A Long-Run, Short-Run and Politico-Economic Analysis of the Welfare Costs of Inflation

Scott J. Dressler

Villanova University

Summer Workshop on Money, Banking, Payments and Finance
August 17, 2011
Motivation

“Indeed, most central banks around the world aim to set inflation above zero, usually at about two percent.”

- Federal Reserve Chairman Ben Bernanke, April 27, 2011
Motivation

"Indeed, most central banks around the world aim to set inflation above zero, usually at about two percent."

- Federal Reserve Chairman Ben Bernanke, April 27, 2011

WHY?
Question

What are the welfare costs of inflation...
Question

What are the welfare costs of inflation...

- in an environment with micro-foundations for holding money...
Question

What are the welfare costs of inflation...

- in an environment with micro-foundations for holding money...
- that delivers a nondegenerate monetary distribution...
Question

What are the welfare costs of inflation...

- in an environment with micro-foundations for holding money...
- that delivers a nondegenerate monetary distribution...
- that matches key moments of the empirical monetary distribution in US?
More Motivation

Several papers show that a distributional assessment of monetary policies can greatly affect welfare analysis

- Dressler (2011): assumes Walrasian markets, various buyer-seller ratios & degrees of persistence
More Motivation

A distributional analysis captures a trade-off between two effects of inflation

- **Real Balance Effect**
 - inflation reduces real money balances for all agents

- **Redistributive Effect**
 - agents with below (above) average money holdings view inflation as a subsidy (tax)

Acurately assessing these effects requires a monetary distribution matching relevant moments of US data

- 2004 Survey of Consumer Finances
Figure: SCF Checking Data, truncated at 95th percentile
<table>
<thead>
<tr>
<th>Percentiles:</th>
<th>25</th>
<th>50</th>
<th>75</th>
<th>Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td>Checking</td>
<td>0.0537</td>
<td>0.4400</td>
<td>1.3201</td>
<td>0.5107</td>
</tr>
<tr>
<td>Transaction</td>
<td>0.0837</td>
<td>0.4411</td>
<td>1.4230</td>
<td>0.5380</td>
</tr>
</tbody>
</table>

Table: Normalized distributions; SCF data truncated at 95th percentile
Figure: Lorenz Curves, SCF Data
This Paper

Follows Dressler (2011), alters environment to deliver monetary distribution in line with data

- all agents produce & consume, some receive a preference shock
- delivers a smaller precautionary demand for money
- mass of agents near zero (similar to data)

Environment calibrated to match

- Monetary Velocity
- Median-Mean ratio in SCF data
This Paper

The welfare implications of inflationary monetary policies are assessed in three different ways

- Long-run: comparing a nonzero inflation steady state with the zero inflation steady state
This Paper

The welfare implications of inflationary monetary policies are assessed in three different ways

- **Long-run**: comparing a nonzero inflation steady state with the zero inflation steady state
- **Short-run**: compare transition to a nonzero inflation steady state with remaining at zero inflation steady state
This Paper

The welfare implications of inflationary monetary policies are assessed in three different ways

- Long-run: comparing a nonzero inflation steady state with the zero inflation steady state
- Short-run: compare transition to a nonzero inflation steady state with remaining at zero inflation steady state
- Politico-economic: let agents compare each inflation rate and vote.
Results

- Long-run welfare costs are large
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect

- Short-run welfare costs are also large
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect

- Short-run welfare costs are also large
 - e.g., transition to 10% inflation from 0% costs 2.25% of consumption, takes only 5 periods
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect

- Short-run welfare costs are also large
 - e.g., transition to 10% inflation from 0% costs 2.25% of consumption, takes only 5 periods
 - **Total** costs of 10% inflation can be as high as 7.35%
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect

- Short-run welfare costs are also large
 - e.g., transition to 10% inflation from 0% costs 2.25% of consumption, takes only 5 periods
 - **Total** costs of 10% inflation can be as high as 7.35%

