwest

but leaves μ unchanged, leading to a fall in q1 and a rise in q2. Intuitively, as dividends increase,

agents substitute out of m and into a, which affects both their DM and CM values. An increase

in A is similar. Changing λ or ρ shifts both curves — e.g. an increase in λ (more frequent

meetings) shifts μ to the right and α to the left, although in the Appendix we show the net

effect on both q1 and q2 is positive. As ρ increases (more sellers accept a) q1 decreases, but the

effect on q2 is ambiguous. We can show ∂φ/∂ρ < 0 and ∂ψ/∂ρ > 0: as more sellers accept a in

the DM, agents want to substitute out of m and into a, which affects their CM prices. Other

effects can be similarly discussed.

The sensitivity analysis above holds under the condition A < Ā. When A ≥ Ā we have

q2 = q̄ and q1 = q̃ where q̃ is such that q̃ = μ(q̄), or c(q̃) = i/λ(1 − ρ). It is easy to see that

∂q̃/∂i < 0, ∂q̃/∂λ > 0, and ∂q̃/∂ρ < 0, while neither A nor δ affect q1. The value of q2 is

unaffected by a perturbation to any of the five exogenous parameters. Therefore, the CM price

10Notice that in the limit as i → ∞, the μ curve becomes vertical at q1 = 0, and we get q2 = α(0) as a
nonmonetary equilibrium.
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of m is decreasing in i and ρ and increasing in λ, while as we already have remarked, the CM

price of a is tied down by its fundamental value ψ = βδ/ (1− β). Also, notice that q̃ < q̄ if

i > 0, but q̃ → q̄ as i → 0. In fact, as i → 0, we have Ā → 0, which means we must be in an

equilibrium where a1 > 0. This simply says that at the Freidman rule i = 0, we get q1 = q2 = q̄

and all assets pay the same return, 1 + r = 1/β. Hence, i = 0 is the optimal policy, although it

does not give the first best outcome q = q∗ unless θ = 1, due to the holdup problem.

To close this section, notice that there is a well-defined sense in which money is essential in

this economy as long as λ1 = λ(1 − ρ) > 0 (there are some meetings where the seller does not

accept a) for any values of the other parameters. To be precise, expected utility is higher in the

monetary equilibrium that in the nonmonetary equilibrium. In the nonmonetary equilibrium,

q1 = 0 and q2 = ᾱ(0). In any monetary equilibrium, q1 is higher, and so is q2 at least as long as it

is below q̄. Interestingly, we not only have more trade on the extensive margin in the monetary

equilibrium, because now you can buy even from sellers who do not accept claims to a, we also

have more trade on the intensive margin when q2 < q̄, since you get more even when sellers do

accept claims to a. We summarize these and some other key results of this section as follows.

Proposition 2. Money is essential if λ1 > 0. As long as A < Ā, the real asset bears a liquidity

premium c(q2) > 0, and its price exceeds the fundamental value δ/r; in this case, an increase

in γ or i reduces the demand for m and hence φ, which increases the demand for a and hence

ψ, and lowers the observed return between meetings of the CM, 1 + δ/ψ. An increase in γ or i

decreases q even in meetings where the seller accepts a. The optimal policy is i = 0.

3 Extension: A Cashless Market

One of the questions we set out to address is whether a change in inflation affects only those who

use cash, or others as well. In the benchmark model, all agents hold cash, so we cannot address

this question. Hence, we present here a simple extension to show change in monetary policy can
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affect agents that hold no currency. To this end, suppose there are two distinct decentralized

markets, B and C, where a fraction b and 1− b of the agents go between meetings of the CM.11

In market B, sellers accept both a andm, while in market C some transactions will be cash-only:

as in the baseline model, a fraction ρ of sellers accept a while the remaining 1 − ρ do not. As

before, let λ1 = (1− ρ)λ and λ2 = ρλ, where λ is the exogenous arrival rate.

