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Abstract

We introduce a small modification to a fundamental model of money in order to select

among equilibria. It turns out that intrinsic and extrinsic properties of money have implications

for equilibrium selection that are absent from other settings where coordination matters. In

particular, the time discount factor matters not only for determining whether money is better

than autarky, but also to pin down the conditions under which money is the unique equilibrium.

As the time discount factor approaches one, the economy tends to the efficient outcome.
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“For the importance of money essentially flows from its being a link between the present and the future.”

Keynes, The General Theory of Employment, Interest and Money (1936)

1 Introduction

Fundamental models of money (e.g., search, overlapping generations, turnpike) always exhibit equi-

libria where money has no value. Such equilibria might suggest that valued money is a tenuous

phenomenon, for depending on a particular coordination of beliefs. In practice, though, the exis-

tence of valued money is quite robust. Since ancient times, money is present in most economies,

and even under conditions where the suppliers of money behave in quite erratic ways, people seem
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to always coordinate on accepting money in exchange for goods. This suggests that the models are

missing something, but what is it?

In this article, we argue that what is missing in those models is a better understanding of the

distinctiveness of the coordination problem that involves the use of money. Two features of money

are particularly important in this respect. First, money is a durable asset. Thus, even if money is

not used in the near future because agents coordinate on not accepting it, agents might eventually

coordinate on its use. Second, money is a medium of exchange. Hence the benefit of accepting

money today depends not on whether agents coordinate on the use of money today, but on whether

agents coordinate on the use of money in the future. Moreover, the decision to accept money is not

made once but many times, thus the sooner the agent accepts and uses money, the sooner he will

be able to accept and use it again.

It turns out that the combination of these elements creates additional incentives to coordinate

on the use of money that are not present in standard coordination problems. To make this point, we

apply techniques from the literature on equilibrium selection in coordination games to a monetary

model. The literature on global games (Carlsson and Van Damme (1993), Morris and Shin (2000,

2003), Frankel, Morris and Pauzner (2003)) shows that the multiplicity of equilibria disappears

once the information structure of the game is slightly perturbed. A related argument applies to

dynamic games with complete information where a state variable is subject to shocks (Frankel and

Pauzner (2000), Burdzy, Frankel, and Pauzner (2001)). The key elements in those papers are:

the existence of strategic complementarities; the existence of dominant regions where one action is

strictly dominant; and a friction (asymmetric information in global games or staggered moves in

dynamic models).

We consider a monetary model that incorporates these features. Precisely, we cast our analysis

in a standard search model of money along the lines of Kiyotaki and Wright (1993) (KW). Strategic

complementarities are present in KW (and in any monetary model, since the value of money

intrinsically relies on coordination). We introduce dominant regions by assuming that the economy

experiences different states according to a random walk and might reach remote areas where either

accepting money or not accepting money is a dominant strategy. No other friction is added.

The model considers an environment where agents have complete information. Hence our setup

is quite distant from the global games literature and closer to Burdzy, Frankel, and Pauzner (2001)

(BFP). The difference is that while BFP analyses an economy where agents meet randomly and

repeatedly play a 2x2 coordination game, we consider a dynamic monetary model.
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Our main results are as follows. First, as in the literature on equilibrium selection, there is a

unique equilibrium. Money is always accepted if there are enough gains from trade, and is never

accepted if gains from trade are small. However, there is a subtle difference in the assumptions

leading to equilibrium uniqueness: a crucial assumption in BFP is that each agent has only a small

chance of changing his action in between matches, so that an agent may be locked into an action

when he enters a match. This prevents agents from shifting from one action to another purely

for coordination reasons and leads to a unique equilibrium. In contrast, in our environment, even

though we get a unique equilibrium, agents are always free to choose their actions. The reason is

that payoffs are determined by other players’ future actions. Since the value of money today comes

from its future use as a medium of exchange, an agent deciding about accepting money has to take

into account whether other agents will accept money tomorrow, or at some point in the future, but

not whether money will change hands today.

Our second, most interesting, result is that the region where money is the unique equilibrium

expands with agents’ discount factor. In general, the time discount factor influences an agent’s

decision about accepting money through two distinct channels. First, there is a "fundamental"

channel. Any fundamental model of money exhibits a delay between production and consumption

and an agent must be relatively patient if he is to incur the production cost. This channel is

well-understood and determines whether a monetary equilibrium is better than autarky, but not

if it will be selected. We unveil an additional channel, the "coordination" channel, which pins

down the equilibrium selection. This channel operates through the extrinsic property of money as

a medium of exchange and through its intrinsic property of durability. Durability implies that the

agent can both delay the use of money earned today and defer the decision to accept money. The

role of money as a medium of exchange implies that if an agent earns money today, he will be able

to spend it sooner, and consequently further opportunities to accept and spend money will also

come sooner. The larger the discount factor, the more important the role of money as a medium

of exchange and the easier it is for agents to coordinate on its use.

