Trade Dynamics in the Market for Federal Funds

Gara Afonso
FRB of New York

Ricardo Lagos
New York University
The market for federal funds

A market for loans of reserve balances at the Fed.
The market for federal funds

- What’s traded?
 Unsecured loans (mostly overnight)

- How are they traded?
 Over the counter

- Who trades?
 Commercial banks, securities dealers, agencies and branches of foreign banks in the U.S., thrift institutions, federal agencies
Why is the fed funds market interesting?

- It is an interesting example of an OTC market
 (Unusually good data is available)

- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)

- Determines the interest rate on the shortest maturity instrument in the term structure

- Is the “epicenter” of monetary policy implementation
Why is the fed funds market interesting?

- It is an interesting example of an OTC market
 (Unusually good data is available)

- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)

- Determines the interest rate on the shortest maturity instrument in the term structure

- Is the “epicenter” of monetary policy implementation
Why is the fed funds market interesting?

- It is an interesting example of an OTC market
 (Unusually good data is available)

- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)

- Determines the interest rate on the shortest maturity
 instrument in the term structure

- Is the “epicenter” of monetary policy implementation
Why is the fed funds market interesting?

- It is an interesting example of an OTC market
 (Unusually good data is available)

- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)

- Determines the interest rate on the shortest maturity instrument in the term structure

- Is the “epicenter” of monetary policy implementation
Why is the fed funds market interesting?

- It is an interesting example of an OTC market
 (Unusually good data is available)

- Reallocates reserves among banks
 (Banks use it to offset liquidity shocks and manage reserves)

- Determines the interest rate on the shortest maturity instrument in the term structure

- Is the “epicenter” of monetary policy implementation

- Warren
In this paper we ...

(1) Develop a model of trade in the fed funds market that explicitly accounts for the two key OTC frictions:

- Search for counterparties
- Bilateral negotiations
In this paper we ...

(2) Use the theory to address some elementary questions:

- **Positive:**
 - What are the determinants of the fed funds rate?
 - How does the market reallocate funds?

- **Normative:**
 Is the OTC market structure able to achieve an efficient reallocation of funds?
In this paper we ...

(3) Calibrate the model and use it to:

- Assess the ability of the theory to account for empirical regularities of the fed funds market:
 - Intraday evolution of reserve balances
 - Dispersion in fed funds rates and loan sizes
 - Skewed distribution of number of transactions
 - Skewed distribution of proportion of intermediated funds
In this paper we ...

(3) Calibrate the model and use it to:

- Assess the ability of the theory to account for empirical regularities of the fed funds market:
 - Intraday evolution of reserve balances
 - Dispersion in fed funds rates and loan sizes
 - Skewed distribution of number of transactions
 - Skewed distribution of proportion of intermediated funds

- Conduct policy experiments:

 What is the effect on the fed funds rate of a 25 bps increase in the interest rate that the Fed pays on reserves?
The model

- A trading session in continuous time, $t \in [0, T]$, $\tau \equiv T - t$
- Unit measure of *banks* hold reserve balances $k(\tau) \in \mathbb{K} = \{0, 1, \ldots, K\}$
- $\{n_k(\tau)\}_{k \in \mathbb{K}}$: distribution of balances at time $T - \tau$
- Linear payoffs from balances, discount at rate r
- Fed policy:
 - U_k : payoff from holding k balances at the end of the session
 - u_k : flow payoff from holding k balances during the session
- Trade opportunities are bilateral and random (Poisson rate α)
- Loan and repayment amounts determined by Nash bargaining
- Assume all loans repaid at time $T + \Delta$, where $\Delta \in \mathbb{R}_+$
Institutional features of the fed funds market

Model

- Search and bargaining

Fed funds market
Institutional features of the fed funds market

Model
- Search and bargaining

Fed funds market
- Over-the-counter market
Institutional features of the Fed funds market

Model
- Search and bargaining
- $[0, T]$
Institutional features of the fed funds market

Model
- Search and bargaining
- \([0, T]\)

Fed funds market
- Over-the-counter market
- 4:00pm-6:30pm
Institutional features of the fed funds market

Model
- Search and bargaining
- \([0, T]\)
- \(\{n_k(T)\}_{k \in K}\)

Fed funds market
- Over-the-counter market
- 4:00pm-6:30pm
Institutional features of the fed funds market

Model

- Search and bargaining
- \([0, T]\]
- \(\{n_k(T)\}_{k \in K}\)

Fed funds market

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
Institutional features of the fed funds market

Model

- Search and bargaining
- \([0, T]\)
- \(\{n_k(T)\}_{k \in K}\)
- \(K = \{0, 1, \ldots, K\}\)

Fed funds market

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
Institutional features of the fed funds market

Model
- Search and bargaining
- \([0, T]\)
- \(\{n_k(T)\}_{k \in K}\)
- \(K = \{0, 1, \ldots, K\}\)

Fed funds market
- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- **Transactions sizes**
Institutional features of the fed funds market

Model
- Search and bargaining
- \([0, T]\)
- \(\{n_k(T)\}_{k \in K}\)
- \(K = \{0, 1, \ldots, K\}\)
- \(\{u_k, U_k\}_{k \in K}\)

Fed funds market
- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- Transactions sizes
Institutional features of the fed funds market

Model

- Search and bargaining
- $[0, T]$
- $\{n_k(T)\}_{k \in K}$
- $\mathbb{K} = \{0, 1, \ldots, K\}$
- $\{u_k, U_k\}_{k \in \mathbb{K}}$

Fed funds market

- Over-the-counter market
- 4:00pm-6:30pm
- Distribution of reserve balances at 4:00pm
- Transactions sizes
- Reserve requirements, interest on reserves...
Bank with balance k contacts bank with balance k' at time $T - \tau$
Bank with balance k contacts bank with balance k' at time $T - \tau$

- The set of feasible post-trade balances is:

\[
\Pi(k, k') = \{(k + k' - y, y) \in \mathbb{K} \times \mathbb{K} : y \in \{0, 1, \ldots, k + k'\}\}
\]
Bank with balance k contacts bank with balance k' at time $T - \tau$

- The set of feasible post-trade balances is:

$$\Pi(k, k') = \{(k + k' - y, y) \in \mathbb{K} \times \mathbb{K} : y \in \{0, 1, \ldots, k + k'\}\}$$

- The set of feasible loan sizes is:

$$\Gamma(k, k') = \{ b \in \{-K, \ldots, 0, \ldots, K\} : (k - b, k' + b) \in \Pi(k, k') \}$$
Bank with balance k contacts bank with balance k' at time $T - \tau$

- The set of feasible post-trade balances is:
 \[\Pi (k, k') = \{(k + k' - y, y) \in \mathbb{K} \times \mathbb{K} : y \in \{0, 1, \ldots, k + k'\}\} \]

- The set of feasible loan sizes is:
 \[\Gamma (k, k') = \{b \in \{-K, \ldots, 0, \ldots, K\} : (k - b, k' + b) \in \Pi (k, k')\} \]

- $V_k(\tau)$: value of a bank with balance k at time $T - \tau$
Bargaining

Bank with balance k contacts bank with balance k' at time $T - \tau$.

