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Abstract

We introduce a “bad environment-good environment” (BEGE) technology for consump-

tion growth in a consumption-based asset pricing model with external habit formation. The

model generates realistic non-Gaussian features of fundamentals, and fits standard salient

features of asset prices including the means and volatilities of equity returns and risk free

rates. BEGE dynamics are essential for the model to generate realistic features of the

“risk-neutral” conditional density of equity returns, including the variance premium.
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I Introduction

A number of consumption-based asset pricing models have emerged that can claim some

empirical success in matching salient features of asset return data. For example, Campbell

and Cochrane (1999, CC henceforth) develop an external habit framework in which counter-

cyclical risk aversion is the essential driver of asset return dynamics. CC keep the exogenous

process for consumption growth deliberately simple and Gaussian, yet the model fits the

equity premium, the low risk free rate, the variability of equity returns and dividend yields,

and long horizon return predictability. In the CC model, habit is external but moves slowly

and nonlinearly in response to consumption shocks, yielding a theoretically appealing and

empirically successful link between macro-economic events and asset prices.

In this article, we propose a stochastic process for consumption growth that is non-

Gaussian, following what we call a “Bad Environment — Good Environment” framework,

“BEGE” for short. The consumption growth process receives two types of shocks, both

drawn from potentially fat-tailed, skewed distributions. While one shock has positive skew-

ness, the other shock has negative skewness. Because the relative importance of these shocks

may vary through time, there are “good times” where the good distribution dominates, and

“bad times” where the bad distribution dominates and recession risk is high. An implication

of the framework is that even during bad times, large good shocks can occur, and vice versa.

We demonstrate that post-war U.S. consumption growth data indeed exhibits the kind of

non-Gaussian behavior that is accommodated by the BEGE framework. One particularly

striking feature of the post-war US data is that the distribution of consumption growth one

quarter after a consumption slowdown has a significantly more negative left tail than after

normal periods. It is such non-Gaussian recession dynamics that a BEGE model can fit

quite naturally.

Economically, the BEGE model creates a riskier consumption growth environment,

which, in equilibrium, leads to a large equity premium and substantial precautionary savings

demands, keeping risk free rates low. The non-Gaussian dynamics in consumption growth

1



are critical for the model to confront option price dynamics. A particularly powerful em-

pirical feature of the data is the so-called variance premium, which is the difference between

the “risk neutral” expected conditional variance of the stock market index and the actual

expected variance under the physical probability measure. The CBOE’s VIX index essen-

tially provides direct readings on the risk-neutral variance as detailed by Bollerslev, Gibson

and Zhou (2011) and Carr and Wu (2008). The variance premium is reliably positive and

changes considerably through time. Other statistically “strong” stylized facts about the

risk neutral conditional distribution of returns include time-varying (but generally nega-

tive) skewness, and time-varying, but reliably fatter-than-Gaussian tails (see, for instance,

Figlewski (2008)). To generate these features of the risk-neutral distribution, structural

models must endogenously generate time-varying non-Gaussianity in returns, which many

existing models fail to do. We show that the classic CC model can match important prop-

erties of volatility and option price dynamics when appended with a BEGE shock structure

for consumption growth.

The remainder of the article is organized as follows. Section II introduces the model

and discusses, inter alia, solutions for the risk free rate and the variance premium. Sec-

tion III confronts the BEGE model with actual consumption data, showing that it matches

time-varying non-linearities in the consumption growth process. Section IV discusses our

parameter calibration and the fit of the model with respect to asset prices. The final section

offers some concluding remarks.

II The Bad Environment-Good Environment (BEGE)

Model

In this section, we formally introduce the representative agent model. We begin with

a discussion of the assumed data generating process for fundamentals, and then describe

preferences.
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II.A The BEGE distribution for fundamentals

Our model for consumption growth is given by the following equation:

∆+1 =  + +1 − +1 (1)

where ∆ = ln () − ln (−1) is the logarithmic change in real, per-capita consumption,

and  is the mean rate of consumption growth, which we assume is constant. The final

two terms reflect non-Gaussian innovations. The parameters  and  are both positive.

The shocks, +1 and +1, are zero-mean, independent innovations following the centered

gamma distribution,1

+1 ∼ eΓ ( 1)
+1 ∼ eΓ ( 1) (2)

The shape parameters,  and  may be static or vary through time according to a stochastic

process, a feature that we shall introduce below. These parameters govern the higher-order

moments of ∆. Specifically,  governs the width of the positive tail, and  governs the

width of the negative tail.

To illustrate what this model implies for the conditional moments of ∆+1, we calculate

the conditional moment generating function (MGF) of ∆+1. For a scalar, ,

 (∆+1) ≡  [exp (∆+1)]

= exp ( ()−  ()−  (−)) (3)

where, for notational simplicity, we have defined the function,

 () = + ln (1− ) .

Note that  () is always negative as long as   1, a technical condition that is always met

1The centered gamma distribution with shape parameter  and scale parameter , which we denoteeΓ ( ), has probability density function,
 () =

1

Γ () 
(+ )−1 exp

µ
−1

(+ )

¶
for   −, and Γ (·) representing the gamma function. Unlike the standard gamma distribution, this

distribution has mean zero.
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in our applications. This follows directly from the MGF of the gamma distribution and

the fact that +1 and +1 are independent.
2 Using sequential derivatives of the MGF

evaluated at  = 0 yields the first few conditional uncentered moments of ∆+1. This leads

to the centered moments:



£
(∆+1 − )2

¤
= 2+ 2 ≡ 



£
(∆+1 − )3

¤
= 23− 23 ≡ 



£
(∆+1 − )4

¤− 32 = 64+ 6
4
 ≡  (4)

The top line of Equation (4) shows that both  and  contribute positively to the conditional

variance of consumption, defined as . They differ, however, in their implications for the

conditional skewness of consumption growth. As can be seen in the expression for the

centered third moment, , skewness is positive when  is relatively large, and negative

when  is large. This is the essence of the BEGE model: the bad environment refers to an

environment in which the  shocks dominate leading to negative skewness; in the good

environment the  shocks dominate. Of course, in both environments shocks are zero on

average, but there is a higher probability of large positive shocks in a “good environment”

and vice versa. Whether good or bad shocks dominate depends on the relative values of 

and , and the sensitivity of consumption growth to both shocks. Finally, the third line of

the equation is the excess centered fourth moment, , which is increasing in both  and .

Note that there is a linear dependence among higher order moments of ∆, all of which are

linear in  and 

Figure 1 plots four examples of BEGE densities under various combinations for , 

, and . For ease of comparison of the higher order moments, the mean and variance

of all the distributions are the same and  = . The black line plots the density under

large, equal values for  and . This distribution very closely approximates the Gaussian

distribution. The red line plots a BEGE density with smaller, but still equal values for 

2To see this, note that for  ∼ Γ ( 1),  [exp ()] = exp (− ln (1−)), and for independent random
variables, 1 and 2,  [exp ( (1 − 2))] =  [exp (1)] [exp (−2)].
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and . This density is more peaked and has fatter tails than the Gaussian distribution.

The blue line plots a BEGE density with large  but small  and is duly right-skewed.

Finally, the green line plots a density with large  and small , and is left-skewed. This

demonstrates the flexibility of the BEGE distribution and makes tangible the role of  as

the “good environment” variable and  as “the bad environment” variable.

For dividend growth, we follow CC’s specification in which dividend growth follows a

process symmetric to that for consumption growth:

∆ =  +  −  (5)

where ∆ is real logarithmic dividend growth.

II.B Preferences

We use the preference structure of the representative agent of CC:

0

" ∞X
=0


( −)

1− − 1
1− 

#
 (6)

where  is aggregate consumption and  is an exogenous “external habit stock” with

  .

In CC,  is an exogenously modelled subsistence or habit level. Hence, the local

coefficient of relative risk aversion equals  
−

, where
³
−



´
is defined as the surplus

ratio and denoted . As the surplus ratio goes to zero, the consumer’s local risk aversion

goes to infinity. Of course, this is not actual risk aversion defined over wealth, which depends

on the value function. The appendix to Campbell and Cochrane (1995) examines the relation

between “local” curvature and actual risk aversion, which depends on the sensitivity of

consumption to wealth. CC derive an expression for risk aversion () as a function of

local curvature and the relative valuation of two other assets:

 = 


 −
· 


= −1 · 



where  is the price-dividend ratio for a claim to the consumption stream, and  is

the price-dividend ratio of a claim to the stream of payouts, {+ · +}∞=1.
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The intertemporal marginal rate of substitution in this model determines the real pricing

kernel, which we denote by . Taking the ratio of marginal utilities at time  + 1 and ,

we obtain:

+1 = ln − ∆+1 −  (+1 − ) (7)

where  = ln() and +1 = ln (+1).

We specify the process for  exactly as in CC:

+1 = (1− ) +  +  (∆+1 − ) (8)

where , and  are scalar parameters. As in CC,  is the so-called sensitivity function, and

is decreasing in . Negative consumption shocks decrease the surplus ratio and increase ,

making stocks riskier and the equity premium larger. This feature of the model generates

counter-cyclical expected returns and prices of risk. Because we follow CC in choosing the

sensitivity function to make the interest rate constant, we defer a full characterization of the

sensitivity function in our framework to our presentation of asset prices in Section II.E.

It will be convenient to denote the exposure of the pricing kernel to the two consumption

shocks,  and , as follows

 ≡ +1+1 = − (1 + )

 ≡ +1+1 = + (1 + ) (9)

Naturally, positive  shocks lower marginal utility, while positive  shocks raise it.

II.C Variance premiums

The variance premium is defined as the difference between the conditional variance of

equity returns under the risk-neutral and physical measures.

 =  
 [+1]−  

 [+1]  (10)

and +1 denotes log equity returns. As noted above, the CBOE’s VIX index essentially

provides direct readings on the risk-neutral variance. Irrespective of the measures used

for physical variance, the variance premium is reliably positive and changes considerably
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through time. In this subsection, we show why the standard CC model with Gaussian

shocks is unlikely to generate a variance premium. To do so, we revert to the original CC

formulation for consumption growth

∆+1 =  + +1 (11)

where +1 is distributed as a standard Gaussian random variable. To price the equity claim,

we follow CC in assuming that the dividend growth process is:

∆+1 =  + +1 + +1 (12)

where +1 is also a Gaussian shock that is independent of , which allows for imperfect

correlation between consumption and dividend growth. Log equity returns are, by definition,

+1 = ∆+1 −  + +1 (13)

where  is the log price-dividend ratio, and +1 = ln (1 + exp (+1)). Both  and

, are nonlinear functions of , which is the only state variable. CC show that the price

dividend ratio is a nearly linear function of the surplus ratio (See their Figure 3).

