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Abstract

The framework in Lagos and Wright (2005) combining decentralized
and centralized markets is used extensively in monetary economics, for
several reasons: it has relatively solid microfoundations; it is tractable;
it integrates naturally with other theories; and it is easily quantifi-
able. Much is known about this model, but there is one loose end:
only under very special assumptions about bargaining or preferences
has it been shown there is a unique monetary steady state. For gen-
eral decentralized market utility and bargaining, I prove uniqueness,
for generic parameters using fiat money and all parameters using com-
modity money. I also derive monotone comparative static results.
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1 Introduction

The model in Lagos and Wright (2005), hereafter LW, combining some de-

centralized and some centralized trade, has been used extensively in the

recent monetary economics literature. One reason is that the LW model has

relatively solid microfoundations for the role of a medium of exchange (due

to decentralized markets) and yet is extremely tractable (due to centralized

markets). Another reason is that is allows a relatively easy integration of

modern monetary theory and other branches of economics, including stan-

dard theories of growth, unemployment, taxation, banking, and even new

Keynesian macro (again due to the combination of decentralized and cen-

tralized trade). Yet another reason is that it is not hard to quantify the

model using either calibration or estimation techniques.1

Much is known about the properties of the LW model and its set of equi-

libria, but there is a loose end: only under severe conditions on bargaining

(take-it-or-leave-it offers) or nonstandard assumptions on preferences (log-

concave marginal utility) in the decentralized market has it been previously

shown there exists a unique monetary steady state, and hence, for the may

papers using the model only a very incomplete characterization of equilibria

is available. In this note, I prove uniqueness of steady state with valued fiat

money for generic parameter values, using only standard assumptions on de-

centralized market preferences, and general Nash bargaining power. I also

show uniqueness for all parameter values in a commodity-money version,

where real assets are used as media of exchange. As a corollary, I derive

monotone comparative statics — e.g. the value of money is unambiguously

decreasing the rate of monetary expansion.

1The point is that the results presented here should be of fairly wide interest be-
cause the LW framework is one that people are actually using — as opposed to a ran-
dom selection from the plethora of model in the journals. See the bibliography at
http://www.ssc.upenn.edu/~rwright/courses/LW-bib.pdf, which as of today has 67 en-
tries, showing how the model can be applied to substantive issues and substantiating the
claims in the text that it can be eaily calibrated or estimated, and extended to incorporate
growth, opitmal taxation, sticky prices, and so on.
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2 The Standard Model

Time is discrete and continues forever. Alternating over time are two types

of markets: a frictionless centralized market CM, and a decentralized market

DM with anonymous trade and a double coincidence problem detailed below.

These two frictions in the DM make barter and credit impossible, and this

makes a medium of exchange essential. Different goods X and x are traded

in the CM and DM, and are produced one-for-one using labor H and h in

the two markets. In the baseline model, utility over a period encompassing

one CM and one DM is additively separable and linear in H,

U = U(X,H, x, h) = U(X)−H + u(x)− c(h),

where U , u and c satisfy the usual monotonicity and curvature properties,

and there is a discount factor β ∈ (0, 1) between one CM and the next DM,

but not between the DM and CM.2

The good DM x is not storable: it must be produced and consumed

simultaneously. The CM good may be storable but is not portable: if one

invests k units of X in some storage technology in the CM it yields f(k)

in the next CM, but in between it is illiquid in the sense that it cannot

be brought into the DM. The usual LW model has f(k) = 0, but nothing

changes if the CM good is storable, as long as it is not portable — in fact,

the only role f(k) plays here is that it provides a way to measure the return

on illiquid assets. Note that a similar notion of liquidity underlies much

work in economics, including e.g. research using Diamond-Dybvig (1983),

where resources invested in projects cannot be traded or consumed until the

projects come to fruition. Also note that agents in the DM cannot trade

claims on f(k) to be paid off in a future CM, any more than they can trade

2 It is easy to relax many of these assumptions to allow e.g. discounting between the
CM and DM, many goods in the CM or the DM, and nonlinear technologies. One can
make utility linear in X instead of H without changing anything of substance. One can
also relax separability and write e.g. U = V(X,x, h) −H. Sometimes, Inada conditions
like u0(0) =∞ are assumed, which are useful for existence but play no role for uniquess.
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other IOU’s, because anonymity implies they could renege on such claims