The loan size b, and the repayment R maximize:

$$\left[V_{k-b}(\tau) + e^{-r(\tau+\Delta)}R - V_k(\tau) \right]^{\frac{1}{2}} \left[V_{k'+b}(\tau) - e^{-r(\tau+\Delta)}R - V_{k'}(\tau) \right]^{\frac{1}{2}}$$

s.t. $b \in \Gamma(k, k')$, $R \in \mathbb{R}$
Bargaining

Bank with balance k contacts bank with balance k' at time $T - \tau$.

The loan size b, and the repayment R maximize:

$$
\left[V_{k-b} (\tau) + e^{-r(\tau+\Delta)} R - V_k (\tau) \right]^{\frac{1}{2}} \left[V'_{k'+b} (\tau) - e^{-r(\tau+\Delta)} R - V'(\tau) \right]^{\frac{1}{2}}
$$

s.t. $b \in \Gamma (k, k')$, $R \in \mathbb{R}$

$$
b^* \in \arg \max_{b \in \Gamma (k, k')} \left[V'_{k'+b} (\tau) + V_{k-b} (\tau) - V'_{k'} (\tau) - V_k (\tau) \right]
$$

$$
e^{-r(\tau+\Delta)} R^* = \frac{1}{2} \left[V'_{k'+b^*} (\tau) - V'_{k'} (\tau) \right] + \frac{1}{2} \left[V_k (\tau) - V_{k-b^*} (\tau) \right]
$$
Value function

\[rV_i(\tau) + \dot{V}_i(\tau) = \]
\[= u_i + \frac{\alpha}{2} \sum_{j,k,s \in K} n_j(\tau) \phi_{ij}^{ks}(\tau) [V_k(\tau) + V_s(\tau) - V_i(\tau) - V_j(\tau)] \]
Value function

\[rV_i (\tau) + \dot{V}_i (\tau) = \]

\[= u_i + \frac{\alpha}{2} \sum_{j,k,s \in \Omega} n_j (\tau) \phi_{ij}^{ks} (\tau) \left[V_k (\tau) + V_s (\tau) - V_i (\tau) - V_j (\tau) \right] \]

with \(V_i (0) = U_i \), and

\[\phi_{ij}^{ks} (\tau) = \begin{cases}
\tilde{\phi}_{ij}^{ks} (\tau) & \text{if } (k, s) \in \Xi_{ij} \left[V (\tau) \right] \\
0 & \text{if } (k, s) \notin \Xi_{ij} \left[V (\tau) \right]
\end{cases} \]
Value function

\[
 rV_i(\tau) + \dot{V}_i(\tau) =
 u_i + \frac{\alpha}{2} \sum_{j,k,s \in \mathbb{K}} n_j(\tau) \phi_{ij}^{ks}(\tau) [V_k(\tau) + V_s(\tau) - V_i(\tau) - V_j(\tau)]
\]

with \(V_i(0) = U_i \), and

\[
 \phi_{ij}^{ks}(\tau) = \begin{cases}
 \tilde{\phi}_{ij}^{ks}(\tau) & \text{if } (k,s) \in \Omega_{ij} [V(\tau)] \\
 0 & \text{if } (k,s) \notin \Omega_{ij} [V(\tau)]
\end{cases}
\]

with

\[
 \Omega_{ij} [V(\tau)] \equiv \arg \max_{(k',s') \in \Pi(i,j)} [V_{k'}(\tau) + V_{s'}(\tau) - V_i(\tau) - V_j(\tau)]
\]

where \(\tilde{\phi}_{ij}^{ks}(\tau) \geq 0 \) and \(\sum_{k \in \mathbb{K}} \sum_{s \in \mathbb{K}} \tilde{\phi}_{ij}^{ks}(\tau) = 1 \)
Time-path for the distribution of balances

For all $k \in \mathbb{K}$,

$$\dot{n}_k (\tau) = \alpha n_k (\tau) \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{s \in \mathbb{K}} n_i (\tau) \phi_{ki}^{sj} (\tau)$$

$$-\alpha \sum_{i \in \mathbb{K}} \sum_{j \in \mathbb{K}} \sum_{s \in \mathbb{K}} n_i (\tau) n_j (\tau) \phi_{ij}^{ks} (\tau)$$
Definition

An equilibrium is a value function, V, a path for the distribution of reserve balances, $n(\tau)$, and a path for the distribution of trading probabilities, $\phi(\tau)$, such that:

(a) given the value function and the distribution of trading probabilities, the distribution of balances evolves according to the law of motion; and

(b) given the path for the distribution of balances, the value function and the distribution of trading probabilities satisfy individual optimization given the bargaining protocol.
Assumption A. For any $i, j \in \mathbb{K}$, and all $(k, s) \in \Pi (i, j)$, the payoff functions satisfy:

$$ u\left\lceil \frac{i + j}{2} \right\rceil + u\left\lfloor \frac{i + j}{2} \right\rfloor \geq u_k + u_s $$

$$ U\left\lceil \frac{i + j}{2} \right\rceil + U\left\lfloor \frac{i + j}{2} \right\rfloor \geq U_k + U_s, \quad ">" \quad \text{unless } k \in \left\{ \left\lceil \frac{i + j}{2} \right\rceil, \left\lfloor \frac{i + j}{2} \right\rfloor \right\} $$

where for any $x \in \mathbb{R}$,

$$ [x] \equiv \max \{ k \in \mathbb{Z} : k \leq x \} $$

$$ [x] \equiv \min \{ k \in \mathbb{Z} : x \leq k \} $$
Proposition

Let the payoff functions satisfy Assumption A. Then:

(i) An equilibrium exists. The paths $V(\tau)$ and $n(\tau)$ are unique.