To elucidate the nature of the variance premium in this model, we examine a second

order approximation to the function describing the relation between  and the state

variable, :

 = 0 + 1 + 2
2
 (14)

where 0, 1, and 2 are coefficients that are functions of deeper model parameters. As

derived in Appendix A, in this case, the variance of returns under the physical measure

equals:

 
 (+1) = 2 + ( + 1 + 22)

2 2 + 2
2
2
4

4
 (15)

where  =  [+1]. This simplifies in the linear case (2 = 0) to

 
 (+1) = 2 + ( + 1)

2 2

Clearly, the CC model generates time-varying volatility in returns as  varies over time

regardless of whether 2 is nonzero. We also derive in Appendix A an expression for the
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risk-neutral variance:

 
 (+1) = 2 +

¡
2 + 21

2
 + 22

¢
2 + 2

2
2
4

4


−4222 ( + 1 + 22) (16)

where  = − (1 + ) is defined as the sensitivity of the pricing kernel to the consump-

tion shock under the original CC formulation. Clearly, if 2 = 0 (linearity) or  = 0 (so that

 = 0, implying risk-neutrality) then  
 (+1) =  

 (+1) and  = 0.

Hence, under the second order approximation, the traditional CC model with Gaussian

shocks generates a variance premium only to the extent that  is nonlinear in . These

results also highlight a more general feature of conditionally Gaussian models. Unless the

dependence of the price-dividend ratio on the state variable is nonlinear, Gaussian models

will not generate a variance premium. This is discussed further in Appendix A. For in-

stance, unless a model incorporating stochastic volatility into the process for fundamentals

generates strong non-linearities in the dependence of equity prices on the state variable, it

cannot generate a variance premium. We show below that empirically the original CC model

with Gaussian shocks does not generate a meaningful variance risk premium.

We next demonstrate that, in contrast to Gaussian models, the BEGE model generates

a “first-order” variance risk premium. That is, even if equity prices are linear in the state

variable, the model still generates a meaningful variance premium. To make this point as

stark as possible, we restrict  and  to be constant, so that  remains as the only state

variable. Now we assume a linear approximation of the functional form of 

 = 0 + 1  (17)

where 0 and 1 are linearization coefficients. As shown in Appendix A, under the physical

measure, the variance of returns is

 
 =  ( + 1)

2 +  ( + 1)
2

(18)

while the risk-neutral variance is

 
 = 

µ
 + 1
1− 

¶2
+ 

µ
 + 1
1− 

¶2
(19)
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Because   0, the exposure of returns to the +1 shock contributes negatively to the

variance premium. On the other hand, because   0, and assuming that   1,

exposure to the +1 shock contributes positively to the variance premium.

These results are related to existing results in the options pricing literature. Bakshi

and Madan (2006), for example, study the determination of volatility spreads (which is our

variance premium expressed as a percent of the physical variance) in a dynamic economy with

general preferences that however only depend on the stock market return. Using a second

order Taylor series expansion of the utility function, they show that the volatility spread is

related to risk aversion, and the skewness and excess kurtosis of the physical distribution of

returns. If the return distribution is Gaussian, the volatility spread is zero.

II.D Variants of the BEGE model

Given that the BEGE structure can generate a first-order variance premium even with

constant shape parameters, we start our analysis simply appending an unconditional BEGE

structure with constant  and  to the CC model. However, it is straightforward to consider

a dynamic BEGE model by having  and/or  vary through time. This dynamic version of

the model is critical for matching features of the consumption and asset pricing data, as will

be demonstrated in Sections III and IV.

For , we assume a simple, autoregressive process with “square-root-like” volatility

dynamics,

 = (1− )+ −1 +  (20)

where  is the unconditional mean of the process,  is the autocorrelation coefficient, and

 governs the conditional volatility of the process. Specifically, the conditional volatility

of  is 
√
−1. Importantly, the minimum possible value of  is −, an artifact

of the one-sided nature of the gamma distribution. A very useful implication of the finite

left tail of the distribution is that, under the additional technical assumption that   1,

the  process can never become negative, even at discrete intervals. This is a highly
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desirable, however uncommon, property for a volatility process, which is not shared by

Gaussian stochastic volatility processes. Note that if we introduce  as a state variable, we

must assume that the representative agent observes  as well as .

We could model  symmetrically to , but choose not to do so for simplicity. With

time-varying  and , the BEGE model can be interpreted as a stochastic volatility model

with “good” (governed by ) and “bad” (governed by ) volatility. However, as volatility

changes the entire conditional distribution of consumption growth changes as well.

II.E Asset Prices Under the BEGE-Habits Model

The main mechanism of the model in generating countercyclical risk premiums follows

directly from the habits model in CC. We therefore keep the theoretical analysis of the asset

price implications limited, but show empirically the contributions of the BEGE framework

in Section IV. Here we limit ourselves to first explaining how we model the risk free rate

and what the BEGE set-up adds to the expression for the Sharpe ratio, a critical variable in

CC’s empirical approach as they select parameters to match it exactly.

II.E.1 The real short rate

To solve for the real risk free short rate, , we use the usual first order condition for

the consumption-saving choice,

exp () =  [exp (+1)]
−1

(21)

Under the above BEGE dynamics and CC preference structure, this simplifies to

 =
− ln +  +  (1− ) (− )

+  () +   ()
(22)

where we, again, use the function,  () = + ln (1− ). The first line in the solution

for  has the usual consumption and utility smoothing effects: to the extent that marginal

utility is expected to be lower in the future (that is, when   ), investors desire to borrow

to smooth marginal utility, and so risk free rates must rise. The bottom line captures
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higher-order precautionary savings effects. Notice that because the function  () is always

negative, the precautionary savings effects are also always negative. A third-order Taylor

expansion of the log function helps with the interpretation of :

 ≈

⎛⎜⎜⎜⎜⎝
− ln +  +  (1− ) (− )

+
¡−1

2
2 − 1

3
3
¢


+
¡−1

2
2 − 1

3
3
¢


⎞⎟⎟⎟⎟⎠ (23)

The second order terms capture the usual precautionary savings effects: higher volatility

generally leads to increased savings demand, depressing interest rates. Under a Gaussian

distribution all higher order terms are zero. The cubic terms represent a novel feature of

the BEGE model. The third order term for  is positive (recall that   0), so that it

mitigates the precautionary savings effect. This makes perfect economic sense. When good

environment shocks are dominant, the probability of large positive shocks is relatively large,

and the probability of large negative shocks is small, decreasing precautionary demand.

Conversely, both the second and third order (and all higher order) terms premultiplying

 are negative (recall that   0) indicating that precautionary savings demands are

exacerbated when  is large. That is, when consumption growth is likely to be impacted by

large, negative shocks, risk free rates are depressed over and above the usual precautionary

savings effects relative to volatility. Through this mechanism, our model may generate the

kind of extremely low risk free rates witnessed in the 2007-2009 crisis period.

To abstract from term structure dynamics, we follow CC in ensuring that the short rate

is constant. We do so by choosing the sensitivity function to be a function of  and  such

that the short rate is constant:

 =  (  ; ) :  = 

No closed-form solution for  exists, but it is easily found numerically. Appendix B explores

the evaluation of  in more detail. As in CC, for some combinations of
¡
  ; 

¢
, it

may not be possible to find a value for  that satisfies the above condition. In these unusual

cases, which occur when  approaches zero, we set  to zero, as do CC. Appendix B shows
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that the BEGE sensitivity function looks similar to the one in a standard CC model, but

lower sensitivity is required for extremely negative values of . This is because the BEGE

model generates stronger precautionary savings effects than a Gaussian model does, which

helps to offset the intertemporal smoothing demands generated by deviations of  from its

mean value.

II.E.2 The Maximum Sharpe Ratio

In the CC model, the pricing kernel is log normal and there exists a closed form solution

for the maximum possible Sharpe ratio, which is the coefficient of variation of the pricing

kernel:

max
{all assets}



£

+1

¤

£

+1

¤ =  [+1]

 [+1]
≈
q
2 (24)

where 
+1 is the excess return of a generic asset, and we again denote  = − (1 + ),

the sensitivity of the pricing kernel to the consumption shock under the original CC formu-

lation. The Sharpe ratio is also easy to compute in our framework, given the presence of

two independent gamma processes, but the resulting expression is not very intuitive. In

Appendix C, we derive an approximation to the Sharpe ratio under the BEGE-habit model:

 [+1]

 [+1]
≈
q

£
2 + 2

3


¤
+ 

£
2 + 2

3


¤
(25)

Absent the third order terms, this looks very much like Equation (24) except with two

sources of uncertainty. Intuitively, the third order effect of  is to lower the maximum

Sharpe ratio (recall that   0), while the third order effect of  is to raise it further

(recall that   0). This further highlights the role of  () as governing “good” (“bad”)

volatility.

III Consumption Growth Dynamics

In this section, we examine the properties of U.S. post-war consumption growth data to

determine whether significant non-Gaussianities are present, and how well a BEGE model

12



can fit them.

III.A The Unconditional Picture

The key innovation of the BEGE model is to accommodate potential non-Gaussianities

in the stochastic process for consumption growth. But do we observe such non-linearities in

the data? When we allow the representative agent to take into account the Great Depression,

the evidence of non-Gaussianities is abundantly clear. For instance, in the U.S. National

Income and Product Accounts (NIPA, published by the Bureau of Economic Analysis), the

sample skewness of the annual growth rate of real personal consumption expenditures from

1930 through 2012 is −0̇81 and the sample excess kurtosis is 349. Having just suffered

another deep recession, it is conceivable that economic agents would think that a recurrence

of a Great Depression-like economic contraction is possible. However, it is well-known that

the consumption growth data were collected differently before World War II.3 We therefore

focus attention on post-war data to present a conservative view of potential non-Gaussianities

in the data.