- Median voter usually prefers less inflation than presently experiencing
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect

- Short-run welfare costs are also large
 - e.g., transition to 10% inflation from 0% costs 2.25% of consumption, takes only 5 periods
 - **Total** costs of 10% inflation can be as high as 7.35%

- Median voter usually prefers less inflation than presently experiencing
 - e.g., median vote when currently at 5% inflation just under 0%
Results

- Long-run welfare costs are large
 - e.g., 10% inflation relative to 0% costs 5.10% of consumption
 - RB effect significantly dominates Redistributive effect

- Short-run welfare costs are also large
 - e.g., transition to 10% inflation from 0% costs 2.25% of consumption, takes only 5 periods
 - **Total** costs of 10% inflation can be as high as 7.35%

- Median voter usually prefers less inflation than presently experiencing
 - e.g., median vote when currently at 5% inflation just under 0%
 - RB effect dominates, BUT redistributive effect results in (stationary) equilibrium vote **above** Friedman Rule
Related Literature

Monetary Literature:

- Molico (2006); Molico & Chiu (2008, 2011); Dressler (2011)
- Imrohoroglu (1992); Erosa & Ventura (2002); and others...
- Micro-founded monetary model delivers quantitative welfare costs while matching key moment of distribution

Politico-Economy (with Money) Literature:

- Bhattacharya et al. (2001, 2005); Bullard & Waller (2004); Albanesi (2007); and others...
- Prevailing inflation rate voted on by agents facing idiosyncratic shocks (Corbae et al., 2009)
Environment

- Discrete time, infinite horizon

- Exists a unit measure of infinitely-lived agents
 - All agents produce & consume a perfectly divisible, non-storable good

- Each agent receives an uninsurable, idiosyncratic preference-shock \(e_t \in E \)
 - finite state markov process \(\Pi (e_{t+1} = e' | e_t = e) \)
 - \(E = \{b, s\} \)
 - \(e = b(s) \rightarrow \) relatively high (low) consumption-demand shock.
Environment

Preferences of type-e agent:

\[
u(x_t, y_t, e_t) = \frac{e_t x_t^{1-\sigma}}{1 - \sigma} - \frac{y_t^{(1+1/\gamma)}}{1 + 1/\gamma}\]

- \(x\) (\(y\)) denotes consumption (production) of the good
- Frisch elasticity: \(\gamma\)
- relatively high preference shock \(\rightarrow u(x, y, b) > u(x, y, s), u_1'(x, y, b) > u_1'(x, y, s) \quad \forall x, y > 0\)
Environment

- There exists a stock \hat{M}_t of fiat money that grows at rate μ_t

$$\hat{M}' = (1 + \mu_t) \hat{M}$$

- Agents can hold any nonnegative amount of money ($\hat{m}_t \in \mathbb{R}_+$)

- New money injected via identical, lump-sum transfers τ_t to all agents at beginning of the period
Introduction

Model

Results

Conclusion

Environment

- Agents receive shock, granted access to a competitive (Walrasian) market
 - take a single price for the good (\hat{P}) as given
 - type b agents may want to consume more than they produce (net buyers)
 - type s agents may want to produce more than they consume (net sellers)
- In addition to this temporal double coincidence problem, agents are anonymous (no credit)
Environment

- $\Gamma_t (\hat{m}_t, e_t)$ denotes joint distribution of money holdings & types across agents with $\Gamma_{t+1} = H(\Gamma_t, \mu_t)$

$$\hat{M}_t = \int \hat{m}_t d\Gamma_t (\hat{m}_t, e_t)$$

$$X_t = \int x_t d\Gamma_t (\hat{m}_t, e_t) \quad \text{and} \quad Y_t = \int y_t d\Gamma_t (\hat{m}_t, e_t)$$