As the time discount factor approaches one, the economy tends to the efficient outcome: if there

are gains from trade, money is the unique equilibrium. That is in sharp contrast to BFP, where

a larger discount factor does not help selecting the efficient outcome. In their model, equilibrium

selection depends on history and risk-dominance considerations, and the time discount factor de-

termines the relative importance of each of them. If the time discount factor is large enough, the

risk-dominant equilibrium is selected regardless of whether it is efficient.
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There is a strand of literature that studies how the addition of an intrinsic value to money

may help to reduce the set of equilibria. In overlapping generations models, the focus is on the

elimination of monetary equilibria that exhibit inflationary paths (Brock and Scheinkman (1980),

Scheinkman (1980)). In search models of money, the objective is to characterize the set of fiat

money equilibria that are limits of commodity-money equilibria when the intrinsic value of money

converges to zero (Zhou (2003), Wallace and Zhu (2004), Zhu (2003, 2005)). A result that comes

out of this literature is that, as long as goods are perfectly divisible and the marginal utility is

large at zero consumption, autarky is not the limit of any commodity money equilibria. This result

critically depends on the assumption that there is a sufficiently high probability that the economy

reaches a state where fiat money acquires an intrinsic value. In contrast, our results hold even

if the probability that money ever acquires an intrinsic value is arbitrarily small and even if the

economy is eventually in states where money is not accepted. Finally, perhaps most importantly,

this literature does not deal with the relation between standing properties of money (medium of

exchange, durability) and the coordination involved in its use.

The paper is organized as follows. In section 2 we present the model and deliver our main

result. Some examples are presented in section 3 and in section 4 we conclude.

2 Model

Our environment is a version of Kiyotaki and Wright (1993).1 Time is discrete and indexed by t.

There are k indivisible and perishable goods, and the economy is populated by a unit continuum of

agents uniformly distributed across k types. A type i agent derives utility u per unit of consumption

of good i and is able to produce good i + 1 (modulo k) at a unit cost of c, with u > c. Agents

maximize expected discounted utility with a discount factor β ∈ (0, 1). There is also a storable and

indivisible object, which we denote as money. An agent can hold at most one unit of money at a

time, and money is initially distributed to a measure m of agents.

Trade is decentralized and agents face frictions in the exchange process. We formalize this

idea by assuming that there are k distinct sectors, each one specialized in the exchange of one

good. In every period, agents choose which sector they want to join but inside each sector they

are anonymously and pairwise matched under a uniform random matching technology. Each agent

faces one meeting per period, and meetings are independent across agents and independent over

1Precisely, the environment is basically the same as the one in Araujo and Camargo (2006).
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time. For instance, if an agent wants money he goes to the sector which trades the good he produces

and searches for an agent with money. If he has money he goes to the sector that trades the good

he likes and searches for an agent with the good. Due to the unit upper bound on money holdings,

a transaction may happen only when an agent with money (buyer) meets an agent without money

(seller).

We depart from the standard search model of money by assuming that, in any given period,

the economy is in some state z ∈ R. States evolve according to a random process zt = zt−1 +∆zt,

where ∆zt follows a continuous probability distribution that is independent of t, with expected

value E (∆z) and variance V (∆z). The fundamentals of the economy describing preferences (u and

β) and technology (k and c) are invariant across states. However, there exists a state ẑ > 0 such

that accepting money is a strictly dominant strategy if and only if z ≥ ẑ, and a strictly dominated

strategy if and only if z ≤ −ẑ. Throughout, we think of ẑ as being finite but very large, and we

are interested in describing how agents behave in the region z ∈ (−ẑ, ẑ).

2.1 Discussion

There are several ways in which one can motivate the existence of the dominant regions. One

possibility runs as follows. Assume that exchange is only viable if there exists a special agent in the

economy (say, the government) that provides a safe environment for trade. In states z ≤ −ẑ, there

is no trade because the government does not exist. In states z ≥ ẑ, the government exists and it

has a technology that enforces the use of money in all transactions. Finally, in states z ∈ (−ẑ, ẑ),

the government exists but it has no technology that enforces the use of money.

A slightly different environment that would generate essentially the same results would be like

this: even though money is completely fiat if z ∈ (−ẑ, ẑ), it may acquire a positive intrinsic value

if z ≥ ẑ and a negative intrinsic value if z ≤ −ẑ.2

Irrespective of the interpretation, the key implication of the existence of remote regions is that

it imposes a condition on beliefs held by agents. In one direction, it rules out the belief that money

is always going to be employed in all states of the world. In another direction, it rules out the

2That could be modelled as follows: in any state z ≥ ẑ, if an agent holds one unit of money at the beginning of
the period, he can choose between keeping this unit throughout the period and obtaining a positive flow payoff γ;
and bringing this unit into a trading post, in which there is no flow payoff but the unit can be used as a medium of
exchange. In turn, in any state z ≤ −ẑ, if an agent holds one unit of money at the beginning of the period, he can
choose between keeping this unit throughout the period, obtaining a flow payoff zero; and bringing this unit into a
trading post, in which case he can use the unit as a medium of exchange but he obtains a negative flow payoff −ξ.
We need β

1−β
γ > c, to ensure that for large enough z, an agent always produces in exchange for money; and ξ > u

to ensure that, for small enough z, an agents never uses money as a medium of exchange.
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belief that money is never going to be employed in any state of the world. In our view, equilibria

that depend on such extreme beliefs are tenuous for relying on agents being sure about how they

will coordinate on the use of money in all possible states at every point in time. As discussed by

Morris and Shin (2000), in models with multiple equilibria, it is not at all clear why agents would

be certain that everyone would always coordinate in a particular set of beliefs. Interestingly, the

existence of remote but attainable regions has a very large impact on the equilibrium set.