Our consumption growth series is constructed using NIPA data. We first add together

quarterly, nominal consumption expenditures for nondurables and services over the period

1947-2012. We deflate the resulting series using a weighted average of the deflators for

nondurables and services, where the weights are determined by the respective real expen-

diture shares. Finally, we further deflate the resulting series using the growth rate of the

U.S. population from the U.S. Census.4 The first-order autocorrelation coefficient of the

resulting series is 032. Such autocorrelation may well be due to temporal aggregation bias

(see Working, 1960). We therefore pre-whiten the data using an AR(1) model as in Wachter

(2005) and work with serially uncorrelated consumption growth data henceforth.

In Table 1, we estimate unconditional consumption growth models by maximum likeli-

3We thank an anonymous referee for pointing this out.
4Quarterly population data are available starting in 1958, but only annual data are avialable prior to

that date. For the early part of the sample, we assume constant quarterly growth rates within each year.
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hood. The left column reports the Gaussian model parameters, followed by log-likelihood

value and a specification test building on the standard Jarque-Bera (1987, JB henceforth)

test for normality. We apply the normality test to the inverse normal cumulative density

function of the assumed cumulative distribution function (cdf henceforth) of the data. If

the model is correctly specified, this transformation should lead to a normally distributed

variable. This is true because for a correctly specified model, the cumulative distribution

function applied to the data should be distributed as uniform on the [0,1] interval, and by

the inverse probability integral transform, taking the inverse Gaussian distribution function

of a uniform distributed random variable should yield a Gaussian random variable. This

test thus reduces to the standard Jarque-Bera test. The Gaussian model is rejected at the

1% level using the JB test.

In the column on the right, we show estimates of the BEGE model with constant  and

. We estimate  to be well above 1, but  is below 1, implying strong non-Gaussianities

for the “bad environment” part of the distribution. Even though the likelihood value for

this model is much higher than for the Gaussian model, note that the two models are not

strictly nested, so that we cannot perform a standard likelihood ratio test. However, the

Jarque-Bera test now has a p-value of 0.50, and so the specification test fails to reject the

model.5

In the top panel of Figure 2 we show the two probability density functions from the

estimates in Table 1 overlaid with a histogram of the data. The better fit of the BEGE

model relative to the Gaussian model is visible in the graph. In the bottom panel, we

focus on the cumulative distribution function (cdf) of the two distributions. Shown are

“mountain” plots: the left portion of the curves (i.e. at values less than the median) plot the

cdf, and the right portion shows 1 minus the cdf. This enables us to read tail probabilities

for both the left and right tails directly. For reference, the horizontal line indicates the

5Monte Carlo results suggests that this test procedure has roughly the proper empirical size: Using

simulations in which the null hypotheis is true (that is, the data is generated by the static BEGE model

under the parameters reported in the right column), the test procedure rejects in 3.9 percent of draws when

the nominal size is set to 5 percent.
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estimated probability of a “catastrophic” collision of a large asteroid with the Earth in a

given year, as computed by NASA. We view such an event as (hopefully) rare and unlikely.

Yet, according to the Gaussian distribution, having annualized consumption growth of -7

percent is equally rare. Moreover, a realization of consumption growth of -10 percent or

worse at an annual rate is one million times less likely under the Gaussian distribution than

such a collision. This seems economically unreasonable as recessions of that magnitude have

occurred multiple times during modern history. For example, in the US real consumption

growth registered -9 percent in 1932, and real GDP fell by 7 percent in Greece in 2011.6

We conclude that the BEGE model displays more plausible tail behavior than the Gaussian

model.

III.B The Conditional Distribution of Consumption Growth

While there is clear evidence of unconditional non-Gaussianities in the data, this does

not necessarily imply that consumption growth is conditionally non-Gaussian. For instance,

a standard conditionally Gaussian stochastic volatility model may also generate uncondi-

tional non-Gaussianities. In this subsection, we examine the evidence for conditional non-

Gaussianity

In Table 2, we use the approximate likelihood procedure of Bates (2006) to estimate the

BEGE model with a time-varying  process as in Equation (20). The estimation procedure

is described in more detail in Appendix D. We also estimate a conditionally Gaussian

counterpart to the dynamic BEGE model, a standard stochastic volatility model,

∆+1 =  + 
1
+1 − 

√


2
+1

 =  +  (−1 − ) + 
√
−12 (26)

where both 1 and 2 are IID Gaussian innovations. Table 2 reveals that the stochas-

tic volatility model suggests very persistent volatility (autocorrelation of 91%) but is still

6One could also argue that these observations are drawn from different distributions with larger variances,

in which case they may not represent such extreme outliers.
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strongly rejected by the Jarque-Bera test (at the 1% level). The BEGE model delivers a

much higher likelihood and is again not rejected by the Jarque-Bera test. The  process,

which generates time-variation in the higher order moments, is also very persistent with a

0.93 autocorrelation coefficient. Compared to the static BEGE model of Table 1, we con-

tinue to estimate the (constant) value of  to be around 4, but the unconditional mean of 

is now higher, about 2. Both of these parameters have fairly large standard errors, which

is not surprising since it is rather difficult to extract the dynamics of latent variables from

relatively low frequency data such as consumption growth.

We therefore also consider asymmetric volatility models in the GARCH class, specifi-

cally, the model put forward by Glosten, Jagannathan and Runkle (1993), where a negative

shock has potentially a different effect on next period’s volatility than a positive shock. The

standard Gaussian model is specified as:

∆+1 =  + 
1
+1 − 

√


2
+1

 = 0 + −1 + 1 (∆ − )2 + 2 (∆ − )2 · ∆ (27)

where 1 and 2 are  (0 1). The right column shows parameter estimates for the BEGE

model:

∆ =  + +1 − +1

 = 0 + −1 + 1 (∆ − )2 + 2 (∆ − )2 · ∆ (28)

While these auxiliary models do not correspond directly to the models developed in our

theoretical section, they can be estimated by exact maximum likelihood estimation. Table

3 (Panel A) reports the results for both models. In both cases, the volatility is estimated

to be persistent but less so than in the stochastic models reported in Table 2. While the

coefficient on negative consumption growth shocks is higher than the coefficient on positive

growth shocks, the evidence is statistically weak. Again, the standard volatility model is

still rejected by the Jarque-Bera normality test but the BEGE model is not rejected by the

Jarque-Bera test. In Panel B, we estimate the parameters of the stochastic volatility models
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that best correspond to the GARCH models. We do so by matching moments of the latent

process, which we compute by simulation for the GJR models. Fortunately, these are quite

consistent with the estimates from the approximate likelihood procedure. For example,

the mean of  is now 1.87 (versus 1.98 in the approximate likelihood procedure) and its

persistence is 0.95 (versus 0.93 in Table 2). Note that  is again very close to 4 in this

model. We therefore use the parameters of the direct estimation reported in Table 2 in

further analysis.

III.C Further Assessing the Models’ fits to Consumption Data

In Table 4, we consider the fit of the various models with the unconditional variance,

skewness and kurtosis of both consumption and dividend growth data. The dividend series

that we use is seasonally adjusted dividends per share for the S&P 500 index, deflated by the

same consumption deflator and population values described above for consumption. As is

well-known, dividends at the quarterly frequency are a somewhat problematic times series.

We use parameters in the dividend growth model (Equation 5) to match the sample volatility

of dividend growth, and set its correlation with consumption growth to the value used by

CC, 0.20.

The two models on the left with an “s” indicator are the “static” models estimated in

Table 1; the two models on the right are dynamic models, indicated by “d,” estimated in

Table 2. In the middle column, the “s2” model is a static model that matches the sample

volatility, skewness and kurtosis of quarterly consumption growth exactly. We calibrate the

model parameters by matching sample statistics to analytic counterparts under the model.7

In Panel A, we investigate the fit with quarterly data and in Panel B we aggregate the

quarterly data to the annual frequency. In quarterly data, the volatility is matched by

construction for all models. The Gaussian models naturally cannot fit the negative skewness

of -0.32, which is significant at the 5 percent level, but the stochastic volatility model also

7This calibration is not unique since we are matching three moments (volatility, skewness, and kurtosis),

using four parameters,    and .
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under-estimates excess kurtosis by about 2 standard errors. Unfortunately, both the static

and dynamic BEGE models generate too much excess kurtosis in quarterly consumption

growth data. This motivated us to also consider the “s2” model that matches skewness and

kurtosis exactly. At the annual frequency, the higher order moments are not measured with

sufficient precision to reject any model.

Even though we cannot do a formal likelihood ratio test, the evidence in Tables 2 and

3 strongly suggest that a dynamic BEGE model fits the consumption growth data better

than a static one. In Figure 3 and Table 5, we try to give economic and statistical content

to this better fit. The BEGE model ought to capture recession risk better than a Gaussian

model. In Figure 3, we graph the pre-whitened consumption growth data. In the context of

our model, the concept of NBER recessions is ill-defined, since NBER recessions are defined

using multiple criteria and time series variables. We therefore define the alternative concept

of a “consumption slow down” as any observation where the 4-quarter moving average of

consumption growth is lower than 1 percent at an annual rate. These periods are shown

with gray shading. As indicated by the inset figures in the graph, NBER recessions tend

to coincide with consumption slowdowns. There is a 68 percent chance of a consumption

slowdown when a NBER recession is observed, and only a 9 percent chance of a slowdown

in other periods. Whereas NBER-defined recessions occur in 16 percent of quarters in our

sample and persist for an average of 3.7 quarters, the comparable statistics for consumption

slowdowns, shown at the top of Table 5, are very similar with a frequency of 18 percent and

an average duration of 3.8 quarters. Both the Gaussian stochastic volatility model and the

dynamic BEGE model are able to match the slowdown statistics fairly well. However, both

models imply slowdown durations that are a bit too short. This likely owes to the fact that

mean consumption growth falls during slowdowns, and we intentionally abstract from this

effect here.8

8Apart from higher volatility and negative skewness, slowdowns are also characterized by a downward

shift in mean consumption growth. We ignore this shift in the present paper but it could obviously be

modeled as affected by the  process as well. That is, the BEGE model could use one state variable to

generate three key characteristics of recessions.
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The key graph of interest is in the bottom panel of Figure 3. It shows histograms for two

conditional distributions, one conditional on a consumption slowdown in the previous quar-

ter, the other conditional on no slowdown in the previous quarter. Clearly, the “slowdown’

distribution is wider and more negatively skewed than the “no slowdown” distribution. If

these differences are significantly different from zero, they are direct evidence of a need for

conditional non-Gaussianity. We quantify these differences in Table 5. The lower tail of the

distribution, represented by the 5th percentile, is about −3 percent (at an annual rate) con-
ditional on a slowdown, but only −1 percent after normal periods. The difference is highly
significantly different from zero. These statistics could, of course, be matched both by a

Gaussian stochastic volatility model and a dynamic BEGE model. However, the upper tail

of the distribution, represented by the 95 percentile does not exhibit a significant increase

during a slowdown. A Gaussian stochastic volatility model cannot match this asymmetry in

tail behavior, but the BEGE model does reasonably well: The expansion of the negative tail

is matched almost perfectly by the BEGE model, but the model implies slightly too much

of an increase in the positive tail during slowdowns.9 We conclude that the dynamic BEGE

model presents the more realistic representation of consumption growth data in the US.