- Normalizing nominal variables by beginning-of-period money supply delivers resource constraints

$$M_t = \int m_t d\Gamma_t (m_t, e_t) = 1$$
Environment

\[V (m, e; \Gamma, \mu) = \max_{x, y, m'} u (x, y, e) + \beta \sum_{e'} \Pi (e' | e) V (m', e'; \Gamma', \mu') \]

subject to:

\[\frac{m + \mu}{1 + \mu} + P (y - x) \geq m' \]

\[x, y, m' \geq 0 \]

\[\Gamma' = H (\Gamma, \mu) \text{ and } \mu' = \Psi (\Gamma, \mu) \]

Solution generates decision rules:

\[x = \eta (m, e; \Gamma, \mu), \quad y = g (m, e; \Gamma, \mu), \quad m' = h (m, e; \Gamma, \mu) \]
Recursive Competitive Equilibrium (RCE)

Definition: Given $\Psi(\Gamma, \mu)$, a *RCE* is a set of functions $\{V, \eta, g, h, H, P\}$ such that:

1. Given (Γ, μ, H, Ψ), functions $V(\cdot)$, $\eta(\cdot)$, $g(\cdot)$, and $h(\cdot)$ solve household’s problem.
2. Aggregate resource constraint is satisfied

$$X = \int xd\Gamma(m, e) = \int yd\Gamma(m, e) = Y$$

3. Prices clear markets for goods (condition 2) and money.
4. The law of motion for money is satisfied.
5. $H(\Gamma, \mu)$ is given by

$$\Gamma'(m', e') = \int 1_{h(m,e;\Gamma,\mu)=m'} \Pi(e'|e) \, d\Gamma(m, e)$$
Politico-Economic Equilibrium

Agents consider a one-pd deviation: \(\mu' \neq \Psi (\Gamma, \mu) \)

\[
\tilde{V} (m, e; \Gamma, \mu, \mu') = \max_{x,y,m'} u (x, y, e) + \beta E_{e'|e} V (m', e'; \Gamma', \mu')
\]

s.t.

\[
\frac{m + \mu}{1 + \mu} + P (y - x) \geq m'
\]

\[
x, y, m' \geq 0
\]

\[
\Gamma' = \tilde{H} (\Gamma, \mu, \mu')
\]

Solution generates decision rules:

\[
x = \tilde{\eta} (m, e; \Gamma, \mu), \quad y = \tilde{g} (m, e; \Gamma, \mu), \quad m' = \tilde{h} (m, e; \Gamma, \mu),
\]
Politico-Economic RCE (PRCE)

Definition: A PRCE is:

1. \(\{ V, \eta, g, h, H, P \} \) that satisfy a RCE;
2. \(\{ \tilde{V}, \tilde{\eta}, \tilde{g}, \tilde{h} \} \) that solves problem at a price that clears money & goods markets, with \(\tilde{H} \) satisfying

\[
\Gamma (m', e') = \int 1_{\{\tilde{h}(m,e;\Gamma,\mu)=m'\}} \Pi (e'|e) \ d\Gamma (m, e)
\]

3. in state \((m, e)\), household \(i\)'s most preferred \(\mu^i\) satisfies

\[
\mu^i = \Psi (((m, e)_i, \Gamma, \mu) = \arg \max_{\mu'} \tilde{V} ((m, e)_i ; \Gamma, \mu, \mu')
\]

4. policy outcome \(\mu^m = \Psi (\Gamma, \mu) = \Psi ((m, e)_m , \Gamma, \mu)\) satisfies

\[
\int I_{\{(m,e):\mu^i \geq \mu^m\}} d\Gamma (m, e) \geq \frac{1}{2}, \quad \int I_{\{(m,e):\mu^i \leq \mu^m\}} d\Gamma (m, e) \geq \frac{1}{2}
\]
Results contain three related analyses

- Short-run: compares transition to nonzero steady state with remaining at zero inflation steady state [Ríos-Rull (1999)]