As it will become clear in what follows, we can make the probability of ever reaching either of

the remote regions arbitrarily small with virtually no effect in any of our results. The probability

that −ẑ and ẑ will ever be reached depends on the stochastic process of ∆z. If the expected value of

∆z is zero (and its variance is positive), both −ẑ and ẑ will eventually be reached with probability

one. If E (∆z) is positive, ẑ will eventually be reached with probability 1 regardless of how far

z = 0 is from ẑ, but the probability that −ẑ will ever be reached depends on the distance between

the initial state z = 0 and −ẑ. Likewise, if E (∆z) is negative, the probability that ẑ will ever be

reached depends on how far z = 0 is from ẑ. If this distance is large enough, the probability that

ẑ is ever reached can be arbitrarily small.

2.2 Benchmark

We initially consider the problem of an agent when the initial state z ∈ (−ẑ, ẑ), E(∆z) = 0 and

V (∆z) = 0. In this case, the economy never reaches a state where money has intrinsic value.

First, there always exists an equilibrium where an agent does not accept money simply because he

believes no other agent will ever accept money. In this case, the economy is in permanent autarky.

Now, assume that an agent believes that all other agents always accept money. Let V0 be his value

function if he does not have money, and let V1 be the corresponding value function if he has money.

We have

V1 = mβV1 + (1−m) (u+ βV0) ,

and

V0 = m [σ (−c+ βV1) + (1− σ)βV0] + (1−m)βV0,

where σ ∈ [0, 1] is the probability that the agent accepts money. For example, if an agent has

money he goes to the sector that trades the good he likes. In this sector, there is a probability m

that he meets another agent with money and no trade happens. There is also a probability (1−m)

that he meets an agent without money. In this case they trade, the agent obtains utility u, and

moves to the next period without money. A similar reasoning holds for an agent without money.
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Assume that σ = 1. This implies that

V1 − V0 = (1−m)u+mc.

It is indeed optimal to always accept money as long as −c+ βV1 ≥ βV0, i.e.,

β [(1−m)u+mc] ≥ c. (1)

Since agents with money always find it optimal to spend it, as long as (1) holds, the economy

exhibits multiple equilibria.3

2.3 General case

We now consider the case where V (∆z) > 0 and z ∈ R. The economy starts at z = 0. Suppose the

economy in period s is in state z∗ and denote by ϕ(t) the probability that any state z ≥ z∗ will be

reached at time t+ s, and not before.4 We are ready to present our first result.

Proposition 1 There is a unique equilibrium. For all states z ∈ (−ẑ, ẑ), money is always accepted

if (
∞∑

t=1

βtϕ (t)

)
[(1−m)u+mc] > c, (2)

and is never accepted if the inequality is reversed.

Proof. See Appendix.

In what follows we provide an informal proof of our result. By assumption, agents accept money

in states z ≥ ẑ and do not accept money in states z ≤ −ẑ. We are interested in the behavior of an

agent in states z ∈ (−ẑ, ẑ).

It turns out that the equilibrium conditions depend solely on the choices of an agent in a

hypothetical state z∗ ∈ (−ẑ, ẑ) that divides the state space in two regions: everyone accepts money

for all z > z∗ and nobody accepts money for all z < z∗. If an agent in this state z∗ strictly prefers

to accept money, then in the unique equilibrium of the model, money is always accepted (unless

z ≤ −ẑ). Conversely, if an agent in this hypothetical state prefers not to accept money, then money

is not accepted in the unique equilibrium of the model (unless z ≥ ẑ).

3Kiyotaki and Wright (1993) prove that there exists an equilibrium where agents accept money with probability
between zero and one. A similar equilibrium also exists here.

4Note that ϕ(t) is not a function of z∗.
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The proof uses an induction argument, where at each step strictly dominated strategies are

eliminated. The idea runs as follows. Suppose an agent in the hypothetical state z∗ strictly prefers

to accept money. Then, by continuity, there exists some ǫ such that the agent strictly prefers to

accept money in state z∗−ǫ. Moreover, incentives for an agent to accept money are increasing in the

likelihood that others will accept it later. Thus incentives for accepting money in the hypothetical

state z∗ could only become stronger if agents were to accept money for some z < z∗. In consequence,

once not-accepting money has been ruled out for all z ≥ z∗, accepting money is a dominant strategy

for an agent in any state z > z∗ − ǫ that strictly prefers to accept money in the hypothetical state

z∗. Note that this argument applies for any state z∗ ∈ (−ẑ, ẑ) satisfying the property that money

is accepted in any z > z∗ and not accepted in any z < z∗.

Now, by assumption, all agents accept money for any z ≥ ẑ. The above argument implies that if

an agent at ẑ receives a positive expected payoff from accepting money, than not accepting money

for all z ≥ ẑ− ǫ is a strictly dominated strategy, and can be eliminated. The argument can then be

repeated assuming that all agents accept money for all z ≥ ẑ − ǫ and so on. Successive iterations

of this argument lead to the conclusion that accepting money is the only strategy that survives

iterative elimination of dominated strategies for all z ∈ (−ẑ, ẑ). An agent in state −ẑ would also

like to accept money, but external conditions (say, a war) prevent money from circulating.