Since market C is is identical to the DM in the benchmark model, the first order conditions

are identical to (9) - (11). In market B, the matching technology is characterized by λ̃, which

may or may not equal λ, and there is only one type of meeting, since all sellers accept both

m and a. Let q̃2 and p̃2 denote quantities and prices traded in this market.12 The DM value

function can be characterized by

V B(m,a1, a2) = (1− λ̃)W (y) + λ̃ [u(q̃2) +W (y − p̃2)] ,

with first order conditions

V B
1 (m,a1, a2) = φ

h
λ̃c(q̃2) + 1

i
(16)

V B
2 (m,a1, a2) = ψ + δ (17)

V B
3 (m,a1, a2) = (ψ + δ)

h
λ̃c(q̃2) + 1

i
(18)

By substituting into the usual first order conditions from the CM, we have

m : φ ≥ βφ0
h
λ̃c(q̃2) + 1

i
, = if m > 0 (19)

a1 : ψ ≥ β(ψ0 + δ), = if a1 > 0 (20)

a2 : ψ ≥ β(ψ0 + δ)
h
λ̃c(q̃2) + 1

i
, = if a2 > 0 (21)

We concentrate on the case where q2, q̃2 < q̄ (otherwise, ψ is determined solely by the

11Assume for concreteness that they are permanently assigned to one of these markets; things would be
beasically the same if they were randomly assigned each period.

12We adopt the convention that the variables associated with agents in market B will have˜and those in market
C will not.
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fundamental value). Recall that ρ < 1 implies that agents in market C will bring a strictly

positive quantity of cash, so (9) holds with equality.

Lemma 3. In any equilibrium with ψ > βδ/(1− β), both a2 > 0 and ã2 > 0.

Proof: When q2, q̃2 < q̄, a2 + ã2 = A, and so clearly either a2 > 0 or ã2 > 0. Suppose first

that a2 > 0 and ã2 = 0. From the Inada conditions, ã = 0 ⇒ m̃ > 0. We also have shown that

ρ < 1 ⇒ m > 0. Therefore, from the first order conditions on m and m̃, we have

λ1c(q1) + λ2c(q2) + 1 = λ̃c(q̃2) + 1,

and since a2 > 0 we know

ψ = β(ψ0 + δ)[λ2c(q2) + 1]

= β(ψ0 + δ)[λ̃c(q̃2) + 1− λ1c(q1)]

< β(ψ0 + δ)[λ̃c(q̃2) + 1].

This contradicts (21). Now suppose the opposite, that a2 = 0 and ã2 > 0. Since a2 = 0, we

know q1 = q2 ≡ q0 for some q0 < q̄. Therefore, from (9),

φ = βφ0[λc(q0) + 1].

Moreover, a2 = 0 implies the price of the asset is greater than it’s marginal value, so that

generically

ψ > β(ψ0 + δ)[λc(q0) + 1].

Since ã2 > 0,

ψ = β(ψ0 + δ)[λ̃c(q̃2) + 1]

⇒ λ̃c(q̃2) > λc(q0)

⇒ φ < βφ0[λ̃c(q̃2) + 1],

which contradicts (19). ¥
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Lemma 4. Agents in market B carry no cash, m̃ = 0.

Proof: Since a2 > 0 and ã2 > 0, we know that λ2c(q2) = λ̃c(q̃2) from (11)-(21), and therefore

φ = βφ0
h
λ1c(q1) + λ2c(q2) + 1

i
= βφ0

h
λ1c(q1) + λ̃c(q2) + 1

i
> βφ0

h
λ̃c(q̃2) + 1

i
.

Hence the first order condition on m̃ is not binding, and m̃ = 0. ¥

Note that

z(q1) = φm

z(q2) = φm+ (ψ + δ)a2

z(q̃2) = φm+ (ψ + δ)ã2

and when a1 = ã1 = 0, we know A = (1 − b)a2 + bã2. Given this, we have the following two

conditions on asset prices that will complete our characterization of equilibrium:

z(q1) = φM (22)

(1− b)z(q2) + bz(q̃2) = (1− b)φM + (ψ + δ)A (23)

As before, we can use these relationships to derive the following expression relating the price of

assets to the quantities exchanged:

ψ + δ =
(1− b)[z(q2)− z(q1)] + bz(q̃2)

A
. (24)

Therefore, equilibrium values (q1, q2, q̃2) are characterized by three equations:

γ = β
h
λ1c(q1) + λ2c(q2) + 1

i
(25)

