Vehicular Electronics –Supplier Issues–

Federal Reserve of Chicago Detroit Branch
Automotive Outlook Symposium Workshop
June 2, 2011

Prof. Michael Smitka
Department of Economics
Washington and Lee University
Lexington, VA 24450

msmitka@wlu.edu
Centrality of Electronics

• General Motors Volt
 – 10 million lines of code!
• Automotive electric motors alone $20 billion (2012 projection)
 (just-auto.com: not including starters, alternators)
• High-end vehicles
 – Over 100 microprocessors, 30% of cost
• Global supply requirement
 – Global platforms ↔ single system
• Expertise and power
 – Will makers control?
 – Will standards arise (bus, architecture, core chips)
More, More and More

• **More central**
 • Essential to meet safety, emissions and efficiency standards

• **More extensive**
 • Range of applications within vehicles increasing
 – LED branding, active safety systems
 – Motors replacing hydraulic, vacuum, mechanical drivers

• **More varied**
 • Markets vary
 – US European Brazilian Chinese
 • Drivetrains multiplying
 – ICE (gas, diesel, ethanol, CNG)
 – Electrics (from micro hybrid to full BEV)
Historic origins

• Spark plug and magneto
 – Ignoring that largest segment in 1903 was BEVs!
• Soon added
 – Lights, starter motor, wipers, heater motor
• Eventually
 – Radio
 – Power windows
 – Other power accessories
• All simple electronics (transistors for radio)
Quantum jump

• ...no, not a quantum, much bigger!
 • Clean Air Law (Muskie Act), 1970
 • CAFE, 1977
 • Safety from 1973 US Passive Restraint mandate

• All required electronics
 • Emissions: Three-stage catalytic converters required proper oxygen level in exhaust to function well
 • Fuel Efficiency: constraints from CAFE
 ➔ ➔ Early fuel injectors and engine control units
 • Safety: Airbags (mid-1980s)

• Enabled by
 • Early integrated circuits
 • Solid-state sensors
Today...

• Passive safety restraints
 • Multiple airbags & tensioning seatbelts
 • Sensors, control units, actuators, diagnostics, status displays

• Active safety systems
 • Electronic stability control, adaptive cruise control, backup blind spot detection, side blind spot detection, lane departure detection
 • Many more applications pending or in early roll-out, e.g. LED-based active lighting systems

• Sophisticated drivetrain controls
 • Multiple sensors linking engine and transmission
 • Electrically activated turbocharging

• Additional energy saving components
 • Electronic steering, rapid start/stop systems
Sum

• By 2005, already 35 engine & other control units in midsize Japanese cars
 • Not including those in audio systems and so on
 • Not including low-level switch controls
 – Freescale, NEC, Renesas, Infineon
 – Miles of wire
 – Millions of lines of code
• Essential to basic regulatory compliance
• Part of “branding” of vehicle
...Requiring

• More current and components
 • How package?

• More integration across systems
 • Computers, sensors, wiring

• More software
 • Quality control?
 • Who “owns” IP?

• New suppliers
 – New skill sets
Electronics pervasive in PACE Awards

• PACE is the *Automotive News* “supplier of the year” competition that focuses on innovation

• In 2010-11 some 15 of 35 finalists were for electronics
 – Semiconductors and their packaging
 – Software systems
 – Motors in various applications
 – Fuel handing (injectors, turbochargers)
 – Lighting

• In addition many innovations impossible
 – to develop without sophisticated engineering systems
 – to make without electronics-enabled production systems

As a judge I need to learn more electrical engineering!
Industry events as well

• Automotive World 2011 (Tokyo, January)
 – Conference focused on electronics
 • 3rd Int'l Automotive Electronics Technology Expo
 • 2nd EV & HEV Drive System Technology Expo
 • Also 1st Automotive Weight Reduction Expo (small)
 – 23,000 visitors
 – 2800 seminar participants
 – 301 exhibitors in 17 acres of exhibit halls
New technology

• New technologies abound
 – Lots of new suppliers
 – Lots of new monopolies
• How handle pricing?
• How make sure of quality?
 • Computers face neither automotive
 – thermal stresses nor
 – mechanical stresses nor
 – EMT stresses
 – Longevity expectations
Sourcing issues

• IC fabs entail economies of scale
 – Heavy reliance on ASICs
 • Engineers take pride in turning out new designs
 • Too easy to turn out one more design!
 ➔ How manage?
 – Do you want to single source?
 • If not, then need industry standards...
 ...so that volumes support use of multiple fabs

• How monitor chips suppliers use?
Standards

• To what extent do systems need to be integrated?
 – Safety, navigation, engine control now all need to interact?

