SYSTEMIC RISK MONITOR ING Markus K. Brunnermeier

- Chicago Fed – IMF conference -

Chicago, IL, Sept. 23rd, 2010

Definition of Systemic risk

- Systemic risk build-up during (credit) bubble
 ... and materializes in a crisis
 - contemporaneous measures are inappropriate
- Spillovers externalities
 - Direct contractual:
 - Indirect:

domino effect (interconnectedness)

price effect (fire-sale externalities) credit crunch, liquidity spirals, haircut

2

Overview

- Definition: Systemic Risk
 - Risk build-up view
 - Spillovers externalities propagation
- Data Collection "Risk Topography"
 - with Gary Gorton and Arvind Krishnamurthy
- Systemic Risk Measurement "CoVaR"
 - with Tobias Adrian
- Regulation: Systemic Risk Charges

Data collection – "Risk topography"

Existing data sets

- Flow of funds Copeland (1947, 1952), Fed
 - Characterizes money flows within economy
- Call reports National Bank Act (1863), FDIC
- SEC filings
- **Problems**
 - Not focused on systemic interactions (direct, price effects)
 - Old days: risky position was association w/ initial cash flow Nowadays: risky position is divorced from initial cash flow
 - Leverage is an outdated concept is risk sensitivities

Data collection - different approaches

- 1. "Catch-all approach"
 - X megabytes insurmountable task(?)
 - IT firms (like Google/IBM) apply search/network algorithm
 - Complexity
 - Investor response is ignored
 - Owners: deep pocket vs. leveraged investor
- 2. Two-Step approach Risk Topography
 - Brunnermeier-Gorton-Krishnamurthy (work in progress)
 - Motivation:
 - Make use of 1000s of highly trained risk managers in financial industry
 - Risk managers are not trained to assess GE effects
 - Reaction function of investors matter (depends on funding structure)

Two-step approach – the idea

- Split into two subtasks
 - Partial equilibrium response to (orthogonal) stress factors
 - a. In value (equity value, enterprise value)
 - b. In liquidity index
 - COLLECT LONG-RUN PANEL DATA SET!
 - ... reaction function
 - 2. General equilibrium effects
 - Amplification, multiple equilibria

Regulators, Academics, Financial industry

-Financial industry

Step 1: a) Value + liquidity sensitivity

- Suppose real estate prices decline by 5%, 10%, 15%,
- 1. Direct "value sensitivity"
 - Risk sensitivity
 - Capture non-linear effects (not only delta – partial derivative)
- 2. Direct "liquidity sensitivity"
 - Helps to figure out reaction of various market participants

Δ(value, liquidity) w.r.t. factors

Funding liquidity

- Can't **roll over** short term debt
- Margin-funding is recalled

Market liquidity

 Can only sell assets at fire-sale prices

Ease with which one can raise money by selling the asset

Funding liquidity

- Can't roll over short term debt
- Margin-funding is recalled

Ease with which one can raise money by borrowing using the asset as collateral

Each asset has two values/prices

- 1. price
- 2. collateral value

Market liquidity

- Can only sell assets at fire-sale prices
- Measures
 - Not bid-ask spread/volatility
 - Price impact in case of crisis (comovment with crisis)
 - "superliquid" gold/Treasuries appreciate in times of crisis

Funding liquidity

- Can't roll over short term debt
- Margin-funding is recalled
- Measures:
 - Not Haircut/margin
 - Haircut/margin increase in case of crisis

- Maturity mismatch

Market liquidity

- Can only sell assets at fire-sale prices
- Measures
 - Not bid-ask spread/volatility
 - Price impact in case of crisis (comovment with crisis)
 - "superliquid" gold/Treasuries appreciate in times of crisis

Funding liquidity

- Can't roll over short term debt
- Margin-funding is recalled
- Measures:
 - Not Haircut/margin
 - Haircut/margin increase in case of crisis

"Goldfield:" HF -> I-banks levered up, but no maturity mismatch (only CPCR) ¹¹

Calibrating Response function

- We want to know how a firm will respond to a shock that changes value and liquidity
 - Shed risk
 - Hoard liquidity
 - Raise financing
- To determine feedbacks, these responses need to be placed in a general equilibrium

Step 2: General equilibrium modeling

- Direct responses to 5%, 10%, 15%,... drop in factor to
 - Value
 - Liquidity index
- Elicit/predict position response
 - Try to "fire" sell assets or hold out, credit crunch
- Derive likely indirect equilibrium response to
 - this stress factor
 - other factors Externalities, multiple equilibria, amplification, mutually inconsistent planes,...
- Role of cross-scenarios for nonlinear "cross effect"

Choice of stress scenarios

- Orthogonal scenarios
 - Market risk scenarios: Interest rate, credit spread, exchange rate, stock price, VIX, commodity prices, commercial and residential real estate
 - Liquidity risk scenarios: Haircut/margin spikes, can't issue debt/sell assets, ...
 - Counterparty risk, …
- Cross scenarios
 - Participants repot on combination of factors that lead to worst outcome. "Worst vector in ellipse"
 - Informs stress scenario in next round

Difference to repeated SCAP

- Risk topography
 - Response to a list of factors
 - Core stress factors
 - "Core stress factors" don't
 change over time
 - Aim: create panel data
 - Future research for GE effects
 - All financial institutions (including hedge funds, insurance companies, ...)

