Financial Risk Capacity

Saki Bigio
New York University

June 27, 2011
Introduction

- Financial sector’s capacity to intermediate ⇒ growth
 - Capacity depends on bank net-worth
Financial sector’s capacity to intermediate ⇒ growth
 ▶ Capacity depends on bank net-worth

Function of banks ⇒ mitigate asymmetric information
Introduction

- Financial sector’s capacity to intermediate ⇒ growth
 - Capacity depends on bank net-worth

- Function of banks ⇒ mitigate asymmetric information

- Paper: risky financial intermediation + asymmetric information
Why study this? - Reasons

- Adverse-selection in fin. markets tied to bank net-worth
 - Propagation and spill-over of shocks
Why study this? - Reasons

- Adverse-selection in fin. markets tied to bank net-worth
 - Propagation and spill-over of shocks

- Explain why banks aren’t quickly recapitalized during crisis
 - Persistence of financial crisis
Growth model with financial intermediaries where:

1. Collateral quality is private information
2. Risky in process of intermediation
3. Intermediation losses subject to limited liability equity
Growth model with financial intermediaries where:
1. Collateral quality is private information
2. Risky in process of intermediation
3. Intermediation losses subject to limited liability equity

Lab to analyze
1. Shocks that affect financial sector’s equity
2. Analyze government policies
Environment

- Infinite horizon:
 - Every period divided into two stages
Environment

- Infinite horizon:
 - Every period divided into two stages

- Commodity Space:
 - Consumption good (perishable numeraire)
 - Capital
Environment

- **Infinite horizon:**
 - Every period divided into two stages

- **Commodity Space:**
 - Consumption good (perishable numeraire)
 - Capital

- **Population:**
 - Producers
 - Bankers
Unit continuum, $z \in [0, 1]$

Start with capital stock: $k(z)$
Environment - Producers

- Unit continuum, $z \in [0, 1]$
- Start with capital stock: $k(z)$
- Preferences:

$$\mathbb{E} \left[\sum_{t \geq 0} \beta^t \log (c_t) \right]$$
Segmentation of activities

- $\pi \rightarrow$ produce capital goods (k-producers)
 - consumption \Leftrightarrow capital one for one

Linear technology: $y = A_k$
Segmentation of activities

- \(\pi \rightarrow \) produce capital goods (k-producers)
 - consumption \(\leftrightarrow \) capital one for one

- \((1 - \pi) \rightarrow \): produce consumption goods (c-producers)
 - Linear technology: \(y = Ak \)
Segmentation of activities

- $\pi \rightarrow$ produce capital goods (k-producers)
 - consumption \Leftrightarrow capital one for one
- $(1 - \pi) \rightarrow$: produce consumption goods (c-producers)
 - Linear technology: $y = Ak$

Need for Trade

- investors lack consumption goods as input for investment
- producers lack investment technology
Segmentation of activities

- $\pi \rightarrow$ produce capital goods (k-producers)
 - consumption \Leftrightarrow capital one for one
- $(1 - \pi) \rightarrow$: produce consumption goods (c-producers)
 - Linear technology: $y = Ak$

Need for Trade

- investors lack consumption goods as input for investment
- producers lack investment technology

Incomplete markets.
Capital stock *divisible* into *continuum*
Environment - Heterogeneous Capital

- Capital stock divisible into continuum
- Each unit identified with quality $\omega \in [0, 1]$
- Efficiency of units $\lambda(\omega)$
Environment - Heterogeneous Capital

- Capital stock *divisible into continuum*
- Each *unit* identified with *quality* $\omega \in [0, 1]$
- Efficiency of *units* $\lambda(\omega)$
- Distribution over qualities given by f_ϕ
- f_ϕ depends on shock-ϕ
Capital stock divisible into continuum

Each unit identified with quality $\omega \in [0, 1]$
Efficiency of units $\lambda(\omega)$

Distribution over qualities given by f_ϕ
f_ϕ depends on shock-ϕ

Assumption

$\{ f_\phi \}$ satisfies $E_\phi [\lambda(\tilde{\omega}) | \tilde{\omega} < \omega]$ decreasing in ϕ, $\forall \omega$.
Physical evolution:

\[
\tilde{k} = k \int \lambda(\omega) f_\phi(\omega) d\omega.
\]
Physical evolution:

\[\tilde{k} = k \int \lambda(\omega) f_\phi(\omega) d\omega. \]