Conversely, suppose that an agent in the hypothetical state z∗ prefers not to accept money. An

analogous argument implies that he will also refuse to accept money at z∗ + ǫ if nobody accepts

money at z ≤ z∗, regardless of their actions at z > z∗. Thus an iterative process of elimination of

strictly dominated strategies starting from −ẑ rules out accepting money in all states z ∈ (−ẑ, ẑ).5

Now, what is the optimal choice of an agent in the hypothetical state z∗ ∈ (−ẑ, ẑ) at time 0?

There are two differences in payoffs of accepting money (V az∗) and not accepting money (V nz∗): (i)

an agent that accepts money at z∗ pays the cost c; and (ii) as soon as the economy crosses the state

z∗, an agent will spend or accept money depending on whether he had accepted money at time 0

(money is a durable good, agents can wait to spend it). Hence the difference between payoffs V az∗

5 In standard global games as described in Morris and Shin (2003), the equilibrium depends on the optimal choice
of a player with a uniform belief over the proportion of his opponents choosing each action. That could be interpreted
as the maximum degree of uncertainty about others’ behavior. Here, equilibrium depends on the optimal choice of a
player at a state that divides the state space in two regions: at the right agents accept money and at the left agents
refuse to do so. In a dynamic game, where agents accept money if the state is above a certain threshold, that can
also be seen as the maximum amount of uncertainty about others’ actions.
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and V nz∗ is given by

V az∗ − V
n
z∗ = −c+

∞∑

t=1

βtϕ(t)

[∫

z

(V1,z − V0,z) dF (z|t)

]
(3)

where the second term is the difference between the payoffs of having and not having money in

state z (V1,z − V0,z) averaged across states z and then multiplied by the probability the economy

will reach a state larger than z∗ at time t (and not before) times the discount factor.

The value of having money in some state z > z∗ is given by

V1,z = mβEzV1 + (1−m) (u+ βEzV0) ,

where the first term is the value of having money in the next period if money cannot be spent today

and the second term is the benefit of using money. The term (1 −m)βEzV0 corresponds to the

benefit of being able to accept and use money again, related to the fact that money is a medium

of exchange and future opportunities of accepting and using money arise when money is spent.

The value function of an agent without money in some state z < z∗ is

V0,z = m (−c+ βEzV1) + (1−m)βEzV0,

where the first term is the cost paid by selling a good plus the expected benefit of using money

in the future and the second term is the opportunity value of trading in the future. Hence, for any

z > z∗

V1,z − V0,z = (1−m)u+mc, (4)

All terms depending on β cancel out. That is only true because money can be accepted and

spent many times. If money could only be accepted and spent once, the term (1 − m)βEzV0

would be absent from the expression for V1,z and thus V1,z − V0,z would depend negatively on

β and results would be very different. Combining equations (3) and (4) yields the condition for

indifference between accepting money or not that determines the equilibrium condition in (2).

The result in Proposition 1 holds for any value of ẑ, no matter how large it is. Indeed, the role

of the regions z ≥ ẑ and z ≤ ẑ is simply to rule beliefs that money will never be accepted in any

state, and money will always be accepted in any state. This allows us to rule out either autarky or

money in every state z ∈ (−ẑ, ẑ) by iterative deletion of strictly dominated strategies. There is no

mention of the (positive or negative) intrinsic value of money in condition (2).
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Remark 1 Proposition 1 holds even if the probability that z ≥ ẑ is ever reached is arbitrarily small.

Starting from a given state z, if E (∆z) is negative, the probability of reaching the region where

accepting money is a dominant strategy can be arbitrarily small by choosing a large enough ẑ.

Likewise, if E (∆z), the probability of reaching the region where accepting money is a dominated

strategy can be made arbitrarily small. Such long term probabilities are not important in the

computation for the condition in (2). All that matters is the set of probabilities ϕ (t) of reaching a

nearby state in the following periods, while the discount rate is still not too low. Hence, two very

similar stochastic processes, one with E (∆z) = 0 and another with a slightly negative E (∆z) will

yield very similar conditions for equilibria, although the difference between the probabilities of ever

reaching ẑ can be arbitrarily close to 1.6

The assumption that z follows a random walk implies that in the long run the economy will

usually be at states outside the (−ẑ, ẑ) interval. However, a small modification of the random

process could rule out this outcome without significantly affecting our results. For instance, consider

a process such that E (∆z) = −η for any z > 0 and E (∆z) = η for any z < 0. For η sufficiently

small, the set of probabilities of reaching a nearby state in the following periods would not be

substantially affected, and thus the condition for a unique monetary equilibrium would be very

similar to (2). We can then make sure that the economy will rarely be outside of the (−ẑ, ẑ)

interval by choosing a large enough ẑ.

2.4 Convenient parametrization

In order to make easy the comparison between the condition for existence of the monetary equilib-

rium in the benchmark model (1) and the conditions for uniqueness of the monetary equilibrium

in this model, it is worth rewriting the condition in (2) as

λβ [(1−m)u+mc] > c

so that the only difference between the condition for existence of a monetary equilibrium in (1) and

the condition in (2) is the factor λ, given by

λ =
∞∑

t=1

βt−1ϕ (t) . (5)

6Under the usual assumption of common knowledge of rationality, the distance between the current state z and ẑ
can be disregarded from the analysis. That distance could have some effect on the conditions if boundedly rational
agents were not able to think too far ahead, for example.
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The factor λ is a number between 0 and 1. If λ = 0, condition (6) is never satisfied and autarky

is always the unique equilibrium. The larger the value of λ, the larger the region where money is

the unique equilibrium. If λ = 1, money is the unique equilibrium whenever it is an equilibrium in

the benchmark case. Thus λ provides us with a convenient way to describe the changes on the set

of equilibria. The key question is whether λ is closer to 0 or to 1.