- Politico-economic: assumes agents vote on a future (permanent) inflation rate, monetary authority has full commitment
 - simplifies sequential voting problem, agents compare short-run transitions [Corbae et al. (2009)]
Parameter Values (all exercises)

- $\beta = 0.96$
- $\sigma = 2.0$
- $\gamma = 1/2$
- $e_b = 4.76$, $e_s = 1$
- $\Pi(b|e) = \Pi(b) = 0.69$ (transient shocks)

Calibrated so steady state with $\mu = 2$ displays:

- Velocity = 5
- median of distribution = 0.44
- Implied B/S ratio = 2.26
Figure: Value functions & decision rules, $\mu = 0.00$
Figure: Stationary distribution of money holdings, $\mu = 0.00$
Figure: Lorenz curves
Long-Run Results

<table>
<thead>
<tr>
<th>μ (%)</th>
<th>P</th>
<th>med(m)</th>
<th>Vel.</th>
<th>std(m)</th>
<th>Mkt(%)</th>
<th>Gini</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3.95</td>
<td>0.15</td>
<td>0.64</td>
<td>0.20</td>
<td>1.16</td>
<td>16.03</td>
<td>0.51</td>
</tr>
<tr>
<td>−3.0</td>
<td>1.28</td>
<td>0.76</td>
<td>1.72</td>
<td>0.92</td>
<td>14.45</td>
<td>0.50</td>
</tr>
<tr>
<td>−2.0</td>
<td>1.93</td>
<td>0.80</td>
<td>2.59</td>
<td>1.03</td>
<td>13.53</td>
<td>0.55</td>
</tr>
<tr>
<td>0</td>
<td>2.94</td>
<td>0.48</td>
<td>3.94</td>
<td>1.17</td>
<td>12.26</td>
<td>0.61</td>
</tr>
<tr>
<td>2.0</td>
<td>3.73</td>
<td>0.43</td>
<td>5.00</td>
<td>1.25</td>
<td>11.34</td>
<td>0.64</td>
</tr>
<tr>
<td>5.0</td>
<td>4.86</td>
<td>0.27</td>
<td>6.51</td>
<td>1.36</td>
<td>10.23</td>
<td>0.67</td>
</tr>
<tr>
<td>10</td>
<td>6.68</td>
<td>0.00</td>
<td>8.93</td>
<td>1.51</td>
<td>8.83</td>
<td>0.72</td>
</tr>
</tbody>
</table>
Long-Run Welfare Results

Calculated in standard consumption-equivalent manner

- Average expected value with inflation rate μ: $W(\mu)$

\[
W(\mu) = \Pi(b) W(b, \mu) + (1 - \Pi(b)) W(s, \mu)
\]

\[
W(b, \mu) = \Phi \int \left((1 - \beta \Pi(s|s)) u(x_{\mu}, y_{\mu}, b) + \beta (1 - \Pi(b|b)) u(x_{\mu}, y_{\mu}, s) \right) d\Gamma_{\mu}(m, b)
\]

\[
W(s, \mu) = \Phi \int \left(\beta (1 - \Pi(s|s)) u(x_{\mu}, y_{\mu}, b) + (1 - \beta \Pi(b|b)) u(x_{\mu}, y_{\mu}, s) \right) d\Gamma_{\mu}(m, s)
\]

\[
\Phi = (1 - \beta^2 - \beta (1 - \beta) (\Pi(b|b) + \Pi(s|s)))^{-1}
\]
Long-Run Welfare Results

• $(1 - \Delta_0(\mu)) \times 100\%$ is the welfare cost (in consumption) of having inflation rate μ relative to zero inflation

$$W(\mu) = \Pi(b)W(b,0) + (1 - \Pi(b))W(s,0)$$

$$W(b,0) = \Phi \int \left((1 - \beta \Pi(s|s)) u(\Delta_0(\mu)x_0, y_0, b) + \beta(1 - \Pi(b|b)) u(\Delta_0(\mu)x_0, y_0, s) \right) d\Gamma_0(m, b)$$

$$W(s,0) = \Phi \int \left(\beta(1 - \Pi(s|s)) U(\Delta_0(\mu)x_0, y_0, b) + (1 - \beta \Pi(b|b)) U(\Delta_0(\mu)x_0, y_0, s) \right) d\Gamma_0(m, s)$$