Repeated SCAP

- Response to a single stress scenario
- Interlinked stress scenario
 - Stress scenarios change over time
 - **Aim:** best stress analysis at each point in time
- Focus on main financial institutions

Overview

- Definition: Systemic Risk
 - Risk build-up view
 - Spillovers externalities propagation
- Data Collection "Risk Topography"
 - with Gary Gorton and Arvind Krishnamurthy
- Systemic Risk Measurement "CoVaR"
 - with Tobias Adrian
- Regulation: Systemic Risk Charges

3. Systemic Risk Measurement

- Issue 1: procyclicality "build-up view of risk"
 - Contemporaneous risk measures are not reliable
 - Rely on other variables _ not at high frequency
- Issue 2: externalities spillover effects
- Predictive regressions CoVaR method only indirect $CoVaR = f(frequently observed X_{+})$ (1986-2009)
 - Drivers: in cross section: maturity mismatch, leverage, credit in time-series: macrovariables, credit growth, VIX, risk sensitivities w.r.t. stress factors
 - What is the optimal mix weight one should put on each driver? e.g. tradeoff between size and leverage (capital ratio)

3. Definition: CoVaR

VaR_qⁱ is implicitly defined as quantile

 $\Pr(X^i \leq VaR_q^i) = q$

 CoVaR_q^{j|i} is the VaR_q^j conditional on institute *i* (index) being in distress (i.e., at it's VaR level)

$$\Pr(X^{j} \leq CoVaR_{q}^{j|i} \mid X^{i} = VaR_{q}^{i}) = q$$

• $\Delta CoVaR_q^{j|i} = CoVaR_q^{j|i} - VaR_q^{j}$ normal times q-prob. event

- **Q1**: Which institutions move system (in a non-causal sense)
- VaR^{system} institution *i* in distress
- Exposure ΔCoVaR

- Q2: Which institutions are most exposed if there is a systemic crisis?
- VaRⁱ | system in distress
- Network △CoVaR
 - VaR of institution j conditional on l
- Asset by asset ΔCoVaR

in non-causal sense!

3. Δ CoVaR and VaR in cross-section

ΔCoVaR Forecasts: 1-Year Horizon (Table 3B)

COEFFICIENT	1%	5%	10%
VaR (lagged)	0.041***	0.073***	0.073***
Leverage (lagged)	-0.132***	-0.141***	-0.077***
Maturity mismatch (lagged)	-13.319***	-7.921***	-5.281***
Relative size (lagged)	-5.961***	-2.800***	-2.079***
2-year asset growth (lagged)	-0.249	-0.285***	-0.198***
Foreign	-4.004**	-0.821	-0.530
Investment Bank FE	2.911***	7.982***	5.925***
Insurance Company FE	-14.081***	-1.548***	-0.109
Real Estate FE	11.454***	17.370***	14.345***
Constant	-25.262***	-23.999***	-19.666***
Observations	9787	9787	9787
R ²	0.540	0.739	0755

4. Translation into systemic risk charges

- Suppose
 - 8 % microprudential capital requirement = leverage < 12.5 : 1</p>
 - Focus on 5% CoVaR, 1 year in the future
- Size-leverage tradeoff
 - Small bank with 5% market share has 8.0% capital requirement
 - Large bank with 10% market share has 8.7% capital requirement
- Maturity mismatch-leverage tradeoff
 - Bank with 50% MMM has 8.0% capital requirement
 - Bank with 55% MMM has 10.3% capital requirement,

where MMM = (short-term debt – cash) / total assets

Tax-base for "bank levy" can be based on same analysis

4. Macro-vs. micro-prudential regulation

Fallacy of the Composition:

what's micro-prudent need not be macro-prudent

Balance sheet	action	micro-prudent	macro-prudent
Asset side	(fire) sell assets	Yes	Not feasible in the aggregate
	no new loans/assets	Yes	Forces others to fire-sell + credit crunch
Liability side	(raise long-term debt)		
	raise equity	Yes	Yes

- Micro: based on risk in isolation
- Macro: Classification on systemic risk contribution measure, e.g. CoVaR
- Ratios versus Dollars

Conclusion

- 1. Definition: Systemic Risk
 - Risk build-up view
 - Spillovers externalities propagation
- 2. Data Collection "Risk Topography"
 - with Gary Gorton and Arvind Krishnamurthy
- 3. Systemic Risk Measurement "CoVaR"
 - with *Tobias Adrian*
- 4. Regulation: Systemic Risk Charges