Adverse Selection and Liquidity Distortion in Decentralized Markets

Briana Chang

Northwestern University

Aug 9, 2011
Decentralized markets suffer massive illiquidity (buyers’ strike)

Question: Why markets remain illiquid even w/ positive gain from trade?

This paper:
 - An equilibrium model of illiquidity
 - Endogenous market segmentation
Introduction

Overview

- Decentralized markets suffer massive illiquidity (buyers’ strike)
- Question: Why markets remain illiquid even w/ positive gain from trade?
- This paper:
 - An equilibrium model of illiquidity
 - Endogenous market segmentation

- Liquidity: How fast a seller can find a buyer to cash his asset?
- Key feature: decentralized trading market with
 - Search frictions: eg, Over-the-Counter market (OTC)
 - Adverse Selection: sellers have private info about their asset quality
 - Example: Asset-backed securities, housing market, Corporate assets
Decentralized markets suffer massive illiquidity (buyers’ strike)
Question: Why markets remain illiquid even w/ positive gain from trade?
This paper:
 - An equilibrium model of illiquidity
 - Endogenous market segmentation

Liquidity: How fast a seller can find a buyer to cash his asset?
Key feature: decentralized trading market with
 - Search frictions: eg, Over-the-Counter market (OTC)
 - Adverse Selection: sellers have private info about their asset quality
 - Example: Asset-backed securities, housing market, Corporate assets

Two possible dimensions of market distortion:
 - price discount?
 - illiquidity?
Results

- Result 1 (Unobserved asset quality):
 - Liquidity is downward distorted
 - The higher the dispersion (range), the more illiquid the market
Results

- Result 1 (Unobserved asset quality):
 - Liquidity is downward distorted
 - The higher the dispersion (range), the more illiquid the market
- Result 2 (+Unknown motives for sale):
 - A submarket with price discount coexists with illiquid submarkets
- Predictions on price, liquidity (trade volume), market segmentation
Results

- **Result 1 (Unobserved asset quality):**
 - Liquidity is downward distorted
 - The higher the dispersion (range), the more illiquid the market

- **Result 2 (+Unknown motives for sale):**
 - A submarket with price discount coexists with illiquid submarkets

- **Predictions on price, liquidity (trade volume), market segmentation**

- **Relation to Guerrieri, Shimer and Wright (2010):**
 - a dynamic setting in asset trading market
 - a mechanism design approach
 - a semi-pooling Eq may arise
Related Literature

- **Asset market with search friction:**
 - Monetary Search: Williamson and Wright (1994), Trejos and Wright (1995)...

- **Asset market with adverse selection:** Akerlof (1970), Eisfeldt (2004)

- **Competitive Search Equilibrium:**
 - Complete information: Moen (1997), Mortensen and Wright (2002)
 - Decentralized price competition: Kircher (2010)
 - w/ Adverse Selection: Guerrieri, Shimer and Wright (2010)
Roadmap

- Setup
- Basic Model
- Generalization
- Obscure motives for sale
- Conclusion
Setup

- Players:
 - A continuum of sellers with asset quality $s, s \in S = [s_l, s_h]$ with $G(s)$
 - A continuum of homogenous buyers (more than sellers)

- Flow payoff of owning an asset s
 - Sellers: $s - c$
 - Buyers: s

- Setup: continuous time, risk-neutral, indivisible asset

- Competitive Search:
 - Buyers post trading prices p, at a flow cost $k > 0$
 - Sellers *direct* their search toward their preferred market
 - Traders meet randomly at each market
 - The meeting rate depends on buyer-seller ratio $\theta(p)$:
 - $m(\theta) = \theta^\rho$ for sellers ($\rho < 1$)
 - $\frac{m(\theta)}{\theta}$ for buyers
Competitive Search Equilibrium

- Each submarket is characterized by \((p, \theta(p))\)

Equilibrium Conditions:
- A Seller *directs* their search optimally, given \((p, \theta(p))\)
- A Buyer is indifferent among all submarkets \((p, \theta(p))\), expecting assets quality:
 \[
 \int \frac{\bar{s}}{r} \mu(\bar{s}|p) d\bar{s}
 \]
- No profitable deviation for buyers by posting a new price
Off-Path Belief of Buyers