(ii) The equilibrium path for $\phi(\tau) = \{\phi^{ks}_{ij}(\tau)\}_{i,j,k,s \in K}$ is

$$\phi^{ks}_{ij}(\tau) = \begin{cases}
\hat{\phi}^{ks}_{ij}(\tau) & \text{if } (k, s) \in \Omega^*_{ij} \\
0 & \text{if } (k, s) \notin \Omega^*_{ij}
\end{cases}$$

where $\hat{\phi}^{ks}_{ij}(\tau) \geq 0$ and $\sum_{(k,s) \in \Omega^*_{ij}} \hat{\phi}^{ks}_{ij}(\tau) = 1$, with

$$\Omega^*_{ij} = \begin{cases}
\left\{ \left(\left\lfloor \frac{i+j}{2} \right\rfloor, \left\lfloor \frac{i+j}{2} \right\rfloor \right) \right\} & \text{if } i + j \text{ even} \\
\left\{ \left(\left\lfloor \frac{i+j}{2} \right\rfloor, \left\lceil \frac{i+j}{2} \right\rceil \right), \left(\left\lceil \frac{i+j}{2} \right\rceil, \left\lfloor \frac{i+j}{2} \right\rfloor \right) \right\} & \text{if } i + j \text{ odd.}
\end{cases}$$
Proposition

Let the payoff functions satisfy Assumption A. Then, the equilibrium supports an efficient allocation of reserve balances.
Positive implications

The theory delivers:

(1) Time-varying distribution of trade sizes, trade volume
(2) Time-varying distribution of fed fund rates
(3) Endogenous intermediation
Flow volume of trade at time $T - \tau$:

$$\bar{\nu}(\tau) = \sum_{i \in K} \sum_{j \in K} \sum_{k \in K} \sum_{s \in K} \nu_{ij}^{ks}(\tau)$$

where

$$\nu_{ij}^{ks}(\tau) \equiv \alpha n_i(\tau) n_j(\tau) \phi_{ij}^{ks}(\tau) \left| k - i \right|$$
Trade volume

- Flow volume of trade at time $T - \tau$:

$$\bar{\nu} (\tau) = \sum_{i \in K} \sum_{j \in K} \sum_{k \in K} \sum_{s \in K} \nu_{ij}^{ks} (\tau)$$

where

$$\nu_{ij}^{ks} (\tau) \equiv \alpha n_i (\tau) n_j (\tau) \phi_{ij}^{ks} (\tau) |k - i|$$

- Total volume traded during the trading session:

$$\bar{\nu} = \int_{0}^{T} \bar{\nu} (\tau) d\tau$$
Fed funds rate

If a bank with i borrows $k - i = j - s$ from bank with j at time $T - \tau$, the interest rate on the loan is:

$$\rho_{ij}^{ks}(\tau) = \ln \left(\frac{R_{ij}^{ks}(\tau)}{k-i} \right) = r + \ln \left(\frac{V_j(\tau) - V_s(\tau)}{j-s} + \frac{1}{2} S_{ij}^{ks}(\tau) \right)$$

where

- $R_{ij}^{ks}(\tau)$ is the daily average (value-weighted) fed funds rate.
- $V_j(\tau)$ and $V_s(\tau)$ are values.
- $S_{ij}^{ks}(\tau)$ is a variable.
Fed funds rate

- If a bank with i borrows $k-i = j-s$ from bank with j at time $T-\tau$, the interest rate on the loan is:

$$\rho^ks_{ij}(\tau) = \frac{\ln \left(\frac{R^ks_{ij}(\tau)}{k-i} \right)}{\tau + \Delta} = r + \frac{\ln \left(\frac{V^j_{j-s}(\tau) - V^s_{j-s}(\tau) + \frac{1}{2} S^ks_{ij}(\tau)}{j-s} \right)}{\tau + \Delta}$$

- The daily average (value-weighted) fed funds rate is:

$$\bar{\rho} = \frac{1}{T} \int_{0}^{T} \bar{\rho}(\tau) \, d\tau$$

where

$$\bar{\rho}(\tau) \equiv \sum_{i \in K} \sum_{j \in K} \sum_{k \in K} \sum_{s \in K} \omega^ks_{ij}(\tau) \rho^ks_{ij}(\tau)$$

$$\omega^ks_{ij}(\tau) \equiv \nu^ks_{ij}(\tau) / \bar{\nu}(\tau)$$
Endogenous intermediation

- Cumulative purchases: \(O^p = \sum_{n=1}^{N} \max \{ k_n - k_{n-1}, 0 \} \)

- Cumulative sales: \(O^s = -\sum_{n=1}^{N} \min \{ k_n - k_{n-1}, 0 \} \)
Endogenous intermediation

- Cumulative purchases: \(O^p = \sum_{n=1}^{N} \max\{k_n - k_{n-1}, 0\} \)
- Cumulative sales: \(O^s = -\sum_{n=1}^{N} \min\{k_n - k_{n-1}, 0\} \)

Bank-level measures of intermediation

- **Excess funds reallocation:**
 \[X = O^p + O^s - |O^p - O^s| \]
Endogenous intermediation

- Cumulative purchases: \(O^p = \sum_{n=1}^{N} \max \{k_n - k_{n-1}, 0\} \)

- Cumulative sales: \(O^s = -\sum_{n=1}^{N} \min \{k_n - k_{n-1}, 0\} \)

Bank-level measures of intermediation

- *Excess funds reallocation:*
 \[X = O^p + O^s - |O^p - O^s| \]

- *Proportion of intermediated funds:*
 \[\iota = \frac{X}{O^p + O^s} \]
Analytics for special case with $K = \{0, 1, 2\}$

Intuition for efficiency result

Frictionless limit

Figures
Payoff functions

\[e^{r\Delta_f} U_k = \begin{cases}
 k + i_f^r \bar{k} + i_f^e (k - \bar{k}) & \text{if } \bar{k} \leq k \\
 (1 + i_f^r) k - \min(i_f^w - i_f^r, i_f^c) (\bar{k} - k) & \text{if } k < \bar{k}
\end{cases} \]

\[u_k = k^{1-\epsilon} i^d_+ \quad \text{with} \quad \epsilon \approx 0 \]
Payoff functions

\[e^{r\Delta_f} U_k = \begin{cases}
 k + i_f^r \bar{k} + i_f^e (k - \bar{k}) & \text{if } \bar{k} \leq k \\
 (1 + i_f^r) k - \min(i_f^w - i_f^r, i_f^c) (\bar{k} - k) & \text{if } k < \bar{k}
\end{cases} \]

\[u_k = k^{1 - \epsilon_i^d} \quad \text{with} \quad \epsilon \approx 0 \]