without fear of punishment.3

There is an asset m that is liquid, in that it can be brought into the DM

and used in trade. In general one should think of m as the standard “tree”

in Lucas’s (1978) asset-pricing model, bearing “fruit” δ ≥ as dividends in
each CM, in units of X. The special case usually studied is the one where

m is fiat money, δ = 0. By contrast, I refer to the case δ > 0 as commodity

money. When δ > 0 the total supply of the asset is taken to be fixed at

M , so that real resources are constant and it makes sense to consider steady

state. When δ = 0 and m is fiat money there can be a steady state even

if M is growing at rate π, as long as its price φ falls at the same rate. In

this case, π is the inflation rate, and the nominal interest rate i is given by

the Fisher equation 1 + i = (1 + π)/β. Here π and i are exogenous policy

instruments, and I assume i > 0 but do consider the limit as i→ 0.

Let W (m,k) and and V (m,k) be the value functions for agents in the

CM and DM with portfolio (m, k). The CM problem is

W (m, k) = max
X,H,m̂,k̂

n
U(X)−H + βV̂ (m̂, k̂)

o
s.t. X = H + (φ+ δ)m− φm̂+ f(k)− k̂ − T

where (m̂, k̂) is the portfolio taken out of the CM, since a “hat” indicates

a variable next period, and T is a lump-sum tax that can be used to vary

M . Assume an interior solution for H (sufficient conditions are discussed in

LW), and substitute from the budget equation to get

W (m,k) = (φ+ δ)m+ f(k)− T +max
X
{U(X)−X} (1)

+max
m̂,k̂

n
−φm̂− k̂ + βV̂ (m̂, k̂)

o
.

This immediately yields several results: X = X∗ where U 0(X∗) = 1; the

3See Kocherlakota (1988), Wallace (2001), Arauojo (2004), or Aliprantis et al. (2007)
for more on the role of anonymity in monetary theory.
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portfolio choice (m̂, k̂) is independent of (m, k); Wm = φ + δ; and Wk =

f 0(k).4

In the DM with probability σ an agent want to consume x but cannot

produce it, in which case he is called a buyer; with probability σ he can

produce but does not want to consume, in which case he is called a seller;

and with probability 1 − 2σ he does neither. Buyers and sellers are then
paired off (anonymously). This generates a double coincidence problem

equivalent to the usual one coming from random matching and specialized

goods.5 Each trade involves a seller giving x to the buyer in exchange for

d ≤ m, where m is the liquid asset the buyer brought to the DM, which is

assumed to be observed by the seller. The agents bargain over the terms

of trade (x, d) according to the generalized Nash solution, with bargaining

power of the buyer given by θ and threat points given by continuation values

from not trading. As in LW, it is easy to show the outcome depends on the

buyer’s m iff the constraint d ≤ m binds, and does not depend on his k or

the portfolio of the seller at all.

To facilitate the presentation, begin with the case of fiat money, since

δ > 0 involves some technical complications that seem best to avoid for the

main point (see below). Now, as is standard, in equilibrium a buyer with

m in the DM wants to spend it all. Inserting d = m into the Nash product

and maximizing wrt x, the FOC can be rearranged to give the usual result

in such models: φm = g(x), where

g(x) ≡ θc(x)u0(x) + (1− θ)u(x)c0(x)

θu0(x) + (1− θ)c0(x)
.

4These results follow directly from the quasi-linearity of U , and keep the analysis
tractable, as compared to e.g. related models in Green and Zhou (1998,2002), Camera
and Corbae (1999), Zhu (2003,2005) or Molico (2006). Things are actually the same if
one dispenses with quasi-linearity and instead uses nonconvexities and lotteries, as in
Rocheteau et al. (2007). A different path to tractability is described in Shi (1997).