Agents capital evolves:

\[k' = \text{investment} + \text{purchases} + k \int \lambda(\omega)(1 - \mathbb{I}(\omega)) f_\phi(\omega) d\omega \]

\(\mathbb{I}(\omega) \) sales of quality \(\omega \)

\(\omega \) private information.
Continuum of intermediaries: $j \in [0, 1]$
Continuum of intermediaries: $j \in [0, 1]$

Big and risk neutral

Preferences

$$\mathbb{E} \left[\sum_{t \geq 0} (\beta^f)^t c_t \right]$$
Continuum of intermediaries: $j \in [0, 1]$

- Big and risk neutral
- Preferences

$$\mathbb{E} \left[\sum_{t \geq 0} (\beta^f)^t c_t \right]$$

- Intermediaries own banks
Environment - Bankers

- Role: *intermediate* in capital market
 - Buy k from investors \Leftrightarrow exchange for *goods*
 - Under *asymmetric information*
Role: intermediate in capital market
- Buy k from investors ⇔ exchange for goods
 - Under asymmetric information
- Sell k to producers ⇔ exchange for goods
 - Sell pool of qualities bought
 - Intermediation risky ⇒ expected ≠ realized quality
Environment - Bankers

- **Role**: intermediate in capital market
 - **Buy** k from investors \Leftrightarrow exchange for goods
 - Under asymmetric information
 - **Sell** k to producers \Leftrightarrow exchange for goods
 - Sell pool of qualities bought
 - Intermediation risky \Rightarrow expected \neq realized quality

- Periodic endowment of goods $\bar{e}(j)$ and $n(j)$ stored in banks
 - Intermediation through banks
 - Only Net-worth $n(j)$ is liable to intermediation losses
Role: intermediate in capital market

- Buy k from investors ⇔ exchange for goods
 - Under asymmetric information
- Sell k to producers ⇔ exchange for goods
 - Sell pool of qualities bought
 - Intermediation risky ⇒ expected ≠ realized quality

Periodic endowment of goods $\bar{e}(j)$ and $n(j)$ stored in banks

- Intermediation through banks
- Only Net-worth $n(j)$ is liable to intermediation losses
- Can inject equity e to increase n
- Can pay dividends d reducing n
- ϕ-shock distribution of quality,
 - Affects f_ϕ
 - Shock after purchase but before resell
Environment - Aggregate State

- ϕ-shock distribution of quality,
 - Affects f_ϕ
 - Shock after purchase but before resell

- Endogenous state financial sector size: κ
 - $\kappa = \frac{\int n'(j) dj}{\int k(z) dz}$
Environment - Aggregate State

- ϕ-shock distribution of quality,
 - Affects f_ϕ
 - Shock after purchase but before resell

- Endogenous state financial sector size: κ
 - $\kappa = \int \frac{n'(j) dj}{\int k(z) dz}$

- State: $X = (A, \phi, \kappa)$
Stage 1: Capital Sales

- Goods → Capital → Claims to Good (IOU)
- Producers
- Investors
- Financial Sector
- Asymmetric Information
- $p(\omega)$
Stage 2: Realization of Shock and Resale

- Goods
- Capital
- Claims to Good (IOU)

Producers → Financial Sector → Investors

$q(\omega, \phi)$
Stage 2: Consumption Goods Settlements

- Goods → Financial Sector
- Capital → Claims to Good (IOU)
- Producers
- Investors

$q(\omega,\phi)$
Balance Sheets

- Stage 1 balance sheet:

\[
\begin{array}{|c|c|}
\hline
\text{Assets} & \text{Liability} \\
\hline
n & \text{Net-worth} \\
\hline
\end{array}
\]

Initial Balance Sheet

- Stage 2 balance sheet:

\[
\begin{array}{|c|c|}
\hline
\text{Assets} & \text{Liability} \\
\hline
n + e - d & pQ \\
\hline
pQ & \text{Net-worth} \\
\hline
n + e - d & \\
\end{array}
\]