• Note overall welfare affected by a change in decision rule & distribution (can be decomposed)
Long-Run Welfare Results

<table>
<thead>
<tr>
<th>μ (%)</th>
<th>Overall</th>
<th>DRs only</th>
<th>Dist only</th>
</tr>
</thead>
<tbody>
<tr>
<td>-3.95</td>
<td>-11.92</td>
<td>-13.43</td>
<td>5.80</td>
</tr>
<tr>
<td>-3.0</td>
<td>-4.00</td>
<td>-5.14</td>
<td>1.56</td>
</tr>
<tr>
<td>-2.0</td>
<td>-2.23</td>
<td>-2.84</td>
<td>0.75</td>
</tr>
<tr>
<td>0</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2.0</td>
<td>1.50</td>
<td>1.81</td>
<td>-0.30</td>
</tr>
<tr>
<td>5.0</td>
<td>3.18</td>
<td>3.88</td>
<td>-0.55</td>
</tr>
<tr>
<td>10</td>
<td>5.10</td>
<td>6.36</td>
<td>-0.61</td>
</tr>
</tbody>
</table>
Figure: Decision rules for $\mu = 0.00$ (thick lines) and $\mu = 0.10$ (thin lines)
Short-Run Analysis

- Calculate transition from $\mu_0 = 0.00$ to
 $\mu = \{-0.0395, -0.03, -0.02, 0.02, 0.05, 0.10\}$
- Determine length of transition (T) for each transition from
 $\mu_0 = 0.00$ to $\mu_t = \mu$ for $t = 1, \ldots, T$
 - T is shorter (longer) when transitioning to positive (negative)
 inflation rates
 - due to more agents running into liquidity constraint at higher
 inflation
 - higher inflation distributions contain more mass points
Figure: Transition paths of normalized price levels from $\mu_0 = 0.00$
Short-Run Welfare Results

- Average expected value as economy transitions to μ

\[
\hat{W}(\mu) = \Pi(b) \hat{W}(b, \mu) + (1 - \Pi(b)) \hat{W}(s, \mu)
\]

\[
\begin{bmatrix}
\hat{W}(b, \mu) \\
\hat{W}(s, \mu)
\end{bmatrix} = \sum_{t=0}^{T} \beta^t \Pi^t \left[\int u(x_{\mu t}, y_{\mu t}, b) \, d\Gamma_{\mu t}(m, b) \right] \\
\sum_{t=0}^{T} \beta^t \Pi^t \left[\int u(x_{\mu t}, y_{\mu t}, s) \, d\Gamma_{\mu t}(m, s) \right]
\]
Short-Run Welfare Results

- \((1 - \hat{\Delta}_0(\mu)) \times 100\%\) is the welfare cost (in consumption) of transitioning to \(\mu\) relative to remaining at \(\mu_0 = 0.00\)

\[
\hat{W}(\mu) = \Pi(b) \hat{W}(b, 0) + (1 - \Pi(b)) \hat{W}(s, 0)
\]

\[
\begin{bmatrix}
\hat{W}(b, \mu) \\
\hat{W}(s, \mu)
\end{bmatrix} = \sum_{t=0}^{T} \beta^t \Pi^t \left[\int u(\hat{\Delta}_0(\mu) x_{\mu t}, y_{\mu t}, b) d\Gamma_{\mu t}(m, b) \right]
\]

\[
\begin{bmatrix}
\hat{W}(b, \mu) \\
\hat{W}(s, \mu)
\end{bmatrix} = \sum_{t=0}^{T} \beta^t \Pi^t \left[\int u(\hat{\Delta}_0(\mu) x_{\mu t}, y_{\mu t}, s) d\Gamma_{\mu t}(m, s) \right]
\]
Short-Run Welfare Results