5A minor difference is that LW has some double coincidence meetings where both
agents consume and produce. One can add something similar here, but it is completely
irrelevant for the results. Other specifications in the literature (e.g. agents know whether
they will be buyers or sellers before they enter the DM) also work.
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Notice g is differentiable, and ∂x̂/∂m̂ = φ̂/g0(x̂) > 0. Also,

V (m, k) = σ [u(x) +W (0, k)] + σ[W (m+ d̃, k)− c(x̃)] + (1− 2σ)W (m, k)

= σ [u(x)− φm] + σ
h
φd̃− c(x̃)

i
+W (0, k) + φm,

using Wm = φ, where
³
x̃, d̃

´
is the trade when an agent is a seller, which as

I emphasized above does not depend on (m, k).

Inserting V̂ , the CM portfolio problem in (1) can be summarized by

max
m̂,k̂

n
−φm̂− k̂ + β(1− σ)φ̂m̂+ βσu(x̂) + βŴ (0, k̂)

o
, (2)

ignoring terms that do not depend on (m̂, k̂), where it is understood that

x̂ and φ̂m̂ are constrained via the bargaining solution φm = g(x). Since

Ŵk(m̂, k̂) = f 0(k̂), the FOC for k̂ implies 1 ≤ βf 0(k̂), = if k̂ > 0. Let k∗

be the solution to this condition; given k = k∗ it can be dropped as a state

variable from now on. The FOC for m̂ is φ = βφ̂ [1− σ + σu0(x̂)/g0(x̂)],

assuming m̂ > 0, since the focus here is on monetary equilibria. Using the

Fisher equation this FOC reduces to i = c(x̂), where

c(x) ≡ σ
u0(x)− g0(x)

g0(x)
. (3)

As is standard, c(x) is the marginal value of liquidity. Solving c(x) = i

for x, then using market clearing m = M , one can recover real balances

z ≡ φM = g(x), the nominal price level p ≡ φ−1 =M/g(x), and the rest of

the equilibrium. Discussing the existence of a solution to c(x) = i is routine.

In terms of uniquness, however, there is unfortunately no way to guarantee

c(x) is monotone without special assumptions because it depends on third

derivatives of utility.6 Indeed there are versions of the model where is c(x) is

6As mentioned, there are results for special cases. Thus, θ = 1 implies g(x) = c(x),
so c0(x) < 0 and there cannot be multiple solutions to c(x) = i; but θ = 1 is very
special. Also, normalizing c(x) to be linear and assuming log u0(x) is concave, one can
show c0(x) < 0 even though it depends on u000; but log-concave marginal utility is a
non-standard assumption, and is violated for many common functions.
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definitely not monotone.7 Hence, the literature contains only an incomplete

characterization of equilibria. At this point, however, note that c(x) = i is

a necessary but not a sufficient condition for equilibrium. This observation

is pursued below.

3 The Argument

Setting k̂ = k∗ and ignoring terms that do not depend on m̂, (2) becomes

max
m̂

(
−φφ̂m̂

φ̂β
+ (1− σ)φ̂m̂+ σu(x̂)

)
.

Let real balances be ẑ = φ̂m̂ and use the Fisher equation to reduce this to

max
m̂
{−ẑ(i+ σ) + σu(x̂)} ,

where again one should interpret x̂ and ẑ as constrained via the bargaining

solution ẑ = g(x̂). Inserting this constraint, one gets something that looks

like a simple (basically static) decision problem

max
x̂
{−(i+ σ)g(x̂) + σu(x̂)} . (4)

At first blush, this observation does not help much, since the FOC from

(4) is (i+ σ)g0(x) = σu0(x), which reduces to i = c(x) as before, naturally.

Thus, one cannot say much about the set of solutions, since one cannot

say much about the monotonicity of c(x). Still, re-interpreting i = c(x)

as coming from a decision problem, rather than an equilibrium condition,

allows one to impose some structure that can be exploited, as Cavalcanti and

Puzzello (2007) point out in a different context. In particular, consider the

example in Figure 1, where c(x) is non-monotone. Consider first the limiting

case i = 0, and notice there are three solutions to c(x) = 0, all of which are

7Silveira and Wright (2007) e.g. introduce a small twist that guarantees c(0) = 0, and
since c(x) → 0 as x → ∞, if there is a solution to c(x) = i there are generically multiple
solutions (the twist is that there is a positive probability of being able to augment one’s
liquid balances after becoming a buyer; also, Inada conditions are not assumed).
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candidate equilibria (the discussion obviously generalizes to any number of

candidates). We now show that generically only one is an equilibrium.