- Opening new submarkets by posting p':
 - Take $V^*(s)$ as given: Market utility property
 - Form a belief about $\theta(p')$ and the types he will attract $T(p')$
- $\theta(p')$: A lowest θ for which he can attract a seller
- $T(p')$: The types which are most likely to come
Off-Path Belief of Buyers

- Opening new submarkets by posting p':
 - Take $V^*(s)$ as given: *Market utility property*
 - Form a belief about $\theta(p')$ and the types he will attract $T(p')$

$\theta(p')$: A lowest θ for which he can attract a seller
$T(p')$: The types which are most likely to come
No pooling
Equilibrium Characterization

- **Equilibrium:**
 - Sellers *direct* their search toward their preferred market
 - Buyers is indifferent among all submarkets $U_b = 0$
 - No profitable deviation p' for buyers, expecting $\theta(p')$ and $T(p')$
Equilibrium Characterization

- **Equilibrium:**
 - Sellers *direct* their search toward their preferred market
 - Buyers is indifferent among all submarkets $U_b = 0$
 - No profitable deviation p' for buyers, expecting $\theta(p')$ and $T(p')$

- **A Mechanism Design Approach:** a market designer $\{\theta(\cdot), p(\cdot)\}$
 - **On the sellers' side:**
 - Promise a seller who reports his type $\hat{s} \in S$, with the pair $(p(\hat{s}), \theta(\hat{s}))$
 - **On the buyers' side:** *(In a matching environment)*
 - feasibility constraint (free-entry)
 - the recommended posting price p must be optimal for buyers
Two Steps

- **Step 1:** Characterize the set of feasible mechanism \(\alpha = (p^\alpha, \theta^\alpha, V^\alpha) \in A \)
 - IC for sellers \(V^*(s) = \max \hat{s} V(\theta(\hat{s}), p(\hat{s}), s) \), IR, free entry
- **Proposition 1:** The pair of function \(\{\theta(\cdot), p(\cdot)\} \) satisfies sellers’ IC condition if and only if

\[
V^*(s) = \frac{1}{r + m(\theta^*(s))} \text{ is non-decreasing} \quad \text{(M)}
\]

\[
V^*(s) = \frac{s - c + p^*(s) \cdot m(\theta^*(s))}{r + m(\theta^*(s))} \quad \text{(ICFOC)}
\]

\[
= V^*(s_L) + \int_{s_L}^{s} V_s(\theta^*(\tilde{s}), \tilde{s}) d\tilde{s}
\]

(Milgrom and Segal (2002))
Basic Model

Buyers’ Optimality Condition

- **Step 2:** no profitable deviation by posting a new price, given $\alpha \in A$
- Lemma 1: pin down the type which is mostly likely to come
- The necessary condition for which $\alpha \in A$ can be decentralized
 - No pooling $\implies p(s) = \frac{s}{r} - \frac{k\theta(s)}{m\theta(s)}$
 - $V^*(s_L) = V^{FB}(s_L)$

Remarks:
- A least-cost separating equilibrium (Gale (1992), Guerrieri, et (2010)) only when buyers’ willingness to pay matches with sellers’ waiting preference
Buyers’ Optimality Condition

- **Step 2:** no profitable deviation by posting a new price, given \(\alpha \in A \)
- Lemma 1: pin down the type which is mostly likely to come
- The necessary condition for which \(\alpha \in A \) can be decentralized
 - No pooling \(\implies p(s) = \frac{s}{r} - \frac{k\theta(s)}{m\theta(s)} \)
 - \(V^*(s_L) = V^{FB}(s_L) \)

Remarks:
- A least-cost separating equilibrium (Gale (1992), Guerrieri, et (2010))
Buyers’ Optimality Condition

- **Step 2:** no profitable deviation by posting a new price, given $\alpha \in A$
- Lemma 1: pin down the type which is mostly likely to come
- The necessary condition for which $\alpha \in A$ can be decentralized
 - No pooling $\implies p(s) = \frac{s}{r} - \frac{k\theta(s)}{m\theta(s)}$
 - $V^*(s_L) = V^{FB}(s_L)$