Aδ =
n
(1− b)[z(q2)− z(q1)] + bz(q̃2)

on
1− β[λ2c(q2) + 1]

o
(26)

Aδ =
n
(1− b)[z(q2)− z(q1)] + bz(q̃2)

on
1− β[λ̃c(q̃2) + 1]

o
(27)
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The important thing to note is that changes in monetary policy effect q1 and q2 through (??),

and this will effect both ψ and q̃2. Again, appealing to the Fisher equation, we can rewrite these

conditions as:

i = (1− ρ)λc(q1) + ρλc(q2) (28)

(1 + r)Aδ =
n
(1− b)[z(q2)− z(q1)] + bz(q̃2)

o
[r − ρλc(q2)] (29)

(1 + r)Aδ =
n
(1− b)[z(q2)− z(q1)] + bz(q̃2)

o
[r − λ̃c(q̃2)]. (30)

Finally, since there is a one-to-one mapping between q2 and q̃2, let us denote q2 = h(q̃2) ≡

c−1
h
λ̃
ρλc(q̃2)

i
, so that the equilibrium conditions reduce to two equations in (q1, q̃2):

i = (1− ρ)λc(q1) + λ̃c(q̃2) (31)

(1 + r)Aδ =
n
(1− b)[z

¡
h(q̃2)

¢
− z(q1)] + bz(q̃2)

o
[r − λ̃c(q̃2)]. (32)

Using similar techniques to the previous analysis, we can show ∂q̃2/∂i < 0. That is, an increase

in the inflation rate causes agents in market C to shift their portfolios away from cash and

towards the real asset, thus driving the price of assets up. In equilibrium, this results in agents

in market B purchasing less of the asset, and receiving less in exchange in the DM.

4 Endogenous Liquidity

We now endogenize the liquidity or acceptability of the assets. Suppose that each agent possesses

the technology required to create counterfeit money and assets at no cost. Moreover, suppose

that all agents recognize cash and are endowed with the ability to spot a counterfeit note without

incurring any additional costs. However, all agents are not ex-ante familiar with claims to a real

asset. Instead, an agent must invest in a costly technology in order to verify the authenticity

of such a claim. In particular, assume that agent i ∈ [0, 1] must incur cost κ(i) in order to

verify the authenticity of real assets, where we arrange agents in order of increasing costs so

that κ0(i) ≥ 0. We assume κ(i) is continuous. In equilibrium, an agent who has not invested
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in the verification technology will not accept real assets, since the buyer will surely offer her a

counterfeit. Therefore, the fraction of agents that incur cost κ(i) is equivalent to the fraction of

agents that accepts a, ρ.13

Given this framework, in addition to the portfolio selection problem he makes in the CM,

an agent must also choose whether or not to invest in this verification technology. The return

from this investment depends on the number of agents who bring assets into the DM; but the

incentive for agents to bring assets depends in turn on the number of sellers who accept assets.

Therefore, coordination will play a key role in any equilibrium. Of course, there will always be

an equilibrium in which no sellers invest in the technology and no buyers bring assets into the

DM. However, it’s not obvious that an equilibrium exists in which both money and the asset

circulate as a medium of exchange. Suppose, for example, that the distribution of verification

costs is such that the maximum cost for any agent to acquire the technology, κ(1), is close to

zero. If buyers bring even a small amount of the asset to the market, then, there will be a

strictly positive value to a seller of having the technology.

If the maximum cost is less than this benefit, all sellers will acquire the technology. But in

this case, the asset is universally accepted and money has no advantage over taking the asset

into the DM, and since there is a positive return on the asset, no agent will hold money. Thus,

if the cost of acquiring the technology is too low, there will only be equilibrium in which only

money is accepted in the DM (that is, no sellers acquire the technology), and another in which

only the asset is traded in the DM (all sellers acquire the technology). Alternatively, if the lower

bound of κ(0) is sufficiently high, then there might be no level of DM asset holdings such that

any sellers would invest in the technology. Thus for there to be interesting equilibria in which

13This setup has several analogs in practice. Perhaps the most obvious is the choice consumers (producers)
face between using (accepting) debit cards. A consumer chooses how much cash to carry and how much to leave
in interest-bearing bank accounts that can be drawn upon using a debit card. A producer always accepts cash,
but has to choose whether or not to invest in a machine that allows him to verify a debit card. A seller would
never simply write down the numbers on a debit card without using the verification technology. Moreover, it is
clear that producers face heterogeneous costs for the use of this technology (large stores often pay smaller fees
e.g.).
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both money and assets are used in the DM there must be constraints on the distribution of costs

to sellers.