2.5 The role of the time discount factor

The main distinguishable results of this model concern the effects of the time discount factor, which

can be interpreted as representing the frequency of meetings in the economy. In the benchmark

model, money can only be an equilibrium if β [(1−m)u+mc] > c: since the benefits of selling

a good are only enjoyed in the future, an increase in the time discount factor effectively implies

larger gains from trade and thus raises the incentives for accepting money. This effect is present

here as well as is any other monetary model.

In the model with V (∆z) > 0, money is an equilibrium if and only if λβ [(1−m)u+mc] > c.

The key result here regards the effects of β on λ, which can be seen as a corollary of Proposition 1

using the normalization that leads to Equation (5) and are absent from other models.

Proposition 2 The time discount factor β affects λ in the following way:

1. λ is increasing in β.

2. If E(∆z) = 0, as β → 0, λ→ 1
2 .

3. If E(∆z) = 0, as β → 1, λ→ 1.

Proof. (1) Equation (5) shows that λ is increasing in β. (2) As β → 0, λ → ϕ(1). If

E(∆z) = 0, ϕ(1) = 1/2. (3) If E(∆z) = 0,
∑∞
t=1 φ (t) = 1 (since there is no drift, the threshold z∗

will eventually be crossed). As β → 1, the value of λ in equation (5), converge to 1.

The proposition shows that β affects the set of equilibria not only by effectively increasing gains

from trade but also through the coordination channel : larger values of β imply larger values of

λ. In order to understand this channel, we have to understand the effect of β on the behavior of

an agent in the hypothetical state z∗ such that money is accepted if and only if z > z∗. For this

agent, the cost of accepting money is c and the (relative) benefit is given by the average difference
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between V1z and V0z when the economy reaches a state z > z∗ for the first time, discounted by
∑∞
t=1 β

tϕ (t).7 Equation (4) shows that the V1z − V0z is positive and independent of β.

The key intuition lies then on the reason for why V1z − V0z is independent of β. As shown in

Section 2.3, if money could be accepted and spent only once, V1,z − V0,z would depend negatively

on β. An agent that has not accepted money can sell his good at cost c once z > z∗ and enjoy the

benefits later (discounted by a function of β), but since agents always have further opportunities

of using money, an agent that has accepted money will also be able to sell his good again. It turns

out that both effects cancel out and V1,z − V0,z is independent of β.

Then, it all boils down to how patient an agent is to reap the rewards. For more patient agents,

the cost of waiting until money can be spent is smaller. Knowing everyone will think like that, an

agent will be more willing to accept money, hence patience helps agents to coordinate in the money

equilibrium. In the limit β → 1, as meeting between agents becomes more frequent, even small

gains from trade imply that there will be money in equilibrium, money is the unique equilibrium

in the whole region where money is an equilibrium in the benchmark model.

It is possible to construct an example where the probability of ever getting to the region where

holding money is a dominant strategy is arbitrarily small and still, as β → 1, the above result holds.

Consider E(∆z) = η for some η < 0. As η → 0−, λ→ 1 (result of the proposition plus continuity).

But for any η < 0 there exists a large enough ẑ so that the probability of ever reaching the region

where money has positive intrinsic value is arbitrarily small. Note that in this case money is the

unique equilibrium as long as u > c; the probability of ever reaching ẑ is arbitrarily small; and the

probability of ever reaching −ẑ is one.

It is clear from (5) that λ is increasing in β regardless of the process for ∆z that determines

ϕ(.). Hence a larger β also helps agents to coordinate on the monetary equilibrium in the case

E(∆z) < 0, even though it raises the importance of future payoffs, when the economy is more

likely to be in a region where accepting money is a dominated strategy. The likelihood of reaching

the regions where accepting money is a dominant or a dominated strategy has no effect on the

results. The equilibrium condition depends on the behavior of an agent close to the hypothetical

state that determines whether money is accepted or not. The role of the dominant regions is

solely to exclude the beliefs that money will never ever be accepted and that money will alwaya be

accepted.

7 Implicitly in this argument is the fact that agents have an option to sell his good or use money in all future
periods.
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Figure 1: Normal case

2.6 Example: normal case

Figure 1 shows λ for a normal process assuming E(∆z) = 0. The probabilities ϕ (t) for the normal

case are obtained from Monte Carlo simulations (they do not depend on the variance V (z)).

The conditions for existence of a monetary equilibrium in the benchmark model (1) and the

conditions for existence and uniqueness of a monetary equilibrium in our model (2) depend on β,

m, u and c. Normalizing c = 1 and assuming m = 1/2, which maximizes the amount of exchanges,

the possible equilibria are drawn in figure 2. The solid curve depicts the condition for existence of a

monetary equilibrium in the benchmark model (a version of Kiyotaki and Wright (1993)): autarky

is the unique equilibrium in the region below the solid curve, and there are multiple equilibria above

the solid curve. The dotted curve shows the equilibrium condition in our model. Autarky is the

unique equilibrium below the dotted line and money is the unique equilibrium above the dotted

line. The distance between both lines decreases with β and vanishes if agents meet often enough

(β is close to 1).