Remarks:
- A least-cost separating equilibrium (Gale (1992), Guerrieri, et al. (2010))
- only when buyers’ willingness to pay matches with sellers’ waiting preference
Solution

- $\theta^*(s)$ is the solution to the differential equation DE

Equilibrium $\theta^*(s)$

- Initial condition: $\theta^*(s_L) = \theta^{FB}(s_L)$ & price schedule: $p^*(s) = \frac{s}{r} - \frac{k\theta^*(s)}{m(\theta^*(s))}$

- Downward Distorted market tightness (for better assets)
Short Summary

- **Endogenous market illiquidity**
 - A phenomenon of buyers’ strike
 - Liquidity works as a screening device (Guerrieri and Shimer (2011))
 - Independent of assumed distribution
 - $\theta^*(s)$ crucially depends on the range of underlying asset quality
Endogenous market illiquidity

A phenomenon of buyers’ strike
Liquidity works as a screening device (Guerrieri and Shimer (2011))
Independent of assumed distribution
θ*(s) crucially depends on the range of underlying asset quality

Implications:

different severities of the adverse selection: \((y + \sigma_i s) \Rightarrow \theta^*(s; \sigma_i)\)
assets paying similar cash flow can differ significantly in their liquidity
capital reallocation is low when underlying dispersion is high

Can easily incorporate:

A general payoff function
Resale

\[rJ(s) = s + \delta(V(s) - J(s)) \]

Heterogenous buyers
Obscure Motives for Sale

- Sellers have different liquidity position c and it is unobserved by the market
- Two dimensions sellers’ type (s_i, c_i)
- The type who are willing to wait longer \Rightarrow the more valuable assets
- The original screening mechanism must adjust
Obscure Motives for Sale

- Sellers have different liquidity position c and it is unobserved by the market.
- Two dimensions sellers’ type (s_i, c_i)
- The type who are willing to wait longer $= ?$ the more valuable assets
- The original screening mechanism must adjust
- A Seller’s liquidity preference is determined by his flow payoff

$$x = s_i - c_i$$

- The key condition: is $E[s|x]$ monotonically increasing?
 - Yes \implies can be nested in our general model $h(x) \equiv E[s|X = x]$
 - eg: $c_i \sim U[c_L, c_H]$
 - No \implies Buyers’ willingness to pay doesn’t align with sellers’ liquidity preference
 - A semi-pooling equilibrium
An Example of Non-Monotonicity

- $s_i \in S$ and $c_i \in \{c_H, c_L\}$ and $P(c_H|s) = \lambda$

Diagram:*

- **X-axis:** sellers’ value of holding the asset $x = s_i - c_i$
- **Y-axis:** how much is x actually worth to buyers

Equations:

$E[s|X=x]$

$x + c_H$

$x + E[c]$

$x + c_L$

s_{L-H}

s_{H-L}

Buyers’ value $h: X \rightarrow R$
An Equilibrium with Fire Sale

- Constructing a semi-pooling EQ x_1

 $x < x_1$: a pooling market in which buyers get $E[s|x < x_1]$
 - Liquid market with price discount

 $x \geq x_1$: separated submarkets in which buyers get $x + c_L$
 - Liquidity distortion (as before)

- Apply Proposition 1 and Lemma 1
 - Key conditions: $V^*(x_1) = V^{FB}(x_1)$ and $V^*(x_L) \geq V^{FB}(c_H, s_L)$
Conclusion

- Two important dimensions in the trading market: \textit{Price} and \textit{Liquidity}
 - Standard Lemon Model: high types subsidize low types (pooling)
 - Basic Model: Liquidity Distortion (full separation)
 - Unobserved selling motives: Price + Liquidity distortion (semi-pooling)

- Different market distortion arise endogenously: Price discount? illiquid risk?
 - Sellers’ liquidity preference: asset quality (common value) + liquidity position (private value)
 - Buyers’ willingness to pay