• Consortia to develop standards, software
 – Need for common bus, software standards as
 • Communication among subunits increases
 • Complexity increases
 – Autosar: Germany, 6 firms as start
 • now includes Ford Toyota PSA (plus German suppliers)
 • But tendency toward rival groups
 – Renesas Electronics consortium (multiprocessor chip)
 – JasPar: Japan, 11 firms
Afterthoughts
Centrality of Innovation

• US R&D
 – Department of Energy for batteries, other items
 – But integrated circuits? Sensors?

• Engineering capabilities
 – Strong in consumer-oriented software
 – *US shows as weaker in electronics in PACE*
 • *Impressionistic, not based on formal analysis*
 • *Small sample, biased by tendency for first adoption of many systems to be on high-end German vehicles due to European regulatory environment*
Afterthoughts

Who Benefits?

- **Manufacturing often outside US?**
 - Klier and Rubenstein data could help answer
 - Import data may not indicate automotive end market for individual electronic
 - Low level of Tohoku earthquake disruptions suggests robust supply chain for industry as a whole
 - Toyota and Honda are hard hit (*Nissan less so*)
 - Europeans, Detroit 3 appear largely unscathed

- **Where is value added?**
 - Design and intellectual property?
 - Individual specialized electrical components?
 - Systems assembly and supply
Summary

• Pervasive, and trend is towards more
 – Active instead of passive systems
 – Finer-grained control

• Replacement of mechanical, hydraulic, vacuum by electric

• Internal uses driven by regulation
 – External by branding and customer focus

• Major strategic issues for development & supply chain management

Issues common across all technologies, new and old
Addenda:
Consumer-visible systems

• Lights: interior, exterior
• Door locks / remote entry / remote start
• Trunk release (minivan automatic liftgates and doors)
• Seat adjustments, heating, etc
• Instrument panel: gauges, other functions
• Power windows, mirrors, sunroof, window heating
• Side mirrors: remote adjusting
• Rearview mirror: autodimming, HomeLink, compass...
• Wipers
• Air conditioning, heating (auto multizone...)
• Audio, DVD / broadcast
• Navigation
• Park assist
 • And more
Addenda: 2010–11 electronics–related PACE finalists

Automotive News PACE “Supplier of the Year” Innovation Award

15 of 35 involve electronics!

– Bosch direct drive wipers
– Bosch P2 inline full hybrid electric motor
– Continental feedback accelerator pedal
– Continental brushless fuel pump
– Dassault engineering software integration for Ford
– Delphi GDI (gasoline direct injection) system
– Key Safety Systems inflatable rear seat belt
– Lear solid state “fuse-less” junction box
– Lear plug-in vehicle charging system
– OEConnection aftermarket parts software system for Ford (fordparts.com)
– OSRAM headlight high luminescence LED chip & package
– Mahle turbocharger electric waste gate actuator
– Valeo IML (insulated molded leadframe) power semiconductor (inverter) packaging
– Valeo BeamAtic automatic high beam headlight system
– Valeo direct drive wipers
Addenda:

Sections of Automotive World Exhibit Floor

– Embedded System & Software Semiconductors,
– Electronic Components & Devices
– Motor Technologies
– Testing, Inspection and Analysis Devices/Software
– Automotive Components & In-vehicle System
– Electronic Materials
– Manufacturing & Testing Equipment/Technology
– Drive System
– Rechargeable Batteries, Next-generation Batteries
– Inverters, Peripherals
– Materials
– Molding / Processing Technologies & Equipment
Addenda: Web links

• For more of my own analysis go to:
 – http://autosandeconomics.blogspot.com/
 – http://japanandeconomics.blogspot.com/
 – http://usandeconomics.blogspot.com/

• I will be happy to forward the syllabus of my undergraduate “Economics of the Auto Industry” course upon request.

• For PACE see
 – http://autonews.com/pace/