The Green Economy and Midwest Agriculture

ECONOMY

ENVIRONMENT

Perspectives on the Future of Agriculture Federal Reserve Bank of Chicago December 1, 2009

Transform the Great Lakes Region into a Vital Center of the Green Economy

2020 Goals

Achieve green ratings for 100 buildings & develop 200 sustainability programs

Make green choices a part of mainstream thinking

Generate \$250 million in investments for pollution prevention, remediation, and reuse

Create 50 cutting-edge sustainable models for community economic development

Reduce carbon emissions by 12 million tons by forging unique partnerships, enacting climate change programs, and promoting energy efficient practices

Delta

The environment is only one aspect of a sustainable agricultural system

Grass Bioenergy

- Delta completed feasibility study in 2008 for a coal-based utility.
- Potential growers expected utility to help establish and purchase biomass, but utility was not prepared to shoulder the full burden.
- USDA Biomass Crop Assistance Program (BCAP) now lists over 250 conversion plants for grass/waste material/woody biomass.
 1 IL, 1 IN, 3 IA, 8 MI, 5 WI
- Perennial polycultures are the most ecologically beneficial; can be established now for feed and fuel with potential for food crops.

Production Flo	wohart and An	nualize	ed Costs for Mi	scanth	nus and Switche	grass					
	Seed/ Rhizomes		Field Prep		Maintenance		Harvest	Transport	Storage		Combustible Biomass
	\$/Acre		\$/Acre		\$/Acre		\$/Acre	\$/Acre	\$/Acre		\$/Ton
Miscanthus										Yield	
Khanna et al.	9.97		10.81		19.47		272.66	66.36	36.90	8.39	49.57
Delta	26.75		20.89		40.58		340.49	172.67	46.03	8.38	77.28
AVVI	16.27		-		22.78		297.77	74.77	TBD	10	62.39
Switchgrass											
Khanna et al.	6.60		9.03		28.18		84.58	19.23	10.06	2.43	64.81
Delta	14.50		15.69		55.38		106.61	 50.47	12.67	2.45	104.21
AWI	19.84		-		30.17		122.78	28.87	TBD	4	110.32
Duffy	7.98		6.44		23.63		129.31	14.75	 66.68	4	93.66
Perrin et al.	12.23		-		28.56		32.48	91.00	-	2.83	58.04

Grass Bioenergy Opportunities

- Conversion plants are highly scalable.
 - Home heating to direct use (up to 20% w/o retrofit) in co-fired boilers
- Much of infrastructure already exists (though with constraints).
 - Harvesting equipment, drying and storage, truck/rail shipping
- New federal support addressing grower vs. end-user impasse.
- Project revenue is more likely to recycle throughout community.
 - Local conversion plant has a strong incentive to source biomass from as close as possible, keeping investment in local economy
 - Opportunity for local entrepreneurship throughout the supply chain
- Potential to shift the landscape (roughly 25 mn acres for corn ethanol alone) to perennials while enhancing the bottom line.
 - Further benefits in terms of reducing fossil and chemical inputs, water quantity and quality, habitat, soil organic matter, etc.

Delta

Carbon Aggregation

In 2005, the Illinois Environmental Protection Agency asked Delta if we could assist in figuring out how to link agricultural producers to the carbon market.

\$20,000 grant enabled us to create the Illinois Conservation and Climate Initiative by forming an innovative partnership with the State, several agencies, SWCDs, and a wide-ranging advisory committee. The initial focus was conservation tillage.

Conservation tillage has many benefits:

Soil enrichment • Improved drought resistance • Lower soil surface temperatures • Less passes on field reduces production costs • Soil conservation • Decreased sedimentation, nutrient and chemical runoff • Does not significantly affect crop yields

Delta needed to understand the agricultural system, identify key organizations to help with implementation, and understand the greenhouse gas market.

Aggregation Enrollment

Acreage Submitted	All States
Total	386,207
Grass Acreage	49,866
Tillage Acreage	171,693
Forestry Acreage	24,977
Managed Acreage	139,671
Contracts Submitted	All States
Total	1,375
Soil	807
Grass	500
Tillage	127
Gass & Tillage	180
Forestry	426
Managed	142

Program Results

- Expanded into Michigan with a similar program, and into 16 other states.
- Returned over \$2 million in revenue to enrollees.
- Developed new CCX protocol for Sustainably Managed Forests, as well as new applications of Energy Efficiency and Ozone-Depleting Substance Destruction Protocol.
- Established mechanism for creating and pooling similar projects of almost any size and type.

Third Perspective

Diversification of the agricultural system is necessary to meet the changing marketplace and policy landscape

Local Food Systems

- Delta developed business plan for Windy City Harvest and Beeline/Sweet Beginnings in 2006.
- 2007 feasibility study for Lumpkin Family Foundation on east central Illinois local food capacity and enterprise development.
- Line between urban and rural agriculture is blurring.