A routine calculation shows that the SOC is (i+ σ)g00(x) + σu00(x) ≤ 0,
which holds at c(x) = 0 iff c0(x) ≤ 0. This eliminates candidate x0: it

is in fact a local minimizer for (4), while x1 and x2 both constitute local

maximizers. For generic values of the parameters (e.g. for almost all θ) only

one of the two constitutes a global maximizer. It is easy to determine which

one: moving from x1 to x2 entails a loss and a gain, indicated respectively by

the area between the curve and the axis from x1 to x0 and the area between

the axis and the curve from x0 to x2.8 Hence, in this example, when i→ 0

the global max occurs at x2. Now as i increases slightly the following should

be obvious: the value of the objective function falls continuously; there are

still two local maximizers and a local minimizer, say x1(i), x2(i) and x0(i),

with the former decreasing and the latter increasing in i; and the global

maximizer is still x2(i).

Figure 1: At i = 0 global max occurs at x2; at ı̂ it jumps from x2(̂ı) to x1(̂ı).

At some point as i increases, however, we may reach a point like i = ı̂

in the right panel, where the value of the objective function is the same

at x2(̂ı) and x2(̂ı) because the loss between x1(̂ı) and x0(̂ı) just equals the

8This is easy to understand, since the integral of the FOC is the objective function, but
note the reason the marginal value of liquidity c(x) can go negative is a holdup problem
in the bargaining. This is of no consequence for the general point however — one can start
with any i0 > 0, rather than i = 0, and never even mention that c(x) can be negative.

7



gain between x0(̂ı) and x2(̂ı). As i increases beyond ı̂, the global maximizer

jumps from x2(i) to x1(i). It is clear from the diagram (or from the envelope

theorem) that any jump must be to the left, not the right. So the global

maximizer, say x(i), decreases with i, with possiblly but not necessarily some

jumps to the left. At a high enough value of i it is also possible that x(i) = 0

(at least, if we do not impose Inada conditions on u). These observations

imply, given only that c(x) is continuous, as i varies the global maximizer

x(i) is decreasing and continuous except possibly when it jumps to the left,

which occurs for at most a countable number of values for i.

Figure 2: Inverse demand and demand curves, X = X(i)

The function x(i) can be interpreted as an individual demand for x. Ag-

gregate demand X(i) looks similar, except one can fill in the gaps between

any jumps, since if there are multiple global maximizers one can assign any

fraction of the population to each. From Figure 1 one can easily see the

shape of the inverse demand, or the demand curve, as depicted in the left

and right panels of Figure 2. We have proved that X(i) is continuous and

downward sloping, with possibly some vertical (in the right panel) segments,

and possibly a horizontal segment at coinciding with the i axis for high i.

Steady state is fully characterized by the intersection of X(i) with supply,

which is vertical (in the right panel) at the exogenous i. It is now obvious

that for generic i there is a unique steady state equilibrium. Given this, com-
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parative static results follow easily and are left as exercises. Summarizing,

we have proved the following:9

Theorem 1 When δ = 0, for generic values for i, aggregate demand X(i)

is single valued, and hence there cannot be mutiple steady state monetary

equilibrium. Given x > 0, x and z = g(x) are decreasing in i = (1+r)(1+π)

and increasing in θ and σ.

4 Generalization: Commodity Money

We now study δ > 0, with a fixed M so it makes sense to consider steady

state. When δ > 0, it is known that agents may want to hold more m̂ than

they bring to the DM, because the terms of trade can turn against you if

you have a lot of liquidity at hand, as in Lagos and Rocheteau (2007) or

Geromichalos et al. (2007). To model this, let agents in the CM choose

(m̂1, m̂2), as well as k = k∗, where m̂1 is brought to the DM and m̂2 is left

in the CM, and let zj ≡ (φ+ δ)mj . Then the generalized version of (??) is

max
ẑ1,ẑ2

(
−φ(ẑ1 + ẑ2)

β(φ̂+ δ)
+ ẑ2 + (1− σ)ẑ1 + σu(x̂)

)
,

s.t. the bargaining constraint z1 = g(x).