Balance Sheet S1

- Q amount of capital units purchased
Stage 1 balance sheet:

\[
\begin{array}{c|c}
\text{Assets} & \text{Liability} \\
\hline
n' & pQ \\
pQ & \text{Net-worth} \\
\hline
\end{array}
\]

\[n' = n + e - d\]
Balance Sheets

Stage 1 balance sheet:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>n'</td>
<td>pQ</td>
</tr>
<tr>
<td>pQ</td>
<td>Net-worth</td>
</tr>
<tr>
<td></td>
<td>n'</td>
</tr>
</tbody>
</table>

Balance Sheet S1

Stage 2 balance sheet:

<table>
<thead>
<tr>
<th>Assets</th>
<th>Liability</th>
</tr>
</thead>
<tbody>
<tr>
<td>n'</td>
<td>pQ</td>
</tr>
<tr>
<td>$q(\phi)\lambda(\phi)Q$</td>
<td>Net-worth</td>
</tr>
<tr>
<td></td>
<td>$n' + [q(\phi)\lambda(\phi) - p] Q$</td>
</tr>
</tbody>
</table>

Balance Sheet S2
Balance Sheets

- **Stage 1 balance sheet:**

 \[
 \begin{array}{|c|c|}
 \hline
 \text{Assets} & \text{Liability} \\
 \hline
 n' & pQ \\
 pQ & \text{Net-worth} \\
 \hline
 \end{array}
 \]

 Balance Sheet S1

- **Stage 2 balance sheet:**

 \[
 \begin{array}{|c|c|}
 \hline
 \text{Assets} & \text{Liability} \\
 \hline
 n' & pQ \\
 q(\phi)\lambda(\phi)Q & \text{Net-worth} \\
 \hline
 \end{array}
 \]

 Balance Sheet S2

- \[\Pi = [q(\phi)\lambda(\phi) - p]\]
Problem (Stage 1)

\[
V_1^f (n, X) = \max_{Q, e \in [0, \bar{e}], d \in [0, n]} c + \mathbb{E} \left[V_2^f (n' + \Pi (X, X') Q, X') | X \right]
\]

\[
s.t. \quad - \Pi (X, X') Q \leq n + e - d, \quad \forall X'
\]

- \[
c = (\bar{e} - e) + (1 - \tau) d
\]

- \[
n' = n + e - d
\]
Problem (Stage 1)

\[V_1^f (n, X) = \max_{Q, e \in [0, \bar{e}], d \in [0, n]} \quad c + \mathbb{E} \left[V_2^f (n' + \Pi (X, X') Q, X') | X \right] \]

\[s.t. \quad - \Pi (X, X') Q \leq n + e - d, \quad \forall X' \]
\[c = (\bar{e} - e) + (1 - \tau) d \]
\[n' = n + e - d \]

- Stage 2: \[V_2^f (n, X) = \beta^F \mathbb{E} \left[V_1^f (R^b n, X') | X \right] \]
C-goods producer’s Problems

Problem (c-producer’s stage 1)

\[V_p^1 (k, X) = \mathbb{E} \left[V_p^2 (k' (\phi'), x, X') \mid X \right] \]

s.t. \(x = Ak \) and \(k' (\phi') = k \int \lambda (\omega) f_{\phi'} (\omega) d\omega \)

Problem (c-producer stage 2)

\[V_p^2 (k, x, X) = \max_{c \geq 0, i \leq 0, k^b \geq 0} \log (c) + \beta \mathbb{E} \left[V_j^1 (k', X') \mid X \right], j \in \{i, p\} \]

\(c + i + qk^b = x \) and \(k' = k^b + i + k \)
k-producer Problems

Problem (k-producer’s stage 1)

\[V^1_i(k, X) = \max_{\mathbb{I}(\omega) \in \{0, 1\}} \mathbb{E} \left[V^2_i(k'(\phi'), x, X') \mid X \right] \]

s.t. \(x = pk \int_0^1 \mathbb{I}(\omega) \, d\omega \) and \(k'(\phi') = k \int \lambda(\omega) [1 - \mathbb{I}(\omega)] \, f_{\phi'}(\omega) \, d\omega \)

Problem (k-producer’s stage 2)

\[V^2_i(k, x, X) = \max_{c \geq 0, i, k^b \geq 0} \log(c) + \beta \mathbb{E} \left[V^1_j(k', X') \mid X \right], j \in \{i, p\} \]

\[c + i + qk^b = x \text{ and } k' = k^b + i + k \]
Recursive Competitive Equilibrium

Definition (RCE)