For any ρ ∈ [0, 1], we can define the premium from investing in the technology as

Π(ρ) ≡ βλ
nh

z[q2(ρ)]− c[q1(ρ)]
i
−
h
z[q1(ρ)]− c[q1(ρ)]

io
. (33)

That is, the expected benefit from investing in the technology is equal to the extra utility a

seller receives from being in a type 2 meeting — as opposed to a type 1 meeting — discounted and

weighted by the probability that he is a seller. Note here that q1(ρ) and q2(ρ) are well-defined

objects, as described in Proposition 1. The decision rule, then, for a seller with verification cost

κ is to invest if Π(ρ) ≥ κ and not otherwise. An equilibrium with ρ∗ > 0, then, satisfies the

condition that Π(ρ∗) ≥ κ(ρ∗), with equality if ρ∗ < 1.

Constructing an argument for the existence of an equilibrium is not difficult. Define the

cumulative distribution function F = κ−1(i) and the equilibrium mapping E : [0, 1] → [0, 1] as

E(ρ) = F [Π(ρ)]. An equilibrium is thus a fixed point of this mapping. One can show that E

is a continuous mapping from a compact, convex set into itself, so that Brouwer’s fixed point

theorem assures an equilibrium. However, as discussed above, we would like to know when an

equilibrium with ρ ∈ (0, 1) exists. To this end, we consider conditions on κ that would ensure

us an interior fixed point.

Since the value of investing in the technology is bounded above, a sufficiently high upper

bound κ̄ on the support of κ would guarantee that ρ∗ < 1. More specifically, let

Π̄ = βλ
n
[z(q̄)− c(q̄)]− [z(0)− c(0)]

o
= βλ[z(q̄)− c(q̄)].

That is, the maximal possible value of Π would be attained when agents carry enough assets to

purchase the optimal quantity q̄ but no cash. For any ρ, we have Π(ρ) ≤ Π̄. Therefore, if κ̄ > Π̄,

then κ(1) > Π(1). In words, if there are some agents with sufficiently high costs of verification

we can be assured that there is not an equilibrium in which ρ = 1.
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Figure 2:

Similarly we know that the value of investing in the technology is bounded below. In par-

ticular, it can be shown that

lim
ρ→0+

Π(ρ) ≡ Π > 0.

If κ(�) < Π for some � sufficiently small (or zero), we are assured that ρ∗ > 0. Therefore, if

we impose sufficient structure on the distribution costs, we are assured of an equilibrium in

which both cash and assets circulate as media of exchange, though assets are less liquid than

cash. Such an equilibrium need not be unique. For illustrative purposes, let us parameterize the
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model by u(q) = q1/2, c(q) = q, and pick some parameter values.14 In Figure 2-A through 2-D

we illustrate four distinct possibilities: a unique equilibrium with ρ∗ = 1, a unique equilibrium

with ρ∗ = 0, a unique equilibrium with ρ∗ ∈ (0, 1), and multiple equilibria with ρ∗ ∈ (0, 1).

Figure 3:

Lastly, consider the effect of monetary policy. In Figure 3 we compare equilibria under two

regimes, i = 0.05 and i = 0.1. As illustrated, the effect of higher i is that buyers allocate more

of their wealth to a, which makes more sellers choose to (pay to be able to) accept a as a means

of payment. This prediction seems consistent with observed behavior during periods of high

inflation. During Argentina’s struggle with hyper-inflation, inflation-indexed bonds circulated

as a medium of exchange. Similarly, many countries have resorted to the dollar during high

inflation. Note that while inflation served only a negative role in the model with exogenous

liquidity, there is a potential welfare-improving role for inflation in this model with endogenous

liquidity: inflation moves agents away from using only money, which is after all a dominated

medium of exchange.