IV Asset Pricing Model Solution and Empirical Per-

formance

To evaluate the BEGE model’s performance with respect to asset prices, we first discuss

the choice of parameters and model solution technique, then summarize some univariate

statistics, and end with a discussion of important cross-moments.

9Allowing for time variation in , the “good environment variance,” would likely improve performance
along this dimension.
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IV.A Parameterization

We closely follow the approach in CC to select parameters. For consumption growth, we

use the parameters estimated for the various models and discussed in Section III. The only

parameters left to select are the discount factor, , the curvature parameter of the utility

function, , and the parameters governing the surplus ratio (Equation 8). As in CC, we

choose a value of  to match the unconditional Sharpe ratio on equity returns in the data.

The equity return data are quarterly excess returns for the S&P 500 index over the 1947-2011

period, where the nominal 90-day Treasury bill return is used as the risk free rate. This

procedure implies that  differs across models, ranging from 1.7 to 8 as reported in Table

6. The selected persistence parameter for the surplus ratio, , is taken from CC, who used

it to match the persistence of the dividend-price ratio. Model BEGE(d)’ is an alternative

parameterization where  is chosen to match the unconditional (physical) variance of equity

returns exactly in addition to the Sharpe ratio. The other parameters are chosen to deliver

a value of 1 percent (annual rate) for the real risk free rate and keep the real interest rate

(approximately) constant.

To solve the model, we note that the price dividend ratio is the present value of future

discounted dividends:




= 

" ∞X
=1

exp

Ã
X

=1

(+ +∆+)

!#
(29)

Because the surplus ratio formulation contains a significant non-linearity, no closed-form

solutions are available for this expectation. Alternative formulations of time-varying risk

aversion (see e.g. Bekaert, Engstrom and Grenadier, 2010) combined with BEGE fundamen-

tals would allow closed-form solutions because of the tractable moment generating function

of the gamma distribution. We explored such a model in a previous version of this article.

To implement a numerical solution of Equation (29), we follow the approach proposed by

Wachter (2005). We recursively solve for the individual terms in the summation in Equation
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(29). That is,




=

∞X
=1

 ( )

where

 ( ) = 

"
exp

Ã
X

=1

(+ +∆+)

!#
and

 ( ) =  [exp (+1 +∆+1)−1 (+1 +1)]

While 1 ( ) can be calculated analytically, subsequent terms are solved for numer-

ically on a grid as suggested by Wachter. Wachter shows that this “series method” is more

accurate and converges faster than the Euler equation method employed by CC. A full

description of this procedure is presented in Appendix E. A similar method can be used to

price a consumption claim, which is useful for computing the distribution of risk aversion in

this economy. In panel B of Table 6, we report features of the distribution of local curvature

and actual risk aversion. As is well-known, the CC model generates very high risk aversion

and its median is in fact about 258. Note that the BEGE model requires less curvature and

risk aversion to match the Sharpe ratio in the data. This is quite intuitive: High risk aver-

sion enables models to match the high equity risk premium by amplifying marginal utility in

extremely bad states of the world. But the BEGE distribution suggests that the probability

of landing in a bad state is higher than a Gaussian model would suggest. As a result the

BEGE model requires less risk aversion. In this respect, the BEGE model is similar to “rare

disaster” models such as Rietz (1990) and Barro (2006).

Table 7 illustrates some key mechanisms of our preferred dynamic model, BEGE(d)’.

In Panel A, we show how some key endogenous quantities vary with the two state variables,

 and . For each of the endogenous variables, in the first column, we report their values

when  and  are at their sample median values. In the second column, we report values

when risk aversion is high (that is  takes on a more extreme negative value, the 10th

percentile of its unconditional distribution), but  remains at its median. Finally, in the
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third column, we report values for the situation in which  is again at its median value, but

 is now elevated (at the 90th percentile of its distribution). Results for the sensitivity

function, , are shown first. As in CC, the sensitivity function is higher at more extreme

negative values of  This is required for precautionary savings and utility smoothing effects

to exactly offset and keep the short rate constant. In contrast,  is decreasing in . To see

why, note that higher  increases the volatility of the consumption shock. All else equal,

this would depress the risk free rate due to elevated precautionary saving demand. To keep

the short rate constant, the sensitivity function must be lower. Because they are linear in

, both  and , the sensitivities of the pricing kernel to the two consumption shocks,

follow a similar pattern. The variance of the pricing kernel, under both the physical and

risk neutral measures, is therefore strongly affected by changes in , but little affected by

changes in . The increase in the variance of the kernel that is induced by a higher level of

 is offset by the effect that  has in reducing the kernel sensitivities,  and . Finally

the maximum available Sharpe ratio in the economy is affected primarily by .

Despite being deliberately prevented from having strong effects on the conditional mo-

ments of the pricing kernel,  still has important asset pricing implications. To provide

a hint of how this may be the case, the bottom two rows of the Panel A report the con-

ditional volatility of dividend growth, which is imperfectly correlated with consumption

growth, though driven by the same two shocks (Equation 5). Obviously,  has no effect on

the conditional volatility of dividend growth, but the volatility of dividends increases in 

under both the physical and risk-neutral measures, as does the dividend growth volatility

premium.10

IV.B Univariate statistics

The quarterly data we use for interest rates and equity prices and returns is standard

and spans the period, 1947-2011. We measure the (nominal) short rate, , as the 90-

10The variance premium for dividend growth is defined as the difference between its variance under the

risk-neutral and physical measures.
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day nominal T-bill yield provided by the Federal Reserve. For equity prices, we use the

logarithmic dividend yield, , for the S&P 500, calculated as (one-fourth of) trailing four-

quarter dividends divided by the quarter-end price. The nominal return to equity, , is

the logarithmic change in the quarter-end level of the S&P 500 plus the quarterly dividend

yield defined above. Excess returns are measured as − −1. We calculate the physical

probability measure of the equity return conditional variance, , in two steps. We

begin with the monthly realized variance, , calculated as squared daily returns over the

quarter. Then we project  onto lagged values of  as well as realized variance

measured over just the most recent month and the most recent week of data. The fitted

values from this regression are used to measure . This procedure is similar in spirit to

Corsi’s (2009) heterogeneous autoregressive model.

To calculate standard errors for our sample moments, we use a block-bootstrapping

routine. In each of 10000 bootstraps, blocks of the data spanning 40 quarters are drawn,

with replacement, until the full sample length is achieved. For each bootstrapped sample,

the desired statistics are calculated. The standard deviation of these estimates across

bootstraps are reported as standard errors for the sample statistics.

We calculate the risk-neutral conditional second, third and fourth moments of equity

returns, , , and  respectively, using the method of Bakshi, Kapadia and

Madan (2003). This involves calculating the prices of portfolios of options designed to have

payoffs that are determined by particular higher order moments of returns. We obtained a

panel of option prices across the moneyness spectrum for the S&P 500 index from 1996-2009

from OptionMetrics, and from 1990-1995 from DeltaNeutral. We used the option contracts

that have maturity closest to one quarter, and filtered out illiquid options according to the

rules described in Figlewski (2000). This unfortunately results in a shorter sample for

risk-neutral moments than for the rest of our data. While we cannot observe data for the

1947-1989 period, we use a procedure to sample from an approximate distribution for these

observations. To do so, we use the 1990-2012 sample to regress the missing variables onto
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variables that are available for the full period: consumption growth, dividend growth, the

real short rate, equity returns, and the physical conditional volatility of returns. We then

“fill in” the missing values for the risk-neutral moments for the early part of the sample using

the projected values and random innovations drawn from the distribution of the projection

errors, which is assumed to be Gaussian. This entire procedure is embedded within the

bootstrapping routine, described above, that we use for calculating standard errors for all of

our sample moments.

In Table 8, we report how the various models match univariate equity return statistics.

The upper part of the table investigates the well-known moments of equity returns, but the

lower part of the table focuses on physical and risk neutral volatility statistics and higher

order risk neutral moments of equity returns.

We first focus on the standard moments of equity returns. The Gaussian habits model

underestimates the equity premium of 5.5 percent observed in the data (although it is still

within a two standard error band of the sample moment), underestimates the equity return

volatility and the volatility of the price dividend ratio. The astute reader may be surprised

as the published CCmodel matched these moments almost exactly. The main reason for this

is that the solution reported in the original CC model used a relatively inaccurate numerical

solution method, as explored in detail byWachter (2005). Wachter (2006) shows how a slight

modification of the CC model to allow for time-varying risk free rates brings back its power

to match these salient features of equity return data. We demonstrate that accommodating

realistic non-linearities in the consumption growth process, as the BEGE models do, has the

same effect. The performance of the BEGE models is very good, but none of the models

we consider is within a two standard error band of every single moment. The main culprit

is that the kurtosis of excess returns is milder in the data than it is in the model. Recall

that the various BEGE models over-estimate kurtosis in the consumption growth data and

that is of course one reason for the overshooting of return kurtosis. However, even the

BEGE model which matches the higher order moments of consumption growth (model s2)
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generates return kurtosis slightly above a 3 standard error band of the data moment. The

model that performs the best is the alternative dynamic BEGE model, BEGE(d)’, in which

 is calibrated to match the physical variance of equity returns. The only moment missed

by model BEGE(d)’ by more than two standard errors is the mean of the price-dividend

ratio.