- Jointly determination of price, liquidity and market segmentation
Off-Path

- Off-path: A buyer open up new submarkets by posting $p' \notin P^*$
- Market utility property (take $V^*(s)$ as given)
 - Belief about market tightness $\theta(p')$

 $$
 \theta(p', s) \equiv \inf \{ \tilde{\theta} > 0 : U(p', \tilde{\theta}, s) \geq V(s) \}
 $$

 $$
 \theta(p') \equiv \inf_s \theta(p', s)
 $$
Off-Path

- Off-path: A buyer open up new submarkets by posting \(p' \notin P^* \)
- Market utility property (take \(V^*(s) \) as given)
 - Belief about market tightness \(\theta(p') \)
 \[
 \theta(p', s) \equiv \inf\{\bar{\theta} > 0 : U(p', \bar{\theta}, s) \geq V(s)\}
 \]
 \[
 \theta(p') \equiv \inf_s \theta(p', s)
 \]

- Expecting to attract the type \(s \)
 \[
 T(p') = \arg \inf_{s \in S} \{\theta(p', s)\}
 \]
 \[
 \mu(s|p') = 0 \text{ if } s \notin T(p')
 \]

There does not exist any \(p' \) such that \(U_b(p, \theta(p'), \mu_{p'}) > 0 \), where \(\theta(p') \) and \(\mu(s|p') \) satisfy restriction above above.
Substituting payment schedule \(p(s) = \frac{h(s)}{r} - \frac{k\theta(s)}{m(\theta(s))} \) into (ICFOC):

\[
V(s) = \frac{u(s) + \left(\frac{h(s)}{r} - \frac{k\theta}{m(\theta)} \right) m(\theta^*(s))}{r + m(\theta^*(s))} = V(s_l) + \int_{s_l}^{s} U_s(\theta^*(\tilde{s}), \tilde{s}) d\tilde{s}
\]

→ differential equation of \(\theta^*(s) \):

\[
\frac{d\theta^*(s)}{ds} = \frac{\frac{\theta h_s(s)}{\rho r} (r + m(\theta))}{[(h(s) - u(s)) + \frac{k}{\rho} ((\rho - 1)\theta - \frac{r\theta}{m(\theta)})]} \equiv f(\theta, s)
\]
Equilibrium

Definition

An equilibrium consists of P^*, a function of $V^* : S \rightarrow R_+$, a market tightness function $\theta(\cdot) : P \rightarrow [0, \infty]$, the conditional distribution of sellers in each submarket $\mu : S \times P^* \rightarrow [0, 1]$, such that the following conditions hold:

$E1$ (optimality for sellers): let

$$V^*(s) = \max \left\{ \frac{s - c}{r}, \max_{p' \in P^*} V(p', \theta(p'), s) \right\}$$

and for any $p \in P^*$ and $s \in S$, $\mu(s|p) > 0$ implies

$$p \in \arg \max_{p' \in P^* \cup \emptyset} V(p', \theta(p'), s)$$

$E2$ (optimality for buyers and free-entry): for any $p \in P^*$

$$0 = U_b(p, \theta(p), \mu_p)$$

;and there does not exist any $p' \in P$ such that $U_b(p', \theta(p'), \mu_{p'}) > 0$
The types which are most likely to come

Lemma

Given any mechanism $\alpha = (p^\alpha, \theta^\alpha, V^\alpha) \in A$, for any price $p' \notin \text{range of } p^\alpha$, the unique type $T(p')$ attracted by p' is given by

$$T(p') = s^+ \cup s^-$$

where $s^- = \inf\{s \in S | p' < p^\alpha(s)\}$

$s^+ = \sup\{s \in S | p' > p^\alpha(s)\}$

![Diagram showing types and price relationship]
Constructing a Semi-pooling EQ

Reconstruct $h(\cdot)$ by bunching types: h^* solves $\int_{\xi_L}^{\phi_1(h)} h(x) \, dx = h$
Also: \[\mu(h) = \int_{\tilde{S}_L}^{\phi_1(h)} h(x) \, dx \geq h \]

The set of Eq: the marginal type \(x_1 \in (s_H - c_H, x^*) \)
The Marginal Type

The case when $\mu(h) > h$