14 In Figures 2 and 3, we set θ = 0.5, γ = 1.0, β = 0.95, λ = 0.35, A = 0.1, and δ = 0.02.
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5 Conclusion

Monetary policy controls the rate of return on a single asset: currency. However, in adjusting

the rate of return on currency, the policymaker is able to affect both the rate of return and the

liquidity properties of other assets as well. In particular, as the rate of return on cash falls,

agents reallocate their wealth to alternative assets, hence driving up the price and down the

rate of return of these assets. As a result, even those agents not holding cash are affected by

monetary policy. Moreover, as agents shift their portfolios to assets other than currency, there is

greater incentive for sellers to pay to be able to accept these assets as a medium of exchange. In

turn, as the rate of return on currency falls, other assets could potentially become more liquid,

further increasing their price.

Several extensions come to mind. First, while the bargaining framework employed in the

DM is common in models of this sort, it carries some undesirable features. For one, tractability

requires we assume both parties are perfectly informed about the other’s portfolio. As a result,

a hold-up problem emerges, and we must sort out how much agents leave in the CM and how

much they carry into the DM. It may be worth considering alternative mechanisms for the terms

of trade, as has been done in models where money is the only liquid asset. However, regardless

of this mechanism, the model seems useful for addressing several interesting issues. The most

obvious issue is the relationship between inflation and the use of alternative means of payment,

such as debit cards, or maybe foregin currency.
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7 Appendix

Proof of Proposition 1 We only present the case A ≤ Ā; the other case is similar. First, by the

implicit function theorem, we have μ0(q1) = −βλ01c(q1)/λ02c(q2) < 0 and

α0(q1) =
−z0(q1) {1− β[λ2c(q2) + 1]}

βλ2e0(q2) [z(q2)− z(q1)]− z0(q1) {1− β[λ2c(q2) + 1]}
> 0.

Now let q0 satisfy c(q0) = γ−β
βλ1

+ λ2
λ1
, with q0 < q̃ ≤ q̄. Since c0(q) < 0 and limq→∞ c(q) = −1,

it is easy to see that limq1→q0 μ(q1) = ∞. One can also show limq1→q0 α(q1) < ∞. Therefore,

μ(q0) > α(q0).

Now consider (13) with q1 = q̄, so that γ/β = λ2c(q2)+1. This implies c(q2) ≤ 0, so μ(q̄) ≤ q̄.

Now consider (12) with q2 = q̄, so that Aδ = [z(q̄) − z(q1)](1 − β). This implies α−1(q̄) < q̄,

and α(q̄) > q̄ ≥ μ(q̄). Since μ0 < 0, α0 > 0, μ(q0) > α(q0) for some q0 < q̄, and α(q̄) ≥ μ(q̄), we

conclude that there exists a unique equilibrium pair (q1, q2) with q1 > 0 and q2 ≤ q̄ that satisfy

(12) and (13).

It is left to show that (12) and (13) are equivalent to the conditions for equilibrium with

m > 0, a1 = 0, and a2 > 0. Since m > 0, (9) must be met with equality in equilibrium. Since

γ = φ/φ0, clearly (13) and (9) are equivalent. Since a2 > 0, (11) must also hold with equality.

We know that a1 = 0 ⇒ a2 = A. Also, z(q1) = φM and z(q2) = φM + (ψ + δ)A implies

ψ = [z(q2)− z(q1)] /A− δ. Substituting this into (12) yields (11). ¥

Proof of Proposition 2. (⇒) Suppose (q1, q2) characterize a case 2 equilibrium, so that q2 = q̄,

q1 = q̂, a1 = A1 > 0 and A2 < A. We know that

ψ + δ =
δ

1− β
=

z(q2)− z(q1)

A2
.

The desired result follows immediately. Now suppose

z(q̄)− z(q̂)

A
<

δ

1− β)
.