We now examine the performance of the models in matching features of the conditional

moments of returns, both physical and risk-neutral. Given our analytic results for the

variance premium above, it is no surprise that the Gaussian habits model fails to generate a

variance premium, or meaningful risk neutral skewness and kurtosis. The various variants of

the BEGE model generate realistic variability of the physical volatility, but the benchmark

dynamic model over-estimates it. All BEGE models generate an average variance premium

that is too low (between 2.6 percent and 3.8 percent versus the 5.2 percent data moment), but

is still within a two standard error band. The same is true for the variability of the variance

premium, although a simple static model fits the moment almost exactly. The alternative

dynamic model does not generate sufficient variability in the variance premium. All BEGE

models generate realistic average risk neutral skewness but under-estimate its variability over

time. The dynamic models generate about 5 times as much variability as the static models,

illustrating the importance of the time variation in . The mean of risk neutral kurtosis

is best fit by the alternative static and the benchmark dynamic models, whereas the other

two models over-estimate it. The variability of risk neutral kurtosis is matched best by

the basic static model but overestimated by the dynamic models. In all, the BEGE habits

model provides a reasonable description of option price dynamics in a very parsimonious

framework, even though it is difficult to match all data moments simultaneously.

To examine the underlying mechanisms of the dynamic BEGE model that delivers these

results, we return to Table 7. In Panel B we report how equity prices and their conditional

moments vary with the state vector. Both  and  strongly affect the equity price-dividend

ratio. For instance, a sharp increase in risk aversion (in the table, when  falls from its
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median to its 10th percentile value), decreases equity valuations by 30 percent. Similarly,

when downside risk rises substantially ( rises from its median to its 90th percentile value),

equity valuations fall by about 10 percent. The adverse shocks to  and  cause a jump

in the equity risk premium from 5.1 percent to 7.9 and 7.5 percent, respectively. From

Panel A, we know that the effect of  is a “price of risk” effect whereas an increase in 

increases the amount of dividend risk. Similarly, both adverse shocks increase the physical

and risk-neutral volatility of equity returns, but  has a stronger effect on the variance pre-

mium than  does. An increase in  affects both the physical and risk neutral variance

(see also Equations 18 and 19), increasing the amount of “bad volatility.” However, the dif-

ference between changes in risk neutral variance versus physical variance is driven primarily

by changes to the kernel sensitivities,  and , the absolute magnitudes of which are

increasing (decreasing) in  (). That  reduces the kernel sensitivities cancels out the

effect that it would otherwise have on precautionary savings demand and interest rates, but

also mitigates its effect on the variance premium.

IV.C Fundamentals and Asset Prices

In Table 9, we focus on the cross-correlation between the fundamentals (consumption

and dividend growth) and asset prices. Because we use CC’s habit model, we cannot escape

the implication that consumption growth and equity excess returns remain excessively cor-

related. This correlation goes down substantially at longer horizons, at which point most

models generate a correlation that is within or close to a two standard error band around

the sample correlation of 19 percent. Nevertheless, the BEGE model generally produces an

even higher correlation between consumption growth and equity returns than the Gaussian

habits model. This is not surprising as the non-linear recession risk now contributes to asset

returns. The dividend growth process is less correlated with asset returns in the BEGE

model than it is in the original Gaussian CC formulation. However, this correlation is still

much higher than in the quarterly data sample, but it is close to a two standard error band
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in annual data.

In Panels C and D, we investigate conditional correlations between consumption growth

and lagged price dividend ratios and equity return volatility. In the static models, the

surplus ratio is the only state variable and therefore the price dividend ratio and volatility

do not reflect recession risk. In the dynamic models,  is an additional state variable driving

their dynamics and reflecting recession risk. The data confirm that such an additional state

variable is necessary to capture the conditional distribution of consumption growth. In panel

C, we look at quantile shifts (for the 5th, median, and 95th percentiles) for the consumption

growth distribution when the price dividend ratio being above versus below its median

value. When the price dividend ratio falls below its median value, the median of future

consumption growth is little affected. Similarly, the 95th percentile remains essentially

unchanged. However, the 5th percentile experiences a significant downward shift. The

static models obviously do not generate any such conditional distribution shifts, but the

dynamic BEGE models match them well, though they undershoot the shift in the left tail

somewhat.

In Panel D, we condition the consumption growth distribution on equity return volatility

and look at quantile shifts comparing observations when volatility in the previous quarter

is above versus below its median level. We find a significant downward shift in the left tail

when volatility is elevated, which only the dynamic BEGE models can deliver. However, the

dynamic BEGE models also produces an increase in the right tail, which is not consistent

with the sample data.

In Panel E, we report the contemporaneous correlation between excess equity returns

and (physical) equity return volatility. This correlation is highly significantly negative at

-0.38, reflecting the well-known asymmetric volatility phenomenon (see e.g. Wu, 2001). The

static models have no real chance of matching this data moment, but the dynamic BEGE

models, while generating substantially negative correlations, still fall somewhat short of the

data moment.
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IV.D Equity return predictability

In Table 10, we investigate the conditional distribution of equity returns. Panel A

repeats the standard predictability regressions of equity returns on the price dividend ratio at

various horizons, as also conducted in CC. We report the slope coefficients and R2 statistics,

with bootstrapped standard errors. The betas are negative and generally significant and

the per period magnitude is relatively constant over different horizons. The 2 increases

from 2 percent at the one quarter horizon to almost 30 percent at the 5 year horizon. The

Gaussian model fits the slope coefficient pattern but fails to generate a meaningful increase

in the R2 with the horizon. The R2 is a noisy statistic however, and we cannot reject the

Gaussian model on this basis. The BEGEmodels mostly generate slightly larger (in absolute

magnitude) slope coefficients, but, more importantly, they match the increase in R2’s with

horizon that we observe in the data as well. The static BEGE models do as well as the

dynamic BEGE models on this score.

In Panel B, we investigate the conditional distribution of equity returns conditioning

on physical lagged volatility11. As we did for consumption growth in Table 9, we report

the 5th, 50th, and 95th percentile shifts for periods with above median versus below median

lagged physical volatility. The median return is 1.90 percent higher in high physical volatility

periods, a fact matched by all models within a two standard error range. The distribution

of consumption growth conditional on high equity market volatility is substantial different

than the distribution conditional on low equity return volatility: it is wider, has a lower left

tail (significant at the 5% level) and a higher right tail (significant at the 10% level). The

Gaussian model can generate such a shift, but it is too weak. The BEGE models all produce

the right pattern and are generally not rejected in statistical terms, generating quantile

shifts well within a two standard error band of the data. The only exception is the standard

dynamic BEGE model which generates an upward shift in the positive tail that is too strong.

11It would also be interesting to look at the relationship with risk neutral volatility, but this severely

restricts the sample length and thus also statistical power.
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V Conclusion

To date, the consumption based asset pricing literature has mostly focused on matching

unconditional features of asset returns: the equity premium, the low risk free rate, and

the variability of equity returns and dividend yields. In terms of conditional dynamics, a

great deal of attention has been paid to time variation in the expected excess return on

equities. A number of models in addition to that of CC have emerged that can claim some

empirical success along these dimensions. Bansal and Yaron (2004), while working with

different preferences due to Epstein and Zin (1989), generate realistic asset pricing dynamics

by introducing "long-run risk" and time-varying uncertainty in the consumption growth

process. Another recent strand of the literature that also focuses on the technology rather

than preferences has rekindled the old Rietz (1990) idea that fear of a large catastrophic

event may induce a large equity premium (see Barro (2006)). Importantly, in such “disaster

risk” frameworks, there is no time variation in risk premiums unless the probability of the

crash is assumed to vary through time, see Wachter (2010).

In this article, we introduce a flexible model for consumption growth, the BEGE model,

which, in theory, can accommodate jumps and other non-linearities. Fitting this model

to US postwar consumption growth data, the model matches various salient features of

recession dynamics that Gaussian models do not match. For example, after a consumption

slowdown, the lower tail of consumption growth decreases significantly, and consumption

growth also exhibits longer left tails when equity volatility is high and the price-dividend

ratio is lower than its unconditional median value. The model also delivers an unconditional

left-skewed and leptokurtic distribution where bad consumption growth states are much more

likely than under a normal distribution. Yet, these bad states are mostly consistent with

persistent recession behavior rather than extreme, relatively transitory disaster shocks, as in

the “disaster risk” articles.

The non-Gaussianities in consumption growth deliver first-order variance risk premiums

and help match other features of the risk neutral distribution of stock returns, in addition
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to the standard salient features of asset returns. There have been some other recent articles

attempting to match such dynamics, using alternative mechanisms. Drechsler and Yaron

(2011) introduce jumps in the conditional mean of consumption growth in a long-run risk

model, but therefore fail to match the non-Gaussian consumption dynamics the BEGEmodel

matches. Likewise, the models in Bollerslev, Tauchen and Zhou (2009; stochastic volatility

of the volatility) and Gabaix (2012; disaster risk with a time-varying probability) are not

likely to match the recession dynamics that we document.

Our use of a habits model does have some disadvantages. First, even though our agent

is less risk averse than an agent not confronted with BEGE dynamics would have to be to

match the Sharpe ratio in equity data, she still exhibits implausibly large levels of risk aver-

sion. Second, at least at the quarterly level, there remains a tight link between fundamentals

and asset returns that is absent in the data. If we were willing to concede that preference

shocks need not necessarily follow the strict parameterization of the CC model and can be

imperfectly correlated with fundamentals, we should be able to break both of these impli-

cations. In macro-economics it is quite common to accommodate preferences shocks (e.g.