As β → 1, money is an equilibrium in the benchmark model if u > c. In the model with

E(∆z) = 0 and V (∆z) > 0, money is the only equilibrium if u > c. However, things are very

different for lower values of β. Assuming m = 1/2, if β = 0.5, money is an equilibrium in the

13



Figure 2: Equilibrium conditions in (1) and (2)

benchmark model if u > 3c, but in the case V (∆z) > 0, money is an equilibrium if and only if

u > 5.67c.

2.7 Discrete state space

The analysis up to now has considered a continuous state space, but the results are easily extended

to a discrete state space. Consider V (∆z) > 0 as before but now z ∈ Z. Suppose the economy in

period s is in state z∗. Denote by φ(t) the probability of reaching any state strictly larger than z∗

at time s+ t and not before; and by φ+(t) the probability of reaching any state larger or equal than

z∗ at time s+ t and not before. An argument similar to Proposition 1 yields the following result.

Proposition 3 There exists a unique equilibrium. For all states z ∈ (−ẑ, ẑ),

1. If (
∞∑

t=1

βtφ (t)

)
[(1−m)u+mc] > c, (6)

then money is always accepted.
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2. If (
∞∑

t=1

βtφ+ (t)

)
[(1−m)u+mc] < c, (7)

then money is never accepted.

Proof. See Appendix.

Equations (6) or (7) are versions of (2) with φ(t) or φ+(t) instead of ϕ (t). In the continuous case

we consider the probabilities of reaching z∗ when the economy starts in a state that is arbitrarily

close to z∗. Here, we have to start from the closest state where money is not accepted or the

closest state where money is accepted, depending on which strategies we want to eliminate. As

there is some distance between them, the probabilities φ (t) and φ+ (t) will not be the same. Hence

there will be a region with multiple equilibria. But as the support of ∆z increases, the discrete

distribution gets closer to a continuous distribution, and φ (t) and φ+ (t) get closer and closer to

each other.

As in the continuous case, we can rewrite condition (6) as

λMβ [(1−m)u+mc] > c,

and condition (7) as

λAβ [(1−m)u+mc] < c,

where

λM =
∞∑

t=1

βt−1φ (t) (8)

λA =
∞∑

t=1

βt−1φ+ (t) (9)

The benchmark case corresponds to λM = 0, which means autarky is always an equilibrium,

and λA = 1, which means money is an equilibrium as long as it is an equilibrium in the benchmark

model. As λM increases and λA decreases, the multiple equilibrium shrinks, so one question is

whether they are close to each other (implying a small multiple-equilibrium region).

The effect of β on equilibrium selection is exactly the same as in the continuous case and are

summarized in the next proposition.

Proposition 4 The time discount factor β affects λ in the following way:
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1. λA and λM are increasing in β.

2. If E(∆z) = 0, as β → 0, λA and λM converge to 1
2 .

3. If E(∆z) = 0, as β → 1, λA and λM converge to 1.

Proof. (1) Equations (8) and (9) show that λM and λA are increasing in β. (2) As β → 0,

λA → ϕ(1) and λM → ϕ(1). If E(∆z) = 0, ϕ(1) = 1/2. (3) If E(∆z) = 0,
∑∞
t=1 φ+ (t) = 1 and

∑∞
t=1 ϕ (t) = 1. As β → 1, λA → 1 and λM → 1.

2.7.1 Example: Binary case

Consider a simple stochastic process where

Pr(∆z = 1) = p and Pr(∆z = −1) = 1− p.

The process is illustrated in figure 3. Departing from state z∗ − 1 in period s, the probability of

reaching state z∗ in period s+1 is p. Otherwise, the economy moves to state z∗−2. Then, state z∗

can only be reached in period s+ 3. The stochastic process until state z∗ is reached is illustrated

in Figure 3. The probabilities that state z∗ will be reached for the first time at time s+ t are given

by (for all i ≥ 0)

φ(2i+ 1) =
(2i)!

i! (i+ 1)!
pi+1(1− p)i,

φ(2i) = 0.

Remember that φ(t) is the probability of reaching for the first time state z∗ at time s+ t, when

the initial state is z∗−1. The formula for φ(2i+1) resembles a binomial distribution, but the usual

combination is replaced with the Catalan numbers.8 The value of λM is given by

λM =
∞∑

i=0

β(2i)
(

(2n)!

n! (n+ 1)!
pi+1(1− p)i

)
. (10)

Departing from state z∗ in period s, the probability of reaching a state larger than z∗ in period

s + 1 is p. Otherwise, the economy moves to state z∗ − 1, which happens with probability 1 − p.

At z∗ − 1, we are at the previous case. Thus (for all i ≥ 0)

φ+(1) = p,

φ+(2i+ 2) = (1− p)
(2i)!

i! (i+ 1)!
pi+1(1− p)i,

φ+(2i+ 3) = 0.