Let q2 = q̄. Clearly ∃q1 = q̂ such that (15) holds. Moreover, let ψ = βδ
1−β , and define A2 =

(1−β)
¡
z(q̄)−z(q̂)
δ so that A1 = A−A2. It is trivial to verify that this is a case 2 equilibrium. ¥
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Sensitivity analysis with A ≤ Ā: Let ∆ denote the determinant of∙
λ1l

0(q1) λ2l
0(q2)

[λ2c(q2)− r] z0(q1) [r − λ2c(q2)]z
0(q2)− [z(q2)− z(q1)]λ2l

0(q2)

¸
From (14), equilibrium with q2 ≥ q1 requires r − λ2c(q2) ≥ 0, so ∆ < 0. Then we have:

∂q1
∂i

=
[r − ρλc(q2)]z

0(q2)− [z(q2)− z(q1)]ρλc
0(q2)

∆
< 0

∂q2
∂i

=
[r − ρλc(q2)]z

0(q1)

∆
< 0

∂q1
∂δ

=
−(1 + r)Aρλc0(q2)

∆
< 0

∂q2
∂δ

=
(1 + r)A(1− ρ)λc0(q1)

∆
> 0

∂q1
∂A

=
−(1 + r)δρλc0(q2)

∆
< 0

∂q2
∂A

=
(1 + r)δ(1− ρ)λc0(q1)

∆
> 0

∂q1
∂ρ

=
λ[c(q1)− c(q2)][r − ρλc(q2)]z

0(q2)− [z(q2)− z(q1)]ρλc
0(q2)λc(q1)

∆
< 0

∂q2
∂ρ

=
λ[c(q1)− c(q2)][r − ρλc(q2)]z

0(q1) + [z(q2)− z(q1)](1− ρ)λc0(q1)λc(q2)

∆

∂q1
∂λ

=
(1− ρ)c(q1)[z(q2)− z(q1)]ρλc

0(q2)− [(1− ρ)c(q1) + ρc(q2)][r − ρλc(q2)]z
0(q2)

∆
> 0

∂q2
∂λ

=
(1− ρ)c(q2)[z(q2)− z(q1)]ρλc

0(q1)− [(1− ρ)c(q1) + ρc(q2)][r − ρλc(q2)]z
0(q1)

∆
> 0
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∂ψ

∂i
=

[z(q2)− z(q1)]ρλc
0(q2)z0(q1)

A∆
> 0

∂φ

∂i
=

z0(q1)

M

∂q1
∂i

< 0

∂ψ

∂δ
=

[z(q2)− z(q1)](1− ρ)λc0(q1)ρλc0(q2) + [1 + ρλc(q2)][(1− ρ)λc0(q1)z0(q2) + ρλc0(q2)z0(q1)]

∆
∂φ

∂δ
=

z0(q1)

M

∂q1
∂δ

< 0

∂ψ

∂A
=

[z(q2)− z(q1)](1− ρ)λc0(q1)ρλc0(q2)

A∆
< 0

∂φ

∂A
=

z0(q1)

M

∂q1
∂A

< 0

∂ψ

∂ρ
=

[z(q2)− z(q1)][(1− ρ)λc0(q1)λc(q2)z0(q2) + ρλc0(q2)λc(q1)z0(q1)]

∆
> 0

∂φ

∂ρ
=

z0(q1)

M

∂q1
∂ρ

< 0

∂ψ

∂λ
=

(1− ρ)[z(q2)− z(q1)][c(q2)c
0(q1)z0(q2)− c(q1)c

0(q2)z0(q1)]

∆
∂φ

∂λ
=

z0(q1)

M

∂q1
∂λ

> 0

Sensitivity analysis with a cashless market:

∂q̃1
∂i

=
(1− b)

n
z0[h(q̃2)]h0(q̃2)[r − λ̃c(q̃2)]

o
−
n
(1− b)[z

¡
h(q̃2)

¢
− z(q1)] + bz(q̃2)

o
λ̃c0(q̃2)

∆
< 0

∂q̃2
∂i

=
(1− b)z0(q1)[r − λ̃c(q̃2)]

∆
< 0

where ∆ < 0 is given by

∆ = (1− ρ)λ1c
0(q1)

n
(1− b)

h
z0[h(q̃2)]h

0(q̃2)[r − λ̃c(q̃2)]
i
+ (1− b)z0(q1)[r − λ̃c(q̃2)]λ̃c

0(q̃2)

−
h
(1− b)[z

¡
h(q̃2)

¢
− z(q1)] + bz(q̃2)

i
λ̃c0(q̃2)

o
.
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