The FOC for z2 is −φ/β(φ̂ + δ) + 1 ≤ 0, = 0 if z2 > 0. Thus, if agents

leave anything in the CM then φ = β(φ̂ + δ), which in steady state means

assets are priced by fundamentals, φ = βδ/(1−β), and agents are indifferent
about how much they hold. The FOC for z1 > 0 can be written

φ

β(φ̂+ δ)
− 1 = c(x). (5)

To interprety this, let i1 and i0 be the interest rates on liquid and illiquid

assets — i.e. the returns on z1 and on either z2 or k. Then define the spread
9The focus here is exclusively on steady state equilibria. Lagos and Wright (2003)

study dynamics, from which it is clear there is no hope of generating uniqueness once one
leaves the realm of steady state (as in virtually any monetary model).
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by s ≡ (i0− i1)/(1+ i1). In equilibrium 1+ i0 = 1/β and 1+ i1 = (φ̂+ δ)/φ,

implying LHS of (5) is exactly s. Hence, (5) equates the marginal benefit of

liquidity to the spread, which is the marginal cost.

The logic in the previous section allows us to characterize the demand for

x as a function of s, although it is more convenient here to use the demand

for z1 (they are equivalent because z1 = g(x)). As before, aggregate demand

ZD(s) is downward sloping, with s on the vertical axis, has flat segments

on at most a measure 0 set of values for s, and hits the horizontal axis at

z̄ = g(x̄) where x̄ solves c(x̄) = 0. At z̄ agents are satiated in the real

balances they bring to the DM. Since s < 0 violates no-arbitrage, if s = 0

then agents bring exactly z1 = z̄ to the DM and are willing to keep any

amount z2 in the CM, while if s > 0 then they bring z1 < z̄ to the DM and

keep z2 = 0 in the CM. This much is clear, given the analysis of the case

δ = 0. The difference from that case is that now the cost of liquidity s is

endogenous, since it involves the price φ.10

To see what this entails, solve s = φ/β(φ + δ) − 1 for φ and insert the
result into z1 = (φ+ δ)M to get

ZS(s) =
δM

1− β(1 + s)
.

This is aggregate supply: it gives the real value of liquidity as a function

of s, since s maps into φ. Inverse supply (s as a function of ZS) is strictly

increasing, concave, goes to −∞ as ZS → 0, goes to r = (1 − β)/β as

ZS → ∞, and hits the horizontal axis at z = δM/(1 − β).11 Steady state

solves ZS(s) = ZD(s). In Figure 3, drawn for δM small enough that z < z̄,

steady state occurs at s > 0, so agents take z1 ∈ (z, z̄) to the DM and leave

0 in the CM. If δM is larger, however, then z > z̄ and s = 0 in equilibrium,

whence agents take z1 = z̄ to the DM while z2 = z−z̄ is kept in the CM. The

10 In the case δ = 0, with π > 0 the spread is the nominal interest rate s = i, and if
π = 0 it is the real rate s = r = (1− β)/β.

11Also, when δ → 0, ZS becomes a horizontal line at s = r, capturing the fiat money
model as a limiting case.
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important observation here is there is always a unique intersection between

the decreasing function ZD(s) and the strictly increasing function ZS(s),

for all parameter values.

Figure 3: The commodity-money model

Theorem 2 When δ > 0 there is a unique steady state equilibrium.

5 Conclusion

I proved uniqueness of monetary steady state for generic parameters in the

standard LW model, and for all parameters in a commodity-money exten-

sion. There are two steps in the argument: first one reduces the equilibrium

problem to something that looks like a simple demand problem; second, one

show aggregate demand curves are continuous and at least weakly decreas-

ing. Combined with a supply curve that is constant with fiat money and

strictly monotone with commodity money, the results follow immediately.

One might be surprised that demand curves are monotone — but recall the

entire framework is based on quasi-linear utility in the CM, which keeps

things tractable by harnessing the distribution of money balances. So per-

haps the results are not so surprising. Nevertheless, since many people use

the framework, the results may be useful to a broad audience.
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