Baseline parameters

<table>
<thead>
<tr>
<th>(T)</th>
<th>(\Delta_f)</th>
<th>(\Delta)</th>
<th>(i_+^d)</th>
<th>(i_f^r)</th>
<th>(i_f^e)</th>
<th>(i_f^w)</th>
<th>(i_f^c)</th>
<th>(\theta)</th>
<th>(\alpha)</th>
<th>(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5/24</td>
<td>2.5/24</td>
<td>22/24</td>
<td>10^{-7}/360</td>
<td>0.0025/360</td>
<td>0.0025/360</td>
<td>0.0075/360</td>
<td>0.0175/360</td>
<td>1/2</td>
<td>50</td>
<td>0.0001/365</td>
</tr>
</tbody>
</table>
Small-scale simulations: $\mathbf{K} = \{0, 1, 2\}$

$k = 1$

Two scenarios

<table>
<thead>
<tr>
<th>$n^H_0(T)$, $n^L_2(T)$</th>
<th>$n^L_0(T)$, $n^H_2(T)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>{0.6, 0.3}</td>
<td>{0.3, 0.6}</td>
</tr>
</tbody>
</table>

Experiments

<table>
<thead>
<tr>
<th>Bargaining Power (θ)</th>
<th>Discount Rate (i^w_f)</th>
<th>Contact Rate (α)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.1</td>
<td>$\frac{.0050}{360}$</td>
<td>25</td>
</tr>
<tr>
<td>0.5</td>
<td>$\frac{.0075}{360}$</td>
<td>50</td>
</tr>
<tr>
<td>0.9</td>
<td>$\frac{.0100}{360}$</td>
<td>100</td>
</tr>
</tbody>
</table>
Bargaining power

The diagrams illustrate the relationship between surplus, the ratio of V_2 to V_1, and the parameter ρ (%), across different times of day for varying values of θ. Each graph shows how these variables change over time, with distinct lines indicating different values of θ. The x-axis represents Eastern Time, ranging from 16:00 to 18:00, and the y-axis shows surplus, V_2/V_1, and ρ (%). The graphs highlight the impact of varying θ on the bargaining power dynamics.
Discount-Window lending rate
Large-scale simulations: $\mathbb{K} = \{0, 1, \ldots, 49\}$

\[
\bar{k} = 1
\]

Initial distribution of balances:

\[
n_k(T) = \frac{\lambda^k e^{-\lambda}}{k! \sum_{j=0}^{49} n_j(T)} \quad \text{with} \quad \lambda = 10
\]

\[
\Rightarrow
\]

\[
Q = \sum_{j=0}^{49} kn_k(T) \approx 10
\]
Reserve balances and fed funds rates

- Proportion of banks
- Opening and end-of-day balances
- Balances
- Standard deviation of balances
- Fed funds rate (%)
- Proportion of loans
- Spreads to market rates (%)
Size distribution of loans and distributions of trading activity
Intermediation

Proportion of banks

Proportion of intermediated funds

Excess funds reallocation

Proportion of banks

Proportion of intermediated funds

Excess funds reallocation
Intermediation

Amount borrowed by banks with nonnegative adjusted balance

Eastern Time
<table>
<thead>
<tr>
<th>i_f</th>
<th>$Q/\bar{k} = 0.50$</th>
<th>$Q/\bar{k} = 1.00$</th>
<th>$Q/\bar{k} = 1.67$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>76</td>
<td>38</td>
<td>1</td>
</tr>
<tr>
<td>25</td>
<td>76</td>
<td>51</td>
<td>26</td>
</tr>
<tr>
<td>50</td>
<td>76</td>
<td>63</td>
<td>51</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>76</td>
<td>76</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>i_f^W</th>
<th>$Q/\bar{k} = 0.50$</th>
<th>$Q/\bar{k} = 1.00$</th>
<th>$Q/\bar{k} = 1.67$</th>
</tr>
</thead>
<tbody>
<tr>
<td>25</td>
<td>26</td>
<td>26</td>
<td>26</td>
</tr>
<tr>
<td>50</td>
<td>51</td>
<td>38</td>
<td>26</td>
</tr>
<tr>
<td>75</td>
<td>76</td>
<td>51</td>
<td>26</td>
</tr>
<tr>
<td>100</td>
<td>101</td>
<td>63</td>
<td>26</td>
</tr>
</tbody>
</table>
Corridor system

<table>
<thead>
<tr>
<th>(i_f, i_f^w)</th>
<th>$Q/\tilde{k} = 0.50$</th>
<th>$Q/\tilde{k} = 1$</th>
<th>$Q/\tilde{k} = 1.67$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 – 50</td>
<td>51</td>
<td>26</td>
<td>1</td>
</tr>
<tr>
<td>25 – 75</td>
<td>76</td>
<td>51</td>
<td>26</td>
</tr>
<tr>
<td>50 – 100</td>
<td>101</td>
<td>76</td>
<td>51</td>
</tr>
<tr>
<td>75 – 125</td>
<td>126</td>
<td>101</td>
<td>76</td>
</tr>
<tr>
<td>100 – 150</td>
<td>151</td>
<td>126</td>
<td>101</td>
</tr>
</tbody>
</table>
IOR Policy intuition from the analytical example

Proposition

If \(r \approx 0 \),

\[
\rho_f (\tau) \approx \beta (\tau) i_f^e + [1 - \beta (\tau)] i_f^w
\]

where

1. If \(n_2 (T) = n_0 (T) \), \(\beta (\tau) = \theta \)
2. If \(n_2 (T) < n_0 (T) \), \(\beta (\tau) \in [0, \theta] \), \(\beta (0) = \theta \) and \(\beta' (\tau) < 0 \)
3. If \(n_0 (T) < n_2 (T) \), \(\beta (\tau) \in [\theta, 1] \), \(\beta (0) = \theta \) and \(\beta' (\tau) > 0 \).
Ex-ante heterogeneity

We also extend the model to allow for:

1. Heterogeneity in contact rates
2. Heterogeneity in bargaining powers
3. Heterogeneity in target balances (or non-bank participants, e.g., GSEs)
More to be done...