Trees Apple Chinese Chestnut Pawpaw Sour Cherry Sugar Maple	Vegetables and Roots American Ginseng American Licorice Asparagus Black Mustard Brussel Sprouts Carrot Celeriac	Horseradish Endive Lettuce Iceberg Lettuce Parsnip Peppers Radish Squash, Acorn	Beans Chickpea Scarlet Runner Butter-Lima Kidney Fava Blackeyed-Cowpea		
Grain and GrassCatnipCloverForagesJungle RiceQuinoaSorghumSlender WheatWestern WheatgrassRyegrass: Ann/Peren.	Celery Chicory Common Lespedeza Fennel Garden Pea Green Bean Greens, Lamb's Quarters	Squash, Butternut Squash, Pumpkin Tomato Tomato, Cherry Turnip Greens, Pak Choi	Assorted Lentil Fruits Cantaloupe Elderberry Mulberry Persimmon, Amer.		
Rye: Spring/Summer Millets: Finger, Foxtail, Indian Barnyard, Proso, Japananese	Herbs Cilantro Sage Spearmint	Sweet Marjoram Summer Savor	Raspberry, Amer. Red Raspberry, Red Raspberry, Black Red Currant Strawberry		

Local Food Systems

- Slow but steady re-emergence of processing and distribution infrastructure.
 - Growing demand from high-volume institutional buyers
- Development of local food councils to sustain interest and change policy.
- Growing diversity of sources and scale.

🕰 Delta

🛆 Delta

Full Perspective

Opportunities exist for creating robust agricultural systems to improve environmental quality, create new farm value, and increase diversity

Market Credit for Local Food Systems A Delta

- Growing interest in developing credit system for performancebased farming, integrating carbon and nutrient management.
 - Organic and regenerative
 - Displacement of fossil inputs (e.g. compost and biochar)
 - Runoff reduction
 - Comparative lifecycle benefits throughout the supply chain

Stacked Payments for Agrecological Services

- Agroecology brings together human needs (food, feed, fiber, fuel, timber) and ecological improvement.
 - Managing for productive output, carbon sequestration, water quality, biodiversity, habitat, etc.
- **USDA Office of Ecosystem Services &** Markets anticipated to provide federal guidance and Farm Bill direction.
- **Cap-and-trade legislation currently** allows for credit stacking.
 - Not in Waxman-Markey (H.R.2454) or Kerry-Boxer (S.1733), but the Stabenow (S.2729) amendment is looked to for offset policy

To create clean energy jobs, promote energy independence, reduce global warming pollution, and transition to a clean energy economy.

IN THE SENATE OF THE UNITED STATES

September 30, 2009

Mr. KERRY (for himself and Mrs. BOXER) introduced the following bill; which was read twice and referred to the Committee on Environment and Public Works

A BILL

- To create clean energy jobs, promote energy independence, reduce global warming pollution, and transition to a clean energy economy.
- Be it enacted by the Senate and House of Representa-1
- 2 tives of the United States of America in Congress assembled,
- 3 SECTION 1. SHORT TITLE; TABLE OF CONTENTS.
- 4 (a) SHORT TITLE.—This Act may be cited as the
- 5 "Clean Energy Jobs and American Power Act".

111th CONGRESS 1st Session

H. R. 2454

AN ACT

- To create clean energy jobs, achieve energy independence, reduce global warming pollution and transition to a clean energy economy.
- Be it enacted by the Senate and House of Representa-
- 2 tives of the United States of America in Congress assembled,

Our Next Steps

\Lambda Delta

WATER CREDITS

Careful management of water and wetlands is economically valuable for many reasons. Urban water authorities purchase water filtration credits to protect the quality of their watersheds; wetland owners can also receive compensation from government agencies for flood-control services, from conservation

organizations for the preservation of migratory waterfowl breeding areas, and from agricultural cooperatives for the prevention of soil salinity increases caused by overdrawn groundwater aquifers.

COMMODITY	PERCENT OF FARM'S INCOME	CUSTOMER		
Biodiversity credits	s	Conservation trust		
CD2 offset credits	10	Steelmaker		
Renewable	15	Powermarket		
Eertified sustainable timber	50	Specialty market		
Watercredits	20	Urban water market		
Wheat	15	World market		
Wool	15	World market		

Continue to develop bottom-up pilots.

- Gain on-the-ground experience that can be applied at scale
- Incorporate existing and emerging federal/market programs and policies
- **Constructively engage** agriculture interests and partner with them to become a big part of the solution.
- Create a shared vision for a desirable and resilient future.

William Schleizer 312-554-0900 x24 wschleizer@delta-institute.org

More info: www.deltacarbon.org www.delta-institute.org

53 W. Jackson Blvd. Suite 230 Chicago, IL 60604