<table>
<thead>
<tr>
<th>µ (%)</th>
<th>Overall (%)</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3.95</td>
<td>−0.07</td>
<td>120</td>
</tr>
<tr>
<td>−3.0</td>
<td>−1.57</td>
<td>27</td>
</tr>
<tr>
<td>−2.0</td>
<td>−0.91</td>
<td>30</td>
</tr>
<tr>
<td>0</td>
<td>－</td>
<td>－</td>
</tr>
<tr>
<td>2.0</td>
<td>0.64</td>
<td>6</td>
</tr>
<tr>
<td>5.0</td>
<td>1.42</td>
<td>5</td>
</tr>
<tr>
<td>10</td>
<td>2.25</td>
<td>5</td>
</tr>
</tbody>
</table>

Note: welfare directly related to change in dispersion between stationary distributions
Calculating Politico-Economic Outcome

- When assuming commitment, dynamics amount to transitions between steady states
 - Initial steady state inflation vs. all potential inflation rates
- Dynamic paths at $t = 1$ are used to calculate indirect utility at $t = 0$
- Indirect utility function used to determine voting outcome
 - must be single-peaked
Figure: Indirect utility functions for $\mu_0 = 0.00$
Median Vote Depends on Initial Inflation

<table>
<thead>
<tr>
<th>Initial Inflation</th>
<th>Voting Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>−3.95</td>
<td>−2.0</td>
</tr>
<tr>
<td>−3.0</td>
<td>−3.0</td>
</tr>
<tr>
<td>−2.0</td>
<td>−3.0</td>
</tr>
<tr>
<td>−1.0</td>
<td>−2.0</td>
</tr>
<tr>
<td>0</td>
<td>−1.01</td>
</tr>
<tr>
<td>2.0</td>
<td>−1.00</td>
</tr>
<tr>
<td>5.0</td>
<td>0.00</td>
</tr>
</tbody>
</table>
The Steady-State PRCE?

\[\mu^* = \Psi(\Gamma^*, \mu^*) \quad \text{and} \quad \Gamma^* = H(\Gamma^*, \mu^*) \]

- What is the initial inflation rate, \(\mu^* \), such that the median vote is to remain at \(\mu^* \)?
The Steady-State PRCE?

\[\mu^* = \Psi (\Gamma^*, \mu^*) \quad \text{and} \quad \Gamma^* = H (\Gamma^*, \mu^*) \]

- What is the initial inflation rate, \(\mu^* \), such that the median vote is to remain at \(\mu^* \)?
- \(\mu^* = -0.03 \)
The Steady-State PRCE?

\[\mu^* = \Psi(\Gamma^*, \mu^*) \text{ and } \Gamma^* = H(\Gamma^*, \mu^*) \]

- What is the initial inflation rate, \(\mu^* \), such that the median vote is to remain at \(\mu^* \)?
- \(\mu^* = -0.03 \)
 - Deflation is due to dominating real-balance effect
The Steady-State PRCE?

\[\mu^* = \Psi(\Gamma^*, \mu^*) \quad \text{and} \quad \Gamma^* = H(\Gamma^*, \mu^*) \]

- What is the initial inflation rate, \(\mu^* \), such that the median vote is to remain at \(\mu^* \)?
- \(\mu^* = -0.03 \)
 - Deflation is due to dominating real-balance effect
 - Redistributive effect delivers outcome above the Friedman rule\((-4.19\%)\)
Conclusion

- This paper assesses the long-run, short-run & politico-economic welfare implications of inflation in a micro-founded monetary model that delivers a monetary distribution similar to US data.

- Long-run & short-run welfare costs can be substantial.
 - Need robustness analysis.

- Politico-Economic outcome suggests deflation, but above Friedman Rule.
 - Need extension with persistent shocks (more sophisticated model).