- Fed funds brokers
- Banks’ portfolio decisions
- Random “payment shocks”
- Sequence of trading sessions
- Quantitative work with ex-ante heterogeneity
The views expressed here are not necessarily reflective of views at the Federal Reserve Bank of New York or the Federal Reserve System.
Theoretical and empirical rates

Data

\[1 + i_f^r\]

\[1 + i_f^e\]

\[1 + \rho_f(\tau)\]

Model

\[e^{i_r \Delta_f}\]

\[e^{i_e \Delta_f}\]

\[e^{\rho(\tau)(\tau+\Delta)}\]
Evidence of OTC frictions in the fed funds market

- Price dispersion
- Intermediation
- Intraday evolution of the distribution of reserve balances
- There are banks that are “very long” and buy
- There are banks that are “very short” and sell
Price dispersion

Intraday Distribution of Fed Funds Spreads, 2005
Intermediation: excess funds reallocation
Intermediation: proportion of intermediated funds
Intraday evolution of the distribution of reserve balances
Banks that are “long”...and buy...
Banks that are “short”...and sell...
Daily volume
Daily volume (size distribution)
Daily distribution of the number of counterparties
Intraday volume (dollar amount)
Intraday volume (number of loans)
Intraday size distribution of loans
Intraday size distribution of loans
Trading activity by time-of-day
Intraday evolution of the distribution of reserve balances

- Normalized Balances, 2005
- Normalized Balances, 2006
- Normalized Balances, 2007
- Normalized Balances, 2008
- Normalized Balances, 2009
- Normalized Balances, 2010
Intraday evolution of the distribution of reserve balances

- Standard deviation of normalized balances
- 10th percentile
- 90th percentile
- Intraday 10th percentile of normalized balances (over time)
- Intraday 90th percentile of normalized balances (over time)
Daily fed funds rate vs. FOMC target
Daily effective fed funds rate vs. FOMC target
Daily fed funds rate dispersion

Daily Dispersion of Fed Funds Rate

- FOMC Target
- 90th Percentile of Fed Funds Rate
- 10th Percentile of Fed Funds Rate
Fed funds rate vs. effective fed funds rate

Daily Spread between Fed Funds and Effective Rate
Intraday distribution of fed funds spreads

Intraday Distribution of Fed Funds Spreads, 2005

Intraday Distribution of Fed Funds Spreads, 2006

Intraday Distribution of Fed Funds Spreads, 2007

Intraday Distribution of Fed Funds Spreads, 2008

Intraday Distribution of Fed Funds Spreads, 2009

Intraday Distribution of Fed Funds Spreads, 2010
Intraday distribution of fed funds spreads (over time)
Intraday distribution of fed funds/FOMC target spreads

Intraday Distribution of Spreads to FOMC Target, 2005

Intraday Distribution of Spreads to FOMC Target, 2006

Intraday Distribution of Spreads to FOMC Target, 2007

Intraday Distribution of Spreads to FOMC Target, 2008

Intraday Distribution of Spreads to FOMC Target, 2009

Intraday Distribution of Spreads to FOMC Target, 2010
Daily intermediation

Excess Funds Reallocation

Proportion of Intermediated Funds

Daily Distribution of Excess Funds Reallocation

Daily Distribution of Proportion of Intermediated Funds

10th Percentile Median 90th Percentile Mean
Banks that are “long”...and buy...
Banks that are “short”...and sell...
Daily fed funds rate vs. IOR

Daily Dispersion of Fed Funds Rate and IOR

- 10th Percentile of Fed Funds Rate
- 90th Percentile of Fed Funds Rate
- IOR

2009
2010
Daily FFR and daily effective FFR vs. IOR: a puzzle
Value function (derivation)

\[
J_k(x, \tau) = \mathbb{E} \left\{ \int_0^{\min(\tau_\alpha, \tau)} e^{-rz} u_k \, dz + \mathbb{I}_{\{\tau_\alpha > \tau\}} e^{-r\tau} \left[U_k + e^{-r\Delta x} \right] + \mathbb{I}_{\{\tau_\alpha \leq \tau\}} e^{-r\tau_\alpha} \int J_{k-b_{ss'}(\tau-\tau_\alpha)} (x + R_{s's} (\tau - \tau_\alpha), \tau - \tau_\alpha) \mu(ds', \tau - \tau_\alpha) \right\}
\]
Value function (derivation)

\[J_k(x, \tau) = \mathbb{E} \left\{ \int_0^{\min(\tau_\alpha, \tau)} e^{-rz} u_k \, dz + \mathbb{I}_{\{\tau_\alpha > \tau\}} e^{-r\tau} \left(U_k + e^{-r\Delta x} \right) + \mathbb{I}_{\{\tau_\alpha \leq \tau\}} e^{-r\tau_\alpha} \int J_{k-b_{ss'}(\tau-\tau_\alpha)} (x + R_{s's} (\tau - \tau_\alpha), \tau - \tau_\alpha) \mu (ds', \tau - \tau_\alpha) \right\} \]

- \(\tau_\alpha \): time until next trading opportunity
- \(b_{ss'}(\tau) \): balance that bank \(s = (k, x) \) lends to bank \(s' = (k', x') \) at time \(T - \tau \)
- \(R_{s's}(\tau) \): repayment negotiated at time \(T - \tau \) (due at \(T + \Delta \))
- \(\mu (\cdot, \tau) \): prob. measure over individual states, \(s' = (k', x') \)
Bargaining

Bank with \(s = (k, x) \) meets bank \(s' = (k', x') \) at \(T - \tau \).