A RCE are policy functions, e, d, Q, ω, k^b, i and prices (q, p), and a l.o.m. for X s.t.:

1. Given p, q, and l.o.m., e, d and Q are solutions to intermediaries problem.
2. Given p and l.o.m., ω solves the i-problem in $s1$.
3. Given ϕ and l.o.m., policies solves producer problems in $s2$.
4. Markets clear in both stages.
5. L.o.m. is internally consistent.
Policy functions are linear in k
Policy functions are linear in k

Cut-off $\omega^*(X)$ for sales solves portfolio problem:

$$\omega^* = \arg \max_{\tilde{\omega}} \mathbb{E} \left[\log(p\tilde{\omega}) + \int_{\tilde{\omega}}^{1} \lambda(\omega) f_{\phi'}(\omega) d\omega \right] | X$$
Policy functions are linear in k

Cut-off $\omega^*(X)$ for sales solves portfolio problem:

$$\omega^* = \arg \max_{\tilde{\omega}} \mathbb{E} \left[\log(\tilde{p}\tilde{\omega}) + \int_{\tilde{\omega}}^{1} \lambda(\omega) f_{\phi'}(\omega) d\omega | X \right]$$

Defines $p(\omega^*)$ increasing supply schedule
Characterization - Stage 2 capital demand and profits

- S2 price of capital q:

$$ q(X, X') = \left[\frac{\beta A}{\pi \omega^* (X) \mathbb{E}_\phi [\lambda(\omega) | \omega < \omega^* (X)] + (1 - \pi) (1 - \beta) \bar{\lambda}(X')} \right] $$
Characterization - Stage 2 capital demand and profits

- S2 price of capital q:

$$q(X, X') = \left[\frac{\beta A}{\pi \omega^*(X) \mathbb{E}_\phi [\lambda(\omega) | \omega < \omega^*(X)] + (1 - \pi)(1 - \beta) \bar{\lambda}(X')} \right]$$

- Profits:

$$\Pi(X, X') = q(X, X') \mathbb{E}_\phi [\lambda(\omega) | \omega < \omega^*(X)] - p(\omega^*(X))$$
Characterization - Stage 2 capital demand and profits

- **S2 price of capital** q:

$$q(X, X') = \frac{\beta A}{\pi \omega^*(X) \mathbb{E}_\phi [\lambda(\omega) | \omega < \omega^*(X)] + (1 - \pi)(1 - \beta)\bar{\lambda}(X')}$$

- **Profits**:

$$\Pi(X, X') = \left[\frac{\beta A}{\pi \omega^*(X) + (1 - \pi)(1 - \beta)\bar{\lambda}(X')} \right] - p(\omega^*(X))$$
Characterization - Stage 1 Bankers’ Policies

- $V_1^f(n, X) = v_1^f(X)n$ and $V_2^f(n, X) = v_2^f(X)n$
- Q, e and d linear in n
Characterization - Stage 1 Bankers' Policies

- \(V_1^f(n, X) = v_1^f(X)n \) and \(V_2^f(n, X) = v_2^f(X)n \)
- \(Q, e \) and \(d \) linear in \(n \)

Reminder:

Problem

\[
V_1^f(n, X) = \max_{Q, e \in [0, \bar{e}], d \in [0, n]} c + \mathbb{E} \left[v_2^f(X')(n' + \Pi(X, X')Q) \mid X \right]
\]

s.t. \(-\Pi(X, X')Q \leq n', \forall X'\)

\[
c = (\bar{e} - e) + (1 - \tau)d
\]
Characterization - Stage 1 Bankers’ Policies

- $V_1^f(n, X) = v_1^f(X)n$ and $V_2^f(n, X) = v_2^f(X)n$
- Q, e and d linear in n

Reminder:

Problem

$$Q = \arg \max_{\tilde{Q}} \mathbb{E} \left[v_2^f(X') \Pi(X, X') | X \right] \tilde{Q}$$

subject to $\min_{X'} - \Pi(X, X') \tilde{Q} \leq n'$.