Justiniano, Primiceri and Tambalotti, 2009), and in finance, there is, albeit controversial,

evidence of sentiment shocks that may not be tightly correlated with fundamentals (Baker

and Wurgler, 2007). Building on Bekaert, Engstrom and Grenadier (2010), it is straightfor-

ward to formulate a BEGE model where risk aversion is stochastic and heteroskedastic but

may not be perfectly correlated with consumption shocks. With the extra flexibility, we can

formulate the model such that it delivers closed form solutions for asset prices. We defer a

full analysis of such a model to future work.
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Appendices

A Calculation of Variance Premiums

1. Generic Linear-Gaussian case

Suppose that +1 and +1 both have linear dependence on a multivariate condition-

ally Gaussian state vector, +1:

+1 ∼  (0Σ)

+1 = 0 + +1

+1 = 0 + +1 (30)

We show that under these conditions the physical variance variance of returns equals the

risk neutral variance. To begin, note that the moment generating function for returns under

the physical measure is defined as

 (+1; ) =  [exp ( +1)] =  [exp (0 + 0+1)]

= exp

µ
0 +

1

2
20Σ

¶
 (31)

Calculating the first derivative of  (+1; ) with respect to  and evaluating at  = 0

yields the conditional mean of returns:

 [+1] = 0 (32)

Calculating the second derivative of  (+1; ) with respect to  and evaluating at

 = 0 yields the uncentered second moment, 

£
2+1

¤
. Using the definition of variance,

this leads trivially to the expected expression for variance under the physical measure:

  [+1] = 

£
2+1

¤− [+1]
2 = 0Σ (33)

Next, to calculate risk-neutral conditional moments, we need to evaluate the risk-neutral

moment generating function, which is defined as:

 (+1; ) =
 [exp (+1 +  +1)]

 [exp (+1)]
(34)
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This simplifies to

 [exp (+1 +  +1)]

 [exp (+1)]
=  [exp (0 + 0 + (

0
 + 0)+1)]

= exp

µ
0 +

1

2
20Σ +

1

2
0Σ +

1

2
0Σ

¶
(35)

We proceed, again, by evaluating successive derivatives of  (+1; ) with respect to

 and evaluating at  = 0. Eventually, we arrive at:

 
 [+1] = 0Σ (36)

so that  
 [+1] =  

 [+1].

2. Quadratic approximation of the CC model

This computation is also accomplished by evaluating the moment generating function for

returns. Suppressing terms that have no random component, which do not affect variances

under any measure, returns and the pricing kernel are:

+1 = ( + 1 + 22)+1 + 2
2

2


2
+1 + +1

+1 =  +1

where  = − (1 + ), the sensitivity of the pricing kernel to the consumption shock

under the original CC formulation and  =  [+1]. In this case, the moment generating

function is the expectation of an exponential-quadratic function of Gaussian random vari-

ables. We evaluate this expectation using results from Ang and Liu (2004). Let  be a

 × 1 vector where  ∼  (0Σ),  a  × matrix, and Ω a symmetric  × matrix. If

(Σ−1 − 2ΣΩ) is strictly positive definite, then

 [exp (+ 0Ω)] = exp
µ
−1
2
ln det ( − 2ΣΩ) + 1

2
0
¡
Σ−1 − 2Ω¢−1¶ (37)

We need to evaluate first the moment generating function under the physical measure,

 [exp ( +1)] = 

£
exp

¡
1+1 +2+1 + Ω11

2
+1

¢¤
where 1 =  ( + 1 + 22), 2 =  and Ω11 = 2

2

2
 and recognizing

that Ω12 = Ω22 = 0 and Σ = . This allows us to calculate the moment generating function
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for +1 under both the physical and risk neutral measures as defined above. Direct

computation and lengthy algebra leads to the expression for physical variance shown in the

text. For the risk-neutral variance, we repeat the calculation except that we replace 1 with

01 =  ( + 1 + 22) + . We also require calculation of  [exp (+1)] =

1
2
2.

3. Linear approximation of the BEGE model

This computation is also accomplished by evaluating the moment generating function for

returns. Suppressing terms that have no random component, which do not affect variances

under any measure, returns and the pricing kernel are:

+1 = ( + 1)+1 + (− − 1)+1

+1 = +1 + +1 (38)

In this case, the moment generating function is

 [exp ( +1)] = exp (− ( ( + 1))−  ( (− − 1))) (39)

which leads directly to the conditional variance reported in the text. For the risk-neutral

moment generating function,

 [exp ( +1 ++1)] = exp

⎛⎜⎝ − ( ( + 1) + )

− ( (− − 1)) + 

⎞⎟⎠
 [exp (+1)] = exp (− ()−  ()) (40)

which leads directly to the expression for risk-neutral variance that is reported in the text.
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4. General Quadratic-Gaussian case

Suppose that+1 and +1 are both quadratic in a multivariate conditionally Gaussian

state vector, +1:

+1 ∼  (0Σ)

+1 = 0 + +1 + 0
+1Ω+1

+1 = 0 + +1 + 0
+1Ω+1 (41)

We seek to show that if Ω = Ω = 0 then the physical variance variance of returns equals the

risk neutral variance. This result is considerably more difficult to derive, but has the same

economic interpretation as the linear case: unless the return process or the pricing kernel is

conditionally non-Gaussian, the variance premium will be zero. A proof is available upon

request from the authors.

B Solving for the sensitivity function

In CC, the expression for the risk free rate is

 = − ln +  −  (1− ) ( − )− 22
2

[1 +  ()]
2

To eliminate the dependence of  on , which is a necessary condition for the short rate

to be constant, one can simply solve the quadratic expression above to yield,

 () =

⎧⎪⎨⎪⎩
1


p
1− 2 ( − )− 1  ≤ max

0  ≥ max

where max = + 1
2

³
1− 

2
´
and  = exp ().

Under the static BEGE specification, the problem of finding  () is similar. The

expression for the risk free rate is

 = − ln +  +  (1− ) (− ) +   () +   ()
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where, as noted in the text,

 = − (1 + )

 = + (1 + )

 () = + ln (1− )

In this case, even if  is constant, there is no closed-form solution for  () such that the

short rate does not depend on . However, this value is easily evaluated numerically. In

the below figure, the red solid line shows the values for  () for the BEGE(s1) model.

For comparison, the dashed black line shows the values for  () under the Gaussian CC

model. In this exercise, all of the model parameters are held identical in the two cases, as

is the volatility of consumption growth. The only difference is the assumed distribution for

consumption growth.
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Note that, for more negative values of , the BEGE sensitivity function is substantially

lower than its Gaussian counterpart. In the case of dynamic BEGE, the sensitivity variable

depends on both state variables,  =  ( ), but the numerical solution procedure is

identical.

35



C The Maximum Sharpe Ratio

We start from the general expression for the maximum available Sharpe ratio:

max
{all assets}



£

+1

¤

£

+1

¤ =
 [exp (+1)]

 [exp (+1)]
=

s
 [exp (2+1)]

 [exp (+1)]
2 − 1

=

vuut" 1− 

(1− 2)12
#2 "

1− 

(1− 2)12
#2
− 1 (42)

where, as defined above,

 = − (1 + )

 = + (1 + ) (43)

This expression is fairly messy. Some approximations are helpful for gaining intuition

 [exp (+1)]

 [exp (+1)]
=

vuutexp(2 ln" 1− 

(1− 2)12
#
+ 2 ln

"
1− 

(1− 2)12
#)
− 1

≈
vuut2 ln" 1− 

(1− 2)12
#
+ 2 ln

"
1− 

(1− 2)12
#

≈
q

¡
2 + 2

3


¢
+ 

¡
2 + 2

3


¢
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D The Bates Filter

Bates (2006) develops a direct filtration-based maximum likelihood methodology for

estimating the parameters and realizations of latent affine processes. Filtration is conducted

using characteristic functions and employing a version of Bayes’ rule for recursively updating

the joint characteristic function of latent variables and the data conditional upon past data.
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For the dynamic BEGE model:

∆+1 =  + +1 − +1

+1 = (1− )+  + +1

+1 ∼ eΓ ( 1)
+1 ∼ eΓ ( 1) (45)

the key required condition is that the conditional joint characteristic function of ∆+1 and

+1 be an affine exponential function of . That is, the Bates filter requires that

 [exp (∆+1 + +1)] = exp ( + ) (46)

for any / and  and where the parameters  and  are generally functions of the model

parameters. Fortunately, the gamma distributions on which the BEGE process is based

admit such a representation. Straightforward calculations starting from the characteristic

function of the gamma distribution lead to:

 =  +  (1− )−  ()

 =  −  (− + ) (47)

To estimate the model, we follow the steps provided in Bates (2006). That the procedure

only approximates maximum likelihood owes to the fact that in each step of the filtration,

the posterior density for the latent process is assumed to adhere to a particular parametric

density function, which may not be true. At each step, we assume that the posterior

distribution for  is gamma, with the parameters of the conditional posterior distribution

being informed by the filtered conditional moments for . This assumption is recommended

by Bates (2006) for a latent variable that is assumed to be strictly positive, as is the case

for .

The procedure for using the Bates filter for the Gaussian stochastic volatility model is

analogous.
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E Numerical Solution for Equity Prices

We closely follow the procedure of Wachter (2005). We first note that the price dividend

ratio is the present value of future discounted dividends:




= 

" ∞X
=1

exp

Ã
X

=1

(+ +∆+)

!#
(48)

Because the surplus ratio formulation contains a significant non-linearity, no closed-form

solutions are available for this expectation beyond the  = 1 term. To implement a numerical

solution of Equation (48), we recursively solve for the individual terms in the summation.

That is,




=

∞X
=1

 ( ) (49)

where

 ( ) = 

"
exp

Ã
X

=1

(+ +∆+)

!#
(50)

and

 ( ) =  [exp (+1 +∆+1)−1 (+1 +1)] (51)

The latter recursion is solved numerically on a grid suggested by Wachter. In Wachter

and our static models, the only state variable is . However, under our dynamic framework,

prices depend on both  and  As such, we define a two-dimensional grid over these

variables. Let {0 0} represent the grid. We define the grid for 0 spanning the range of
 in a simulation of 100 000 periods, and using 400 intervals. For  we derive grid values

using the same procedure. For each point on the resulting two dimensional grid, we find

0 the sensitivity parameter, that sets the short term risk free rate to the desired constant

value, although, as noted above and as in CC and Wachter, for some extreme points on the

grid, this short rate cannot be obtained. For these points on the grid, we set 0 = 0.

To start the algorithm, we calculate 1 (0 0) =  [exp (+∆) | (0 0)]. This

can be evaluated analytically in the BEGE framework as it is just the expectation of an
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exponential-affine function of the state vector.