The loan size \(b \) and the repayment \(R \) maximize:

\[
\left[J_{k-b} (x + R, \tau) - J_k (x, \tau) \right]^{\frac{1}{2}} \left[J_{k'+b} (x' - R, \tau) - J_{k'} (x', \tau) \right]^{\frac{1}{2}}
\]

s.t. \(b \in \Gamma (k, k') \)

\(R \in \mathbb{R} \)
Value function (derivation)

\[J_k (x, \tau) = V_k (\tau) + e^{-r(\tau+\Delta)}x \quad \text{where} \]

\[V_k (\tau) = \mathbb{E} \left\{ \int_0^{\min(\tau_\alpha, \tau)} e^{-rz} u_k dz + \mathbb{I}_{\{\tau_\alpha > \tau\}} e^{-r\tau} U_k + \mathbb{I}_{\{\tau_\alpha \leq \tau\}} e^{-r\tau_\alpha} \right\} \]

\[\sum_{k' \in K} n_{k'} (\tau - \tau_\alpha) \left[V_{k-b_{kk'}} (\tau-\tau_\alpha) (\tau - \tau_\alpha) + e^{-r(\tau+\Delta-\tau_\alpha)} R_{k'k} (\tau - \tau_\alpha) \right] \]
Value function (derivation)

\[J_k(x, \tau) = V_k(\tau) + e^{-r(\tau+\Delta)}x \quad \text{where} \]

\[V_k(\tau) = \mathbb{E} \left\{ \int_0^{\min(\tau_\alpha, \tau)} e^{-rz} u_k dz + \mathbb{I}\{\tau_\alpha > \tau\} e^{-r\tau} U_k + \mathbb{I}\{\tau_\alpha \leq \tau\} e^{-r\tau_\alpha} \right\} \]

\[\sum_{k' \in K} n_{k'}(\tau - \tau_\alpha) \left[V_{k-b_{kk'}}(\tau-\tau_\alpha)(\tau - \tau_\alpha) + e^{-r(\tau+\Delta-\tau_\alpha)} R_{k'k}(\tau - \tau_\alpha) \right] \]

\[b_{kk'}(\tau) \in \operatorname{arg\ max}_{b \in \Gamma(k,k')} [V_{k'+b}(\tau) + V_{k-b}(\tau) - V_{k'}(\tau) - V_k(\tau)] \]
Value function (derivation)

\[J_k (x, \tau) = V_k (\tau) + e^{-r(\tau+\Delta)} x \quad \text{where} \]

\[V_k (\tau) = \mathbb{E} \left\{ \int_0^{\min(\tau,\tau')} e^{-rz} u_k dz + \mathbb{I}_{\{\tau',\tau\}} e^{-r\tau} U_k + \mathbb{I}_{\{\tau'\leq\tau\}} e^{-r\tau} \right\} \]

\[\sum_{k' \in K} n_k' (\tau - \tau) \left[V_{k-b_{kk'}} (\tau-\tau') (\tau - \tau) + e^{-r(\tau+\Delta-\tau')} R_{k'k} (\tau - \tau) \right] \]

\[b_{kk'} (\tau) \in \arg \max_{b \in \Gamma(k,k')} \left[V_{k'+b} (\tau) + V_{k-b} (\tau) - V_{k'} (\tau) - V_k (\tau) \right] \]

\[e^{-r(\tau+\Delta)} R_{k'k} (\tau) = \frac{1}{2} \left[V_{k'+b_{kk'}} (\tau) (\tau) - V_{k'} (\tau) \right] + \frac{1}{2} \left[V_k (\tau) - V_{k-b_{kk'}} (\tau) (\tau) \right] \]
Special case with $\mathbb{K} = \{0, 1, 2\}$

- Bank with $i = 2$ is a lender, bank with $j = 0$, a borrower
- $\theta \in [0, 1]$: bargaining power of the borrower
- Only potentially profitable trade is between $i = 0$ and $j = 2$
- $S(\tau) \equiv 2V_1(\tau) - V_2(\tau) - V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)
Special case with $\mathbb{K} = \{0, 1, 2\}$

- Bank with $i = 2$ is a lender, bank with $j = 0$, a borrower
- $\theta \in [0, 1]$: bargaining power of the borrower
- Only potentially profitable trade is between $i = 0$ and $j = 2$
- $S(\tau) \equiv 2V_1(\tau) - V_2(\tau) - V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)
- Assumption: $2u_1 - u_2 - u_0 \geq 0$ and $2U_1 - U_2 - U_0 > 0$
Special case with $\mathbf{K} = \{0, 1, 2\}$

- Bank with $i = 2$ is a lender, bank with $j = 0$, a borrower
- $\theta \in [0, 1]$: bargaining power of the borrower
- Only potentially profitable trade is between $i = 0$ and $j = 2$
- $S(\tau) \equiv 2V_1(\tau) - V_2(\tau) - V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)
- Assumption: $2u_1 - u_2 - u_0 \geq 0$ and $2U_1 - U_2 - U_0 > 0$
Special case with $\mathbb{K} = \{0, 1, 2\}$

- Bank with $i = 2$ is a lender, bank with $j = 0$, a borrower
- $\theta \in [0, 1]$: bargaining power of the borrower
- Only potentially profitable trade is between $i = 0$ and $j = 2$
- $S(\tau) \equiv 2V_1(\tau) - V_2(\tau) - V_0(\tau)$
- Conjecture $S(\tau) > 0$ for all $\tau \in [0, T]$ (to be verified later)
- Assumption: $2u_1 - u_2 - u_0 \geq 0$ and $2U_1 - U_2 - U_0 > 0$

Given $\{n_k(T)\}$, the distribution of balances follows:

$$\dot{n}_0(\tau) = \alpha n_2(\tau) n_0(\tau)$$
$$\dot{n}_2(\tau) = \alpha n_2(\tau) n_0(\tau)$$
Time-path for the distribution of balances

\[n_2(\tau) = n_2(T) - [n_0(T) - n_0(\tau)] \]

\[n_1(\tau) = 1 - n_0(\tau) - n_2(\tau) \]

\[n_0(\tau) = \frac{[n_2(T) - n_0(T)] n_0(T)}{n_2(T) e^{\alpha[n_2(T) - n_0(T)](T-\tau)} - n_0(T)} \]
Bargaining