Marginal Leverage
Characterization - Stage 1 Financial Policies

- Equity injections only if:
 \[
 \beta^F \left[\mathbb{E}[v^f(X')] + \mu(X) \right]_{\text{SDF}} \geq 1
 \]

- Dividend payoffs only if:
 \[
 \beta^F \left[\mathbb{E}[v^f(X')] + \mu(X) \right] \leq (1 - \tau).
 \]
Characterization - Stage 1 Financial Policies

- **Equity injections only if:**

 \[
 \beta^F \left[\mathbb{E}[v_2^f(X')] \right] + \max \left\{ \frac{\mathbb{E}[v_2^f(X') \Pi(X, X')]}{\text{SDF}}, 0 \right\} \geq \frac{1}{\text{Equity Cost}}
 \]

- **Dividend payoffs only if:**

 \[
 \beta^F \left[\mathbb{E}[v_2^f(X')] \right] + \max \left\{ \frac{\mathbb{E}[v_2^f(X') \Pi(X, X')]}{\min \tilde{X} - \Pi(X, \tilde{X})}, 0 \right\} \leq (1 - \tau).
 \]
Fixed point problem:

- $\kappa \Rightarrow \omega^*$
- $\omega^* \Rightarrow e, d \Rightarrow n' \Rightarrow \kappa'$
without Adverse Selection...
Example I - Risky intermediation **without** Adverse Selection
Financial Variables (before equity adjustments)

- **Financial Policies**
 - $\mathbf{\kappa}$
 - $\mathbf{\kappa}'$

- **Financial Intermediation**
 - $\mathbf{\Theta}$

- **$v(x)$ and Barriers**
 - 2.5
 - 2.0
 - 1.5

- **Profits and Expected Profits**

- **Financial Leverage**
 - 0.18
 - 0.19
 - 0.20
 - 0.21
 - 0.22
 - 0.23
 - 0.24
 - 0.25
 - 0.26

- **Financing Premia**
 - 0.27
 - 0.26
 - 0.25
 - 0.24
 - 0.23
 - 0.22
 - 0.21
 - 0.20
 - 0.19
 - 0.18
Financial Variables (after equity adjustments)

Financial Policies

Financial Intermediation

v(x) and Barriers

Profits and Expected Profits

Financial Leverage

Financing Premia
1. Intermediation, ω increasing in κ.
2. Profitability, Π decreasing in κ.
3. In equilibrium:
 - $\kappa' \in [\kappa, \bar{\kappa}]$.
 - $\omega \in [\omega, \bar{\omega}]$.
Adverse Selection...
Model with Asymmetric Information

$$E[\lambda(\omega)|\omega<\omega^*]$$
Financial Variables (before equity adjustments)

Financial Policies

Financial Intermediation

v(x) and Barriers

Profits and Expected Profits

Financial Leverage

Financing Premia
Financial Variables (after equity adjustments)

- Financial Policies
- Financial Intermediation
- \(v(x)\) and Barriers
- Profits and Expected Profits
- Financial Leverage
- Financing Premia
Real Side Variables

- Investment
- Growth
- Expected growth
- Spreads
- Lending
- Growth Volatility

Graphs showing the relationship between κ and various variables. The κ values range from 0.2 to 0.6, and the y-axes represent the corresponding values of each variable.
Lessons

1. Adverse selection \Rightarrow non-monotone expected profits
2. κ not in unique region
Lessons

1. Adverse selection \Rightarrow non-monotone expected profits
2. κ not in unique region
3. Adverse selection \Rightarrow prevents recapitalization
4. κ grows only through retained earnings
In a richer version of the model...
Invariant Distribution

Invariant Distribution of Financial Sector Size

- Financial Crisis
- Equity Injection Region
- Inaction Region
- Dividend Payoff Region
Dynamic Setup - Response to Dispersion Shock

- Value of Assets and Liabilities
- Expected and Actual Profits
- \(\kappa \) (financial sector size)
- \(\omega \) (financial intermediation)
- \(v(\kappa) \kappa \) (value of financial equity)
- \(d-e \) (net dividends)
- Output Growth Rate
- Log–Output
- Probability of Crisis State

Graphs and charts illustrating the dynamic setup's response to dispersion shock.
Conclusions

1. Study a.i. and financial intermediation
 - Easy to adapt to study spill-overs, fire-sales.
Conclusions

1. Study a.i. and financial intermediation
 ▶ Easy to adapt to study spill-overs, fire-sales.

2. Pecuniary externality: banks fail to internalize risk of triggering crisis
 ▶ Capital requirements, dividend policies, government equity, CoCo.
Financial Risk Capacity

Saki Bigio
New York University

June 27, 2011