To continue the sequence, we must rely on numerical methods. Let {1 1} denote
the set of random values that  and  may take on following {0 0}. Under the model,

this set is continuous and unbounded, a function of the realizations of 1 and 1, which,

the reader will recall, are independent. For ease of numerical integration, we discretize the

distributions 1 and 1. Specifically, we identify a set of 10 points, denoted b1 (0) and

associated probabilities,  (b1 (0)) such that this discrete distribution exactly matches the

first 10 moments of the continuous distribution for 1, and similarly for  although the

distribution of 1 is invariant across the grid, since  is constant. This yields associated

finite sets for all of the other endogenous variables: :

∆b1 =  + b1 − b1

∆ b1 =  + b1 − b1

b1 = (1− ) + 0 + 0 (∆b1 − )

b1 = (1− )+ 0 + b1

c1 = ln ()− ∆b1 −  (b1 − 0) (52)

Now, we can evaluate 2 (0 0) using,

2 (0 0) =  [exp (1 +∆1)1 (1 1) | (0 0)]

≈
X
1

X
1

exp
³c1 +∆b1´1 (b1 b1)  (b1)  (b1) (53)

This involves many calculations. Our base grid, {00} has 16,000 points, every one of
which must be operated on every one of the 100 points on the {b1 b1} grid. Still, these
are straightforward calculations except for the term, 1 (b1 b1), which is complicated by the
fact that the only previously evaluated values for 1 are on the grid, (0 0). Following

Wachter and CC, we use a (log-linear) interpolation from the points 1 (0 0) to evaluate

the points 1 (b1 b1). Of course, not all of the points in {b1 b1} lie in the interior of {0 0},
so some points must be extrapolated, not just interpolated. Wachter and CC do this also.

We then iterate, solving for  (0 0) for  = 3 through 1000, after which we find that the
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contribution to prices is negligibly small.
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Table 1: Maximum likelihood estimation of static models of consumption growth

Gauss(s) BEGE(s1)

 00047  00047
(00003) (00003)

 00049  327
(00002) (229)

 073
(054)

 00018
(00006)

 00043
(00018)

 10055 10171
 00010 05000

Notes: Statistics for real, per capita, quarterly consumption growth in for U.S. nondurables and services

from 1947Q2-2011Q4. Data are pre-whitened to remove time-aggregation effects using an AR(1) model.

The left column shows ML parameter estimates for an i.i.d. Gaussian model, and the right column shows

ML parameter estimates for an i.i.d. BEGE model:

∆ = +1 − +1

+1 ∼ eΓ ( 1) , +1 ∼ eΓ ( 1)
where eΓ ( ) denotes the centered gamma distribution with shape parameter  and scale parameter
. The row  presents the p-value from a specification test. Specifically, the p-value is from a

Jarque-Bera test for normality of the transformed series, b, where
b = Φ−1 [Φmod ()]

where Φ−1 denotes the inverse cdf function for the standard Gaussian distribution, and Φmod denotes the
cdf under the model for each column. For the left column,Φmod is  ( ) , and for the right column it
is,  (    ) 
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Table 2: Approximate maximum likelihood estimation of stochastic factor models of

consumption growth

Gauss(d) BEGE(d)

 00048  00048
(00003) (00003)

 405
(409)

 198
(170)

 00039  00014
(00005) (00007)

 00022  00029
(00011) (00012)

 091  093
(004) (003)

 051  036
(049) (021)

  10049 10303
 00027 05000

Notes: Statistics for real, per capita, quarterly consumption growth in for U.S. nondurables and services

from 1947Q2-2011Q4. Consumption data are pre-whitened to remove time-aggregation effects using an

AR(1) model. The left column shows parameter estimates for the model,

∆+1 =  + 
1
+1 − 

√


2
+1

 = −1 + 
p
−12+1

−1 =  +  (−1 − )

where 1 and 
1
 are independent  (0 1). The right column shows parameter estimates for the BEGE

model:

∆ =  + +1 − +1

+1 ∼ eΓ ( 1) , +1 ∼ eΓ ( 1)
 = −1 + +1

−1 = +  (−1 − )

where eΓ ( ) denotes the centered gamma distribution with shape parameter  and scale parameter . The
row  presents the p-value from a specification test. Specifically, the p-value is from a Jarque-Bera

test for normality of the transformed series, b, whereb = Φ−1 [Φmod ()], Φ
−1
 denotes the inverse cdf

function for the standard Gaussian distribution, and Φmod denotes the cdf of the model for ∆+1 for each
column. For the left column,  ( 2 + 2), and for the right column,  (    ) 
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Table 3: Maximum likelihood estimation of GJR-GARCHmodels of consumption growth

Panel A

Gauss(d) BEGE(d)

 00048  00048
(00003) (00003)

 401
(229)

0 00086
(00712)

 00013  00015
(00023) (00006)

 00011  00029
(00005) (00012)

 085  078
(002) (007)

1 254 1 930
(×00001) (382) (×00001) (938)
2 811 2 100
(×00001) (752) (×00001) (120)

 10266 10330
 00050 05000

Panel B

Gauss(d) BEGE(d)

     
196 097 088 187 095 054
(128) (010) (356) (143) (006) (027)

Notes: Statistics for real, per capita, quarterly consumption growth in for U.S. nondurables and services

from 1947Q2-2011Q4. Consumption data are pre-whitened to remove time-aggregation effects using an

AR(1) model. In Panel A, the left column shows parameter estimates for the model,

∆+1 =  + 
1
+1 − 

√


2
+1

 = 0 + −1 + 1 (∆ − )2 + 2 (∆ − )2 · ∆

46



where 1 and 
1
 are (0 1). The right column shows parameter estimates for the BEGE model:

∆ =  + +1 − +1

+1 ∼ eΓ ( 1) , +1 ∼ eΓ ( 1)
 = 0 + −1 + 1 (∆ − )2 + 2 (∆ − )2 · ∆

where eΓ ( ) denotes the centered gamma distribution with shape parameter  and scale parameter
. The row  presents the p-value from a specification test. Specifically, the p-value is from a

Jarque-Bera test for normality of the transformed series, b, where
b = Φ−1 [Φmod ()]

where Φ−1 denotes the inverse cdf function for the standard Gaussian distribution, and Φmod denotes the
cdf of the model for ∆+1 for each column. For the left column,  ( 2 + 2), and for the right
column,  (    ) 

Panel B reports on the estimated properties for the latent factor for each model. For the Gaussian

model, the unconditional mean, autocorrelation, and volatility of the fitted  process are used to estimate
the parameters for the model

 =  +  (−1 − ) + 
√
−1+1; +1 ∼  (0 1)

For the BEGE model, the unconditional mean, autocorrelation, and volatility of the fitted  process are
used to estimate the promoters for the BEGE model estimated in Table 2.
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Table 4: Summary of models: unconditional moments of consumption and dividend

growth

Panel A, Quarterly data

sample Gauss(s) BEGE(s1) BEGE(s2) Gauss(d) BEGE(d)

 (∆) 00098∗∗∗ 00098 00098 00098 00098 00096
(00010)

 (∆) −032∗∗ 0 −060 −032 0 −057
(018)

 (∆) 153∗∗∗ 0 283 153 066 248
(046)

 (∆) 0091∗∗∗ 0091 0091 0091 0091 0092
(00028)

 (∆) −007 0 −126 −112 0 −087
(028)

 (∆) 418∗∗∗ 0 261 224 157 181
(158)

Panel B, Annual data

sample Gauss(s) BEGE(s1) BEGE(s2) Gauss(d) BEGE(d)

 (∆) 00090∗∗∗ 00080 00081 00081 00083 00081
(00014)

 (∆) −041∗ 000 −032 −014 −028 −067
(028)

 (∆) 033 005 066 028 056 197
(077)

 (∆) 00600∗∗∗ 0076 0075 0076 0075 0076
(00083)

 (∆) −078 002 −059 −057 −071 −072
(058)

 (∆) 294 000 064 053 190 140
(171)

Notes. In the column to the left of the vertical line, sample statistics with block-bootstrapped standard

errors are reported in parentheses. One, two, and three asterisks denote significance at the 10, 5, and 1

percent levels, respectively.

The first two columns to the right of the vertical line report simulated results for the properties of

consumption growth under the models estimated in Table 1. The third column, labeled “BEGE(s2)” re-

ports statistics for an additional "BEGE-static" calibration designed to match exactly the sample volatility,

skewness, and kurtosis of consumption growth. The calibrated parameters of this model are:  = 5760 ,
 = 11090,  = 000147, and  = 000322. The columns labeled “Gauss(d)” and “BEGE(d)” re-

port on the properties of consumption and dividends under the stochastic factor models of Table 2. Volatility

statistics are reported at an annual rate.
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Table 5: The conditional distribution of quarterly consumption growth

sample Gauss(d) BEGE(d)

Slowdown statistics

freq 018∗∗∗ 015 015
(003)

avg. dur. 383∗∗∗ 237 256
(061)

Conditional distribution

 (− 1)  −00089∗ −00096 −00117
(00050)

5 (− 1)  −00281∗∗∗ −00134 −00257
(00058)

 −00192∗∗∗ −00038 −00140
(00075)

 (− 1)  00192∗∗∗ 00192 00193
(00016)

50 (− 1)  00160 00192 00207
(00060)

 −00033 00000 00013
(00060)

 (− 1)  00486 00481 00468
(00042)

95 (− 1)  00523 00516 00563
(00064)

 00036 00036 00095
(00073)

Notes. All panels report statistics for the distribution of real, per capita, quarterly consumption growth

in for U.S. nondurables and services from 1947Q2-2011Q4. Consumption growth data are annualized and

pre-whitened to remove time-aggregation effects using an AR(1) model. Sample results are reported in the

left column. The upper rows in each section report on the distribution conditional on being not being in

a slowdown in the previous period, with bootstrapped standard errors below. The second row reports on

the distribution conditional on being in a slowdown in the previous period. The third row reports on the

difference in the statistics reported in the top two rows. 5 50 and 95 denote the 5th, 50th, and 95th
percentiles of the distribution, respectively. One, two, and three asterisks denote statistical significance at

the 10 5, and 1 percent level.