8See, e.g., http://mathworld.wolfram.com/CatalanNumber.html.
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Figure 4: Binary case: λM and λA

Hence

λA = p+ (1− p)
∞∑

i=0

β(2i+1)
(

(2n)!

n! (n+ 1)!
pi+1(1− p)i

)

λA = p+ (1− p)βλM (11)

The case p = 0.5 If p = 0.5, λM becomes:

λM =
∞∑

i=0

β(2i)

(
(2i)!

i! (i+ 1)!

(
1

2

)2i+1)
(12)

which is a function of β only, and λA is then

λA =
1 + βλM

2

Figure 4 shows λA and λM as a function of β. It turns out that the factor λ for a normal

distributions lies between the lines for λA and λM as one would expect. Both λM and λA converge

to 1 as β approaches 1 and converge to 0.5 as β approaches 1. The multiple-equilibrium region is

larger for intermediate values of β.
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Figure 5: Case p < 0.5

The case p < 0.5 Assume now that p = 0.5 − ε. For a sufficiently small ε, a value of λM very

similar to the one implied by (12) would be obtained, but the probability that ẑ would ever be

reached could be made arbitrarily close to 0 for some ẑ. For lower values of p, the factor λM is

given by equation (10). Figure 5 shows the relation between β and λM for different values of p. As

before, as β approaches 0, λ approaches p. However, as β approaches 1, λM does not approach 1

since there is a positive probability, bounded away from zero, that z∗ will never be reached by a

process departing from z∗ − 1. But the results are similar, the factor λM is increasing in β, since

late arrivals at z∗ are worth more for larger values of β, and is not far from 1 for high values of β.

3 Concluding remarks

We have conveyed our message in a search model of money along the lines of Kiyotaki and Wright

(1993), but we believe that our results might be more general than that and arise in other settings

that meet two requirements. First, there must exist some states of the world where accepting money

is a dominant strategy and some other states where accepting money is a dominated strategy. These

states might be as unlikely as we want, and their unique role is to rule out extreme beliefs about

19



the value of money. Second, money has to be a link between the present and the future, that is,

the value of money must come from its future use as a medium of exchange. This last requirement

is satisfied by other fundamental models of money such as turnpike models, and by variants of

search models (such as Trejos and Wright (1995) and Lagos and Wright (2005)). It is also satisfied

by overlapping generations models. However, while in turnpike and search models money earned

today can be spent at any time in the future, in overlapping generations models an agent has

fewer opportunities to spend his money. In particular, in a two-period overlapping generations

model, a young agent is willing to produce in exchange for money only if he believes that he will

be able to spend his money with a high probability when old. This difference should not matter

for our uniqueness result. However, it should matter for our result on the equivalence between

the condition for uniqueness of the monetary equilibrium and the condition for existence of the

monetary equilibrium. Intuitively, money becomes more risky and thus autarky becomes more

likely if there are fewer opportunities for money to be spent.

Finally, since the focus of our analysis was on the selection between autarky and money, we have

considered an economy with only one variety of money (say, seashells). In reality, many varieties

may be available at any point in time (e.g., seashells, stones, salt, gold). We believe that the

selection mechanism proposed in this paper can also be extended to such environments. However,

such extension is beyond the objectives of the present paper and is left for future work.
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A Proofs

A.1 Proof of Proposition 1

Proof. First, we prove that money is accepted if (2) holds. Fix ẑ > 0. For any z > ẑ, an agent will

find it optimal to always produce in exchange for money. The proof is done by induction, where at

each step strictly dominated strategies are eliminated. First, fix z∗ ∈ (−ẑ, ẑ) and assume that all

agents accept money if and only if z ≥ z∗. We need to check an agent’s incentives to accept money

in some state z = z∗ − ǫ for some ǫ > 0. If an agent accepts money in exchange for his good in

state z∗ − ǫ, he obtains

−c+
∞∑

t=1

βtϕǫ(t)

(∫ ∞

0
f(z∗ + s|tφ = t)V1,z∗+sds

)
≡ V az∗−ǫ,

where ϕǫ(t) is the probability that a state z ≥ z∗ will be reached at time t, and not before, when

z departs from z∗ − ǫ; tφ denotes the period a state larger than or equal to z∗ is reached; and

f(z|tφ = t) denotes the probability density function that the state z is reached conditional on tφ

equal to t. Since no agent is accepting money when z < z∗, the money received by the agent will

not be useful (or harmful) until a state z ≥ z∗ is reached. When such a state is reached, the agent’s

value function is V1,z. The term in brackets is the average of such value functions, weighted by

their densities. The expected payoff of an agent that accepts money equals the discounted value of

such averages, weighted by their own probabilities, minus c. In turn, if an agent does not accept

money in state z∗ − ǫ, he obtains

∞∑

t=1

βtϕǫ(t)

(∫ ∞

0
f(z∗ + s|tφ = t)V0,z∗+sds

)
≡ V nz∗−ǫ.

This implies that the agent accepts money in state z∗ − ǫ as long as

V az∗−ǫ − V
n
z∗−ǫ = −c+

∞∑

t=1

βtϕǫ(t)

(∫ ∞

0
f(z∗ + s|tφ = t) [V1,z∗+s − V0,z∗+s] ds

)
> 0. (13)

Now, since all other agents are accepting money in any state z ≥ z∗, the value function of an agent

with money in some state z ≥ z∗ is

V1,z = mβEzV1 + (1−m) (u+ βEzV0) ,

while the value function of an agent without money in some state z ≥ z∗ is

V0,z = m (−c+ βEzV1) + (1−m)βEzV0,
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where βEzV1 and βEzV0 are the expected value of holding, respectively, one and zero unit of money

at the end of the period, when the current state is z. Subtracting V0,z from V1,z yields equation

(4):

V1,z − V0,z = (1−m)u+mc.