The repayment R solves:

$$\max_R \left[V_1(\tau) - V_0(\tau) - e^{-r(\tau+\Delta)} R \right]^\theta \left[V_1(\tau) - V_2(\tau) + e^{-r(\tau+\Delta)} R \right]^{1-\theta}$$

$$\Rightarrow$$

$$e^{-r(\tau+\Delta)} R(\tau) = \theta [V_2(\tau) - V_1(\tau)] + (1 - \theta) [V_1(\tau) - V_0(\tau)]$$
Value function

\[rV_0(\tau) + \dot{V}_0(\tau) = u_0 + \alpha n_2(\tau) \theta S(\tau) \]

\[rV_1(\tau) + \dot{V}_1(\tau) = u_1 \]

\[rV_2(\tau) + \dot{V}_2(\tau) = u_2 + \alpha n_0(\tau) (1 - \theta) S(\tau) \]

\[V_i(0) = U_i \text{ for } i = 0, 1, 2 \]
Value function

\[rV_0 (\tau) + \dot{V}_0 (\tau) = u_0 + \alpha n_2 (\tau) \theta S (\tau) \]

\[rV_1 (\tau) + \dot{V}_1 (\tau) = u_1 \]

\[rV_2 (\tau) + \dot{V}_2 (\tau) = u_2 + \alpha n_0 (\tau) (1 - \theta) S (\tau) \]

\[V_i (0) = U_i \text{ for } i = 0, 1, 2 \]

\[\Rightarrow \]

\[\dot{S} (\tau) + \delta (\tau) S (\tau) = 2u_1 - u_2 - u_0 \]

\[\delta (\tau) \equiv \left\{ r + \alpha \left[\theta n_2 (\tau) + (1 - \theta) n_0 (\tau) \right] \right\} \]
Surplus

\[S(\tau) = \left(\int_0^\tau e^{-[\bar{\delta}(\tau) - \bar{\delta}(z)]} dz \right) \bar{u} + e^{-\bar{\delta}(\tau)} S(0) \]

\[\bar{u} \equiv 2u_1 - u_2 - u_0 \]

\[S(0) = 2U_1 - U_2 - U_0 \]

\[\bar{\delta}(\tau) \equiv \int_0^\tau \delta(x) dx \]

\[\delta(\tau) \equiv \{ r + \alpha [\theta n_2(\tau) + (1 - \theta) n_0(\tau)] \} \]
Fed funds rate

\[R(\tau) = e^{\rho(\tau+\Delta)} \times 1 \]
Fed funds rate

\[R(\tau) = e^{\rho(\tau + \Delta)} \times 1 \]

\[\rho(\tau) = \frac{\ln R(\tau)}{\tau + \Delta} \]

\[= r + \frac{\ln [V_2(\tau) - V_1(\tau) + (1 - \theta) S(\tau)]}{\tau + \Delta} \]
Intuition for efficiency result

\[rV_0 (\tau) + \dot{V}_0 (\tau) = u_0 + \alpha n_2 (\tau) \theta S (\tau) \]

\[rV_1 (\tau) + \dot{V}_1 (\tau) = u_1 \]

\[rV_2 (\tau) + \dot{V}_2 (\tau) = u_2 + \alpha n_0 (\tau) (1 - \theta) S (\tau) \]
Intuition for efficiency result

\[rV_0(\tau) + \dot{V}_0(\tau) = u_0 + \alpha n_2(\tau) \theta S(\tau) \]
\[r\lambda_0(\tau) + \dot{\lambda}_0(\tau) = u_0 + \alpha n_2(\tau) S^*(\tau) \]
\[rV_1(\tau) + \dot{V}_1(\tau) = u_1 \]
\[r\lambda_1(\tau) + \dot{\lambda}_1(\tau) = u_1 \]
\[rV_2(\tau) + \dot{V}_2(\tau) = u_2 + \alpha n_0(\tau) (1 - \theta) S(\tau) \]
\[r\lambda_2(\tau) + \dot{\lambda}_2(\tau) = u_2 + \alpha n_0(\tau) S^*(\tau) \]
Intuition for efficiency result

\[rV_0(\tau) + \dot{V}_0(\tau) = u_0 + \alpha n_2(\tau) \theta S(\tau) \]
\[r\lambda_0(\tau) + \dot{\lambda}_0(\tau) = u_0 + \alpha n_2(\tau) S^*(\tau) \]
\[rV_1(\tau) + \dot{V}_1(\tau) = u_1 \]
\[r\lambda_1(\tau) + \dot{\lambda}_1(\tau) = u_1 \]
\[rV_2(\tau) + \dot{V}_2(\tau) = u_2 + \alpha n_0(\tau) (1 - \theta) S(\tau) \]
\[r\lambda_2(\tau) + \dot{\lambda}_2(\tau) = u_2 + \alpha n_0(\tau) S^*(\tau) \]

\[S(\tau) = \bar{u} \int_{0}^{\tau} e^{-[\delta(\tau)-\delta(z)]} dz + e^{-\delta(\tau)} S(0) \]
\[S^*(\tau) = \bar{u} \int_{0}^{\tau} e^{-[\delta^*(\tau)-\delta^*(z)]} dz + e^{-\delta^*(\tau)} S(0) \]
Intuition for efficiency result

\begin{align*}
 rV_0 (\tau) + \dot{V}_0 (\tau) &= u_0 + \alpha n_2 (\tau) \theta S (\tau) \\
 r\lambda_0 (\tau) + \dot{\lambda}_0 (\tau) &= u_0 + \alpha n_2 (\tau) S^* (\tau) \\
 rV_1 (\tau) + \dot{V}_1 (\tau) &= u_1 \\
 r\lambda_1 (\tau) + \dot{\lambda}_1 (\tau) &= u_1 \\
 rV_2 (\tau) + \dot{V}_2 (\tau) &= u_2 + \alpha n_0 (\tau) (1 - \theta) S (\tau) \\
 r\lambda_2 (\tau) + \dot{\lambda}_2 (\tau) &= u_2 + \alpha n_0 (\tau) S^* (\tau)
\end{align*}

\begin{align*}
 S (\tau) &= \bar{u} \int_0^\tau e^{-[\bar{\delta}(\tau) - \bar{\delta}(z)]} dz + e^{-\bar{\delta}(\tau)} S (0) \\
 S^* (\tau) &= \bar{u} \int_0^\tau e^{-[\bar{\delta}^*(\tau) - \bar{\delta}^*(z)]} dz + e^{-\bar{\delta}^*(\tau)} S (0)
\end{align*}

\begin{align*}
 \bar{\delta}^* (\tau) - \bar{\delta} (\tau) &= \alpha \int_0^\tau [(1 - \theta) n_2 (z) + \theta n_0 (z)] dz \geq 0
\end{align*}
Intuition for efficiency result

- **Equilibrium:**

 Gain from trade as perceived by borrower: $\theta S(\tau)$

 Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

- **Planner:**

 Each of their marginal contributions equals $S^*(\tau)$

- $\delta^*(\tau) \geq \delta(\tau)$ for all $\tau \in [0, T]$, with "=" only for $\tau = 0$

