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Introduction
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adverse selection as a source of illiquidity

sellers can always sell an asset for a low price

owners of good assets demand a high price in an illiquid market

one possible explanation for fire sales in asset markets in 2007–2008

asset purchase program can raise prices and alleviate illiquidity

contrast this with a more standard “pooling” equilibrium



Some Literature
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adverse selection with pooling:

Eisfeldt (2004), Kurlat (2009), Daley and Green (2010), Chari,
Shourideh, and Zetlin-Jones (2010), Tirole (2011)

adverse selection with separation:

De Marzo and Duffie (1999), Guerrieri, Shimer and Wright (2010),
Chang (2010)

illiquidity and search frictions:

Duffie, Garleanu and Pederson (2005), Weill (2008), Lagos and Ro-
cheteau (2009)



Model
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Model
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unit measure of risk-neutral, infinitely-lived consumers

stochastic discount factor, i.i.d.

βs with probability πs, s ∈ {l, h}

later we allow for a Markov process

fixed supply of heterogeneous trees

type j ∈ {1, . . . , J} tree produces δj units of fruit per period

δj+1 > δj > 0, measure Kj of type j trees

fruit is perishable

low β consumers sell trees to high β consumers

the owner of a tree knows its type j, but no one else does



Timeline
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each agent owns a portfolio of trees {kj}

trees produce fruit

discount factors are realized

buyers and sellers choose prices p ∈ R

trade occurs

agents consume their remaining fruit



Key Equilibrium Objects
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Θ(p) ∈ [0,∞]: buyer-seller ratio at price p

sell a tree at p with probability min{Θ(p), 1}

buy a tree at p with probability min{Θ(p)−1, 1}

Γ(p) ∈ ∆J : probability distribution over types at price p

γj(p) is the fraction of type j trees offered at price p

P: set of prices with trade

F : cumulative distribution of prices



Equilibrium
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Equilibrium
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can solve everything on a per-tree basis (Proposition 1)

vs,j : value of a type j tree to a consumer in preference state s

v̄j = πhvh,j + πlvl,j : continuation value

equilibrium is a vector (vh, vl,Θ,Γ, P, F )



Equilibrium
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buyers’ optimality:

vh,j = max
p

(

min{Θ(p)−1, 1}
δj

p
βh

∑

j′

γj′(p)v̄j′+(1−min{Θ(p)−1, 1})δj

)

+βhv̄j



Equilibrium
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buyers’ optimality:

vh,j = δj max
p

(

min{Θ(p)−1, 1}
βh

∑

j′ γj′(p)v̄j′

p
+(1−min{Θ(p)−1, 1})

)

+βhv̄j



Equilibrium
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buyers’ optimality:
vh,j = δjλ + βhv̄j,

where

λ ≡ max
p

(

min{Θ(p)−1, 1}
βh

∑

j′ γj′(p)v̄j′

p
+ (1 − min{Θ(p)−1, 1})

)



Equilibrium
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buyers’ optimality:
vh,j = δjλ + βhv̄j,

where

λ ≡ max
p

(

min{Θ(p)−1, 1}
βh

∑

j′ γj′(p)v̄j′

p
+ (1 − min{Θ(p)−1, 1})

)

active markets: p ∈ P ⇒ p solves the above problem



Equilibrium
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sellers’ optimality:

vl,j = δj + max
p

(

min{Θ(p), 1}p +
(

1 − min{Θ(p), 1}
)

βlv̄j

)



Equilibrium
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sellers’ optimality:

vl,j = δj + max
p

(

min{Θ(p), 1}p +
(

1 − min{Θ(p), 1}
)

βlv̄j

)

rational beliefs: if Θ(p) < ∞ and γj(p) > 0,

vl,j = δj + min{Θ(p), 1}p + (1 − min{Θ(p), 1})βlv̄j



Equilibrium
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all sellers’ trees are offered for sale at some price p ∈ P:

Kj
∑

j′ Kj′
=

∫

P

γj(p)dF (p)

fruit market clears:

πh

∑

j

δjKj = πl

∑

j

Kj

∫

P

Θ(p)pdF (p)



Characterization
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equilibrium exists and is unique

equilibrium is separating

algorithm for finding an equilibrium

fix λ ∈ [1, βh/βl]

find a “partial equilibrium”

check if fruit-market clears

next: algorithm to find a partial equilibrium



Buyers’ Indifference Curves
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Sellers’ Indifference Curves
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Sellers’ Indifference Curves
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Continuous Types and Continuous Time
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Continuous Types
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Continuous Types
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Closed-Form Solution
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lowest price: P (δ) =
δβh(πl + πhλ)

λ − βh(πl + πhλ)

sale probability: Θ(p) =

(

P (δ)

p

)