Substituting (4) into (13) yields

V az∗−ǫ − V
n
z∗−ǫ = −c+

∞∑

t=1

βtϕǫ(t) [(1−m)u+mc] ,

which used the fact that
∫∞
0 f(z∗ + s|tφ = t)ds = 1 and (1 −m)u+mc is a constant. Therefore,

V az∗−ǫ − V
n
z∗−ǫ > 0 if

∞∑

t=1

βtϕǫ(t) [(1−m)u+mc] > c.

This argument holds for any ǫ > 0. As ǫ→ 0, ϕǫ(t)→ ϕ(t), and we obtain the expression in (2).

The argument has assumed that agents will not accept money in states smaller than z∗, but if

that were not the case, incentives for holding money would only increase, owing to the strategic

complementarities in using money. Hence, if condition (2) holds, accepting money in state z∗ − ǫ

is a strictly dominant strategy given that all agents are accepting money in states larger than or

equal to z∗. Thus, as (i) it is a strictly dominant strategy to accept money if z ≥ ẑ, and (ii) for

all z∗ > −ẑ, if all agents accept money whenever z ≥ z∗, accepting money at z = z∗ − ǫ is a

strictly dominant strategy, accepting money is the only strategy that survives iterative elimination

of strictly dominated strategies for all z ∈ (−ẑ, ẑ).

It remains to show that money is not accepted if the inequality in (2) is reversed. The argument

is analogous to the one above. For any z < −ẑ, an agent will find it optimal to never bring money

into the trading post. Again, we proceed by induction. Fix z∗ ∈ (−ẑ, ẑ) and suppose that all agents

accept money if and only if z ≥ z∗. We need to compare payoffs from accepting and not accepting

money at state z∗ + ǫ < ẑ, for some ǫ > 0. An agent that accepts money in exchange for his good

in state z∗ + ǫ obtains

−c+
∞∑

t=1

βtϕǫ(t)

(∫ ∞

0
f(z∗ + s|tφ = t)V1,z∗+sds

)
≡ V az∗+ǫ,

where ϕǫ(t) is the probability that a state z ≥ z∗ will be reached at time t, and not before, when

z departs from z∗ + ǫ; tφ denotes the period a state larger than or equal to z∗ is reached and

f(z|tφ = t) denotes the probability density function that the state z is reached conditional on tφ

equal to t. If an agent does not accept money in state z∗ + ǫ, he obtains

∞∑

t=1

βtϕǫ(t)

(∫ ∞

0
f(z∗ + s|tφ = t)V0,z∗+sds

)
≡ V nz∗+ǫ.
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This implies that the agent does not accept money in state z∗ as long as

V nz∗+ǫ − V
a
z∗+ǫ =

∞∑

t=1

βtϕǫ(t)

(∫ ∞

0
f(z∗ + s|tφ = t) [V0,z∗+ǫ − V1,z∗+ǫ] ds

)
+ c > 0.

Following the same steps as above, we obtain that not accepting money is optimal if

∞∑

t=1

βtϕǫ(t) [(1−m)u+mc] < c.

Taking the limit ǫ→ 0, ϕǫ(t) converges to ϕ(t). Following the same reasoning as above, we get the

claim.

A.2 Proof of Proposition 3

Proof. The proof is very similar to the proof of Proposition 1. First, we prove the first statement.

Now, starting from a threshold z∗ ∈ (−ẑ, ẑ), it is shown that an agent finds it optimal to accept

money in state z∗ − 1 > −ẑ. Suppose that all agents accept money if and only if z ≥ z∗. We need

to compare the payoff of such an agent with the one received by someone who accepts money if

z ≥ z∗ − 1. An agent that accepts money in exchange for his good in state z∗ − 1 obtains

−c+
∞∑

t=1

βtφ(t)

(
∞∑

i=0

π(z∗ + i|tφ = t)V1,z∗+i

)
≡ V az∗−1,

and
∞∑

t=1

βtφ(t)

(
∞∑

i=0

π(z∗ + i|tφ = t)V0,z∗+i

)
≡ V nz∗−1.

and following the reasoning in the proof of Proposition, 1, we get the first statement.

The proof of the second statement is also analogous: for any z < −ẑ, it is a dominant strategy

for all agents not to accept money. Now, suppose that all agents accept money if and only if z ≥ z∗,

where z∗ < ẑ. We need to compare the payoff of accepting and not accepting money at state z∗.

An agent that accepts money in exchange for his good in state z∗ obtains

−c+
∞∑

t=1

βtφ+(t)

(
∞∑

i=0

π(z∗ + i|tφ = t)V1,z∗+i

)
≡ V az∗ ,

If an agent does not accept money in state z∗, he obtains

∞∑

t=1

βtφ+(t)

(
∞∑

i=0

π(z∗ + i|tφ = t)V0,z∗+i

)
≡ V nz∗ .

and following the reasoning in the proof of Proposition, 1, we get the proof of the second statement.
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