 \Rightarrow The planner “discounts” more heavily than the equilibrium

 \Rightarrow $S^*(\tau) < S(\tau)$ for all $\tau \in (0, 1]$

 \Rightarrow Social value of loan < joint private value of loan
Intuition for efficiency result

- **Equilibrium:**

 Gain from trade as perceived by borrower: $\theta S(\tau)$

 Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

- **Planner:**

 Each of their marginal contributions equals $S^*(\tau)$

- $\delta^*(\tau) \geq \delta(\tau)$ for all $\tau \in [0, T]$, with “=” only for $\tau = 0$

 ⇒ The planner “discounts” more heavily than the equilibrium

 ⇒ $S^*(\tau) < S(\tau)$ for all $\tau \in (0, 1]$

 ⇒ Social value of loan < joint private value of loan
Intuition for efficiency result

- **Equilibrium:***

 Gain from trade as perceived by borrower: $\theta S(\tau)$

 Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

- **Planner:***

 Each of their marginal contributions equals $S^*(\tau)$

- $\delta^*(\tau) \geq \delta(\tau)$ for all $\tau \in [0, T]$, with “=” only for $\tau = 0$

 ⇒ The planner “discounts” more heavily than the equilibrium

 ⇒ $S^*(\tau) < S(\tau)$ for all $\tau \in (0, 1]$

 ⇒ Social value of loan < joint private value of loan
Intuition for efficiency result

- **Equilibrium:***

 Gain from trade as perceived by borrower: \(\theta S(\tau) \)

 Gain from trade as perceived by lender: \((1 - \theta) S(\tau) \)

- **Planner:***

 Each of their marginal contributions equals \(S^*(\tau) \)

- \(\delta^*(\tau) \geq \delta(\tau) \) for all \(\tau \in [0, T] \), with “=” only for \(\tau = 0 \)

 \(\Rightarrow \) The planner “discounts” more heavily than the equilibrium

 \(\Rightarrow S^*(\tau) < S(\tau) \) for all \(\tau \in (0, 1] \)

 \(\Rightarrow \) Social value of loan < joint private value of loan
Intuition for efficiency result

- **Equilibrium:**

 Gain from trade as perceived by borrower: $\theta S(\tau)$

 Gain from trade as perceived by lender: $(1 - \theta) S(\tau)$

- **Planner:**

 Each of their marginal contributions equals $S^*(\tau)$

- $\delta^*(\tau) \geq \delta(\tau)$ for all $\tau \in [0, T]$, with “=” only for $\tau = 0$

 ⇒ The planner “discounts” more heavily than the equilibrium

 ⇒ $S^*(\tau) < S(\tau)$ for all $\tau \in (0, 1]$

 ⇒ Social value of loan < joint private value of loan
Intuition for efficiency result

- **Equilibrium:**

 Gain from trade as perceived by borrower: \(\theta S(\tau) \)

 Gain from trade as perceived by lender: \((1 - \theta) S(\tau) \)

- **Planner:**

 Each of their marginal contributions equals \(S^*(\tau) \)

- \(\delta^*(\tau) \geq \delta(\tau) \) for all \(\tau \in [0, T] \), with “=” only for \(\tau = 0 \)

 \(\Rightarrow \) The planner “discounts” more heavily than the equilibrium

 \(\Rightarrow S^*(\tau) < S(\tau) \) for all \(\tau \in (0, 1] \)

 \(\Rightarrow \) Social value of loan < joint private value of loan
Intuition for efficiency result

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners.

- These “liquidity provision services” to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs.

- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner’s problem:

 E.g., too high if \((1 - \theta) S(\tau) > S^*(\tau)\)
Intuition for efficiency result

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners.

- These “liquidity provision services” to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs.

- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner’s problem:

\[(1 - \theta) S(\tau) > S^*(\tau) \]
Intuition for efficiency result

- Planner internalizes that searching borrowers and lenders make it easier for other lenders and borrowers to find partners.

- These “liquidity provision services” to others receive no compensation in the equilibrium, so individual agents ignore them when calculating their equilibrium payoffs.

- The equilibrium payoff to lenders may be too high or too low relative to their shadow price in the planner’s problem:

 \[(1 - \theta) S(\tau) > S^*(\tau) \]
Frictionless limit

Proposition

Let \(Q \equiv \sum_{k=1}^{K} kn_k(T) = 1 + n_2(T) - n_0(T) \).

For \(\tau \in [0, T] \),

\[
\rho^\infty(\tau) = \begin{cases}
 r + \frac{\ln[(1-e^{-r\tau})\frac{u_1-u_0}{r} + e^{-r\tau}(U_1-U_0)]}{\tau+\Delta} & \text{if } Q < 1 \\
 r + \frac{\ln[(1-e^{-r\tau})\frac{u_1-u_0-\theta\bar{u}}{r} + e^{-r\tau}(U_1-U_0-\theta S(0))]}{\tau+\Delta} & \text{if } Q = 1 \\
 r + \frac{\ln[(1-e^{-r\tau})\frac{u_2-u_1}{r} + e^{-r\tau}(U_2-U_1)]}{\tau+\Delta} & \text{if } 1 < Q.
\end{cases}
\]
IOR Policy: intuition from the analytical example

\[n_2(T) = n_0(T) \]

\[\theta i_f^e + (1 - \theta)(i_f^w + P^w) \]

\[\rho_f^\infty \]

\[\rho_f(T - t) \]
IOR Policy: intuition from the analytical example

\[n_2(T) < n_0(T) \]

\[\theta i_f^e + (1 - \theta)(i_f^w + P_w^w) \]

\[\rho_f^\infty \]

\[\rho_f(T - t) \]
IOR Policy: intuition from the analytical example

\[\theta i_f^e + (1 - \theta)(i_f^w + P^w) \]

\[n_0(T) < n_2(T) \]

\[\rho_f(T - t) \]

\[\rho_f^\infty \]

\[i_f^e \]

\[T \]

\[t \]
IOR Policy: intuition from the analytical example

\[n_0(T) = n_2(T) \]

\[n_2(T) < n_0(T) \]

\[n_0(T) < n_2(T) \]

\[\theta i_f^e + (1 - \theta)(i_f^w + P^w) \]

\[i_f^e \]

\[i_f^w + P^w \]

\[\rho_f^\infty \]

\[\rho_f(T-t) \]

\[1 \]

\[Q \]