βh
βh−βlλ

rate of return decreasing in Θ, hence increasing in δ:

δ + P (δ)

P (δ)
=

λ + (βh − λβl)(1 − Θ(P (δ)))(1 − πh)

βh(πl + λπh)



Persistent Types and Continuous Time
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allow preferences to follow a first order Markov process: πss′

useful for taking a continuous time limit of the model

qhl and qlh are transition rates for preferences

ρh < ρl are discount rates

in continuous time, buyers contact sellers at a Poisson rate α(p)

for example, if tree types are dense on [δ, δ̄] and λ = 1:

α(p) =
qhl + qlh + ρl

(

p

P (δ)

)

qhl+qlh+ρl
ρl−ρh − 1

real trading delays even if trading opportunities are abundant

contrast with search theoretic models of illiquidity



Firesales, Flight to Quality,
and Asset Purchase Programs
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Firesales
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possible explanation for fire sales in asset markets in 2007–2008

“The crisis that can occur with debt is due to the fact that the
debt is not riskless. A bad enough shock can cause informa-
tion insensitive debt to become information sensitive, make
the production of private information profitable, and trigger
adverse selection. Instead of trading at the new and lower ex-
pected value of the debt given the shock, agents trade much
less than they could or even not at all. There is a collapse in
trade. The onset of adverse selection is the crisis.”
– Dang, Gorton, and Holmström (2009)



Firesales
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suppose initially everyone believes all trees are worth δ0

suddenly we learn there is dispersion in tree quality

expected value is δ0, but δ < δ0

value function vs,j is convex, so everyone wants to learn δ

trees become illiquid, possibly reducing all tree prices



Firesale
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Firesale
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Flight to Quality
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imagine there are two types of trees

potential adverse selection problem for type a trees

no adverse selection problem for type b trees

all fruit are perfect substitutes

emergence of adverse selection reduces λ if originally λ > 1

the price of type b trees increases

interpret this as a flight to quality



Asset Purchase Program
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suppose “government” can offer to pay p̄ > p for any tree

new equilibrium:

minimum price in private market is p̄

government buys trees which, if completely liquid, are worth less

other trees stay in the private market, prices & liquidity increase

price of another type of tree (without adverse selection) falls

if government previously owned some trees, can even be profitable



Asset Purchase Program
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Asset Purchase Program
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Pooling Environment
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Environment
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focus with assets dense on [δ, δ̄]

all trades occur at a common price p

value functions: vh(δ) = δλ + βhv̄(δ) and vl(δ) = δ + max{p, βlv̄(δ)}

seller’s optimality: ζ(δ) =

{

1 if p > βlv̄(δ)
0 if p < βlv̄(δ)

buyers’ optimality: pλ = βh

∫ δ̄

δ
ζ(δ)v̄(δ)dΦ(δ)

∫ δ̄

δ
ζ(δ)dΦ(δ)

market clearing: πh

∫ δ̄

δ

δdΦ(δ) = πlp

∫ δ̄

δ

ζ(δ)dΦ(δ)



Key Outcome
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trees with δ < δ∗ are liquid, δ > δ∗ are illiquid

δ∗ =
βh(1 − πhβh − πlβl)

βl(λ(1 − πhβh) − πlβh)

∫ δ∗

δ
δdΦ(δ)

∫ δ∗

δ
dΦ(δ)

possible nonuniqueness

but see Chari, Shourideh, and Zetlin-Jones

or assume
∫ δ∗

δ
Φ(δ)dδ is log concave



Results

“Dynamic Adverse Selection” -p. 30

notion of liquidity is dichotomous

no link between price, dividend, and liquidity

firesales: dispersion in tree quality weakly reduces the price

asset purchase program

private market price must be p̄

size of private market after intervention is indeterminate

odd behavior if the government caps the size of the program



Results
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notion of liquidity is dichotomous

no link between price, dividend, and liquidity

firesales: dispersion in tree quality weakly reduces the price

asset purchase program

private market price must be p̄

size of private market after intervention is indeterminate

odd behavior if the government caps the size of the program

using the correct notion of equilibrium matters
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Characterization Result
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solve the following sequence of problems (P-j):

vl,j =δj + max
p,θ

(

min{θ, 1}p + (1 − min{θ, 1})βlv̄j

)

s.t. p ≤ βhv̄j ,

vl,j′ ≥ δj′ + min{θ, 1}p + (1 − min{θ, 1})βlv̄j′ for all j′ < j

v̄j = πh

(

δj + βhv̄j

)

+ πlvl,j

solution is unique, except θ1 ≥ 1 (Lemma 1)

pin down θ1 to ensure fruit market clears

πh

∑

j

δjKj = πl

∑

j

θjpjKj

if this defines θ1 < 1, look for a different type of equilibrium
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