The column headed, "Gauss(d)" reports results for the dynamic Gaussian model estimated in

Table 2. The finalcolumn reports results from the "BEGE(d)" model in Table 2.
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Table 6: Asset pricing model calibration and implied risk aversion

Panel A, parameterization

Model Gauss(s) BEGE(s1) BEGE(s2) BEGE(d) BEGE(d)’

∆  Gauss(s) BEGE(s1) BEGE(s2) BEGE(d) BEGE(d)

 28 17 19 19 80
 097 097 097 097 099

Panel B, distribution of utility curvature

Model Gauss(s) BEGE(s1) BEGE(s2) BEGE(d) BEGE(d)’

5% 412 306 321 323 439
25% 476 345 362 368 500
50% 579 420 442 449 566
75% 777 592 621 626 661
95% 1482 1371 1397 1365 858

Panel B, distribution of risk aversion

Model Gauss(s) BEGE(s1) BEGE(s2) BEGE(d) BEGE(d)’

5% 1718 873 1025 916 1075
25% 2037 963 1145 1025 1234
50% 2581 1141 1381 1226 1409
75% 3699 1561 1940 1678 1665
95% 8191 3592 4595 3705 2197

All models use CC preferences and are calibrated by varying  to match the unconditional Sharpe ratio of
equity returns in quarterly data from 1947-2011 (0.35). Model BEGE(d)’ is further calibrated by adjusting

 to match the unconditional variance of equity returns. Panel B reports on the unconditional distribution
of local curvature of utility for each model.

  =  exp (−)

Panel C reports on the unconditional distribution of global risk aversion for models:

  =   · 



where  the price-dividend ratio of the asset with dividend equal to the consumption stream, and 
is the price-dividend ratio of an asset with dividends equal to .
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Table 7: Effects of shifts in  and  under the BEGE(d)’ model

Panel A, Endogenous variables

Variable BEGE(d)’

    
 659 871 422
 −0085 −0109 −0059
 0170 0218 0117
 [+1] −0040 −0065 −0040
 

 [+1] 0070 0115 0073

 
 [+1] 0084 0148 0088

 0299 0406 0304
 [∆+1] 0085 0085 0117
 [∆+1] 0090 0092 0127

Panel B, Asset prices

Variable BEGE(d)’

    

 313 283 304
 [+1] 0051 0079 0075
 015 016 020
 018 020 023
 003 004 003

This table reports the values of various endogenous variables and asset prices at three points in the

state space:

variable     
 −32 −40 −32
 14 14 43

The values in the above table reflect the 50th and 10th percentiles of the unconditional values of the 
distribution, and the 50th and 90th percentile values of the distribution of  in simulated data. In Panel
A,  is the sensitivity function. In panel B,  [+1] is the conditional one-period ahead equity risk
premium, expressed at an annual rate. All volatilities are reported at an annual rate.
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Table 8: Performance of Models: Univariate Asset Price Statistics

Sample Model-Implied

stats Gauss(s) BEGE(s1) BEGE(s2) BEGE(d) BEGE(d)’

 [] 0055 0045 0060 0055 0073 0056
(0021)

 [] 016 013 018 017 021 016
(0010)

 [] −092 011 −174 −132 −087 −110
(015)

 [] 171 −003 594 381 327 287
(063)

 [] 344 331 301 303 263 305
(014)

 [] 043 014 027 025 031 026
(009)

 [] 098 096 097 096 096 098
(003)

 [] 014 013 017 016 022 015
(0007)

 [] 0047 001 0036 0032 0092 0043
(0007)

 [] 0052 000 0038 0026 0028 0027
(0016)

 [] 0027 000 0026 0017 0017 0008
(0011)

 [] −171 −003 −220 −177 −173 −176
(015)

 [] 137 002 014 012 061 067
(024)

 [] 347 003 677 446 478 494
(062)

 [] 153 001 088 058 406 426
(026)

The left-most column reports sample statistics and block-bootstrapped standard errors. , , ,
and  refer to excess equity returns, the log price-dividend ratio, physical conditional volatility (an-

nualized), and the volatility premium (annualized). All statistics are reported at an annual rate, except

autocorrelation, which is reported for the quarterly frequency. The columns to the right of the vertical

line report simulated values for the asset price statistics under various models. Columns under the heading
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"Campbell-Cochrane preferences" use the preference specification from Campbell and Cochrane (1999),

+1 = ln ()− ∆+1 − ∆+1

+1 = +  (+1 − )−  (∆+1 − )

 :  = − ln ( [exp (+1)]) = 00025

and the parameter, , is chosen to match the sample unconditional Sharpe ratio for equity.
The column subheadings denote the consumption technology for each model. "Gauss(s)” refers to i.i.d.

Gaussian consumption growth using the parameters in Table 3. "BEGE(s1) uses the BEGE consumption

process estimated in Table 1. “BEGE(s2)" uses the alternative static BEGE model as reported in Table 4.

“BEGE(d)" refers to models using the dynamic BEGE consumption process presented in Table 2.
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Table 9: Performance of Models: Cross-moments between asset prices and fundamentals

Sample Model-Implied

Stats Gauss(s1) BEGE(s1) BEGE(s2) BEGE(d1) BEGE(d)’

Panel A, correlations in quarterly data

[∆ ] 018 070 082 081 083 070
(006)

[∆ ] 004 082 063 067 064 081
(004)

[∆∆] 009 020 020 020 020 020
(007)

Panel B, correlations in annual data

[∆ ] 019 045 051 046 051 047
(013)

[∆ ] 018 061 048 045 044 057
(014)

[∆∆] 035 020 020 004 019 019
(011)

Panel C, the price-dividend ratio and the conditional distribution of ∆
∆5 −00245∗∗ 0 0 0 −00121 −00109

(00080)
∆50 00037 0 0 0 00014 00010

(00027)
∆95 −00003 0 0 0 00076 00067

(00079)
Panel D, conditional equity volatility and the conditional distribution of ∆
∆5 −00197∗ 0 0 0 −00144 −00153

(00080)
∆50 −00045 0 0 0 00019 00021

(00033)
∆95 −00068 0 0 0 00090 00095

(00061)
Panel E, asymmetric volatility:  [ ]

−038∗∗∗ −005 −007 −008 −014 −021
(005)

The left-most column reports sample correlation statistics and block-bootstrapped standard errors.

The columns to the right of the vertical line report simulated values for the asset price statistics under

various models. In panels C and D, quantile moment shifts are reported. In Panel C, these are defined

as the shift in the conditional quantile measures of the distribution of consumption growth when the price-

dividend ratio of equity is below its unconditional median value. In Panel D, reported are the shifts in

quantile measures when the conditional volatility is above its unconditional median value. In Panels C and

D, one, two, and three asterisks denote statistical significance at the 10, 5, and 1 percent level.
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Table 10: Performance of models: the conditional distribution of equity returns

Panel A: Predictability of excess equity returns w.r.t price-dividend ratio

 = 1  = 4  = 12  = 20
 2  2  2  2

Sample −0023∗∗ 0013 −0024∗∗ 0056 −0023∗ 0188 −0022∗ 0297
(0020) (0016) (0019) (0055) (0014) (0113) (0011) (0140)

Gauss(s) −0043 0006 −0044 0024 −0039 0057 −0034 0075
BEGE(s1) −0051 0023 −0048 0087 −0042 0215 −0037 0297
BEGE(s2) −0049 0020 −0047 0075 −0041 0190 −0036 0264
BEGE(d) −0058 0028 −0054 0102 −0047 0255 −0040 0352
BEGE(d)’ −0030 0010 −0029 0037 −0026 0099 −0024 0147

Panel B: Conditional distribution of excess returns w.r.t. 

Sample Model-Implied

Stats Gauss(s) BEGE(s1) BEGE(s2) BEGE(d) BEGE(d)’

∆5 −0324∗∗ −0007 −0154 −0121 −0374 −0188
(0129)

∆50 0085 0032 0103 0086 0127 0051
(0039)

∆95 0161∗ 0088 0265 0247 0513 0290
(0078)

In Panel A, the upper rows report sample regression statistics with bootstrapped standard errors for the

regression model

1



X
=1

+ = +  ·  + +

where  is measured in quarters. The rows below report simulated values for the same regression statistics
under the various models.

In panel B, quantile moment shifts are reported. These are defined as the shift in the conditional

quantiles for one-period ahead excess equity returns when lagged physical conditional volatility of equity

returns moves above its unconditional median value. One, two, and three asterisks denote statistical

significance at the 10, 5, and 1 percent level.
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Figure 1:Examples of the BEGE Distribution
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This figure plots BEGE densities under various configurations for , ,  and . All the

distributions have zero mean and standard deviation 00029. The parameter configurations for the lines

are as follows.

   
 40 40 00003 00003
 2 2 00014 00014
 4 3 00016 00016
 3 4 00016 00016
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Figure 2:Unconditional Distribution of Consumption Growth
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Notes: The top panel shows the empirical histogram of real, quarterly consumption growth in for U.S.

nondurables and services from 1947Q2-2011Q4. The data have be pre-whitened to remove aggregation effects

using an AR(1) model. The panel also shows fitted i.i.d. Gaussian (dashed) and BEGE (solid) probability

densities functions for distributions that are fitted to the sample consumption data. The parameters for

these distributions are reported in Table 1. The bottom panel shows the base10 log of the fitted folded

Gaussian (dashed) and BEGE (solid) cumulative distribution functions. (the folded cdf of a variable, x,

is defined as max(cdf(x),1-cdf(x))). For reference, the horizontal red line indicates the 10 of 2
−6, the

estimated probability of a catastrophic asteroid Earth strike in any given year.
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Figure 3: Conditional distribution of consumption growth
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Notes: The top panel plots the time series for real, quarterly consumption growth in for U.S. non-

durables and services from 1947Q2-2011Q4. The data have been pre-whitened to remove aggregation effects

using an AR(1) model. The shaded regions represent “consumption slowdowns,” which are defined as pe-

riods in which the four-quarter moving average of consumption growth is less than 1 percent (annual rate).

The inset text in the figure describes the overlap between consumption slowdowns and NBER-defined reces-

sions. The bottom panel shows the distribution of consumption growth in period () conditional on period
(− 1) having been a slowdown period or not. The solid line plots the differences between the quantiles of
the two distributions.
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